电学性能

合集下载

材料的电学性能与测试方法

材料的电学性能与测试方法

材料的电学性能与测试方法引言:材料的电学性能是指材料在电场或电流作用下的响应和性质。

了解材料的电学性能对于材料的研究和应用具有重要意义。

本文将介绍几种常用的测试材料电学性能的方法。

一、电导率测试方法电导率是衡量材料导电性能的重要指标,其测试方法如下:1. 电导率测量仪器:使用四探针测试仪或电导率仪进行测量。

2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。

然后将四个电极按照规定的间距连接到材料上,并确保电极与材料之间的良好接触。

最后,通过测试仪器施加电流并测量电压,根据欧姆定律计算得出材料的电导率。

二、介电常数测试方法介电常数是材料在电场中对电场强度的响应能力,测试方法如下:1. 介电常数测量仪器:使用恒流恒压法或绝缘材料测试仪进行测量。

2. 测量步骤:将待测试材料加工成平板状或柱形状样品,保证样品的几何形状和尺寸稳定。

然后将测试仪器中的电极引线与样品连接,确保电极与材料的良好接触。

接下来,在测试仪器中施加电流和电压,测量得到材料的介电常数。

三、热释电测试方法热释电是指材料在电场作用下产生的热能释放,其测试方法如下:1. 热释电测量仪器:使用热释电测试仪进行测量。

2. 测量步骤:将待测试材料切割成适当的样品尺寸,保持样品的几何形状和尺寸稳定。

然后将样品放置在测试仪器中,施加电场。

测试仪器会测量样品在电场下产生的温升,根据温升和已知的电场强度计算得出材料的热释电性能。

四、电阻温度系数测试方法电阻温度系数是指材料电阻随温度变化的程度,其测试方法如下:1. 电阻温度系数测量仪器:使用四探针测试仪或电阻测量仪进行测量。

2. 测量步骤:将待测试材料切割成细丝或片状样品,保持样品的几何形状和尺寸稳定。

然后将四个电极按照规定的间距连接到样品上,并确保电极与材料之间的良好接触。

接下来,在测试仪器中施加电流并测量电阻,随后在不同温度下重复测量电阻值。

最后,根据电阻值和温度变化计算得出材料的电阻温度系数。

材料物理性能学之材料的电性能

材料物理性能学之材料的电性能

材料物理性能学之材料的电性能引言材料的电性能是材料物理性能学的一个重要研究分支,它研究的是材料在电场、电流和电磁波等电学环境下的行为和性能。

材料的电性能对于材料的应用具有关键影响,比方在电子学、能源转换和传感器等领域中起着重要作用。

本文将探讨材料的电性能的根本概念、测试方法和常见的应用。

1. 电导率电导率是材料的一个根本电学性能参数,表示材料导电能力的强弱。

它常用符号σ表示,单位为S/m〔西门子/米〕。

电导率的量值越大,材料越好的导电性能。

电导率可以通过测量材料的电阻率来计算。

2. 电阻率电阻率是材料对电流流动的阻碍能力的度量,常用符号ρ表示,单位为Ω·m。

电阻率和电导率是一对相互关联的物理量,它们之间的关系可以用以下公式表示:ρ = 1/σ。

电阻率可以通过测量材料的电阻来得到。

3. 介电性能除了导电性能,材料还具有介电性能。

介电性能是材料对电场的响应能力的度量。

具有良好介电性能的材料可以阻止电流的流动,并被广泛应用于电容器、绝缘材料和电子设备等领域。

介电性能可以通过测量材料的介电常数来评估。

4. 介电常数介电常数是材料在电场中响应的能力的度量,常用符号ε表示。

介电常数可分为静电介电常数和动态介电常数。

静电介电常数表示在静电场中材料的响应能力,而动态介电常数那么表示在交变电场中材料的响应能力。

介电常数越大,材料对电场的响应能力越强。

5. 半导体材料的特性半导体材料是一类介于导体和绝缘体之间的材料,它具有特殊的电性能。

半导体材料的电导率较低,但随着温度的升高会逐渐增大。

半导体材料的导电性能可以通过添加杂质来调控,从而实现半导体器件的制造。

6. 材料的应用材料的电性能对于众多领域的应用至关重要。

在电子学领域中,导电性能好的材料可以用于制造电路和导线等电子元器件。

在能源转换领域中,材料的电性能对太阳能电池和燃料电池等能源转换器件的效率和稳定性有重要影响。

在传感器领域中,材料的电性能可以用于制造压力传感器、温度传感器和湿度传感器等。

材料物理学中的物理性能测试

材料物理学中的物理性能测试

材料物理学中的物理性能测试材料物理学是研究材料的结构、性质和性能的学科,而物理性能测试则是评估这些材料在不同环境下的响应和表现的重要手段。

通过物理性能测试,我们可以了解材料的力学性能、热学性能、电学性能等,从而为材料的设计、选择和应用提供科学依据。

一、力学性能测试力学性能是材料最基本的性能之一,它包括材料的强度、硬度、韧性等指标。

常见的力学性能测试方法有拉伸试验、压缩试验、弯曲试验等。

拉伸试验是最常用的力学性能测试方法之一,通过施加拉力来测量材料的抗拉强度、屈服强度、断裂强度等指标。

压缩试验则是施加压力来测量材料的抗压强度、屈服强度等。

弯曲试验则是通过施加弯曲力来测量材料的弯曲强度、弯曲模量等。

二、热学性能测试热学性能是材料在热力学条件下的表现,包括导热性能、热膨胀性能等。

导热性能测试是评估材料导热性能的重要方法,常用的测试方法有热传导仪、热导率计等。

热膨胀性能测试则是测量材料在温度变化下的线膨胀系数,常用的测试方法有热膨胀仪、激光干涉仪等。

三、电学性能测试电学性能是材料在电场、电流下的表现,包括电导率、介电常数、电阻等。

电导率测试是评估材料导电性能的重要方法,常用的测试方法有四探针法、电导率计等。

介电常数测试则是测量材料在电场中的响应,常用的测试方法有介电常数测试仪、电容测量仪等。

电阻测试则是测量材料对电流的阻碍程度,常用的测试方法有电阻测试仪、电阻箱等。

四、其他物理性能测试除了上述的力学性能、热学性能和电学性能测试外,材料物理学中还有其他重要的物理性能需要测试。

例如,磁学性能测试是评估材料磁性的重要手段,常用的测试方法有霍尔效应测试、磁滞回线测试等。

光学性能测试则是评估材料对光的传输、反射、折射等性能的重要方法,常用的测试方法有透射光谱仪、反射光谱仪等。

综上所述,物理性能测试在材料物理学中具有重要的地位和作用。

通过对材料的力学性能、热学性能、电学性能等进行测试,我们可以全面了解材料的性能特点,为材料的设计、选择和应用提供科学依据。

聚合物电学性能

聚合物电学性能

Chapter10 聚合物的电性能
• 热合PVC等极性材料是适宜的。而PE薄膜等非极 性材料就很难用高频热合。
• 轮胎经高频热处理消除内应力,可大幅度延长使 用寿命。
• 塑料注射成型时常因含水而产生气泡,经高频干 燥能很好解决这个问题。
Chapter10 聚合物的电性能
(3)高聚物的介电松弛谱
□ 高分子分子运动的时间与温度依赖性可在其介电性质上得 到反映。借助于介电参数的变化可研究聚合物的松弛行为。
以上两种极化统称为变形极化或诱导极化 其极化率不随温度变化而变化,聚合物在高频区均能发生变 形极化或诱导极化
Chapter10 聚合物的电性能
• 偶极极化(取向极化):
是具有永久偶极矩的极性分子沿外场方向排列的现象。极 化所需要的时间长,一般为10-9s,发生于低频区域。
(a)无电场
(b)有电场
图1 偶极子在电场中取向
Chapter10 聚合物的电性能
三、影响聚合物介电性能的因素
• 高分子材料的介电性能首先与材料的极性有关。 这是因为在几种介质极化形式中,偶极子的取向 极化偶极矩最大,影响最显著。
• 决定聚合物介电损耗大小的内在因素: ①分子极性大小和极性基团的密度 ② 极性基团的可动性
Chapter10 聚合物的电性能
Chapter10 聚合物的电性能
• 介电损耗温度谱示意图
在这些图谱上,高聚物的介电损耗一 般都出现一个以上的极大值,分别对 应于不同尺寸运动单元的偶极子在电 场中的介电损耗(因偶极子的取向极化 过程伴随着分子运动过程,运动模式 各异,其松弛时间也不一致,其受阻程 度不同)按照这些损耗峰在图谱上出现 的先后,在温度谱上从高温到低温, 在频率谱上从低频到高频,依次用、 、命名。

材料的电学性能测试实验报告

材料的电学性能测试实验报告

材料的电学性能测试,实验报告实验报告:材料的电学性能测试一、引言材料的电学性能是决定其在不同应用中的关键因素。

本实验报告主要介绍几种基本的电学性能测试方法,包括电阻率测试、绝缘电阻测试和介电常数测试,并通过具体实验示例对这些方法进行详细阐述。

二、实验材料与方法1.电阻率测试电阻率是衡量材料导电性能的参数,可通过四探针法进行测量。

四探针法的基本原理是:当四个探针在材料上施加一定的电流时,通过测量两对探针之间的电压降,可以计算出材料的电阻率。

2.绝缘电阻测试绝缘电阻是衡量材料绝缘性能的重要参数,可采用直流电压源和电流表进行测量。

基本原理是:在材料两端施加一定的直流电压,然后测量流过材料的电流大小,通过计算可得材料的绝缘电阻值。

3.介电常数测试介电常数是衡量材料介电性能的参数,可采用LCR数字电桥进行测量。

LCR数字电桥具有测量精度高、读数稳定等优点。

基本原理是:在材料上施加一定频率的交流电压,测量通过材料的电流及相位差,通过计算可得材料的介电常数值。

三、实验结果与分析1.电阻率测试结果与分析在本次实验中,我们选取了铜、镍和铝三种材料进行电阻率测试。

实验结果表明,铜的电阻率最低,具有良好的导电性能;而铝和镍的电阻率较高,相对而言导电性能较弱。

2.绝缘电阻测试结果与分析在本次实验中,我们选取了聚乙烯、聚氯乙烯和橡胶三种材料进行绝缘电阻测试。

实验结果表明,橡胶的绝缘电阻最高,具有最好的绝缘性能;而聚乙烯和聚氯乙烯的绝缘电阻相对较低,相对而言绝缘性能较弱。

3.介电常数测试结果与分析在本次实验中,我们选取了聚酰亚胺、聚碳酸酯和聚酯三种材料进行介电常数测试。

实验结果表明,聚酰亚胺的介电常数最高,具有较好的介电性能;而聚酯的介电常数相对较低,相对而言介电性能较弱。

四、结论本次实验通过电阻率测试、绝缘电阻测试和介电常数测试三种方法对不同材料的电学性能进行了评估。

实验结果表明:在导电性能方面,铜具有最好的导电性能,而铝和镍相对较弱;在绝缘性能方面,橡胶具有最好的绝缘性能,而聚乙烯和聚氯乙烯相对较弱;在介电性能方面,聚酰亚胺具有较好的介电性能,而聚酯相对较弱。

材料性能学第十章--材料的电学性能

材料性能学第十章--材料的电学性能

+4
+4
+4
+4
电子和空穴在外电场的作用下都将作 定向运动,这种作定向运动电子和空 穴(载流子)参与导电,形成本征半 导体中的电流。
当温度升高时,有更多的电子能够跳到下一个能带去。这有两个结果:在上面的导带 中少数电子所起的作用和它们在金属中所起的作用相同;而价带中留下的空态即空穴 起着类似的作用,不过它们好象是正的电子,因此,它们有来自导带中的激发电子和 来自价带中的空穴的导电性;温度升高时,由于有更多的电子被激发到导带, 所以 电导率随温度而迅速增加。
第一节 导电性能
量子力学证明,对于一个绝对纯的理想的完整晶体,0 K时,电子波 的传播不受阻碍,形成无阻传播,电阻为零,导致所谓的超导现象。
二、导电机理
1、金属及半导体的导电机理
第一节 导电性能
实际金属内部存在着缺陷和杂质。缺陷和杂质产生的静态点阵畸 变和热振动引起的动态点阵畸变,对电磁波造成散射,这是金属 产生电阻的原因。由此导出的电导率为:
合金为:
10-7-
-5 10 Ω.m
半导体材料:ρ=10-2-109Ω.m
绝缘体材料:ρ>1010Ω.m
各种材料在室温的电导率
金属和合金
-1 -1 (Ω .m )
银 铜,工业纯 金 铝, 工业纯 Al-1.2%,Mn 合金 钠 钨, 工业纯 黄铜(70%Cu-30%Zn 镍,工业纯 纯铁,工业纯 钛,工业纯 不锈钢,301型 镍铬合金 (80%Ni-20%Cr)
第一节 导电性能
一、电阻与导电的基本概念
欧姆定律:当在材料的两端施加电压时,材料 中有电流流过
电阻与材料的性质有关,还与材料的长度 及截面积有关
电阻率只与材料本性有关,而与导体的几何 尺寸是无关,作为评定导电性的基本参数

材料电学性能

材料电学性能

高分子材料的电学性能高分子092班学号:5701109061 姓名:林尤琳摘要:种类繁多的高分子材料的电学性能是丰富多彩的。

多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。

关键词:高分子材料电学性能静电导电介电常数高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。

电学性能是材料最基本的属性之一,这是因为构成材料的原子和分子都是由电子的相互作用形成的,电子相互作用是材料各种性能的根源.电子的微观相互作用同时是产生材料宏观性能,包括电学性能的微观基础。

在电场作用下产生的电流、极化现象、静电现象、光发射和光吸收现象都与其材料内部的电子运动相关。

深入、系统了解材料的电学性能在材料的制备、应用等方面都具有非常重要的意义。

(1)一、聚合物的介电性介电性是指高聚物在电场作用下,表现出对静电能的储存和损耗的性质。

通常用介电常数和介电损耗来表示。

(2)根据高聚物中各种基团的有效偶极距μ,可以把高聚物按极性的大小分成四类:非极性(μ=0):聚乙烯、聚丙烯、聚丁二烯、聚四氟乙烯等弱极性(μ≤0。

5):聚苯乙烯、天然橡胶等极性(μ>0。

5):聚氯乙烯、尼龙、有机玻璃等强极性(μ>0.7):聚乙烯醇、聚酯、聚丙烯腈、酚醛树脂、氨基塑料等聚合物在电场下会发生以下几种极化:(1)电子极化,(2)原子极化,(3)偶极极化.聚合物的极化程度用介电常数ε表示式中:V为直流电压;Qo、Q分别为真空电容器和介质电容器的两极板上产生的电荷;Q’为由于介质极化而在极板上感应的电荷.非极性分子只有电子和原子极化,ε较小;极性分子除有上述两种极化外,还有偶极极化,ε较大。

此外还有以下因素影响ε:(1)极性基团在分子链上的位置。

高分子材料的电学性能

高分子材料的电学性能

第六节 高分子材料的电学性能高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。

种类繁多的高分子材料的电学性能是丰富多彩的。

就导电性而言,高分子材料可以是绝缘体、半导体、导体和超导体。

多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。

另一方面,导电高分子的研究和应用近年来取得突飞猛进的发展。

以MacDiarmid 、Heeger 、白川英树等人为代表高分子科学家发现,一大批分子链具有共轭π-电子结构的聚合物,如聚乙炔、聚噻吩、聚吡咯、聚苯胺等,通过不同的方式掺杂,可以具有半导体(电导率σ=10-10-102 S •cm -1)甚至导体(σ=102-106 S •cm -1)的电导率。

通过结构修饰(衍生物、接枝、共聚)、掺杂诱导、乳液聚合、化学复合等方法人们又克服了导电高分子不溶不熔的缺点,获得可溶性或水分散性导电高分子,大大改善了加工性,使导电高分子进入实用领域。

白川英树等人因其开创性和富有成效的工作获得2000年度诺贝尔化学奖。

研究聚合物电学性能的另一缘由是因为聚合物的电学性质非常灵敏地反映材料内部的结构特征和分子运动状况,因此如同力学性质的测量一样,电学性质的测量也成为研究聚合物结构与分子运动的一种有效手段。

一、聚合物的极化和介电性能(一)聚合物电介质在外电场中的极化在外电场作用下,电介质分子中电荷分布发生变化,使材料出现宏观偶极矩,这种现象称电介质的极化。

极化方式有两种:感应极化和取向极化。

根据分子本身是否具有永久偶极矩,物质分子可分为极性分子和非极性分子两大类,其极化方式不同。

非极性分子本身无偶极矩,在外电场作用下,原子内部价电子云相对于原子核发生位移,使正负电荷中心分离,分子带上偶极矩;或者在外电场作用下,电负性不同的原子之间发生相对位移,使分子带上偶极矩。

材料物理性能

材料物理性能

2.本征半导体的迁移和电阻率
自由电子和空穴热运动,在外电场的作用下做定 向漂移运动,形成电流。漂移过程中不断碰撞,有一 定的漂移速度。 迁移率:单位场强下,载流子的平均漂移速度。
分别用μn和μP分别表示自由电子和空穴的迁移率。
(1)迁移率与外电场强成正比。 (2)自由电子的迁移率较空穴高。 (3)能带宽度大的迁移率低。 本征半导体电阻率:
金属导体的能带分布特点:无禁带 导带 价带 价 带 ( 导 带 )
第一种:价带和导带重叠。 第二种:价带未被价电子填满,价带本身就是导带。
这两种情况下的价电子就是自由电子,所以金属 即使在温度较低的情况下仍有大量的自由电子,具有 很强的导电能力。
非导体的能带分布特点:有禁带
在绝对零度时,满价带和空导带,基本无导电能力。
绝缘体:
禁带宽度大。在室温下,几乎没有价电子能跃迁 到导带中去,故基本无自由电子和空穴,所以绝缘体 几乎没有导电能力。
2.4 金属的导电性
2.4.1 金属导电的机制与马基申定律
金属导电的机制: 经典理论 在外电场的作用下,自由电子在导体中定向移动。 量子理论
在外电场的作用下,自由电子以波动的形式在晶 体点阵中定向传播。
2.8.2 半导体中的能量状态—能带
原子结合状态:价电子共有的共价键。 以Si为例:
单原子能级:3s2 3p2 ,3p 中有4个电子空位。
若有 N 个原子的无缺陷硅单晶:
能带:共价键结合后,能级分裂成满带和空带
满带: 4N 个价电子全部占满,能量 EV 。 空带:有 4N 个空位,没有电子,能量 EC 。 禁带:
2.5.2 金属化合物的导电性
两种金属的原子形成化合物 时,由于原子键合的方式发生本 质变化,使得化合物的电阻较固 溶体大大增大,接近于半导体的 导电性。 原因 部分结合方式由金属键变为 共价键或离子键。

培训_第三章材料的电学性能

培训_第三章材料的电学性能

离子在晶格点附近不断的热振动,偏离了晶格格
点,这种偏离引起晶格对电子的散射,称为晶格 实散际射金。属内部还存在着缺陷和杂质,产生的静态
点阵畸变和热振动引起的动态点阵畸变,对电子
波造成散射而形成电阻。 而对于一个纯的理想的完整晶体,0K时,电子波
的传播不受阻碍,形成无阻传播,电阻为零,导
致所谓的超导现象。
为自由电子,同时在价带中形成空穴,这样就使 半导体具有一些导电能力。
绝缘体:
禁带宽度大。在室温下,几乎没有价电子能 跃迁到导带中去,故基本无自由电子和空穴,所 以绝缘体几乎没有导电能力。
三、影响金属导电性的因素
晶体点阵的不完整性是引起电子散射的原因,而电阻来
源于晶体对自由运动电子的散射,因此电阻具有 组织结构敏感性,温度、形变(应力)、合金
18
同自由电子理论一样,也认为金属中的价电子 是公有化和能量是量子化的,所不同的是,它 认为金属中由离子所造成的势场不是均匀的, 而是呈周期性变化的,能带理论就是研究金属 中的价电子在周期势场作用下的能量分布问题
的电。子在周期势场中运动,随着位置的变化, 它的能量也呈周期变化,即接近正离子时势能 降低,离开时势能增高。这样价电子在金属中 的运动就不能看成是完全自由的。
原因:由于高压作用,导致原子间距发生变化(变小),使
金属内部的电子结构、费米能和能带结构发生变化,从而影 响导电性。
能带结构和导电机理:由于周期场的影响,使得价电子在
金属中以不同能量状态分布的能带发生分裂,也就是说,
有些能态是电子不能取值的。 由右图可以看到:
禁带宽窄取决于周期 势场的变化幅度,变 化越大,则禁带越宽。
当 线规-K律1<连K 续<K变1时化,;曲线按抛物 当增K=K1时,只要波数稍微

第三章 材料的电学性能——材料物理性能课件PPT

第三章 材料的电学性能——材料物理性能课件PPT

v eEl / vme
j nev ne(eEl / vme ) (ne2l / vme )E
E
其中,电导率为: ne2l / vme = ne2t me
从金属的经典电子理论导出了欧姆定律的微分形 式,而且得到了电导率的表达式。
从电导率表达式知:电导率与自由电子的数量成 正比,与电子的平均自由程成正比。
22
❖ 容易想象温度越高,x2越大振幅愈大,振动愈激烈,因而对 周期场扰动愈甚,电子愈容易被散射,故有:散射几率p与x2 成正比,可得出:R∝ρ∝p∝x2∝T。即电阻R与绝对温度T 成正比。这样就解决了经典电子理论长期得不到定量解释的 困难。
一、电阻和导电的基本概念 ❖ 电阻率
❖ 电导率
电阻率和电导率都与材料的尺寸无关,而只决定于它 们的性质,因此是物质的本征参数,可用来作为表征 材料导电性的尺度。
根据材料导电性能好坏,可把材料分为:
❖ 导体 : ρ<10-5Ω•m
❖ 半导体 : 10-3Ω•m < ρ< 109Ω•m
❖ 绝缘体 : ρ> 109Ω•m ❖ 不同材料的导电能力相差很大,这是由它们的结构
作为太阳能电池的半导体对其导电性能的要求更高,以追求 尽可能高的太阳能利用效率。
电学性能包括:导电性能、超导电性、介电性、铁 电性、热电性、接触电性、磁电性、光电性。
本章主要讨论材料产生电学性能的机理,影响材料 电学性能的因素,测量材料各类电学性能参数的方法 以及不同电学性能材料的应用等。
3.1 金属的导电性
第三章 材料的电学性能
在许多情况下,材料的导电性能比材料的力学性能还要重要。
导电材料、电阻材料、电热材料、半导体材料、超导材料和 绝缘材料都是以材料的导电性能为基础。

材料的电学性能.PPT

材料的电学性能.PPT

② 临界磁场Hc :T< Tc时,将超导体放入磁 场中,若H>Hc,则磁力线穿入超导体,超 导体被破坏而成为正常态。 Hc是破坏超导态 的最小磁场。
.
15
超导电性的三个重要性能指标:
③ 临界电流密度Jc :如果输入电流所产生 的磁场与外磁场之和超过临界磁场,则超 导态被破坏,此时输入的电流为临界电流。 H增加, Jc 必须相应地减小,以使磁场总 和不超过Hc 而保持超导态。 Jc 是材料保持 超导态的最大输入电流密度。
禁带:能隙的存在意味着禁止电 子具有A和B与C和D之间的能量, 能隙所对应的能带。
允带:电子可以具有的能级所组 成的能带。
允带与禁带相互交替,形成了材 料的能带结构。
.
8
(3)能带理论 空能级指允带中未被电子填满的能级。
导带:具有空能级的允带中的电子是自由的,在 外电场作用下参与导电,这样的允带称为导带。
.
16
超导电性的三个重要性能指标:
①临界转变温度Tc ② 临界磁场Hc ③ 临界电流密度Jc
.
17
上节回顾
1、掌握铁磁性的本质,铁磁体的两大特征, 磁畴结构的大小,磁化曲线和磁滞回线, 铁磁材料的性能指标。
2、利用能带结构分析材料的导电性差异。
3、熟悉超导体的概念,掌握超导体的两个 特征和三个性能指标。
不同材料的导电能力相差很大,这决定于结构 与导电本质。
.
4
二、导电机理
(1)经典电子理论
金属晶体中,自由电子定向运动时,要不断与正 离子发生碰撞,使电子受阻,这是产生电阻的原因。
(2)量子自由电子理论 金属中每个原子的内层电子保持着单个原子时
的能量状态,而所有价电子按量子化规律具有不同 的能量状态,即具有不同的能级。

充电电池标准

充电电池标准

充电电池标准本标准涵盖了充电电池的物理性能、化学性能、电学性能、安全性、充电特性、放电特性、环境适应性和可靠性等方面的要求。

1.物理性能要求充电电池的物理性能要求包括尺寸、重量、外观和结构等。

这些要求旨在确保电池在正常使用条件下不会出现任何问题,如过热、过重或结构损坏等。

2.化学性能要求充电电池的化学性能要求包括电池的能量密度、容量、自放电率、寿命和充放电效率等。

这些要求旨在确保电池在正常充放电条件下能够提供足够的能量和容量,同时保证其具有较长的使用寿命和良好的充放电效率。

3.电学性能要求充电电池的电学性能要求包括电池的内阻、电压、电流和电阻等。

这些要求旨在确保电池在正常工作条件下能够提供稳定的电压和电流,同时保证其具有良好的电学性能和安全性。

4.安全性要求充电电池的安全性要求包括电池的过充保护、过放保护、过流保护和短路保护等。

这些要求旨在确保电池在异常充放电条件下能够自动切断电流,防止电池过热、膨胀或起火等安全问题的发生。

5.充电特性要求充电电池的充电特性要求包括充电方式、充电时间和充电效率等。

这些要求旨在确保电池在正常充电条件下能够快速充满电,同时保证其具有良好的充电特性和充放电效率。

6.放电特性要求充电电池的放电特性要求包括放电方式、放电时间和放电效率等。

这些要求旨在确保电池在正常放电条件下能够稳定地输出电流,同时保证其具有良好的放电特性和充放电效率。

7.环境适应性要求充电电池的环境适应性要求包括温度范围、湿度范围和振动适应性等。

这些要求旨在确保电池在不同的环境条件下能够稳定工作,同时保证其具有良好的环境适应性和可靠性。

8.可靠性要求充电电池的可靠性要求包括循环寿命、储存寿命和可靠性测试等。

这些要求旨在确保电池在正常充放电条件下能够稳定工作,同时保证其具有良好的可靠性和使用寿命。

有机化学中的聚合物的性能与性能测试

有机化学中的聚合物的性能与性能测试

有机化学中的聚合物的性能与性能测试聚合物是由许多重复单元组成的高分子化合物,它们在有机化学领域扮演着重要的角色。

聚合物的性能对于其应用领域具有决定性的影响。

因此,准确评估聚合物的性能并进行性能测试对于研究和应用有机化学至关重要。

聚合物的性能包括力学性能、热性能、电学性能等多个方面。

力学性能是指聚合物的强度、硬度和柔韧性等特性。

热性能则关注聚合物在高温和低温下的稳定性和可用温度范围。

电学性能涉及到聚合物的导电性、介电性和电子输运性能等。

下面将分别介绍聚合物在这些性能方面的测试方法。

一、力学性能测试1. 抗拉强度和伸长率测试力学性能中最基本的指标是聚合物的抗拉强度和伸长率。

这些指标可以通过拉伸试验来测量。

拉伸试验使用一个拉伸机,将聚合物样品拉伸,测量拉伸前后的变形,从而计算出抗拉强度和伸长率。

2. 硬度测试硬度是聚合物抵抗局部永久形变的能力。

常用的硬度测试方法包括洛氏硬度测试和巴氏硬度测试。

这些测试方法通过测量在一定加载下产生的印痕大小来评估聚合物的硬度。

3. 冲击强度测试聚合物的冲击强度是评估其耐冲击性能的指标。

冲击强度测试常用的方法有Charpy冲击试验和Izod冲击试验。

这些试验使用标准冲击试验机,将标准形状的试样进行冲击,测量所产生的断裂面积来评估聚合物的冲击强度。

二、热性能测试1. 热分解温度测试热分解温度是指聚合物在高温下开始分解的温度。

热分解温度测试可以使用热重分析仪进行。

该仪器通过加热聚合物样品,并同时测量其质量的变化,从而确定热分解温度。

2. 玻璃化转变温度测试玻璃化转变温度是指聚合物在温度下从玻璃态转变为橡胶态的温度。

玻璃化转变温度测试可以使用差示扫描量热仪进行。

该仪器通过测量样品在加热和冷却过程中的热流量差异,从而确定玻璃化转变温度。

三、电学性能测试1. 电导率测试电导率是衡量聚合物导电性能的指标。

电导率测试可以使用四探针电阻率计进行。

该仪器利用四根探针对聚合物样品施加电流,测量电压差来计算电导率。

材料的电学性能课件

材料的电学性能课件

电介质的损耗
电介质损耗
电介质在电场作用下,由于电导和极化的原因,将电能转换为热 能的现象。
损耗与电介质性能的关系
损耗的大小反映了电介质的导电和极化能力,是评估电介质性能的 重要参数。
损耗的测量方法
通过测量电介质在交流电场下的功率损耗或相位角来计算。
电介质的击穿
01
02
03
击穿
当电场强度足够高时,电 介质丧失其绝缘性能的现 象。
热电材料的应用
温差发电
利用热电材料将热能转 化为电能。
温度传感器
利用热电材料对温度的 敏感性,检测温度变化

热电制冷
利用热电材料的皮尔兹 效应实现制冷效果。
航天器热控
利用热电材料调节航天 器内部温度。
热电材料的发展趋势
高性能热电材料研究
提高热电材料的转换效率,降 低成本。
多功能化
开发具有多种功能的热电材料 ,如导热、导电、发光等。
材料的电学性能研究历史与现状
材料的电学性能研究始于19世纪初, 随着电子学的兴起和发展,逐渐成为 一门独立的学科。
随着新材料和新技术的发展,材料的 电学性能研究将不断深入,为电子器 件和集成电路的发展提供更多的理论 和技术支持。
目前,材料的电学性能研究已经取得 了长足的进展,涉及的研究领域不断 扩大,研究手段和方法也日益丰富和 先进。
材料的电学性能课件
目录
CONTENTS
• 引言 • 材料的导电性能 • 材料的介电性能 • 材料的磁学性能 • 材料的铁电性能 • 材料的热电性能
01 引言
材料的电学性能定义
材料的电学性能是指材料在电场 作用下的各种物理性质,包括导 电性、电阻、电导率、电场效应

第六章高聚物的电学性能(PDF)

第六章高聚物的电学性能(PDF)

第六章高聚物的电学性能¾交变电场¾弱电场¾强电场¾发生在聚合表面¾光导电¾压电¾热电(焦电)¾热释电¾驻极体等在外电场F 作用下,诱导偶极矩µ1为由取向极化引起的偶极矩µ2在外电场作用下所产生的偶极矩µ为αe ——电子极化率αa ——原子极化率αo ——取向极化率µ0——永久(固有)偶极矩E ——材料内部的场强,又称为局域场强E ≠F高聚物的有效偶极矩(单体单元偶极矩)与所带基团的偶极矩不完全一致,结构对称性会导致偶极矩部分或全部相互抵消介电系数:表征材料介电性能的主要参数(ε)含有该材料的电容器之电容C 与其在真空下的电容C 0之比值物理意义是电介质电容器储电能力的大小,在微观上则是电介质的极化能力式中,ε0为直流电场中的静电介电常数;M为高聚物的相对分子质量;ρ为密度;P为摩尔极化度;为阿伏加德罗常数。

克劳修斯-莫索提(Clausius-Mossotti)公式宏观的介电系数(ε)和微观的分子极化率(α)均反映了电介质材料的极化能力对于极性高聚物德拜(Debye)方程N~在高频电场下(>1014Hz),即极化时间为10-14s时,取向极化和原子极化都不容易发生,记这时的介电系数为ε(光频介电系数)∞对于非极性介质,介电系数ε与介质的光折射率n的平方相等介电损耗一个理想电容器的外电场作用下能储存电能,当外电场移去时,所储存的电能又全部释放出来,形成电源,没有能量损耗对于交变电压V=V 0e iwt ,理想电容器的电流I 理想和电压有90º相位差,ε1为介电系数,ε2为介电损耗因子,决定电介质内电能转变成热能的损耗程度对于高聚物电介质,在每一周期内所放出的能量就不等于所储存的能量,因为完成高聚物电介质偶极取向需要克服分子间相互作用而消耗一部分电能,这时,介电损耗介电损耗:电介质在交变电场中,由于消耗一部分电能使介质本身发热的现象产生介电损耗的原因:1. 电导损耗:电介质中含有能导电的载流子在外加电场的作用下,产生电导电流,消耗一部分电能转化为热能。

第一章 金属材料电学性能

第一章 金属材料电学性能

一价金属的neff
比二、三价金 属多,因此一 价金属的导电 性好
马基申定则
T
声子散射和电子散射 (与温度成正比)

电子在杂质和缺陷上的 散射(与温度无关)
马基申定则(Matthiessen Rule)
总的电阻包括金属的基本电阻(与温度有关)
和杂质浓度引起的电阻(与温度无关)

三、冷加工变形的影响
室温下部分金属/合金经相当大的冷加工变形后 电阻率的变化 金属/合金 铁、铜、银、铝等 钼 钨 单相固溶体 有序固溶体 电阻率增量 2% ~ 6% 15% ~ 20% 30% ~ 50% 10% ~ 20% 100%
三、冷加工变形的影响

电阻率增大的原因 晶体点阵畸变增加 点 阵 电 场 不 均 匀 电 子 散 射 加 剧
例如,一个原子的2s轨道只能有一个能级,可以
容纳2个电子。2p轨道则有3个能级,一共可以容 纳6个电子。
电子数量增加时能级扩展成能带
能带结构中的有关概念

允带
电子可以具有的能级所组成的能带

满带
一个能带中的各能级都被电子填满

空带
同各个原子的激发能级相对应的能带,在未被激
发的正常情况下没有电子填入
金属材料显微结构与物理性能

总学时 48
金属材料显微结构 32 物理性能 16

考试所占比例
金属材料显微结构 ~67% 物理性能 ~33%

成绩构成
平时成绩 30% 考试成绩 70%
教材及参考资料

教材
陈騑騢,材料物理性能,机械工业出版社,2006

参考书
吴雪梅,材料物理性能与检测,科学出版社,2012 宋学孟,金属物理性能分析,机械工业出版社,1981 刘强,材料物理性能,化学工业出版社,2009 陈登明,材料物理性能及表征,化学工业出版社,2013 郑冀,材料物理性能,天津大学出版社,2008

材料的电学性能

材料的电学性能

材料的电学性能材料的电学性能是指材料在电场作用下的响应特性,包括导电性、介电性、磁电性等。

这些性能对于材料在电子器件、电力设备、通信技术等领域的应用具有重要意义。

本文将就材料的电学性能进行详细介绍,以便更好地理解和应用这些性能。

首先,导电性是材料的一种重要电学性能。

导电性好的材料能够快速传导电流,常见的导电材料包括金属、导电聚合物等。

金属具有良好的导电性,是电子器件中常用的材料。

而导电聚合物则是一种新型的导电材料,具有轻质、柔韧等特点,适用于柔性电子器件的制备。

导电性的大小取决于材料内部自由电子的数量和迁移率,因此在材料设计和制备过程中需要考虑材料的电子结构和晶格结构。

其次,介电性是材料的另一重要电学性能。

介电性好的材料能够在电场作用下产生极化现象,常用于电容器、绝缘材料等领域。

常见的介电材料包括氧化物、聚合物、玻璃等。

这些材料具有不同的介电常数和介质损耗,适用于不同的电子器件和电力设备。

在实际应用中,需要根据具体的工作条件选择合适的介电材料,以确保设备的稳定性和可靠性。

最后,磁电性是材料的另一重要电学性能。

磁电材料能够在外加电场下产生磁化现象,常用于传感器、存储器件等领域。

常见的磁电材料包括铁电体、铁磁体等。

这些材料具有不同的铁电极化和磁化强度,适用于不同的磁电器件和磁存储器件。

磁电性的大小取决于材料内部的磁矩和电偶极矩,因此在材料设计和制备过程中需要考虑材料的晶体结构和磁电耦合效应。

综上所述,材料的电学性能是材料科学和电子技术领域的重要研究内容。

通过对导电性、介电性、磁电性等性能的深入理解,可以更好地设计和制备新型的电子器件和电力设备,推动电子技术的发展和应用。

希望本文能够为相关领域的研究人员和工程师提供一定的参考和帮助,促进材料的电学性能在实际应用中的进一步发展和创新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。

区分标准一般以106Ω⋅cm和1012Ω⋅cm为基准,电阻率低于106Ω⋅cm称为导体,高于1012Ω⋅cm称为绝缘体,介于两者之间的称为半导体。

然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。

就高分子材料而言,通常是以电阻率1012Ω⋅cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω⋅cm称为导电高分子材料,电阻率为106 ~1012Ω⋅cm常称为抗静电高分子。

通常高分子材料都是优良的绝缘材料。

通过本实验应达到以下目的:1、了解高分子材料的导电原理,掌握实验操作技能。

2、测定高分子材料的电阻并计算电阻率。

3、分析工艺条件与测试条件对电阻的影响。

二、实验原理1、电阻与电阻率材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。

体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。

在两电极间可能形成的极化忽略不计。

体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。

表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。

在两电极间可能形成的极化忽略不计。

表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。

体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。

高阻测量一般可以利用欧姆定律来实现,即R=V/I。

如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。

同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。

问题是R值很大时,用恒流测压法,被测电压V=RI将很大。

若I=1μA,R=1012Ω,要测的电压V=106V。

用加压测流法,V是已知的,要测的电流I=V/R将很小。

因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。

2、导电高分子材料的分类根据导电机理的不同,导电聚合物可分为结构型和复合型两类。

结构型导电聚合物(又称本征型导电聚合物)自身具有导电性,其大分子链中的共轭键可提供导电载流子,如聚乙炔、聚吡咯、聚苯胺等。

结构型导电聚合物由于刚性大而难于溶解和熔融、成型较困难、成本高昂,而且掺杂剂多属剧毒、强腐蚀物质,导电的稳定性、重复性以及导电率的变化范围比较窄等等诸多因素限制了本征型高分子导电材料的发展。

复合型导电聚合物(又称填充型导电聚合物),其聚合物本身无导电性,主要依靠渗入聚合物基体中的导电微粒(抗静电剂或导电填料)提供自由电子载流子以实现导电过程。

添加抗静电剂的高分子材料的电阻率一般只能达到1×108~1×1010 Ω·cm ,电阻降低有限且耐久性差,受外在因素(如空气湿度等)影响较大,通常只在短期要求抗静电的条件下使用。

因此,目前电高分子材料以添加导电填料为主。

常用的导电填料有:①碳炭系列,如石墨、碳黑和碳纤维等;②金属系列,如金属粉末、碎片和纤维,镀金属的粉末和纤维等;③其它系列,如无机盐和金属氧化物粉末等。

其中,由于碳黑原料易得,品种齐全,价格低廉,质轻,还兼有增强、吸收紫外线等功能,是目前广泛采用的导电填料。

3、渗滤(percolation)现象和渗滤阈值图1所示的是典型的高分子导电复合材料的体积电阻率与导电填料含量的关系。

可以看出复合材料的导电性不是随着炭黑含量的增加而成比例地增大的,随着炭黑含量的增加,复合材料的体积电阻率起初略微下降,当炭黑含量增大到某一临界值时复合材料的电阻率突然急剧减小,在一个很窄的区域内,炭黑含量的略微增加会导致复合材料电阻率大幅度下降,这种现象通常称为“渗滤”效应(Percolation Effect),炭黑含量的临界值称为“渗滤阈值”(Percolation threshold)。

在突变之后,复合材料的体积电阻率随着炭黑含量的增加而下降的幅度又恢复平缓。

体积电阻率急剧下降的区域(B 区)称为渗滤区,A 区、C 区分别为绝缘区和导电区。

0020405101520c m ⋅Ω/l o g ρ炭黑质量分数/%图1 复合材料的体积电阻率与炭黑的关系4、聚合物基导电复合材料的导电机理聚合物基导电复合材料的导电机理有如下几种理论:(1) 导电通道学说,此学说认为导电填料加到聚合物后不可能达到真正的多相均匀分布,总有部分带电粒子相互接触而形成链状导电通道,使复合材料得以导电。

这种理论已被大多数学者所接受。

(2) 隧道效应学说,尽管导电粒子直接接触是导电的主要方式,但Polley 和Boonstra 利用电子显微镜观察后,发现碳黑填充橡胶的复合体系,存在碳黑尚未成链且在橡胶延伸状态下亦有导电现象。

通过对电阻率与导电粒子间隙的关系研究,发现粒子间隙很大时也有导电现象,这被认为是分子热运动和电子迁移的综合结果。

(3) 电场发射学说,Beek 等人研究了界面电压-电流非欧姆特性问题。

他们认为由于界面效应的存在,当电压增加到一定值后,导电粒子间产生的强电场引起了发射电场,促使电子越过能垒而产生电流,导致电流增加而偏离线性关系。

聚合物基导电复合物材料的实际导电机理是相当复杂的,但现阶段主要认为是导电填料的直接接触和间隙之间的隧道效应的综合作用。

5、聚合物基导电复合材料的PTC 效应PTC(Positive Temperature Coefficient)效应是指材料的电阻值随温度的升高而上升的一种热敏材料,即材料的电阻或者电阻率在某一定的温度范围内时基本保持不变或仅有微小量的变化,而当温度达到材料的某个特定的转变点温度附近时,材料的电阻率会在几度或十几度狭窄的温度范围内发生(半)导体到绝缘体的相互转变,电阻率迅速增大103~109数量级。

一般目前使用的PTC 材料主要分为陶瓷基PTC 材料和高分子基PTC 材料两种类型。

后者是以聚合物材料为基体,加入碳黑、金属粉、金属氧化物为导电填料,所形成的多相复合体系。

其典型的阻温特征曲线,如图2所示。

T 0T b T p T max ρ0ρbρp ρmaxm ⋅Ω/l g ρT/ºC图2 典型的阻温特征曲线复合型导电高分子材料的PTC 效应的导电机理较为复杂,目前对PTC 现象的解释大部分体现在体积膨胀和晶相转变两大观点。

目前比较有代表性的理论有下面几种:Kohler 认为,PTC 现象的产生取决于聚合物基体的热膨胀系数。

由于高分子材料的热膨胀系数大于导电粉体材料的热膨胀系数,因此在复合材料的升温过程中,聚合物基体的膨胀使CB 颗粒间的距离变大,电阻率增加。

当温度接近聚合物晶体融点时,体积的突然膨胀致使导电网络破坏,材料呈现高的电阻。

但这一理论不能解释当复合物发生应变时,PTC 强度减少的现象,也不能解释为何许多导电粒子填充的非晶高聚物无PTC 效应。

Ohe 提出PTC 现象主要取决于导电颗粒间的隧道效应。

在低温时,CB 粒子间距小且分布均匀,可以产生显著的隧道效应。

高温时,基体的热膨胀使粒子分散得不均匀,有相当一部分粒子间的距离增大到无法产生隧道效应,大量的导电网络消失,材料的电阻率增大。

Meyer 实验结果则说明,膨胀系数与PTC 强度之间并无固定的关系,热膨胀系数较小的高聚物也可能有较强的PTC 效应。

他认为结晶高分子膜(30nm)的导电性比非晶高分子膜高得多。

温度较低时,晶体的晶区尚未熔化,碳黑粒子之间可以通过晶区而产生隧道效应,电阻较小,晶区熔化时,由于晶区到非晶区的转变,材料的导电能力减弱,电阻增加,高温后电阻降低是由于原来处于受压态的碳黑粒子开始附聚成导电网络。

6、高阻聚合物电阻的测量原理(1) 四探针法测电阻率当1、2、3、4四根金属探针排成一直线时,并以一定压力压在半导体材料上,在1、4两处探针间通过稳定电流I ,则2、3探针间产生电位差V 。

中:S 1、S 2、S 3分别为探针1与2,2与3,3与4之间距,用cm 为单位。

每个探头都有自己的系数。

C ≈6.28±0.05,单位cm 。

若电流取I = C 时,则ρ=V ,可由数字电压表直接读出。

材料电阻率C IV =ρ 探针系数322121111120S S S S S S C +-+-+⨯=π (2) 二探针法测电阻电导率σ是电阻率ρ的倒数:σ=1/ρ,反映了物体导电能力的大小。

电导率越大表明物体的导电性能越好,常用单位为S/cm 。

由电阻公式:SL R ρ= 可以推出电导率公式:SR L ⋅=σ 本实验是对长方体聚合物试样进行测试,所以w d R l ⋅⋅=σ 图3四探针法测量原理图1234S 1S 2S 3式中d-试样厚度(cm),w-试样宽度(cm),l-试样长度(cm),R-试样电阻(Ω)。

如图4,将试样夹持在导电性能良好的夹头间,接上电阻率仪测其电压、电流,测出电阻率并计算出电导率。

每个样品测试5次,取其平均值。

接电阻仪接电阻仪图4 电阻测试示意图三、实验仪器简介本实验采用美国Keithley(吉时利)公司研发的C236源测量仪(SMU)与6517A静电计/高阻表。

1、工作原理如图5,A图为一定电压测量电流,B图为施加一定电流测量电压,通过欧姆定律R=U/I便可算出电阻。

A. Source V Measure IB. Source I Measure V图5 工作原理电路图2、Model 236的测量范围I-I -VV图6 Source-Measure Capabilities3、Model 236的测量精度A. 源电压的精度B. 测量电压的精度C .源电流的精度D .测量电流的精度四、实验操作1、C236前面板重要按键简介1. POWER 电源2. LOCAL 程控切换3. OPERA TE 操作4. WARNING 安全警报5. SOURCE MEASURE 测量源V/I切换6. FUNTION7. COMPLIANCE 设置本仪器(SMU)的最大测量值,对电路起保护作用8. TIME9. SUPPRESS10. FILTER 11. AUTORANGE 自动调节量程12. CREA T 13. MODIFY14. APPEND 15. RECALL16. SETUP 参数设置17. TRIGGER 触发测量18. Rotary Knob 19. SELECT20. Keypad 21. MENU2、电阻的简单测量(1) 开机预热20分钟(2) 将两红色电极连接待测电阻两端(3) 设置输入电压(4) 设定COMPLIANCE参数或选择AUTORANGE(5) OPERATE (安全提示:此时已接通电源,谨防触电)(6) TRIGGER(7) 读出电流值,仪器显示Stand By后,方可读数、分解电路(8) 计算电阻值3、C236的高阶应用(1) 开机预热20分钟(2) 启动电脑TESTPOINT程序(3) 调用TEST.TST文件(4) 进入RUN模式(5) 设置START VOLTAGE(初始电压),STOP VOLTAGE(终止电压),STEPVOLTAGE(步进电压),COMPLIANCE(量程),DELAY(延时)(6) 设置输出文件路径(7) RUN4、使用6517a测试电阻(1) 调零:MENU→SA VESETUP→RESET→ENTER→BENCH→ENTER→ENTER(2) 按R键,选择测试电阻(3) 选择自动设定电压CONFIG→R→VSOURCE→ENTER→AUTO→ENTER→EXIT(4) 按AUTO键,设定自动设定电压(5) 以如下方式之一连接试样(6) 按Z-CHK键,调零(7) 按OPER键,开始测试(8) 读取电阻值(9) 按OPER,结束测试。

相关文档
最新文档