圆的切线的性质和判定定理

合集下载

2.3圆的切线的性质及判定定理课件人教新课标3

2.3圆的切线的性质及判定定理课件人教新课标3

【变式1】 如图所示,在梯形ABCD中,AD∥BC,∠C=90°,且 AD+BC=AB,AB为⊙O的直径. 求证:⊙O与CD相切.
证明 过 O 作 OE⊥CD,垂足为 E. 因为 AD∥BC,∠C=90°,所以 AD∥OE∥BC. 因为 O 为 AB 的中点,所以 E 为 CD 的中点. 所以 OE=12(AD+BC). 又因为 AD+BC=AB, 所以 OE=12AB, 且等于⊙O 的半径. 所以⊙O 与 CD 相切.
⊙O的割线,与⊙O交于B、C两点,圆心O在∠PAC的内部, 点M是BC的中点.
(1)证明:A、P、O、M四点共圆; (2)求∠OAM+∠APM的大小.
(1)证明 连接OP,OM,
因为AP与⊙O相切于点P,所以OP⊥AP. 因为M是⊙O的弦BC的中点,所以OM⊥BC. 于是∠OPA+∠OMA=180°, 由圆心O在∠PAC的内部, 可知四边形APOM的对角互补, 所以A,P,O,M四点共圆.
又∠P 为公共角,∴△PAB∽△PCA. ∴CABA=PPAC=1200=12. ∵BC 为⊙O 的直径,∴∠CAB=90°. ∴AC2+AB2=BC2=225.∴AC=6 5,AB=3 5. 又∠ABC=∠E,∠CAE=∠EAB, ∴△ACE∽△ADB,∴AABE=AADC. ∴AD·AE=AB·AC=3 5×6 5=90.
自学导引
1.圆的切线的性质定理及推论 (1)定理:圆的切线垂直于经过切点的 半径 . (2)推论1:经过圆心且垂直于切线的直线必经过 切点 . (3)推论2:经过切点且垂直于切线的直线必经过 圆心 .
斟酌引申:(1)本定理及其两个推 论可以用一个定理叙述出来,即: 如果圆的一条直线满足以下三个 条件中的任意两条,那么就一定 满足第三条.它们是:①垂直于切线;②过切点;③过圆心. (2)本定理题设为:一条直线既过圆心又过切点,结论为:这条直 线与圆的切线垂直.如图所示,若直线l切⊙O于A,直线l′经过点 O、A,则直线l′⊥l.

圆的切线的性质及判定定理

圆的切线的性质及判定定理

A
O
B
D
练习3 若Rt△ABC内接于⊙O,∠A=30°. 延长斜边AB到D,使BD等于⊙O的半径, 求证:DC是⊙O的切线.
分析:如图
C
300600
. A
300 1200 600 600
O
B
D
练习1.如图A是⊙O外的一点,AO的延长线交 ⊙O于C,直线AB经过⊙O上一点B,且AB=BC, ∠C=30°. 求证:直线AB是⊙O的切线.
证明:连结OB,
∵OB=OC,AB=BC,∠C=30°
B
∴∠OBC=∠C=∠A=30° ∴∠AOB=∠C+∠OBC=60°
C O
A
∴∠ABO=180°-(∠AOB+∠A)
O
l
根据作图,直线l是⊙O切线满足两个条件: A B
1.经过半O的半径 OA⊥l于A
l是⊙O的切线.
定理说明:在此定理中,题设是“经过半径的外端” 和“垂直于这条半径”,结论为“直线是圆的切 线”, 两个条件缺一不可,否则就不是圆的切线. 下面两个反例说明只满足其中一个条件的直线不是圆的切线:
例2 如图,AB是⊙O的直径, C为⊙O上一点, AD和过点C的切线互相垂直,垂足为D. 求证: AC平分∠DAB.
证明:连接OC.
∵CD 是⊙O的切线, ∴OC⊥CD.
D C
又∵AD⊥CD , ∴OC//AD. A
∴∠ACO= ∠CAD .
O
B
又∵OC=OD, ∴∠CAO= ∠ACO
∴∠CAD= ∠CAO , 故AC平分∠DAB.
O.
A
l
O.
A
l
B
3.应用:
例1 如图,AB是⊙O的直径,⊙O过BC的中点D,

专题复习与圆的切线有关的证明

专题复习与圆的切线有关的证明
经过半径外端且垂直这条半径
是圆的切线
5、常用的添加辅助线的方法
(1)直线与圆的公共点已知时,作出过公共点的 半径,再证半径垂直于该直线。 有切点,连半径,证垂直 (2)直线与圆的公共点不确定时,过圆心作直线 的垂线段,再证明这条垂线段为圆的半径 无切点,作垂直,证半径
切线的性质
如图,⊙O的切线PC交直径AB的延长线于点P,C为切点, 若∠P=30°,⊙O的半径为1,则PB的长为_______
无交点,作垂直,证半径
例:如图 ,已知:O 为 BAC 角平分线上一点,
OD AB 于 D ,以 O 为圆心, 为半径作圆。
求证:AC 是⊙ O 的切线。
E
数学解答题P7 数学解答题P9
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
P9《数学解答题》
切线的性质
切线的性质
垂直 于经过切点的半径. 定理:圆的切线________ 技巧:圆心与切点的连线是常用的辅助线.
垂直 于这条半径的直线是圆 定理: 经过半径的外端并且________ 的切线. 证圆的切线技巧: (1)如果直线与圆有交点,连接圆心与交点的半径,证明直 线与该半径垂直,即“有交点,作半径,证垂直”.
(2)如果直线与圆没有明确的交点, 则过圆心作该直线的垂 线段,证明垂线段等于半径,即“无交点,作垂直,证半径”.
切线的判定
作业:《数学解答题》 P7-10第一问
专题复习 与圆的切线有关的证明
1、圆的切线性质定理
圆的切线垂直于经过切点的半径.
2、辅助线: 连接圆心与切点
连半径,得垂直
半径与切线垂直
3、切线判定
定理:经过半径的外端并且垂直于这条半径的 直线是圆的切线。

(完整)圆切线证明的方法

(完整)圆切线证明的方法

切线证明法切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30º.求证:DC 是⊙O 的切线.思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90º即可. 证明:连接OC ,BC .∵AB 为⊙O 的直径,∴∠ACB =90º.∵∠CAB =30º,∴BC =21AB =OB .∵BD =OB ,∴BC =21OD .∴∠OCD =90º.∴DC 是⊙O 的切线.【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线.思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90º即可.图1图2证明:连接OD .∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC ,∴△OBC ≌△ODC .∴∠OBC =∠ODC .∵BC 是⊙O 的切线,∴∠OBC =90º.∴∠ODC =90º. ∴DC 是⊙O 的切线.【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB .思路:利用圆的切线的性质--与圆的切线垂直于过切点的半径.证明:连接OC .∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB .【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.【例4】 如图1,B 、C 是⊙O 上的点,线段AB 经过圆心O ,连接AC 、BC ,过点C 作CD ⊥AB 于D ,∠ACD =2∠B .AC 是⊙O 的切线吗?为什么?解:AC 是⊙O 的切线. 理由:连接OC , ∵OC =OB , ∴∠OCB =∠B .图3 OABCD2 31∵∠COD是△BOC的外角,∴∠COD=∠OCB+∠B=2∠B.∵∠ACD=2∠B,∴∠ACD=∠COD.∵CD⊥AB于D,∴∠DCO+∠COD=90°.∴∠DCO+∠ACD=90°.即OC⊥AC.∵C为⊙O上的点,∴AC是⊙O的切线.【例5】如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.求证:DE是⊙O的切线.证明:连接OC,则OA=OC,∴∠CAO=∠ACO,∵AC平分∠EAB,∴∠EAC=∠CAO=∠ACO,∴AE∥CO,又AE⊥DE,∴CO⊥DE,∴DE是⊙O的切线.二、直线与圆的公共点未知时须通过圆心作已知直线的垂直线段,证明此垂线段的长等于半径【例6】如图3,AB=AC,OB=OC,⊙O与AB边相切于点D.证明:连接OD,作OE⊥AC,垂足为E.∵AB=AC,OB=OC.∴AO为∠BAC角平分线,∠DAO=∠EAO∵⊙O与AB相切于点D,∴∠BDO=∠CEO=90°.∵AO=AO∴△ADO≌△AEO,所以OE=OD.∵OD是⊙O的半径,∴OE是⊙O的半径.∴⊙O与AC边相切.【例7】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD。

圆的切线的性质及判定定理

圆的切线的性质及判定定理

圆的切线的性质及判定定理圆的相切的定义:直线和圆只有一个公共点,即圆心到直线的距离等于半径,这条直线叫圆的切线。

切线的性质定理:圆的切线垂直于经过切点的半径。

推论1:经过圆心且垂直于切线的直线必经过切点;推论2:经过切点且垂直于切线的直线必经过圆心。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

直线与圆的位置关系:相离:直线和圆没有公共点,即圆心到直线的距离大于半径;相交:直线和圆有两个公共点,即圆心到直线的距离小于半径,这条直线叫圆的割线;相切:直线和圆只有一个公共点,即圆心到直线的距离等于半径,这条直线叫圆的切线。

圆内接四边形的性质与判定定理圆内接四边形的概念:如果一个多边形的所有顶点都在一个圆上,这个多边形就叫做圆内接多边形,这个圆就是多边形的外接圆。

圆内接四边形的性质:圆内接四边形对角互补;圆内接四边形的外角等于它的内角的对角。

圆内接四边形的判定:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

推论:如果一个四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。

方法总结:1、在解决与圆内接四边形有关的问题时,要注意观察图形,分清四边形的外角和内对角的位置,正确应用性质.2、当两圆相交时,常常通过连结两圆的公共弦,构建出圆内接四边形,进一步解决问题.圆周角定理圆周角的定义:顶点在圆上,它们的两边在圆内的部分分别是圆的弦•一条弧所对的圆周角等于它所对的圆心角的一半。

圆心角定理:圆心角的度数等于它所对弧的度数。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

圆周角的特点:(1) 角的顶点在圆上;(2) 角的两边在圆内的部分是圆的弦.圆周角和圆心角相对于圆心与直径的位置关系有三种:A A A解题规律:解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.。

圆的切线知识点总结

圆的切线知识点总结

圆的切线知识点总结一、切线的定义在欧式几何中,对圆的切线有以下几种定义:1. 如果一条直线与圆相交于两点,那么这条直线就被称为圆的切线。

2. 一条直线与圆相交于圆上的一点,那么这条直线就是圆的切线。

3. 一条直线与圆相切于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的切线。

这三种定义表达了切线与圆的位置关系,指出了切线与圆的相交情况以及位置特征。

二、切线的性质1. 切线与半径垂直圆的半径与切线的交点处相互垂直。

2. 切线定理若直线l与圆相切于点P,直线l与直径所夹的角为直角。

3. 切线长度相等过圆外一点作一切线与圆相交于A、B两点,连接线A、B,若CA=CB,则线段CA与线段CB构成圆的切线。

4. 切线的判定若直线l经过圆外一点,分别与圆上两点A、B相连,若线段AB的中点恰好是圆心O,那么直线l即为圆的切线。

5. 切线的唯一性圆外一点到圆的切线唯一。

以上是切线的主要性质,这些性质在解题时常常起到重要的作用,特别是在证明几何问题时,能够帮助我们理解和应用切线的知识。

三、切线与圆的位置关系1. 内切线如果一条直线与圆相交于圆上的一点,但直线上的其他点都在圆的内部,那么这条直线就是圆的内切线。

2. 外切线如果一条直线与圆相交于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的外切线。

3. 相切线如果一条直线与圆相切于圆上的一点,且直线上的其他点都在圆的外部,那么这条直线就是圆的相切线。

切线与圆的位置关系在解题时十分重要,通过分析切线和圆的位置关系,可以帮助我们求解许多几何问题。

四、切线的判定方法1. 切线与圆的位置关系我们可以通过切线与圆的位置关系来判断一条直线是否为圆的切线,如切线的定义所述,可以分析直线与圆的相交情况以及位置特征来判定切线。

2. 对于圆外一点到圆的切线的判定,我们可以利用中位线作图,利用几何思维判定出直线是否为圆的切线。

3. 切线定理的应用切线定理是判定切线的重要原理之一,通过利用切线定理,可以判定一条直线是否为圆的切线。

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)

2.3 圆的切线的性质及判定定理 课件(人教A选修4-1)
1.切线的性质 (1)性质定理:圆的切线垂直于经 过 切点的半径. 如图,已知AB切⊙O于A点,则 OA ⊥AB.
(2)推论1:经过圆心且 垂直于切线 的直线必经过切点.
(3)推论2:经过切点且 垂直于切线 的直线必经过圆心.
2.圆的切线的判定方法 (1)定义:和圆只有一个公共点的直线是圆的切线.
利用圆的切线的性质来证明或进行有关的计算有时需
添加辅助线,其中连接圆心和切点的半径是常用辅助线, 从而可以构造直角三角形,利用直角三角形边角关系求解, 或利用勾股定理求解,或利用三角形相似求解等.
1. AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB的延长线于点C,
若DA=DC,求证:AB=2BC.
∠BOD 是 BD 所对的圆心角,
∠BCD=45° , ∴∠BOD=90° . ∵∠ADB 是△BCD 的一个外角, ∴∠DBC=∠ADB-∠ACB =60° -45° =15° , ∴∠DOC=2∠DBC=30° , 从而∠BOC=120° , ∵OB=OC,∴∠OBC=∠OCB=30° .
在△OEC 中,因为∠EOC=∠ECO=30° , ∴OE=EC, 在△BOE 中,因为∠BOE=90° ,∠EBO=30° . ∴BE=2OE=2EC, CE CD 1 ∴BE=DA= , 2 ∴AB∥OD,∴∠ABO=90° , 故 AB 是△BCD 的外接圆的切线.
交⊙O于点E,PA=AO=OB=1. (1)求∠P的度数; (2)求D切点,∴OC⊥PC,△POC 为直角三角形. ∵OC=OA=1,PO=PA+AO=2, OC 1 ∴sin ∠P= PO= .∴∠P=30° . 2 (2)∵BD⊥PD,∴在 Rt△PBD 中, 由∠P=30° ,PB=PA+AO+OB=3, 3 得 BD= . 2 连接 AE.则∠AEB=90° ,∴AE∥PD. ∴∠EAB=∠P=30° ,∴BE=ABsin 30° =1, 1 ∴DE=BD-BE= . 2

圆的切线的性质及判定定理 课件

圆的切线的性质及判定定理 课件

【典例训练】
1.在Rt△ABC中,∠C=90°,AC=3 cB的关系为( )
(A)相切
(B)相离
(C)相交
(D)无法判断
2.如图所示,CB为⊙O的直径,P是CB的延
长线上一点,且OB=BP,∠AOC=120°,
则PA与⊙O的位置关系是_____.
圆的切线的性质
圆的切线的性质 (1)已知一条直线是圆的切线时,常作出过切点的半径,则该半 径垂直于切线,从而出现了直角. (2)从圆外一点引圆的两条切线,这点与圆心的连线平分这两条 切线的夹角,这点到切点的切线长相等. (3)连接圆的两条平行切线的切点的线段是圆的直径.
【典例训练】 1.如图所示,DB,DC是⊙O的两条切线,A是圆上一点,已知 ∠D=46°,则∠A=_____.
DO AD
AD
2.如图,已知EB是半圆O的直径,A是BE延长线上的一点,AC是 半圆O的切线,D为切点,BC⊥AC于C,若BC=6,AC=8,则 AE=_______.
【解析】1.如图所示,连接OB,OC,
则OB⊥BD,OC⊥CD,
则∠DBO+∠DCO=90°+90°=180°,
则四边形OBDC内接于一个圆,
则有∠BOC=180°-∠D=180°-46°=134°,
【解析】连接OC,∵OA=OB,AC=CB,OC=OC, ∴△OAC≌△OBC, ∴∠OCA=∠OCB=90°, ∴直线AB与⊙O相切. 答案:相切
1.圆的切线的其他相关性质 (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)过圆心且过切点的直线与过该点的切线垂直.
2.切线的判定定理 在切线的判定定理中要分清定理的题设和结论,“经过半径外 端”和“垂直于这条半径”这两个条件缺一不可,否则就不是 圆的切线,如图①②中的例子就不同时满足这两个条件,所以 都不是圆的切线.

关于圆的切线的各种定理

关于圆的切线的各种定理

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l⊥O A,点 A 在⊙O 上∴直线l 是⊙O 的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA 是⊙O 的半径,直线l 切⊙O 于点 A∴l⊥O A(切线性质定理)推论 1 经过圆心且垂直于切线的直径必经过切点推论 2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA 、PB 分别切⊙O 于A、B 两点∴PA=PB ,∠APO= ∠BPO (切线长定理)证明:连结OA 、OB∵直线PA 、PB 分别切⊙ O 于A、B 两点∴OA ⊥AP 、OB ⊥PB∴∠OAP= ∠OBP=90 °弦切角(即图中 ∠ ACD) 等于它所夹的弧 弧的读数的一半等于完整,图中没有连结 1/2 所夹的弧的圆心角 OC] ( 弧 AC) 对的圆周角等于所夹的 [注,由于网上找得的图不是很几何语言: ∵∠ ACD 所夹的是弧 AC∴∠ ACD= ∠ABC=1/2 ∠ COA=1/2 弧 AC 的度数 ( 弦切角定理)推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言: ∵∠ 1 所夹的是弧 MN , ∠ 2 所夹的是 PQ ,弧 MN = 弧 PQ∴∠ 1= ∠ 2证明:作 AD ⊥EC∵∠ ADC=90 °∴∠ ACD+ ∠ CAD=90 °在△OPA 和△OPB 中:∠OAP= ∠OBPOP=OPOA=OB=r∴△OPA ≌△OPB ( HL )∴PA=PB ,∠APO= ∠BPO弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1))顶点在圆上,即角的顶点是圆的一条切线的切点; (2))角的一边和圆相交,即角的一边是过切点的一条弦所在的射线; (3) )角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。

3.4.3圆的切线性质定理

3.4.3圆的切线性质定理

练习与巩固:
1、如图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°, 则∠BAC等于( ) A. 70° B. 35° C. 20° D. 10°
O B A
(1)
A E
C
O B
(3)
B
D
(2)
C
A
2、如图,在△ABC中,AB=AC,∠BAC=120°,⊙A与BC相切于 点D,与AB相交于点E,则∠ADE等于___ _度. 3、如图,在△OAB中,OB:AB=3:2 , 0B=6,⊙O与AB相切 于点A, 则⊙O的直径为 。
4、如图,PA、PB是⊙O的切线,切点分别为A、B,且∠APB=50°, 点C是优弧上的一点,则∠ACB=___.
A
C
C
O B
P
A
O
B
P
(4)
(5)
5、如图,⊙O的直径AB与弦AC的夹角为30°,过C点的切线 PC与AB的延长线交于P,PC=5,则⊙O的半径为( )
A.
5 3 3
B.
5 3 6
C. 10
九年级数学(上)第四章: 对圆的进一步认识
3.4 直线和圆的位置关系(3) 切线的性质定理
切线的作法:
(1)连接半径;
(2)过半径的外端点作半径的垂线。 切线的判定:
1、直线与圆交点的个数:只有一个交点。 2、圆心到直线的距离与半径的大小关系,即d=r。
3、经过半径外端且垂直于这条半径的直线是圆的切线。
D. 5
辅助线的作法:作过切点的半径
6、在△ABC中,AB=2,以A为圆心,1为半径的圆与边BC 相切于点D ,则BD的长为 。
变式一:在△ABC中,AB=2,AC= 半径的圆与边BC相切 ,则BC的长为 ,以A为圆心,1为 。

切线的三个性质

切线的三个性质

切线的三个性质
一、切线的性质与切线的判定
1.切线性质:
①圆的切线垂直于经过切点的半径。

②经过圆心且垂直于切线的直线必经过切点。

③经过切点且垂直于切线的直线必经过圆心。

2.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线。

二、切线的判定定理与切线的性质定理的区别
切线的判定定理是在未知相切而要证明相切的情况下使用;切线的性质定理是在已知相切而要推得一些其他结论时使用,两者在使用时不要混淆。

三、常用辅助线
①判定切线时“连圆心和直线与圆的公点”或“过圆心作这条直线的垂线”;
②有切线时,常常“遇到切点连圆心得半径”。

关于圆的切线的各种定理

关于圆的切线的各种定理

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l l ⊥⊥OA OA,,点A 在⊙O 上∴直线l 是⊙O 的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA 是⊙O 的半径,直线l 切⊙切⊙O O 于点A∴l l ⊥⊥OA OA(切线性质定理)(切线性质定理)推论1 1 经过圆心且垂直于切经过圆心且垂直于切线的直径必经过切点推论2 2 经过切点且垂经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴PA=PB PA=PB,∠,∠,∠APO=APO=APO=∠∠BPO BPO(切线长定理)(切线长定理)证明:连结OA OA、、OB∵直线PA PA、、PB 分别切⊙O 于A 、B 两点∴OA OA⊥⊥AP AP、、OB OB⊥⊥PB∴∠OAP=OAP=∠∠OBP=90OBP=90°°在△OPA和△OPB中:中:OAP=∠∠OBP∠OAP=OP=OPOA=OB=rHL))(HL∴△OPAOPB(OPA≌△≌△OPB∠BPOAPO=∠∴PA=PBPA=PB,∠,∠APO=弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;所在的射线;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。

它们是判断一个角是否为弦切角的标准,三者缺一不可准,三者缺一不可 (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理对的圆周角等于所夹的AC)对的圆周角等于所夹弦切角(即图中∠ACD)等于它所夹的弧(弧AC)所夹的弧的圆心角 [注,由于网上找得的图不是弧的读数的一半等于1/2所夹的弧的圆心角很完整,图中没有连结OC]几何语言:∵∠ACD所夹的是弧AC弦切角定理) ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等,弧MN =MN =弧弧PQPQ ,弧,∠2所夹的是PQ几何语言:∵∠1所夹的是弧MNMN ,∠2∴∠1=∠2AD⊥EC证明:作AD⊥ECADC=90°∵∠ADC=90°ACD+∠CAD=90°∴∠ACD+∠CAD=90°∵ED与⊙O切于点CED∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD OCA=∠CAD∵OC=OA=r OC=OA=r∴∠OCA=∠OAC OCA=∠OAC∴∠COA=180°COA=180°--∠OCA OCA--∠OAC=180°OAC=180°--2∠CAD 2∠CAD又∵∠ACD=90°ACD=90°--∠CAD ∠CAD∴∠ACDC=1/2∠COA ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA COA=1/2=1/2弧AC 的度数的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

切线的性质

切线的性质
O l A
切线必须同时满足两条:①经过半径 外端;②垂直于这条半径.
如图,如果直线l是⊙O的切线,切点为A, 那么半径OA与直线l是不是一定垂直呢?
∵ l是⊙O的切线,切点为A
O
l A
∴ l ⊥OA
切线的性质定理:圆的
切线垂直于过切点的半径。
数学语言:
O l A
∵ l是⊙O的切线,切点为A
∴ l ⊥OA
A P
C B
O
如图,已知:在△ABC中,∠B=90°,O是AB上一 点,以O为圆心,OB为半径的圆交AB于点E,切AC 与点D。求证:DE∥OC
C 证明:连接BD. ∵∠ABC=90°,OB为⊙O的半径 ∴CB是⊙O的切线 ∵AC是⊙O的切线,D是切点 ∴CD=CB,∠1=∠2 ∴OC⊥BD ∵BE是⊙O的直径 ∴∠BDE=90°,即DE⊥BD ∴DE∥OC A E D O
勾股(逆)定理 切 线 判 定
∴C(-2,0), P(0,-4) 数据“放入”图中。猜想直线 又∵ D(0,1) OC=2, OP=4 ,OD=1, DP=5 PC 与⊙ D∴ 相切。怎么证?联 又∵在Rt△COD中, CD2=OC2+OD2=4+1=5 想证明切线的两种方法。点 在Rt△COP中, CP2=OC2+OP2=4+16=20 C 在圆上,即证:∠ DCP=90° 在△ CPD中, CD2+CP2=5+20=25, DP2=25 2 2 2 ∴ CD +CP =DP 利用勾股及逆定理可得。
即:△CDP为直角三角形,且∠DCP=90° ∴PC为⊙D的切线.
已知,如图,D(0,1),⊙D交y轴于A、B两点,交x轴负 半轴于C点,过C点的直线:y=-2x-4与y轴交于P. ⑵判断在直线PC上是否存在点E,使得S△EOC= 4S△CDO,若存在,求出点E的坐标;若不存在, 请说明理由.

24.2.2.3圆的切线及切线长定理

24.2.2.3圆的切线及切线长定理

切线长定理的拓展
A
D
OHຫໍສະໝຸດ CPB(1)写出图中所有的垂直关系 (2)图中有哪些线段相等(除半径 外)、弧相等?
o.

o.
三角形外接圆
C
三角形内切圆
C
. o
A B B
. o
A
外接圆圆心:三角形三边 垂直平分线的交点。
外接圆的半径:交点到三 角形任意一个定点的距离。
内切圆圆心:三角形三个 内角平分线的交点。 内切圆的半径:交点到三 角形任意一边的垂直距离。
例2 已知:如图, △ABC的内切圆⊙O与 BC 、CA、 AB 分别相交于点D 、 E 、 F ,且AB=9厘米,BC =14厘米,CA = 13厘米,求AF、BD、CE的长。
A E F B D O C
小结:
(1)切线长定理。 (2)连接圆心和切点是我 们解决切线长定理相关问题 时常用的辅助线。
∵PA、PB是⊙o的两条切线,
关键是作辅助 ∴OA⊥AP,OB⊥BP 线~ 根据你的直观判断,猜想图中PA是否等于PB?∠1与∠2又 又OA=OB,OP=OP, 有什么关系?
∴Rt△AOP≌Rt△BOP(HL) ∴PA=PB,∠1=∠2

P
A
O
P
B
• 切线长定理:

从圆外一点引圆的两条切线,它们的切线 长相等,这一点和圆心的连线平分两条切 线的夹角。
复习:
切线的判定:
切线的性质:
问题:
过平面内的一点作圆的切 线,可以作出几条切线?
A
O
P
B
过圆外一点作圆的切线,这点 和切点之间的线段的长,叫做这点 到圆的切线长。
A
O
P

2017高二数学选修4-1《圆的切线的性质和判断定理》课件

2017高二数学选修4-1《圆的切线的性质和判断定理》课件

O
推论1: 经过圆心且垂直于切线的直线必经 过切点. 推论2: 经过切点且垂直于切线的直线必经 过圆心.
思考: 切线的性质定理逆命题是否成立? 经过半径的外端并 且垂直于这条半径 的直线是圆的切线.
O
切线的判定定理:
经过半径的外端并且垂直于这条半径 的直线是圆的切线.
在直线上任取异于A的点B. 连OB.
B
例2 如图. AB为⊙O的直径,C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D. 求证:AC平分∠DAB.
证明:连接OC, ∵CD是⊙O的切线,
∴OC⊥CD.
又∵AD⊥CD,
∴OC//AD.由此得 ∠ACO=∠CAD. ∵OC=OA. ∴ ∠CAO=∠ACO. ∴ ∠CAD=∠CAO. 故AC平分∠DAB.
2.3 圆的切线的性质 及判定定理
圆与直线的位置关系:
相交-----有两个公共点 相切-----只有一个公共点 相离-----没有公共点
切线的性质定理: 圆的切线垂直于经过切点的半径 反证法
假设不垂直, 作OM⊥ l 因“垂线段最短”, 故OA>OM, 这与线圆相切矛盾.
A M
l
即圆心到直线距离小于半径.
B
O
PA
Qห้องสมุดไป่ตู้
R
3.AB是⊙O的直径,BC是⊙O的切 线,切点为B,OC平行于弦AD. 求证:DC是⊙O的切线.
C
D A
3 1 42
O
B
则在Rt△ABO中 OB>OA=r 故B在圆外
l
A
B
O
直线与圆只有一个公共点,是切线.
例1 如图,AB是⊙O的直径, ⊙O过BC的 中点D,DE⊥AC.求证:DE是⊙O是切线. 证明:连接OD. ∵BD=CD,OA=OB, ∴OD是△ABC的中位线, C ∴OD//AC. E 又∵ DE⊥AC D ∴∠DEC=90º ∴∠ODE=90º O 又∵D在圆周上, A ∴DE是⊙O是切线.

关于圆的切线的各种定理

关于圆的切线的各种定理

切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言:∵l ⊥OA,点A在⊙O上∴直线l是⊙O的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点的半径几何语言:∵OA是⊙O的半径,直线l切⊙O于点A∴l ⊥OA(切线性质定理)推论1 经过圆心且垂直于切线的直径必经过切点推论2 经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言:∵直线PA、PB分别切⊙O于A、B两点∴PA=PB,∠APO=∠BPO(切线长定理)证明:连结OA、OB∵直线PA、PB分别切⊙O于A、B两点∴OA⊥AP、OB⊥PB∴∠OAP=∠OBP=90°在△OPA和△OPB中:∠OAP=∠OBPOP=OPOA=OB=r∴△OPA≌△OPB(HL)∴PA=PB,∠APO=∠BPO弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线。

它们是判断一个角是否为弦切角的标准,三者缺一不可(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.弦切角定理弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 [注,由于网上找得的图不是很完整,图中没有连结OC]几何语言:∵∠ACD所夹的是弧AC∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言:∵∠1所夹的是弧MN ,∠2所夹的是PQ ,弧MN =弧PQ∴∠1=∠2证明:作AD⊥EC∵∠ADC=90°∴∠ACD+∠CAD=90°∵ED与⊙O切于点C∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD∵OC=OA=r∴∠OCA=∠OAC∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD又∵∠ACD=90°-∠CAD∴∠ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

人教版高中数学选修4-1《2.3圆的切线的性质及判定定理》

人教版高中数学选修4-1《2.3圆的切线的性质及判定定理》
∴OC⊥CD.
D C
又∵AD⊥CD,
∴OC//AD.由此得 ∠ACO=∠CAD. ∵OC=OA. ∴ ∠CAO=∠ACO. ∴ ∠CAD=∠CAO. 故AC平分∠DAB.
A O B
习题2.3
1.如图,△ABC为等腰三角形,O是底边BC的中点, ⊙O与腰AB相切于点D.
求证:AC与⊙O相切.
D
A
E
B
线的性质及它的两个推论 概括出来吗?
如果一条直线具备下列三个条件中的任意两个, 就可以推出第三个:(1)垂直于切线;(2) 过切点;(3)过圆心。
直线经过切点
切线垂直于半径
经过圆心
垂直于切线
直线经过切点 经过圆心
垂直于切线 经过圆心 直线经过切点
练一练
按图填空: (1). 如果AB是⊙O的切线, 那么 OA ⊥ AB. (2). 如果OA⊥AB,那 么AB是 ⊙O的切线
A
O
D E
.
B
F
例1 如图,AB是⊙O的直径, ⊙O过BC的中点D, DE⊥AC.求证:DE是⊙O是切线.
证明:连接OD. ∵BD=CD,OA=OB,
∴OD是△ABC的中位线, ∴OD//AC. 又∵∠DEC=90º
E D C
∴∠ODE=90º
又∵D在圆周上,
A O
B
∴DE是⊙O是切线..
例2 如图. AB为⊙O的直径,C为⊙O上一点,AD和 过C点的切线互相垂直,垂足为D. 求证:AC平分∠DAB. 证明:连接OC, ∵CD是⊙O的切线,
几何语言:∵ l 相切⊙O于A, A是切点, OA是⊙O的半径 ∴l ⊥OA. 提示:切线的性质定理是证明两条直线垂直的重要根据; 作过切点的半径是常用辅助线之一.

圆的三大切线定理

圆的三大切线定理

圆的三大切线定理
圆的三大切线定理:
第一个定理,就是切线的性质定理,这个定理是很简单的,而且理解不困难,只要记住:”过圆心“,”过切点“和”互相垂直“这三条谁知二推一就够了。

第二个定理,是切线的判定定理,切线的判定是中考中常经常考的内容,切线判定主要有三种方式:定义法、距离法及定理法。

其中最常用的是定理法,其次是距离法,定义法就很少用到了。

这里面,在进行切线判定时,其实只需要记住:"有交点,连半径,证垂直;无交点,作垂直,正半径"就可以了。

也就是说,切线的判定主要就这两种题型,即题目中告诉直线与圆有交点和直线与圆无交点。

第三个定理,是切线长定理。

在这个定理中,同一交点所形成的两条切线长时相等的,并且此交点与圆心的连线是两条切线长的夹角的角平分线,所以说是有一对相等的角的。

在做相应的练习时,同学们要条件反射式的看到切线长,就要知道有两组相等,即线相等及角相等。

圆的切线的性质及判定定理 课件

圆的切线的性质及判定定理   课件

[解题过程] (1)证明:依据题意,得 a+b=c+4,ab=4(c+2), 则 a2+b2=(a+b)2-2ab =(c+4)2-2×4(c+2)=c2, 所以△ABC 是直角三角形.
(2)∵∠C=90°,tan A=ab=34, ∴不妨设 a=3k,b=4k,则 c=5k(k>0), 代入 a+b=c+4,得 k=2. ∴a=6,b=8,c=10. 连接 OE,得 BC∥OE. ∴OBCE=AAOB,即O6E=10-10OE.解得 OE=145. 在 Rt△AOE 中,tan A=OAEE=34,∴AE=5.
[规律方法] 用切线的性质定理求解线段的长度时,应注 意哪些问题?
(1)如果已知三边的一元二次方程,可利用韦达定理建立起 三角形的三边之间的关系;
(2)在应用切线的性质定理及其推论进行几何证明和求解 时,如果已知切点,则连接圆心和切点构成垂直是一种常用的 方法.
(江苏高考)AB是圆O的直径,D为圆O上一点, 过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB
[思路点拨]
[解题过程] 如图所示,连接OA、OB、OC.
∵PA和PB分别切⊙O于点A和B, ∴∠PAO=∠PBO=90°. ∴∠AOB+∠APB=180°. ∴∠AOB=180°-∠APB=140°. ∵DC切⊙O于点C,∴∠OCD=90°.
又∵∠PAO=90°, 在 Rt△CDO 与 Rt△ADO 中, 有 OD=DO,CO=AO, ∴△CDO≌△ADO.
∴∠COD=∠AOD=12∠COA. 同理可证,∠COE=∠BOE=12∠COB.
∴∠DOE=12(∠COA+∠COB)=12×140°=70°.
[规律方法] (1)如何利用切线性质定理及推论求解有关角 的问题?

圆的切线的性质及判定定理 课件

圆的切线的性质及判定定理 课件
∴∠1=∠3,∴OD∥AE.
∵DE⊥AE,∴DE⊥OD, 即 DE 是⊙O 的切线.
(2)过 D 作 DG⊥AB, ∵∠1=∠2,∴DG=DE=3. 在 Rt△ODG 中,OG= 52-32=4, ∴AG=4+5=9.
∵DG⊥AB,FB⊥AB,∴DG∥FB.
∴△ADG∽△AFB,∴DBFG=AAGB. ∴B3F=190,∴BF=130.
【自主解答】 (1)如图所示,连接 BC. ∵CD 为⊙O 的切线, ∴OC⊥CD. 又 AD⊥CD,
∴OC∥AD.
(2)∵AC 平分∠DAB, ∴∠DAC=∠CAB. ∵AB 为⊙O 的直径,∴∠ACB=90°. 又 AD⊥CD,∴∠ADC=90°, ∴△ADC∽△ACB. ∴AADC=AACB,∴AC2=AD·AB. ∵AD=2,AC= 5,∴AB=52.
1.“以圆的两条平行切线的切点为端点的线段是圆的 直径”这句话对吗?为什么?
【提示】 正确.如图 AB、CD 分别切⊙O 于 E、F, 连接 EO 并延长交 CD 于 F′,∵AB 是⊙O 的切线,∴OE
⊥AB.∵AB∥CD,∴OF′⊥CD,∴F′为切点,∴F′与 F
重合,即 EF 是⊙O 的直径.
圆的切线的性质及判定定理
1.切线的性质定理及推论
(1)性质定理:圆的切线垂直于经过 切点的半径.
如图 2-3-1,已知 AB 切⊙O 于点 A,则 OA⊥AB.
(2)推论 1:经过圆心且 垂直于切线的直线 必经过切点. (3)推论 2:经过切点且 垂直于切线的直线 必经过圆心.
图 2-3-1
2.切线的判定定理 经过半径的 外端 并且 垂直于 这条半径的直线是圆的 切线.
如图 2-3-2 所示,已知
AB 是⊙O 的直径,直线 CD 与⊙O 相切 于点 C,AC 平分∠DAB,AD⊥CD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线的判定定理 过半径外端且与这条 半径垂直的直线是圆的切线 切线的性质定理 圆的切线垂直于经过 切点的半径
如图,已知P 外一点, 例1、如图,已知P为⊙O外一点,以PO 为直径作⊙ 交于点A 为直径作⊙M,⊙M与⊙O交于点A、B, 求证:PA、PB是 求证:PA、PB是⊙O的切线 A O· B ·M M ·P P
例2、如图,从圆外一点P引⊙O的两条 如图,从圆外一点P 切线PA PB, PA、 为切点。 切线PA、PB,点A、B为切点。 求证:( :(1 PO平分 平分∠ 求证:(1)PO平分∠APB PO垂直平分线段 垂直平分线段AB (2)PO垂直平分线段AB A ※结论可以直接用 O· P
B 切线长定理 从圆外一点引圆的两条 切线, 切线,切线长相等
A D B
例4、试用直角三角形射影定理证明勾股 定理 已知:如图,Rt△ABC中 C=90° 已知:如图,Rt△ABC中, ∠C=90° 求证: 求证:AC2+BC2=AB2
C
A
D
B
如图,Rt△ABC中 C=90° 例5、如图,Rt△ABC中, ∠C=90°, AC>BC,CD⊥AB于点 于点D CD= AB=10, AC>BC,CD⊥AB于点D,若CD=4,AB=10, AC及 求AC及BC
如图, O′外切于点 外切于点P 例3、如图,⊙O和⊙O′外切于点P,一 条外公切线切两圆于点A 求证: 条外公切线切两圆于点A、B,求证:∠APB 90° =90° A B Q O· ·O′ O′
P
从一点向一条直线作垂线, 从一点向一条直线作垂线,垂足就称为 这点在这条直线上的射影 一般地,一个点集(例如线段或其它几 一般地,一个点集( 何图形) 何图形)中所有的点在某直线上的射影的集 合,就是这个点集在这条直线上的射影 直角三角形射影定理 直角三角形一条 直角边的平方等于该直角边在斜边上的射影 与斜边的乘积, 与斜边的乘积,斜边上的高的平方等于两条 直角边的在斜边上射影的乘积 C Rt△ABC∽Rt△ACD∽△Rt△ Rt△ABC∽Rt△ACD∽△Rt△CBD AB·AD AC2=AB AD AD·BD CD2=AD BD AB·BD BC2=C中 ACB=90° 例6、如图,在Rt△ABC中,∠ACB=90°, CD⊥AB于点 DE⊥AC于 于点D DF⊥BC于 求证: CD⊥AB于点D,DE⊥AC于E,DF⊥BC于F,求证: 3 AC AE = 3 BC BF
C E F A D B
圆的切线的性质和判定定理 圆的切线的性质和判定定理
直线与圆的位置关系有几种? 直线与圆的位置关系有几种? 当直线与圆有两个公共点时, 当直线与圆有两个公共点时,直线与圆 相交 当直线与圆有且只有一个公共点时, 当直线与圆有且只有一个公共点时,直 线与圆相切 当直线与圆没有公共点时, 当直线与圆没有公共点时,直线与圆相 离 判断直线与圆的位置关系有哪些方法? 判断直线与圆的位置关系有哪些方法? 与圆心O 设⊙O的半径为r,直线l与圆心O的距离 为d d> r 直线与圆相离 d= r 直线与圆相切 d< r 直线与圆相交
相关文档
最新文档