数学初一上学期数学期末模拟试卷带答案
七年级数学(上册)期末试卷及答案(完美版)
七年级数学(上册)期末试卷及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短3.下列图形中,是轴对称图形的是( )A .B .C .D .4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b< 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°9.设42a ,小数部分为b ,则1a b-的值为( ) A .2- B 2C .21+ D .21 10.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.6.近似数2.30万精确到________位.三、解答题(本大题共6小题,共72分)1.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩ (2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、D6、C7、A8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、a+c3、(4,0)或(﹣4,0)4、40或805、76、百三、解答题(本大题共6小题,共72分)1、(1)12xy=⎧⎨=-⎩(2)2345xy⎧=-⎪⎪⎨⎪=⎪⎩2、(x﹣y)2;1.3、(1)略;(2)∠D=75°.4、(1)65°(2)证明略5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。
数学初一上学期数学期末模拟试卷带答案
数学初一上学期数学期末模拟试卷带答案一、选择题 1.4 =( )A .1B .2C .3D .42.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =3.﹣3的相反数是( )A .13-B .13C .3-D .34.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 5.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 6.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .57.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 9.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180°10.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A.180元B.200元C.225元D.259.2元12.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在()A.AB上B.BC上C.CD上D.AD上二、填空题13.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………149________a的正方形纸片中间挖去一个正方形的洞,成为一个边宽为15.如图甲所示,格边长为cm5cm的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.16.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___17.禽流感病毒的直径约为0.00000205cm,用科学记数法表示为_____cm;18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.若a a-=,则a应满足的条件为______.20.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.21.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n个图案用_____根火柴棒.22.若523m xy +与2n x y 的和仍为单项式,则n m =__________.23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.26.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.27.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3. 问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.28.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的数学定义?()A. 两个数的和等于它们的差B. 两个数的积等于它们的商C. 两个数的商等于它们的和D. 两个数的差等于它们的积2. 在下列四个选项中,哪个是正确的数学公式?()A. a² + b² = c²B. a² b² = c²C. a² + c² = b²D. a² c² = b²3. 下列哪个选项是正确的数学定理?()A. 平行四边形的对角线相等B. 平行四边形的对边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对边互相垂直4. 下列哪个选项是正确的数学概念?()A. 正数B. 负数C. 零D. 所有实数二、填空题(每题5分,共20分)1. 一个数的平方根是它自己的数是______。
2. 一个数的立方根是它自己的数是______。
3. 一个数的倒数是它自己的数是______。
4. 一个数的相反数是它自己的数是______。
三、解答题(每题10分,共30分)1. 解答:求出下列方程的解。
x² 5x + 6 = 02. 解答:求出下列不等式的解集。
2x 3 < 73. 解答:求出下列方程组的解。
2x + 3y = 83x 2y = 5四、证明题(每题10分,共20分)1. 证明:两个角的和等于它们的补角的和。
2. 证明:两个直角三角形的斜边相等,则它们是全等的。
五、应用题(每题10分,共20分)1. 应用:小明从家出发,向东走了10米,然后向北走了5米,又向西走了3米。
问小明现在距离家有多远?2. 应用:一个长方形的长是8厘米,宽是5厘米。
求这个长方形的面积和周长。
六、附加题(每题10分,共20分)1. 附加:求出下列方程的解。
x³ 6x² + 11x 6 = 02. 附加:求出下列不等式的解集。
初一上学期数学期末模拟试卷带答案
初一上学期数学期末模拟试卷带答案一、选择题1.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .82.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,…,依次规律,第9个图形圆的个数为( )A .94B .85C .84D .763.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( ) ….A .4n+1B .3n+1C .3nD .2n+14.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .1115.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A .2019B .2018C .2016D .20136.在方程3x ﹣y =2,x+1=0,12x =12,x 2﹣2x ﹣3=0中一元一次方程的个数为( )A .1个B .2个C .3个D .4个7.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3618.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72° 9.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定10. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm11.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3212.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 13.一组数据的最小值为6,最大值为29,若取组距为5,则分成的组数应为( ) A .4B .5C .6D .714.已知整数1a 、2a 、3a 、4a 、…满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,11n n a a n +=-++(n 为正整数)依此类推,则2020a 的值为()A .-1009B .-2019C .-1010D .-202015.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=-D .532x x -=16.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0 B .a >0,b >0C .a <0,b >0D .a >0,b <017.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+18.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a >﹣bC .a >bD .|a |>|b |19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形数阵解释二项式()na b +的展开式的各项系数,此三角形数阵称为“杨辉三角”. 第一行 ()0a b + 1 第二行 ()1a b + 1 1 第三行 ()2a b + 1 2 1 第四行 ()3a b + 1 3 3 1 第五行 ()4a b + 1 4 6 4 1根据此规律,请你写出第22行第三个数是( ) A .190 B .210 C .231 D .253 20.点C 、D 在线段AB 上,若点C 是线段AD 的中点,2BD>AD ,则下列结论正确的是( ). A .CD<AD - BDB .AB>2BDC .BD>ADD .BC>AD21.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是( )A.183 B.157 C.133 D.9122.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为()A.a﹣50 B.a+50 C.a﹣20 D.a+2023.如图所示,OB是一条河流,OC是一片菜田,张大伯每天从家(A点处)去河处流边挑水,然后把水挑到菜田处,最后回到家中.请你帮他设计一条路线,使张大伯每天行走的路线最短.下列四个方案中你认为符合要求的是()A.B.C.D.24.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()A .中B .国C .梦D .强25.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24026.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 27.下列各式中运算正确的是( ) A .2222a a a +=B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=28.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 29.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( ) A .①② B .②③C .①④D .③④30.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A.1B.2C.3D.4【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.2.A解析:A【解析】【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;可以推出第n 个图形中小圆的个数为n (n+1) +4.将9代入即可.【详解】第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,因为6= 4+1×2,10=4+2×3,16=4+3×4,24=4+4×5...,所以第n 个图形中小圆的个数为4+n (n+1)所以第9个图形有: 4 +9×10=94个小圆,【点睛】本题是一道找规律题,利用题目中给出的条件观察计算的出关于第n个图形的代数表达式将所求的代入.3.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n个图中黑色正方形纸片的张数为2n+1,故选:D.【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.4.D解析:D【解析】【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D.【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.5.D解析:D【解析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.6.B解析:B 【解析】 【分析】根据一元一次方程的定义逐个判断即可. 【详解】一元一次方程有x+1=0,12x =12,共2个, 故选:B . 【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.解析:D【解析】【分析】首先把输入的x的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止.【详解】解:4×4+5=16+5=21,21<100,21×4+5=84+5=89,89<100,89×4+5=356+5=361,∴输出的结果是361.故选:D.【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.8.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.9.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.10.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.11.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.12.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y =3,两个未知数;B. y+3=0,符合;C. x 2﹣2x =0,指数是2;D. 1y+y =0,不是整式方程. 故选:B .【点睛】考核知识点:一元一次方程.理解定义是关键.13.B解析:B【解析】【分析】用极差除以组距,如果商是整数,组数=这个整数加1,如果商不是整数,用进一法,确定组数;【详解】 ∵29623 4.655-==, ∴分成的组数是5组.故答案选B .【点睛】 本题主要考查了频数分布直方图,准确计算是解题的关键.14.C解析:C【解析】【分析】依次计算1a 、2a 、3a 、4a 、…,得到规律性答案,即可得到2020a 的值.【详解】11a =-,212a a =-+=-1,323a a =-+=-2,434a a =-+=-2,5453a a =-+=-,6563a a =-+=-,,由此可得:每两个数的答案是相同的,结果为-2n (n 为偶数), ∴202010102=, ∴2020a 的值为-1010,故选:C.【点睛】此题考查代数式规律探究,计算此类题的关键是依次计算得出答案的规律并总结出答案与序数间的关系式,由此来解答问题.15.C解析:C【解析】【分析】分别判断各选项是否正确.【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.16.A解析:A【解析】分析:根据ab 大于0,利用同号得正,异号得负的取符号法则得到a 与b 同号,再由a+b 小于0,即可得到a 与b 都为负数.详解:∵ab >0,∴a 与b 同号,又a+b <0,则a <0,b <0.故选A .点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.18.D解析:D【解析】分析:根据数轴上a 、b 的位置,判断出a 、b 的范围,然后根据有理数的大小比较和绝对值的性质进行比较即可.详解:根据数轴上点的位置得:﹣3<a <﹣2,1<b <2,∴|a|>|b|,a <﹣b ,b >a ,a <﹣2,故选D .点睛:本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大是解题关键.19.B解析:B【解析】【分析】根据题目中的规律,即可求出第22行(a+b )21的展开式中第三项的系数.【详解】解:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n-2)+(n-1),∴第22行(a+b )21第三项系数为1+2+3+…+19+20=210;故选:B .【点睛】本题考查了通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.20.D解析:D【解析】【分析】根据点C 是线段AD 的中点,可得AD=2AC=2CD ,再根据2BD>AD ,可得BD> AC= CD , 再根据线段的和差,逐一进行判即可.∵点C是线段AD的中点,∴AD=2AC=2CD,∵2BD>AD,∴BD> AC= CD,A. CD=AD-AC> AD- BD,该选项错误;B. 由A得AD- BD< CD,则AD<BD+CD=BC,则AB=AD+BD< BC+ BD<2BD,该选项错误;C.由B得 AB<2BD ,则BD+AD<2BD,则AD<BD,该选项错误;D. 由A得AD- BD< CD,则AD<BD+CD=BC, 该选项正确故选D.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.21.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.22.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B.【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.23.D解析:D【解析】【分析】做出点A关于OB和OC的对称点A′和A″,连接A′A″,与OB、OC分别交与点M,N,则沿AM-MN-NA的路线行走路线最短.【详解】要找一条最短路线,以河流为轴,取A点的对称点A',连接A'N与河流相交于M点,再连接AM,则张大伯可沿着AM走一条直线去河边M点挑水,然后再沿MN走一条直线到菜园去,同理,画出回家的路线图如下:故选D.【点睛】本题考查了轴对称-最短路线问题,熟练掌握轴对称的性质和两点之间线段最短是解决问题的关键.24.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.D解析:D【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.26.C解析:C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.27.A解析:A【解析】【分析】各项计算得到结果,即可作出判断.A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意,故选:A .【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.28.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】 A.25mn -的系数是25-,次数是2,正确,故该选项不符合题意, B.数字0是单项式,正确,故该选项不符合题意, C.14ab 是二次单项式,正确,故该选项不符合题意, D.23xy π的系数是3π,次数是3,故该选项说法错误,符合题意, 故选:D .【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.29.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.30.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。
数学初一上学期数学期末模拟试卷带答案
数学初一上学期数学期末模拟试卷带答案一、选择题1.下列数或式:3(2)-,61()3-,25- ,0,21m +在数轴上所对应的点一定在原点右边的个数是( ) A .1B .2C .3D .42.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .44.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒6.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=7.计算32a a ⋅的结果是( ) A .5a ; B .4a ; C .6a ; D .8a . 8.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯9.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×2 11.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣412.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-二、填空题13.5535______. 149________15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 17.当a=_____时,分式13a a --的值为0. 18.已知23,9n mn aa -==,则m a =___________.19.若方程11222m x x --=++有增根,则m 的值为____. 20.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.21.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)22.已知一个角的补角是它余角的3倍,则这个角的度数为_____.23.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a=____.24.一个水库的水位变化情况记录:如果把水位上升5cm记作+5cm,那么水位下降3cm 时水位变化记作_____.三、压轴题25.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.26.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.27.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
人教版七年级上册数学期末考试试卷及答案
人教版七年级上册数学期末考试试题一、单选题1.﹣2021的绝对值是()A .2021B .12021C .12021-D .﹣20212.数据380000用科学记数法表示为()A .338010⨯B .53.8010⨯C .438.010⨯D .60.38010⨯3.下列说法正确的是()A .23x -的系数是3B .25xy π的系数是5C .23x y 的次数是5D .12xy π的次数是34.若23n x y -与35m x y 是同类项,则m-n 的值是()A .0B .1C .1-D .55.下图是正方体展开图的一种,那么原正方体中,与“建”字所在面对面上的汉字是()A .礼B .年C .百D .赞6.下列方程的变形,正确的是()A .由35x +=,得53x =+B .由74x =-,得74x =-C .由102y =,得2y =D .由32x +=-,得23x =--7.下列叙述正确的是()A .画直线10AB =厘米B .若两数的和为负数,则这两个数一定负数C .河道改直可以缩短航程是因为“经过两点有一条直线并且只有一条直线”D .由四舍五入得到的近似数36.810⨯,精确到百位8.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西20°方向走到点C ,则∠BAC 的度数是()A.60°B.100°C.120°D.140°9.已知有理数a,b,c在数轴上的位置如图所示,则下列结论不正确的是()A.c<a<b B.abc>0C.a+b>0D.|c﹣b|>|a﹣b|10.某书中有一方程213x+=-■,其中一个数字被污渍盖住了,书后该方程的答案为1x=-,那么■处的数字应是()A.5B.-5C.12D.12-二、填空题11.冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,则冷藏室比冷冻室的温度高_________℃.12.比较大小:-3_________-π.13.若α∠的余角是23°20',则α∠=_________.14.已知3x-8与2互为相反数,则x=________.15.长方形的长是3a,宽是2a-b,则长方形的周长是___________.16.点A,B,C在同一条直线上,AB=1cm,BC=3AB,则AC的长为_________.17.新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为___.18.按照如图所示的操作步骤,若输入的值为4,则输出的值为______.三、解答题19.计算:(1)5﹣4×(﹣14)﹣|﹣3|(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]20.解方程:(1)10x ﹣12=5x+15(2)1121(1)]()3232x x x --=-21.先化简,再求值:()22(69)63m mn n mn ---,其中1m =,3n =-.22.如图,已知C ,D 是线段AB 上的两点,C 是AD 的中点,3CD BD =.(1)图中以点A ,B ,C ,D 中任意两点为端点的线段共有多少条;(2)设2cm BD =,求AB 的长.23.某车间32名工人生产桌子和椅子,每人每天平均生产桌子15张或椅子50把,一张桌子要配两把椅子,已知车间每天安排x 名工人生产桌子.(1)求车间每天生产桌子和椅子各多少张?(用含x 的式子表示)(2)如果每天生产的桌子和椅子刚好配套,求x 的值.24.如图,将直角三角尺OCD 的直角顶点O 放在直线AB 上,并且∠AOC 的度数是∠BOD 的度数的2倍.(1)∠BOD 的余角是_________,∠BOD 的补角是____________;(2)求∠BOD 的度数;(3)若OE ,OF 分别平分∠BOD ,∠BOC ,求∠EOF 的度数.25.玲玲用3天时间看完一本课外读物,第一天看了a 页,第二天看的页数比第一天多50页,第三天看的页数比第一天少20页.(1)用含a 的代数式表示这本书的页数;(2)当a =50时,这本书的页数是多少?(3)如果这本书有270页,玲玲第一天看了多少页?26.如图,在数轴上点A 表示数a ,点B 表示数b ,a 、b 满足()2530a b -++=,点O 是数轴原点.(1)计算点A 表示的数、点B 表示的数;(2)若将数轴折叠,使得点A 与点B 重合,则点O 与数_________表示的点重合;(3)点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在线段AB 上找一点C ,使2AC BC =,写出点C 在数轴上表示的数;(4)若点A 以0.5cm/s 的速度向左移动,2秒后,点B 以1cm/s 的速度向右移动,则B 出发几秒后,A 、B 两点相距1个单位长度?参考答案1.A 【分析】根据绝对值的意义即可作答.【详解】﹣2021的绝对值即为:20212021-=.故选:A .【点睛】本题考查了求解一个数的绝对值的知识,负数的绝对值是它的相反数,非负数的绝对值是其本身.2.B 【分析】根据科学记数法的定义,即可得到答案.【详解】380000=53.8010⨯,故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法的形式:a×10n (1≤|a|<10,n 为整数),是解题的关键.3.C 【分析】根据单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数,逐项判断,选择即可.【详解】23x -的系数是-3,故A 选项错误,不符合题意;25xy π的系数是5π,故B 选项错误,不符合题意;23x y 的次数是5,故C 选项正确,符合题意;12xy π的次数是2,故D 选项错误,不符合题意;故选C .【点睛】本题考查单项式的系数和次数.掌握单项式的系数和次数的定义是解答本题的关键.4.C 【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】由题意得:m=2,n=3,∴231m n -=-=-.故选:C .【点睛】本题考查了同类项.解题的关键是熟练掌握同类项的定义.5.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“礼”与“赞”是相对面,“建”与“百”是相对面,“党”与“年”是相对面;故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,解题的关键是注意正方体的空间图形,从相对面入手.6.D 【分析】直接根据等式的性质求解.【详解】3+x=5,两边同时减去3,得x=5-3,A 错误;74x =-,两边同时除以7,得47x =-,B 错误;102y =,两边同时乘以2,得0y =,C 错误;32x +=-,两边同时减去3,得23x =--,D 正确;故答案为:D .【点睛】本题主要考查了等式的性质应用,准确计算是解题的关键.7.D 【分析】根据两点间的距离的含义和求法,近似数,以及直线的性质和应用,逐一判断即可.【详解】∵直线向两边无限延伸,∴直线没有具体的长度,∴选项A 不正确;∵若两数的和为负数,则这两个数可因为一正一负,∴选项B 不正确;∵河道改直可以缩短航程,是因为两点间线段的长度最短,∴选项C 不正确;∵由四舍五入得到的近似数36.810⨯,精确到百位,∴选项D 正确.故选D .【点睛】此题考查近似数,两点间的距离的含义和求法,以及直线的性质和应用,解题关键在于熟练掌握其定义.8.D 【分析】∠BAC 等于三个角的和,求出各角的度数,相加即可.【详解】解:如图,∵∠BAE=60°,∴∠BAD=30°,∴∠BAC=30°+90°+20°=140°,故选:D .【点睛】本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.9.C 【分析】由a 、b 、c 在数轴上的位置可判断选项A ;由a 、b 、c 的符号可判断选项B ;由有理数的加法法则可判断选项C ;由两点之间的距离可判断选项D .【详解】解:∵a 、b 、c 在数轴上的位置从左到右排列为:c 、a 、b ,∴c <a <b ,故选项A 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,c <0,∴abc >0,故选项B 正确;由a 、b 、c 在数轴上的位置可知:a <0,b >0,且|a|>|b|,∴a+b <0,故选项C 错误;由a 、b 、c 在数轴上的位置可知:表示数a 的点到表示数b 的点的距离小于表示数c 的点到表示数b 的点的距离,∴|c ﹣b|>|a ﹣b|,故选项D 正确;故选C .【点睛】本题主要考查了有理数与数轴,解题的关键在于能够通过数轴准确判断a 、b 、c 的符号和绝对值的大小.10.A 【分析】将x=-1代入方程23x +■=−1即可求解.【详解】解:∵x=-1是方程23x +■=−1的解,∴2(1)3+⨯-■=−1,∴■=5,故选:A .【点睛】本题考查了一元一次方程的解,熟练掌握一元一次方程的解与一元一次方程的关系是解题的关键.11.12【分析】结合题意,根据正负数和有理数加减运算的性质分析,即可得到答案.【详解】∵冰箱冷藏室的温度是+5℃,冷冻室的温度是-7℃,∴冷藏室比冷冻室的温度高:()5712--=℃故答案为:12.【点睛】本题考查了正负数、有理数加减运算的知识;解题的关键是熟练掌握有理数加减运算的性质,从而完成求解.12.>【分析】先比较3和π的大小,再根据负数绝对值大的反而小即可比较-3和-π的大小.【详解】解:因为3-<π-,所以-3>-π.故答案为:>.【点睛】本题主要考查了实数的大小的比较,两个负数比较大小,绝对值大的反而小.本题中要注意的是π是无理数即无限不循环小数.13.6640'︒【分析】根据余角的定义“如果两个角的和是直角,那么称这两个角互为余角”,计算即可.【详解】902320896023206640α''''∠=︒-︒=︒-︒=︒,故答案为:6640'︒.14.2【详解】根据互为相反数的两个数的和为0可得,3x-8+2=0,解得x=2.点睛:根据互为相反数的和为零,可得关于x 的一元一次方程,解方程即可得答案.15.10a -2b 【分析】根据长方形的周长公式,结合整式加减运算法则进行计算即可.【详解】由题意得:2(3a+2a-b )=2(5a-b )=10a-2b ,故答案为10a-2b.【点睛】此题考查了整式加减的应用及长方形周长的计算,熟练掌握整式加减法则是解题的关键.16.2cm 或4cm 【分析】由点在线段的位置关系,线段的和差计算AC 的长为2cm 或4ccm .【详解】AC 的长度有两种情况:①点C 在线段AB 的延长线时,如图1所示:∵AC=AB+BC ,AB=1cm ,BC=3cm ,∴AC=1+3=4cm ;②点C 在线段AB 的反向延长线时,如图2所示:∵AC=BC-AB,AB=1cm,BC=3cm,∴AC=3-1=2cm;综合所述:AC的长为2cm或4ccm,故答案为2cm或4ccm.【点睛】本题综合考查了线段的延长线,线段的反向延长线,线段的和差计算等知识点,重点掌握两点间距离计算方法,易错点点在线段的反向延长线上时,计算线段的大小.17.2【分析】根据题意,可得:2x+2﹣x=2x+x﹣2,据此求出x的值为多少即可.【详解】解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.【点评】此题主要考查了新定义下的运算,以及解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.18.28【分析】根据图中的操作步骤一步步计算即可.【详解】根据题意:输入4,得到2416,∵10<16,∴(16-9)×4=28.故答案为28.【点睛】本题是程序类题目,主要考察有理数运算和理解能力,判断大小选择正确的路径计算是关键.19.(1)3(2)-21【分析】(1)根据有理数的混合运算的法则,先计算乘法及绝对值运算,再计算加减运算即可求出值;(2)根据有理数的混合运算的法则,先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)5﹣4×(﹣14)﹣|﹣3|=5+1﹣3=3;(2)﹣12018+0.5÷(﹣12)3×[3﹣(﹣2)]=﹣1﹣4×5=﹣21.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)x=5.4;(2)x=1.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.【详解】(1)移项,得10x ﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=5.4;(2)去括号,得16x +=213x -,方程的两边同时乘以6,得x+1=4x ﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.21.24m n -,5-.【分析】先去括号,再合并同类项,最后代入1m =,3n =-计算解题,注意添括号的作用【详解】()22(69)63m mn n mn ---2=466m mn n mn--+24m n =-当1m =,3n =-时原式24m n =-241(3)=⨯--49=-5=-【点睛】本题考查整式的化简求值,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)共6条;(2)14cm 【分析】(1)结合题意,根据线段的性质分析,即可得到答案;(2)结合题意,根据线段性质,得6cm CD =;再结合线段中点的性质,推导得2AD CD =,通过线段和差计算,即可得到答案.【详解】(1)根据题意,图中以点A ,B ,C ,D 中任意两点为端点的线段有:AB 、AC 、AD 、CD 、CB 、DB ,共6条;(2)∵2cm BD =,3CD BD=∴6cmCD =∵C 是AD 的中点∴212cmAD CD ==∴14cm AB AD BD =+=.【点睛】本题考查了线段的知识;解题的关键是熟练掌握线段中点、线段和差运算的性质,从而完成求解.23.(1)车间每天生产桌子:15x 张;车间每天生产椅子:501600x -+张;(2)20x =【分析】(1)根据题意,得车间每天安排()32x -名工人生产椅子;结合代数式的性质分析,即可得到答案;(2)结合题意,根据一元一次方程的性质列方程并求解,即可得到答案.【详解】(1)∵车间每天安排x 名工人生产桌子,车间32名工人生产桌子和椅子∴车间每天安排()32x -名工人生产椅子∵一张桌子要配两把椅子∴车间每天生产桌子:15x 张;车间每天生产椅子:()5032501600x x ⨯-=-+张;(2)∵每天生产的桌子和椅子刚好配套∴152501600x x ⨯=-+∴30501600x x +=∴20x =.【点睛】本题考查了代数式、一元一次方程的知识;解题的关键是熟练掌握代数式、一元一次方程的性质,从而完成求解.24.(1)∠AOC ;∠AOD(2)∠BOD=30°;(3)∠EOF=45°.【分析】(1)根据余角和补角的定义可直接得出结论;(2)根据补角的定义得到∠AOC+∠BOD=90°,根据题意列式计算求出∠BOD ;(3)根据角平分线的定义分别求出∠BOF、∠BOE,结合图形计算,得到答案.(1)解:由题意可得∠COD=90°,∴∠AOC+∠BOD=90°,∠AOD+∠BOD=180°,∴∠BOD的余角是∠AOC,补角是∠AOD,故答案为:∠AOC;∠AOD;(2)解:∵∠COD=90°,∠AOC+∠COD+∠BOD=180°,∴∠AOC+∠BOD=90°,∵∠AOC的度数是∠BOD的度数的2倍,∴∠AOC=2∠BOD,∴2∠BOD+∠BOD=90°,∴∠BOD=30°;(3)解:由题意得,∠BOC=∠BOD+∠COD=30°+90°=120°,∵OE,OF分别平分∠BOD,∠BOC,∴∠BOF=12∠BOC=60°,∠BOE=12∠BOD=15°,∴∠EOF=∠BOF-∠BOE=45°.【点睛】本题考查的是角平分线的定义、余角和补角的概念,掌握相关的概念和定义是解题的关键.25.(1)3a+30(2)180(3)80【分析】(1)先用含a的代数式表示出第二天、第三天的读书页码,再表示出这本书的页码;(2)把a=50代入,求出书的页数;(3)利用(1)中关系式把270代入求出答案.【详解】(1)这本书的页数为:a+(a+50)+(a-20)=a+a+50+a﹣20,=3a+30;(2)当a =50时,3a+30,=3×50+30,=180,答:当a =50时,这本书的页数是180页;(3)由题意可得:3a+30=270,解得:a =80,答:玲玲第一天看了80页.【点睛】本题考查了列代数式、求代数式的值.解决本题的关键是弄清关键词,理清题意.26.(1)点A 表示的数为5、点B 表示的数3-;(2)2;(3)13-;(4)B 出发4或163t =秒后,A 、B 两点相距1个单位长度【分析】(1)根据绝对值、乘方的性质,得50a -=,()230b +=,从而得50a -=,30b +=,通过求解一元一次方程,即可得到答案;(2)点G 为线段AB 的中点,根据数轴和线段中点的性质,得点G 表示的数;结合题意,再根据数轴的性质计算,即可得到答案;(3)根据题意,计算得8AB =,结合线段的和差性质,列一元一次方程并求解,得83BC =,再根据坐标的性质计算,即可得到答案;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度,根据题意列一元一次方程并求解,即可得到答案.【详解】(1)∵()2530a b -++=∴50a -=,()230b +=∴50a -=,30b +=∴5a =,3b =-∴点A 表示的数为5、点B 表示的数3-;(2)如图,点G 为线段AB 的中点∵点A 表示的数为5、点B 表示的数3-;∴点G 表示的数为:()5312+-=∴101OG =-=∵将数轴折叠,使得点A 与点B 重合∴将数轴沿点G 折叠∴与点O 重合的点为:112+=,即点O 与数2表示的点重合故答案为:2;(3)∵点A 表示的数为5、点B 表示的数3-;∴()538AB =--=∵点C 在线段AB 上,且2AC BC =,又∵AC BC AB+=∴38BC BC AB +==∴83BC =∵点B 表示的数为3-∴点C 表示的数为:81333-+=-;(4)设B 出发t 秒后,A 、B 两点相距1个单位长度根据题意,得:()0.5281t t ++=-,或()0.528+1t t ++=去括号,得:0.5181t t ++=-,或0.518+1t t ++=移项并合并同类项,得:4t =,或163t =∴B 出发4或163t =秒后,A 、B 两点相距1个单位长度.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
初一上学期数学期末模拟试卷带答案
初一上学期数学期末模拟试卷带答案一、选择题1.下列各式中运算正确的是( ) A .2222a a a += B .220a b ab -=C .2(1)21a a -=-D .33323a a a -=2.如图所示是一个自行设计的计算程序,若输入x 的值为1,那么执行此程序后,输出的数y 是( )A .﹣2B .2C .3D .43.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是( )A .9B .18C .12D .64.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+5.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >06.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .7.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .58.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .3 9.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( )A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b >< 10.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定11.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°12.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是( )A.2019B.2018C.2016D.2013二、填空题13.已知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,则22019的个位数是____.14.图1是一个轴对称图形,且每个角都是直角,长度如图所示,按图2所示方法拼图,两两相扣,相互间不留空隙,那么用99个这样的图形(图1)拼出来的图形的总长度是____(结果用含a,b的代数式表示) .15.已知:﹣a=2,|b|=6,且a>b,则a+b=_____.16.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.17.若将正整数按如图所示的规律排列.若用有序数对(a,b)表示第a排,从左至右第b个数.例如(4,3)表示的数是9,则(31,5)表示的数是 _________.18.已知一个角的补角是它余角的10倍,则这个角的度数是_______________19.作一个正方形,设每边长为4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,再对图(2)的每个边做相同的变化,得到图形如图(3),如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n个图形时,图形的面积_____(填写“会”或者“不会”)变化,图形的周长为________.20.将图中的三角形纸片沿AB折叠所得的AB右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.21.我们知道,一个两位数的十位数字为a ,个位数字为b ,其中09a <≤,09b ≤≤,且a ,b 都为整数,这个两位数可以表示为10a b +.观察下列各式:2323÷101=23,4545÷101=45,5151÷101=51,7979÷101=79,……,根据以上等式,猜想:()()101010110a b a b +÷+=______.22.在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若a b -=2019,且AO =2BO ,则a +b 的值为_________三、解答题23.如图,现有5张写着不同数字的卡片,请按要求完成下列问题:()1若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______. ()2若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______. ()3若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.24.下表是某年篮球世界杯小组赛C 组积分表: 排名 国家 比赛场数 胜场 负场 总积分 1 美国 5 5 0 10 2 土耳其 5 3 2 8 3 乌克兰52 3 7 4 多米尼加 5 2 3 7 5 新西兰 5 2 3 7 6芬兰51mn(2)m = ;n = ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求? (4)能否出现某队的胜场积分与负场积分相同的情况,为什么?25.“中国梦”是中华民族每个人的梦,也是每个中小学生的梦.各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符.某中学在全校600名学生中随机抽取部分学生进行调查,调查内容分为四种:A :非常喜欢,B :喜欢,C :一般,D :不喜欢,被调查的同学只能选取其中的一种.根据调查结果,绘制出两个不完整的统计图(图形如下),并根据图中信息,回答下列问题:()1本次调查中,一共调查了 名学生; ()2条形统计图中,m = ,n = ;()3求在扇形统计图中,“B :喜欢”所在扇形的圆心角的度数;()4请估计该学校600名学生中“A :非常喜欢”和“B :喜欢”经典诵读的学生共有多少人.26.计算及解方程(1)8+(–10)+(–2)–(–5); (2)()100215434-⨯--⨯--.(3)6363(5)x x -+=--;(4)2123148y y ---=. 27.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?/x cm 1 2 3 4 53/cm V 160 ________ 216 ________ 80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由. 28.阅读理解:一般地,在数轴上点A ,B 表示的实数分别为a ,b (a b <),则A ,B 两点的距离B A AB x x b a =-=-.如图,在数轴上点A ,B 表示的实数分别为-3,4,则记3A x =-,4B x =,因为34-<,显然A ,B 两点的距离4(3)7B A AB x x =-=--=.若点C 为线段AB 的中点,则AC CB =,所以C A B C x x x x -=-,即2A BC x x x +=. 解决问题:(1)直接写出线段AB 的中点C 表示的实数C x = ;(2)在点B 右侧的数轴上有点P ,且9AP BP +=,求点P 表示的实数P x ; (3)在(2)的条件下,点M 是AP 的中点,点N 是BP 的中点,若A ,B 两点同时沿数轴向正方向运动,A 点的速度是B 点速度的2倍,AP 的中点M 和BP 的中点N 也随之运动,3秒后,2MN =,则点B 的速度为每秒 个单位长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】各项计算得到结果,即可作出判断. 【详解】A 、2222a a a +=,符合题意;B 、2a b 和2ab 不是同类项,不能合并,不符合题意;C 、2(1)22a a -=-,不符合题意;D 、33323a a a -=-,不符合题意, 故选:A . 【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.D解析:D 【解析】 【分析】按照程序的流程,写出前几次循环的结果,并同时判断各个结果是否满足判断框中的条件,直到满足条件,执行输出y . 【详解】解:由已知计算程序可得到代数式:2x2﹣4, 当x =1时,2x2﹣4=2×12﹣4=﹣2<0, 所以继续输入, 即x =﹣2,则:2x2﹣4=2×(﹣2)2﹣4=4>0, 即y =4, 故选D . 【点睛】本题考查解决程序框图中的循环结构时常采用写出前几次循环的结果,找规律.3.B解析:B 【解析】试题分析:由频率直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48, 即各范围的人数分别为3,9,18,12,6. 所以分数在70.5~80.5之间的人数是18人. 故选B .考点:频数(率)分布直方图.4.D解析:D 【解析】 【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解. 【详解】等式两边同乘4得:2(1)4(3)x x -=-+, 故选:D. 【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.5.D解析:D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.6.C解析:C 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解. 【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A 、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B 、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C 、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D 、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误. 故选C . 【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.C解析:C 【解析】 【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.8.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.9.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a ,b 同号, ∵a+b <0, ∴a <0,b <0. 故选:C . 【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.10.C解析:C 【解析】 【分析】把(3x-2y )看作一个整体并求出其值,再代入所求代数式进行计算即可得解. 【详解】 解:∵3x-2y-7=0, ∴3x-2y=7,∴4y-6x+12=-2(3x-2y )+12=-2×7+12=-14+12=-2. 故选:C . 【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.11.B解析:B 【解析】∵OC ⊥OD ,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B .12.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时,解得:26723x=,故B不合题意;当32016x=时,解得:672x=,∵672=84×8,∴2016不合题意,故C不合题意;当32013x=时,解得:671x=,∵671=83×8+7,∴三个数之和为2013,故D符合题意.故选:D.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题13.8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是解析:8【解析】【分析】通过观察发现:2n的个位数字是2,4,8,6四个一循环,所以根据2015÷4=503…3,得出22015的个位数字与23的个位数字相同,是8.【详解】解:2n的个位数字是2,4,8,6四个一循环,所以2015÷4=503…3,则22015的末位数字是8.故答案为8.【点睛】题考查学生分析数据,总结、归纳数据规律的能力,要求学生有一定的解题技巧.解题关键是知道个位数字为2,4,8,6顺次循环.14.a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图解析:a+98b【解析】【分析】根据题意用99个这样的图形(图1)的总长减去拼接时的重叠部分98个(a-b),即可得到拼出来的图形的总长度.【详解】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为a-b,∴用99个这样的图形(图1)拼出来的图形的总长度=99a-98(a-b)= a+98b.故答案为:a+98b.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.15.-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.16.【解析】【分析】根据数列得出第n 个数为,据此可得前2019个数的和为,再用裂项求和计算可得.【详解】解:由数列知第n 个数为,则前2019个数的和为:====故答案为:.【点 解析:20192020【解析】【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得. 【详解】解:由数列知第n 个数为()11n n +, 则前2019个数的和为: 11111 (26122020192020)+++++⨯ =111 (122320192020)+++⨯⨯⨯ =11111111 (2233420192020)-+-+-++- =112020- =20192020故答案为:20192020. 【点睛】 本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法. 17.470【解析】【分析】先列出前4排第一个数的式子,再根据规律即可得出第31排第一个数,即可得出结论.【详解】解:通过观察可知每排的第1个数存在规律,第一排为1,第2排的第1个数为1+1解析:470【解析】【分析】先列出前4排第一个数的式子,再根据规律即可得出第31排第一个数,即可得出结论.【详解】解:通过观察可知每排的第1个数存在规律,第一排为1,第2排的第1个数为1+1=2,第3排的第1个数为1+1+2=4,第4排的第1个数为1+1+2+3=7……所以第31排的第1个数为1+1+2+3+4+5+6+…+30=466,从而得第31排的第5个数为470.故答案为:470.【点睛】本题主要考查了学生读图找规律的能力,能理解题意,从数列中找到数据排列的规律是解题的关键.18.【解析】【分析】设这个角的度数为x ,则其补角为,余角为,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为,余角为,根据题意可得:,解得,解析:80︒【解析】【分析】设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据“一个角的补角是它余角的10倍”列方程求解即可.【详解】解:设这个角的度数为x ,则其补角为()180x -︒,余角为()90x -︒,根据题意可得:()1801090x x -=-,解得80x =,故答案为:80︒.【点睛】本题考查余角和补角,用方程思想解决问题是解题的关键.19.不会【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,6解析:不会 32n a +【解析】【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.【详解】解:周长依次为16a ,32a ,64a ,128a ,…,32n a +,即无限增加,所以不断发展下去到第n 次变化时,图形的周长为32n a +;图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值16a 2.故答案为:不会、32n a +.【点睛】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键.20.5【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的解析:5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的面积之和为y,则AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意可得:(5+y):(10+y)=2:3,∴y=5,故答案为:5.21.101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10解析:101【解析】【分析】观察算式可知,一个两位数十位数字的1010倍与个位数字的101倍的和除以这个两位数,商是101,依此即可求解.【详解】解:由分析可知:(1010a+101b)÷(10a+b)=101.故答案为:101.【点睛】本题考查了规律型:数字的变化类,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.22.-673【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整解析:-673【解析】【分析】直接利用已知得出|a|=2b,进而去绝对值求出答案.【详解】解:由题意可得:|a-b|=2019,|a|=2b,∵点A(表示整数a)在原点O的左侧,点B(表示整数b)在原点O的右侧,∴-a=2b,-a+b=2019,解得:b=673,a=-1346,故a+b=-673.故答案为:-673.【点睛】此题主要考查了数轴上的点以及代数式求值,正确得出a,b之间的关系是解题关键.三、解答题23.(1)21;(2)-7;(3)答案见解析.【解析】【分析】(1)根据题意和题目中的数字,可以得到2张卡片上数字的乘积最大值;(2)根据题意和题目中的数字,可以得到2张卡片上数字相除的商的最小值;(3)本题方法不限,算对即可,注意必须是相同四个数字的不同算式得到结果是24.【详解】(1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是:(﹣7)×(﹣3)=21.故答案为21;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是:(﹣7)÷1=﹣7.故答案为﹣7;(3)由题意可得:如果抽取的数字是﹣7,﹣3,1,2,则(﹣7)×(﹣3)+1+2=24,(﹣7+1﹣2)×(﹣3)=24;如果抽取的数字是﹣3,1,2,5,则(1﹣5)×(﹣3)×2=24,[5﹣(﹣3)]×(1+2)=24.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确题意,求出相应的最值和写出所求的式子.24.(1)胜一场积2分,理由见解析;(2)m=4,n=6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【解析】【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m、n的值;(3)由题意,设胜一场积x分,然后列出方程组,即可求出胜一场、负一场的积分;(4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则∵美国5场全胜积10分,∴1052÷=,∴胜一场积2分;(2)由题意,514m=-=;设负一场得x分,则3228x⨯+=;∴1x=;∴12416n=⨯+⨯=;故答案为:6;4;(3)设胜一场积x分,由土耳其队积分可知负一场积分832x-,根据乌克兰队积分可列方程:8323()72xx-+=,解得:2x=,此时831 2x-=;即胜一场积2分,负一场积1分;(4)设某球队胜y场,则21(5)y y=⨯-,解得:53y=;∴不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.25.(1)80;(2)16,24;(3)72°;(4)390人【解析】【分析】(1)由A 类人数及其所占百分比可得调查的总人数;(2)由C 类人数所占百分比乘(1)求得的总人数可得n 的值,再用调查的总人数减去A 、C 、D 类人数可以得到B 类总人数;(3)算出B 类人数所占百分比,再乘以360度可以得到答案;(4)用“A :非常喜欢”和“B :喜欢”经典诵读的学生人数和占调查人数的比例乘以学校总人数可得解答.【详解】解:()13645%80÷=,∴本次调查中,一共调查了80名学生;()()28030%24803624416n m =⨯==-++=;()3解:163607280⨯︒=︒ 答:“B :喜欢”所在扇形的圆心角的度数是72.()4解: 361660039080+⨯= (人) 答:该学校“A :非常喜欢”和“B :喜欢”经典诵读的学生大约有390人.【点睛】本题考查数据的整理和分析,熟练掌握条形统计图和扇形统计图的关联及用样本估计总体的方法是解题关键.26.(1)1;(2)-9;(3)x=-6;(4)y=72 【解析】【分析】(1)根据有理数的减法法则进行变形,再运用加法法则进行计算即可得到答案;(2)先进行乘方运算和去绝对值,然后再进行乘法运算,最后进行加减运算即可得到答案;(3)先去括号,然后移项,化系数为1,从而得到方程的解;(4)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】(1)解:8+(–10)+(–2)–(–5)=8-10-2+5=1;(2)()100215434-⨯--⨯--=-1×5-(-12)-16=-5+12-16=-9;(3)6363(5)x x -+=--去括号,得-6x+3=6-3x+15移项,得-6x+3x=6+15-3合并同类项,得-3x=18系数化为1,得x=-6(4)2123148y y ---= 去分母,得2(2y-1)-(2y-3)=8去括号,得4y-2-2y+3=8移项,得4y-2y=8+2-3合并同类项,得2y=7系数化为1,得y=72 【点睛】本题考查了有理数的混合运算以及解一元一次方程,熟练掌握运算法则是解答此题的关键.27.(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.28.(1)12;(2)5P x =;(3)1或113. 【解析】【分析】(1)按照题目给的公式求解即可;(2)按照阅读理解写出用x P表示AP、BP的式子,列方程求解即可;(3)设点B的速度为每秒b个单位长度,则A的速度为每秒2b个单位长度.因为A、B 同时向右运动,故其表示的数加上速度时间的积即为新点表示的数.由于A的速度比B 快,有可能3秒后A到了B的右侧,MN的算法有改变,故需要分类讨论.【详解】解:(1)根据题意可得,341222A BCx xx+-+===.故答案为:12;(2)依题意得,x A<x B<x P,∴AP=x P-x A=x P+3,BP=x P-x B=x P-4,∵AP+BP=9,∴x P+3+x P-4=9.解得:x P=5.即点P表示的实数x P为5;(3)∵点M是AP的中点,点N是BP的中点∴x M=3522A Px x+-+==1,x N=459222B Px x++==.设B的运动速度为每秒b个单位长度,则A的运动速度为每秒2b个单位长度,3秒后,∴x B=4+3b,x A=-3+6b,∴x M=36522A Px x b+-++==1+3b,x N=43593222B Px x b b++++==,∵MN=|x N-x M|=2,①当点M在点N的左侧时,932b+−(1+3b)=2,解得:b=1;②当点M在点N的右侧时,(1+3b)-932b+=2,解得:b=113.∴点B的运动速度为每秒1个单位长度或每秒113个单位长度.故答案为:1或11 3.【点睛】本题考查了实数与数轴的一一对应关系,并按阅读信息理解运用两点间距离,中点坐标公式.要注意由于点运动速度不同导致位置不同引起的分类讨论.。
数学版初一上学期数学期末模拟试卷带答案
数学版初一上学期数学期末模拟试卷带答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( ) A .30° B .40° C .50° D .90° 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .44.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--5.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23B .3C .2-D .2276.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 327.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =18.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 9.下列因式分解正确的是()A .21(1)(1)xx x +=+- B .()am an a m n +=- C .2244(2)m m m +-=-D .22(2)(1)aa a a --=-+10.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .11.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y 12.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.若212-my x 与5x 3y 2n 是同类项,则m +n =_____.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 17.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.18.因式分解:32x xy -= ▲ . 19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.|﹣12|=_____. 21.钟表显示10点30分时,时针与分针的夹角为________.22.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.23.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____. 三、压轴题25.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?26.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.27.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
2024—2025学年人教版七年级上册期末模拟考试数学试卷[含答案]
七年级上学期数学期末模拟考试试卷人教版2024—2025学年七年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.2022年2月13日,我国自营勘探开发的首个1500米超深水大气田“深海一号”在海南岛东南陵水海域正式投产,每年将向粤港琼等地稳定供气30亿立方米,可满足粤港澳大湾区四分之一的民生用气需求.将数据30亿用科学记数法表示应为310n ´,则n 的值为( )A .7B .8C .9D .102.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.圆周率 3.1415926p »按照四舍五入法对p 精确到百分位是( )A .3.15B .3.141C .3.14D .3.1423.下列计算正确的是( )A .330y y --=B .54mn nm mn -=C .243a a a -=D .22223a b ab a b+=4.如果式子53x +与2x 的值互为相反数,则x 的值为( )A .73B .73-C .37D .37-5.小刚做了一道数学题:“已知两个多项式为A ,B ,求A B +的值,”他误将“A B +”看成了“A B -”,结果求出的答案是x y -,若已知B 3x 2y =-,那么原来A B +的值应该是( )A .4x+3y B .2x-y C .-2x+y D .7x-5y 6.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为( )A .13584x x ++=B .-13584x x +=C .13-584x x +=D .-13-584x x =7.若122m x y +-与13n xy -是同类项,则m n -的值为( )A .4-B .3-C .3D .48.根据等式的性质,下列变形正确的是( )A .如果23x =,那么23x a a =B .如果x y =,那么55x y-=-C .如果x y =,那么22x y -=-D .如果162x =,那么3x =9.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB =2ACB .AC +CD +DB =ABC .CD =AD -12AB D .AD =12(CD +AB )10.解方程21132x x a -+=-时,小刚在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4x =,则方程正确的解是( )A .0x =B .1x =C .4x =-D .=1x -二、填空题(每小题3分,满分18分)11.比较大小(用“<”“=”或“>”填空):59- 35-.12.若数轴上A 点表示数3-,则与A 点相距5个单位长度的点表示的数为 .13.若73x y ==,,且x y >,则y x -等于 .14.如果3x =-,式子31px qx --的值为2023,则当3x =时,式子31px qx --的值是 .15.有理数a ,b ,c 在数轴上的位置如图所示,化简|a+b ﹣c|﹣|c ﹣b|+2|a+c|= .16.观察图形和所给表中的数据后回答问题.梯形个数12345……图形周长58111417……当图形的周长为167时,梯形的个数为 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.计算:()()241110.5232éù---´´--ëû.18.先化简,再求值:已知210a -=,求()()225212a a a a +--+的值.19.一个角的补角加上20°后等于这个角的余角的3倍,求这个角.20.已知代数式2342A x x =-+.(1)若221B x x =--,求2A B -;(2)若21B ax x =--(a 为常数),且A 与B 的和不含2x 页,求整式2452a a +-的值.21.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米).14+,9-,8+,7-,13+,6-,12+,5-,2+.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地有多少千米?(2)救灾过程中,冲锋舟离出发点A 最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?22.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?23.如图,已知点C 为线段AB 上一点,12cm AC =,8cm CB =,D 、E 分别是AC AB 、的中点.求:(1)求AD 的长度;(2)求DE 的长度;(3)若M 在直线AB 上,且6cm MB =,求AM 的长度.24.已知 AOB Ð与COD Ð互补,将COD Ð绕点O 逆时针旋转.(1)若110,70AOB COD °°Ð=Ð=①如图1,当30COB Ð=°时,AOD Ð= °;②将COD Ð绕点O 逆时针旋转至3AOC BOD Ð=Ð,求COB Ð与AOD Ð的度数;(2)将COD Ð绕点O 逆时针旋转(0180)a a °<<,在旋转过程中,AOD COB Ð+Ð的度数是否随之的改变而改变?若不改变,请求出这个度数;若改变,请说明理由.25.已知b 是最小的正整数,且,,a b c 满足()250c a b -++=.(1)填空:a =_________,b =_________,c =_________;(2)数,,a b c 在数轴上对应的点分别是,,A B C ,点P 为数轴上一动点,其对应的数为x ,点P 在1到2之间运动时(即12x ££),请化简式子:1125x x x +--+-;(3)在(2)的条件下,点,,A B C 在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒(5)m m <个单位长度和5个单位长度的速度向右运动.点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .若在运动过程中BC AB -的值保持不变,求m 的值.【分析】此题主要考查了用科学记数法表示较大的数,一般形式为10n a ´,其中£<110a ,确定a 与n 的值是解题的关键.用科学记数法表示较大的数时,一般形式为10n a ´,其中£<110a ,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:30亿93000000000310==´.即9n =.故选:C .2.C【分析】本题考查取近似数,涉及四舍五入法,找准小数的百分位,根据千分位的数四舍五入是解决问题的关键.【详解】解: 3.1415926p »,将π按照四舍五入法精确到百分位是3.14,故选:C .3.B【分析】根据同类项的定义以及合并同类项得方法逐项分析即可.【详解】A.336y y y --=-,故不正确;B.54mn nm mn -= ,正确;C.24a 与3a 不是同类项,不能合并,故不正确;D.2a b 与22ab 不是同类项,不能合并,故不正确;故选B .【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.4.D【分析】本题考查了相反数的性质,解一元一次方程,根据题意列出方程,解方程即可求解.【详解】解:∵53x +与2x 的值互为相反数,∴5320x x ++=解得:37x =-故选:D .【分析】先根据A -B =x y -,32B x y =-,求出A 的值,然后再计算A +B 即可.【详解】由题意得,A =()x y -+(32x y -)=x -y +3x -2y=4x -3y .∴A +B =(4x -3y )+(32x y -)=4x -3y +32x y-= 7x -5y .故选D.【点睛】本题考查了整式的加减,仔细审题,根据题目中的数量关系求出A 的值是解题的关键.6.B【分析】题目默认总工程为1,设甲一共做x 天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x 天,乙做了(x-1)天∴列出方程:x x 13584-+=故选B【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.7.B【分析】根据同类项的定义解答即可.【详解】解:由题意得:1112m n +=-=,,解得:03m n ==,.∴033m n -=-=-.故选:B .【点睛】本题主要考查同类项,熟练掌握同类项的定义是解决本题的关键.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【分析】根据等式的基本性质解决此题.【详解】解:A 、如果23x =,且a 0¹,那么23x a a=,故该选项不符合题意;B 、如果x y =,那么55x y -=-,故该选项不符合题意;C 、如果x y =,那么22x y -=-,故该选项符合题意;D 、如果162x =,那么12x =,故该选项不符合题意;故选:C .【点睛】本题主要考查等式的基本性质,熟练掌握等式的基本性质是解决本题的关键.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9.D【详解】A 、由点C 是线段AB 的中点,则AB =2AC ,正确,不符合题意;B 、AC +CD +DB =AB ,正确,不符合题意;C 、由点C 是线段AB 的中点,则AC =12AB ,CD =AD -AC =AD -12AB ,正确,不符合题意;D 、AD =AC +CD =12AB +CD ,不正确,符合题意.故选:D .10.D【分析】根据题意按照小刚的解方程步骤解方程,再根据解为4x =求出a 的值,再按照正确的步骤解方程即可.【详解】解:由题意得,小刚的解题过程如下:21132x x a -+=-去分母得:()()22131x x a -=+-,去括号得:42331x x a -=+-,移项得:43312x x a -=-+,合并同类项得:31x a =+,∵小刚的求解结果为4x =,∴314a +=,∴1a =,正确过程如下:21132x x a -+=-去分母得:()()221316x x -=+-,去括号得:42336x x -=+-,移项得:43362x x -=-+,合并同类项得:1x =-,故选D .【点睛】本题主要考查了解一元一次方程,正确理解题意还原小刚的解题过程从而求出a 的值是解题的关键.11.>【分析】两个负数比较大小,绝对值大的反而小,据此即可求解.【详解】解:∵5599-=,3355-=,又∵5395<,∴5395->-,故答案为:>.【点睛】此题主要考查了有理数大小比较的方法,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.2或8-【分析】本题主要考查了数轴上两点距离计算,有理数的加减计算,分该点在点A 右边和左边两种情况,根据数轴上两点距离计算公式求解即可.【详解】解:当该点在点A 右边时,则该点表示的数为352-+=,当该点在点A 左边时,则该点表示的数为358--=-,∴该点表示的数为2或8-,故答案为:2或8-.13.10-或4-【分析】本题主要考查了有理数的减法计算,求一个数的绝对值,有理数比较大小,先由绝对值的意义得到73x y =±=±,,再由x y >得到73x y ==±,,据此根据有理数减法计算法则求解即可.【详解】解:∵73x y ==,,∴73x y =±=±,,∵x y >,∴73x y ==±,,∴374-=-=-y x 或3710-=--=-y x ,故答案为:10-或4-.14.2025-【分析】本题考查了代数式的求值,解题的关键是运用整体思想代入求值.把3x =-代入求出2732024p q -=-,再把3x =代入,变形后即可求出答案.【详解】解:∵3x =-时,式子31px qx --的值为2023,∴27312023p q -+-=,即2732024p q -=-,当3x =时,313127202412025px qx p q ----==--=-,故答案为:2025-.15.﹣3a ﹣2c【分析】根据数轴,可得a <b <0<c ,且|a|>|c|,据此关系可得|a+b ﹣c|及|a+c|的化简结果,进而可得答案.【详解】根据题意得,a <b <0<c ,且|a|>|c|,∴a+b-c <0,a+c <0,∴|a+b ﹣c|﹣|c ﹣b|+2|a+c|=-(a+b-c )-(c-b)-2(a+c),=-a-b+c-c+b-2a-2c ,=﹣3a ﹣2c.故答案为﹣3a ﹣2c.【点睛】本题考查数轴的运用,要求学生掌握用数轴表示实数及实数间的大小关系.16.55【分析】根据表格得:当梯形的个数为n 时,图形的周长为32n +,根据题意列出方程,解方程即可求解.【详解】根据表格得:当梯形的个数为n 时,图形的周长为32n +,∴32167n +=,解得:55n =,故答案为:55.【点睛】本题考查了图形类规律题,找到规律列出一元一次方程是解题的关键.17.34【分析】本题主要考查了含乘方的有理数混合计算,按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:()()241110.5232éù---´´--ëû()1112922=--´´-()1174=--´-714=-+34=.18.231a -;2【分析】先根据去括号法则去括号,再合并同类项,最后将21a =整体代入即可求解.【详解】解:()()225212a a a a +--+2252122a a a a =+---231a =-210a -=Q 21a \=\原式3112=´-=【点睛】本题考查了整式加减中的化简求值,掌握去括号法则是解题的关键.19.35°【分析】利用一个角的补角加上20°,等于这个角的余角的3倍作为相等关系列方程求解即可.【详解】解:设这个角为x °,则(180-x )+20=3(90-x ),解得x =35.所以,这个角为35°.【点睛】本题主要考查了一元一次方程的应用.解此题的关键是能准确的从题中找出各个量之间的数量关系,找出等量关系列方程,从而计算出结果.20.(1)24x +(2)19【分析】此题主要考查了整式的加减,正确合并同类项是解题关键.(1)直接利用整式的加减运算法则计算得出答案;(2)根据整式的加减运算法则化简,进而得出答案.【详解】(1)解:()()222342221-=-+---A B x x x x 22342242x x x x =-+-++24x =+;(2)解:2342A x x =-+Q ,21B ax x =--,()()223421\+=-++--A B x x ax x 223421x x ax x =-++--()2351a x x =+-+,A Q 与B 的和不含2x 项,30a \+=即3a =-,2452\+-a a ()24(3)532=´-+´--49152=´--36152=--19=.21.(1)B 地位于A 地东方,距离A 地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.++-+++-+++-+++-++=+,【详解】(1)解:∵(14)(9)(8)(7)(13)(6)(12)(5)(2)22∴B地位于A地东方,距离A地有22千米;(2)路程记录中各点离出发点的距离分别为:(14)14+=千米,++-=+=千米,(14)(9)55++-++=+=千米,(14)(9)(8)1313(14)(9)(8)(7)66++-+++-=+=千米,++-+++-++=+=千米,(14)(9)(8)(7)(13)1919++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)1313(14)(9)(8)(7)(13)(6)(12)2525++-+++-+++-++=+=千米,++-+++-+++-+++-=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)2020++-+++-+++-+++-++=+=千米,(14)(9)(8)(7)(13)(6)(12)(5)(2)2222>>>>>>>,∵25222019141365∴救灾过程中,冲锋舟离出发点A最远处有25千米.故答案为:25;++-+++-+++-+++-++(3)149871361252=++++++++149871361252=千米,76´-=升,760.5308∴冲锋舟当天救灾过程中至少还需补充8升油.【点睛】本题主要考查了正负数的意义、化简绝对值、有理数比较大小、有理数混合运算的应用等知识,熟练掌握相关运算法则是解题关键.22.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)盈利,盈利了8元.【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a 、b 的一元一次方程,解之即可求出a 、b 的值,再代入1000﹣a ﹣b 中即可找出结论.【详解】(1)解:设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400﹣x )元,根据题意得:0.6x +0.8(1400﹣x )=1000,解得:x =600,∴1400﹣x =800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)解:设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据题意得:(1﹣25%)a =60%×600,(1+25%)b =80%×800,解得:a =480,b =512,∴1000﹣a ﹣b =1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.23.(1)6cm(2)4cm(3)26cm 或14cm【分析】本题考查了关于线段的中点的计算,线段的和与差的计算.(1)直接根据D 是AC 的中点可得答案;(2)先求出AB 的长,然后根据E 是AB 的中点求出AE ,AE ﹣AD 即为DE 的长;(3)分M 在点B 的右侧、M 在点B 的左侧两种情况进行计算即可.【详解】(1)解:由线段中点的性质,()11126cm 22AD AC ==´=;(2)解:由线段的和差,得()12820cm AB AC BC =+=+=,由线段中点的性质,得()112010cm 22AE AB ==´=,由线段的和差,得()1064cm DE AE AD =-=-=;(3)解:当M 在点B 的右侧时,()20626cm AM AB MB =+=+=,当M 在点B 的左侧时,()20614cm AM AB MB =-=-=,∴AM 的长度为26cm 或14cm .24.(1)①150;②20COB Ð=°,130AOD Ð=°或80COB Ð=°,100AOD Ð=°(2)不改变,其度数为180°【分析】(1)①先根据110,70AOB COD °°Ð=Ð=求出180AOB COD Ð+Ð=°,再根据O AOB C BO OD A D C ÐÐ+Ð+Ð=计算即可;②设AOC x Ð=°,分两种情况:(Ⅰ) OB 在COD Ð内部,(Ⅱ) COD Ð在AOB Ð内部,分别讨论即可;(2)设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,求出所有情况后判断即可.【详解】(1)①∵110,70AOB COD °°Ð=Ð=,∴11108070AOB COD °+°=°Ð+Ð=,∵O AOB C BO OD A D C ÐÐ+Ð+Ð=,30COB Ð=°,∴18030150AOD Ð=°-°=°,故答案为150;②(Ⅰ)当OB 在COD Ð内部时(如图1),设AOC x Ð=°,则110COB x °°Ð=-,70(110)40BOD COD COB x x °°°°°Ð=Ð-Ð=--=-,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得60x =,∴1101106050,40604020COB x BOD x °°°°°°°°°°Ð=-=-=Ð=-=-=,∴11020130AOD AOB BOD а=Ð+Ð=+°°=;(Ⅱ) 当COD Ð在AOB Ð内部时(如图2),设AOC x Ð=°,则1107040BOD AOB AOC COD x x Ð=Ð-Ð-Ð=-°-°=°-°°,由3AOC BOD Ð=Ð得,3(40)x x °=°-°,解得x =30,40403010BOD x Ð=-=°-°=°°°,701080COB COD BOD °°°Ð=Ð+Ð=+=,∴3070100AOD AOC COD °°°Ð=Ð+Ð=+=;(2)不改变,其度数为180°.设,,AOB COD AOC b q g °°°Ð=Ð=Ð=,由条件知180b q +=,分四种情况:ⅰ)当OB 在COD Ð内部时(如图3),COB AOB AOC b g аÐ-=°=Ð-,()BOD COD BOC q b g Ð=Ð-Ð=°-°-°,()AOD AOB BOD b q b g q g Ð=Ð+Ð=°+°-°-°=°+°,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅱ) 当COD Ð在AOB Ð内部时(如图4),COB AOB AOC b g аÐ-=°=Ð-,AOD AOC COD g q аÐ+=°=Ð+,∴180AOD COB q g b g q b °°°°°°°Ð+Ð=++-=+=;ⅲ)当OA 在COD Ð内部时(如图5),COB AOB AOC b g аÐ+=°=Ð+,AOD DOC COA q g Ð=Ð-Ð=°-°,∴180AOD COB b g q g q b °°°°°°°Ð+Ð=++-=+=;ⅳ)当COD Ð在AOB Ð外部时(如图6),360()AOD COB AOB COD Ð+Ð=°-Ð+Ð360180180=°-°=°;综上所述,在旋转过程中,AOD COB Ð+Ð的度数不改变,其度数为180°.【点睛】本题考查了角的和差,关键是运用角的和差正确表示所需要的角.25.(1)1-,1,5(2)212x -+(3)2【分析】本题考查了非负数的性质,数轴上的动点,化简绝对值,(1)根据最小的正整数、绝对值和平方的非负性质即可得到结论;(2)根据x 的取值范围,去绝对值进行计算即可得;(3)首先求出A ,B ,C 所在位置,然后计算出BC 和AB ,即可得到结论.【详解】(1)解:∵b 是最小的正整数,∴1b =,∵()250c a b -++=,∴0a b +=,50c -=,解得1,5a c =-=.(2)∵12x ££,∴10,10,50x x x +>->-<,∴原式()()()1125x x x =+--+--éùëû,()()()1125x x x =+----,11210x x x =+-+-+,21110x x x =--+++,212x =-+.(3)由题意知:t 秒后,,A B C 对应的数分别为1,1,55t mt t --++.所以,()()1112AB mt t m t =+---=++.()()55154BC t mt m t =+-+=-+,()()5412BC AB m t m t -=-+-++éùëû,()422m t =-+.∵BC AB -的值不变,∴420m -=.解得2m =.。
人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版
可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中只有一项符合题目要求。
1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。
2024年最新人教版七年级数学(上册)期末考卷及答案(各版本)
2024年最新人教版七年级数学(上册)期末考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.54. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/25. 下列哪个数是负数?A. 3B. 0C. 2D. 1/26. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零7. 下列哪个数是分数?A. 0.5B. 3/4C. 0.25D. 1.58. 下列哪个数是整数?A. 0.3B. 2/3C. 0D. 1/29. 下列哪个数是负数?A. 3B. 0C. 2D. 1/210. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零二、填空题(每题3分,共30分)1. 5的绝对值是______。
2. 2的绝对值是______。
3. 3/4的绝对值是______。
4. 0的绝对值是______。
5. 1/2的绝对值是______。
6. 1/2的绝对值是______。
7. 3的绝对值是______。
8. 3的绝对值是______。
9. 2/3的绝对值是______。
10. 0.25的绝对值是______。
三、解答题(每题10分,共50分)1. 计算:| 5 | | 3 | + | 2 | | 1 |2. 计算:| 4 | + | 6 | | 2 | + | 3 |3. 计算:| 7 | | 5 | + | 3 | | 2 |4. 计算:| 8 | + | 7 | | 4 | + | 3 |5. 计算:| 9 | | 6 | + | 5 | | 4 |四、应用题(每题10分,共30分)1. 小明有5个苹果,小红有3个苹果,小刚有2个苹果。
小明比小红多几个苹果?小红比小刚多几个苹果?2. 一辆汽车从A地开往B地,速度是每小时60公里。
七年级数学上册期末考试模拟卷(附答案)
七年级数学上册期末考试模拟卷(附答案)一.选择题(共12小题,满分36分,每小题3分)1.下列各数中小于﹣1的数是()A.﹣0.5 B.0 C.﹣1.5 D.12.如图,检测四个足球的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.3.为了了解我区初一4300名学生在疫情期间“数学空课”的学习情况,全区组织了一次数学检测,从中抽取100名考生的成绩进行统计分析,以下说法正确的是()A.从中抽取的这100名考生的数学成绩是总体的一个样本B.300名考生是总体C.每位学生是个体D.这次调查是普查4.下列各选项中的两个单项式,是同类项的是()A.3和2 B.﹣a2和﹣52C.﹣ a2b和ab2D.2ab和2xy5.下列计算正确的是()A.﹣2÷(﹣)=1 B.﹣24=﹣16 C.﹣|﹣3|=3 D.()3=6.数a,b在数轴上表示如图,下列判断正确的是()A.a+b>0 B.a>b C.b>1 D.a<﹣17.一家商店将某种服装按成本价每件a元提高50%标价,又以8折优惠卖出,则这种服装每件的售价比成本多()A.10% B.20% C.30% D.40%8.用代数式表示“x的5倍与y的差的平方”正确的是()A.(5x﹣y)2B.5(x﹣y)2C.5x﹣y2D.(x﹣3y)29.在弹性限度内,弹簧挂上物体后会伸长,测得弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如表关系:x(kg)0 1 2 3 4 …y(cm)10 10.5 11 11.5 12 …下列说法不正确的是()A.在弹性限度内,y随x的增大而增大B.在弹性限度内,所挂物体质量每增加1kg,弹簧长度增加0.5cmC.在弹性限度内,所挂物体为7kg时,弹簧长度为13.5cmD.不挂重物时弹簧的长度为0cm10.某车间28名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓12个或螺母18个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为()A.12x=18(28﹣x)B.2×12x=18(28﹣x)C.12×18x=18(28﹣x)D.12x=2×18(28﹣x)11.已知|a+1|与|b﹣4|互为相反数,则a b的值是()A.﹣1 B.1 C.﹣4 D.412.将连续的奇数1,3,5,7,9,……排成如图所示的数表,则十字形框中的五数之和能等于2020吗?能等于2021吗?()A.能,能B.能,不能C.不能,能D.不能,不能二.填空题(共5小题,满分15分,每小题3分)13.在千年府衙前回味历史,在石板巷里品味静谧,在骑楼下享受慢时光.没有喧嚣的车流,多了闲适的脚步﹣﹣这就是漳州古城.2018年,前来漳州古城的游客人次超过1700000.其中1700000用科学记数法表示为.14.小张在解方程5a﹣x=13时,误将“﹣x”看成“+x”,得到方程的解为x=﹣2,则a的值为.15.有一批树苗.若每人种10棵,则余下6棵;若每人种12棵则缺6棵.参与种树的人数是.16.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,CB=.17.观察下列图形.第1个图形中有1个三角形,第2个图形中有5个三角形,第3个图形中有9个三角形……则第2021个图形中有个三角形.三.解答题(共8小题,满分65分)18.(4分)①﹣②(﹣22)×(﹣3)2+(﹣32)÷4③360÷4﹣(﹣6)2×[2﹣(﹣4)]④19.(8分)某校开发了“书画、器乐、戏曲、棋类”四大类兴趣课程.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类).现将调查结果绘制成如下两幅不完整的统计图,根据统计图提供的信息解答下列问题:(1)本次随机调查了名学生;(2)请根据以上信息直接补全条形统计图;(3)扇形统计图中m的值是;“戏曲”类所对应的扇形圆心角的度数是;(4)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数.20.(8分)化简:①﹣6ab+ab+8(ab﹣1)②2(5a﹣3b)﹣(a﹣2b)21.(8分)x﹣7=x+1.22.(7分)如何由题意写出两个变量之间的函数解析式?23.(8分)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?24.(10分)﹣xy2+2x3y﹣(x2y2﹣y3x)﹣(x2y2+2x3y)(结果按x的降幂排列).25.(12分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张采用A方法,其余采用B方法.(1)用含x的代数式表示裁剪出的侧面的个数是个;(2)用含x的代数式表示底面的个数是个;(2)倘若剪裁出的侧面和底面恰好全部用完,问能做多少个盒子?参考答案与解析一.选择题1.解:﹣1.5<﹣1<﹣0.5<0<1,故选:C.2.解:∵|﹣0.7|<|﹣0.85|<|+1.2|<|+1.3|,∴﹣0.7最接近标准,故选:C.3.解:A.从中抽取的这100名考生的数学成绩是总体的一个样本,说法正确,故本选项符合题意;B.300名考生的数学成绩是总体,故本选项不合题意;C.每位学生的数学成绩是个体,故本选项不合题意;D.这次调查是抽样调查,故本选项不合题意.故选:A.4.解:A、3和2是同类项;B、﹣52不含字母,与﹣a2不是同类项;C、a与b的指数不同,不是同类项;D、所含字母不同,不是同类项.故选:A.5.解:A.因为﹣2÷(﹣)=﹣2×(﹣2)=4,所以A选项错误;B.因为﹣24=﹣16,所以B选项正确.C.因为﹣|﹣3|=﹣3,所以C选项错误;D.因为(﹣)3=﹣,所以D选项错误;故选:B.6.解:∵从数轴可知:a<﹣1<0<b<1,|a|>|b|,∴a+b<0,∴正确的为选项D.故选:D.7.解:根据题意得:该服装的售价为:a(1+50%)×80%=1.2a(元),则售价比成本多了:(1.2a﹣a)÷a=0.2=20%.故选:B.8.解:根据题意,可列代数式为(5x﹣y)2.故选A.9.解:由表格数据知:在弹性限度内,每多挂1kg物体,弹簧伸长0.5cm,故A,B不符合题意.∵当x=7kg时,y=10+7×0.5=13.5(cm).∴C不符合题意.∵当x=0kg时,y=10,∴弹簧原长为10cm.∴D符合题意.故选:D.10.解:∵有x名工人生产螺栓,∴有(28﹣x)名工人生产螺母,∵每人每天平均生产螺栓12个或螺母18个,∴螺栓有12x,螺母有18×(28﹣x)个,故方程为2×12x=18(28﹣x),故选:B.11.解:∵|a+1|与|b﹣4|互为相反数,∴|a+1|+|b﹣4|=0,又∵|a+1|≥0,|b﹣4|≥0,∴a+1=0,b﹣4=0,解得a=﹣1,b=4,所以,a b=(﹣1)4=1.故选:B.12.解:由表格中的数据可知,这五个数的和等于十字形中间的数的5倍,设十字形中间的数为x,令5x=2020,解得x=404,∵404不是奇数,∴十字形框中的五数之和不能等于2020,再令5x=2021,得x=404.2,∵404.2不是奇数,∴十字形框中的五数之和不能等于2021,故选:D.二.填空题13.解:1700000=1.7×106.故答案为:1.7×106.14.解:把x=﹣2代入方程5a+x=13得:5a﹣2=13,解得:a=3,故答案为:3.15.解:设参与种树的人数为x,∴10x+6=12x﹣6,∴x=6,故答案为:616.解:∵AB=10cm,AC=3cm,∴CB=AB﹣AC=7cm,故答案为:7cm.17.解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=2021时,4×2021﹣3=8081,∴第2021个图形中有8081个三角形.故答案为:8081.三.解答题(共8小题,满分65分)18.解:①﹣=﹣×4+=;②(﹣22)×(﹣3)2+(﹣32)÷4=﹣4×9﹣8=﹣44;③360÷4﹣(﹣6)2×[2﹣(﹣4)]=90﹣36×6=﹣126;④=(﹣100+)×33=﹣3299.19.解:(1)本次随机调查学生的人数为30÷15%=200(人),故答案为:200;(2)选择“书画”课程的人数为200×25%=50(人),则选择“戏曲”课程的人数为200﹣(50+80+30)=40(人),补全条形图如下:(3)m%==20%,故m=20;360°×20%=72°,故答案为:20;72°;(4)估计全校学生选择“戏曲”类的约有1200×20%=240(人).20.解:①﹣6ab+ab+8(ab﹣1)=﹣6ab+ab+8ab﹣8=3ab﹣8;②2(5a﹣3b)﹣(a﹣2b)=10a﹣6b﹣a+2b=9a﹣4b.21.解:去分母得:5x﹣14=3x+2,移项合并得:2x=16,解得:x=8.22.解:根据题意,两个变量之间一定存在数量关系,然后列出等式,即为函数解析式.23.解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.24.解:﹣ xy2+2x3y﹣(x2y2﹣y3x)﹣(x2y2+2x3y)=﹣xy2+2x3y﹣x2y2+y3x﹣x2y2﹣2x3y=﹣2x2y2﹣xy2+y3x.25.解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个.故答案为:(2x+76);(2)底面的个数为:5(19﹣x)=(95﹣5x)个.故答案为:(95﹣5x);(3)由题意得3(95﹣5x)=2(2x+76),解得:x=7,则盒子的个数为:(2×7+76)÷3=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.。
2023-2024学年全国初中七年级上数学人教版期末试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期末试卷一、选择题(每题3分,共30分)1. 下列数中,最小的数是()A. 0B. 2C. 3D. 1/22. 下列四个数中,最大的数是()A. 1B. 0C. 1/2D. 3/43. 若a > b,则下列不等式中正确的是()A. a + 3 > b + 3B. a 3 > b 3C. a/3 > b/3D. 3a > 3b4. 下列等式中,正确的是()A. 2x + 3 = 5x 7B. 3x 4 = 2x + 4C. 4x + 5 = 6x 1D. 5x 6 = 7x + 25. 下列函数中,y随x的增大而增大的是()A. y = 2x + 1B. y = 3x 2C. y = x + 3D. y = 4 2x6. 下列图形中,是轴对称图形的是()A. 矩形B. 梯形C. 圆D. 正方形7. 下列关于角的说法,正确的是()A. 直角是90度B. 钝角是大于90度小于180度的角C. 锐角是小于90度的角D. 平角是180度8. 下列关于三角形的说法,正确的是()边 C. 三角形的任意两边之差小于第三边 D. 三角形的任意两边之和等于第三边9. 下列关于平行线的说法,正确的是()A. 平行线在同一平面内,永不相交B. 平行线可以在同一平面内相交C. 平行线不在同一平面内,也可以相交D. 平行线不在同一平面内,一定不相交10. 下列关于四边形的说法,正确的是()A. 四边形的内角和是360度B. 四边形的任意两边之和大于第三边C. 四边形的任意两边之差小于第三边D. 四边形的任意两边之和等于第三边二、填空题(每题3分,共30分)1. 若a = 2,b = 3,则a + b = _______。
2. 若a = 5,b = 7,则a b = _______。
3. 若a = 4,b = 3,则a b = _______。
4. 若a = 6,b = 2,则a / b = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学初一上学期数学期末模拟试卷带答案一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 4.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1B .2C .3D .46.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=7.下列说法中正确的有( ) A .连接两点的线段叫做两点间的距离 B .过一点有且只有一条直线与已知直线垂直 C .对顶角相等D .线段AB 的延长线与射线BA 是同一条射线 8.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查9.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 10.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( )A .(2,1)B .(3,3)C .(2,3)D .(3,2)11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .13.若2m ab -与162n a b -是同类项,则m n +=( ) A .3B .4C .5D .714.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离15.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题16.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 17.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 18.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.19.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.20.若方程11222m x x --=++有增根,则m 的值为____. 21.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 22.若a 、b 是互为倒数,则2ab ﹣5=_____.23.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;24.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)25.若α与β互为补角,且α=50°,则β的度数是_____.26.如图,点C,D在线段AB上,CB=5cm,DB=8cm,点D为线段AC的中点,则线段AB的长为_____.27.|﹣12|=_____.28.将520000用科学记数法表示为_____.29.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______.30.一个长方体水箱从里面量得长、宽、高分别是50cm、40cm和30cm,此时箱中水面高8cm,放进一个棱长为20cm的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm.三、压轴题31.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.34.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.35.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.36.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.37.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.38.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对; B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.6.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x,故该选项计算错误,不符合题意,B.2ab ab ab-=,计算正确,符合题意,C.-2a+3a=a,故该选项计算错误,不符合题意,D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.7.C解析:C【解析】【分析】分别利用直线的性质以及射线的定义和垂线定义分析得出即可.【详解】A.连接两点的线段的长度叫做两点间的距离,错误;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,错误;C.对顶角相等,正确;D.线段AB的延长线与射线BA不是同一条射线,错误.故选C.【点睛】本题考查了直线的性质以及射线的定义和垂线的性质,正确把握相关定义和性质是解题的关键.解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.9.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.10.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.11.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】 方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.12.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.13.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.15.B解析:B【解析】【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数.故选:B【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题16.5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x +a =3(x +3)的解是x =2,∴10+a =15,∴a =5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.17.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020,∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】 此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.18.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦ 故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 19.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB ,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB =90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.20.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键21.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.22.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.23.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.24.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.25.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.26.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.27.【解析】【分析】当a 是负有理数时,a 的绝对值是它的相反数﹣a .【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.28.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.30.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、压轴题31.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.32.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,。