因式分解常见变形技巧

合集下载

因式分解的14 种方法

因式分解的14 种方法

因式分解的14 种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则:1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:3 .3 1. 2 . x . x . .x x . )分解因式技巧:1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法:⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留 1 把家守;提负要变号,变形看奇偶。

因式分解技巧十法

因式分解技巧十法

因式分解技巧这里介绍了10种因式分解的技巧,若将这些技巧全部掌握,在解决因式分解问题上必然有质的提升。

首先提取公因式,然后考虑用公式。

十字添拆要合适,待定主元要试试。

几种方法反复试,最后必是连乘式。

一、提取公因式法多项式中所有的项都含有的因式称为它们的公因式。

例1:分解因式12a2bc2x2y3-9ab2cx3y2+3abcx2y2解:仔细观察,其中3abcx2y2 是它们的公因式所以原式=3abcx2y2(4acy-3bx+1)技巧:先提取每一项的系数的公因数,再逐个将每个字母的最低次提取出来。

注意其中符号的变化以及不能遗漏其中的“1”。

例2:分解因式3x2y(a+b)(b+c)+3xy2(a+b)(b+c)若在求解过程中将(a+b)(b+c)展开,则在后面的分解过程中会有很大的麻烦,应该观察到每一项都含有(a+b)(b+c),将其看成一个整体,不做变化。

解:含有公因式3xy(a+b)(b+c)所以原式=3xy(a+b)(b+c)(x+y)技巧:在分解过程中,利用好整体思想。

二、公式法利用常见的公式进行因式分解。

常用公式a2-b2=(a+b)(a-b)a2-2ab+b2=(a-b)2a2+2ab+b2=(a+b)2a3-b3=(a-b)(a2+ab+b2)a3+b3=(a+b)(a2-ab+b2)a3+3a2b+3ab2+b3=(a+b)3a3-3a2b+3ab2-b3=(a-b)3a2+b2+c2+2ab+2bc+2ca=(a+b+c)2补充公式当n为正奇数时有a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-……-ab n-2+b n-1)当n为正整数时,有a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+……+ab n-2+b n-1)例3:分解因式16(m+x)2-9(n+y)2解:16(m+x)2=(4m+4x)29(n+y)2=(3n+3y)2原式=(4m+4x)2-(3n+3y)2=(4m+3n+4x+3y)(4m-3n+4x-3y)技巧:应该先观察,若先进行展开,将会非常麻烦。

因式分解的常见变形技巧

因式分解的常见变形技巧

因式分解的常見變形技巧在因式分解學習過程中,除要掌握教材上介紹的三種基本方法:提公因式,公式法,分組分解法外,還常常要進行一些靈活的變換。

下面就簡單介紹一下這些常見的變換方法。

掌握了這些變換方法後,這類因式分解問題基本可以迎刃而解了。

需要說明的是,要想熟練掌握這些技巧,還需要同學們結合平時的練習去體驗我們所講的方法和思路。

技巧一符號變換有些多項式有公因式或者可用公式,但是結構不太清晰的情況下,可考慮變換部分項的係數,先看下面的體驗題。

體驗題1(m+n)(x-y)+(m-n)(y-x)指點迷津y-x= -(x-y)體驗過程原式=(m+n)(x-y)-(m-n)(x-y)=(x-y)(m+n-m+n)=2n(x-y)小結符號變化常用於可用公式或有公因式,但公因式或者用公式的條件不太清晰的情況下。

實踐題1分解因式:-a2-2ab-b2技巧二係數變換有些多項式,看起來可以用公式法,但不變形的話,則結構不太清晰,這時可考慮進行係數變換。

體驗題2分解因式4x2-12xy+9y2體驗過程原式=(2x)2-2(2x)(3y)+(3y)2=(2x-3y)2小結係數變化常用於可用公式,但用公式的條件不太清晰的情況下。

實踐題2分解因式221439xy yx++技巧三指數變換有些多項式,各項的次數比較高,對其進行指數變換後,更易看出多項式的結構。

體驗題3分解因式x4-y4指點迷津把x2看成(x2)2,把y4看成(y2)2,然後用平方差公式。

體驗過程原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y)小結指數變化常用於整式的最高次數是4次或者更高的情況下,指數變化後更易看出各項間的關係。

實踐題3分解因式a4-2a4b4+b4技巧四展開變換有些多項式已經分成幾組了,但分成的幾組無法繼續進行因式分解,這時往往需要將這些局部的因式相乘的形式展開。

然後再分組。

體驗題4a(a+2)+b(b+2)+2ab指點迷津表面上看無法分解因式,展開後試試:a2+2a+b2+2b+2ab。

因式分解中的常用变形公式

因式分解中的常用变形公式

因式分解中的常用变形公式在因式分解中,常用的变形公式有以下几种:1.因式提取法:当多项式中存在公因式时,可以将公因式提取出来,从而简化多项式的形式。

例如,对于多项式2x + 4xy,可以将公因式2提取出来,得到2(x + 2y)。

2.公式a²-b²=(a+b)(a-b):该公式用于因式分解差的平方。

例如,对于多项式x²-4,可以用该公式将其因式分解为(x+2)(x-2)。

3. 公式a³ + b³ = (a + b)(a² - ab + b²):该公式用于因式分解和的立方。

例如,对于多项式x³+8,可以用该公式将其因式分解为(x+2)(x²-2x+4)。

4. 公式a³ - b³ = (a - b)(a² + ab + b²):该公式用于因式分解差的立方。

例如,对于多项式x³-8,可以用该公式将其因式分解为(x-2)(x²+2x+4)。

5. 公式a² + 2ab + b² = (a + b)²:该公式用于因式分解完全平方。

例如,对于多项式x²+4x+4,可以用该公式将其因式分解为(x+2)²。

6. 公式a² - 2ab + b² = (a - b)²:该公式用于因式分解差的完全平方。

例如,对于多项式x²-4x+4,可以用该公式将其因式分解为(x-2)²。

7.因式分解四项和:当多项式中存在四项和的形式时,可以通过重新组合进行因式分解。

例如,对于多项式x²+4x+3x+12,可以将其重组为(x²+4x)+(3x+12),然后可以使用公式1和2进行因式分解。

8. 公式a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - ac - bc):该公式用于因式分解三项和的立方差。

因式分解的七种常见方法

因式分解的七种常见方法

1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握:
①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方 面考虑。
如果一个多项式的各项有公因式,可以把这个公因式提出来, 从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
ax ay ax y
方法 1 提公因式法
具体方法:
1.当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
2.字母取各项的相同的字母,而且各字母的指数取次数最低的;
(2)15b(2a-b)2+25(b-2a)2; =15b(2a-b)2+25(2a-b)2=5(2a-b)2(3b+5)
(3)(a-b)2(a+b)+(a-b)(a+b)2. =(a-b)(a+b)[(a-b)+(a+b)]=2a(a-b)(a+b)
返回
方法 2 公式法
题型1 直接用公式法
5.把下列各式分解因式:
(2)-3x7+24x5-48x3 =-3x3(x4-8x2+16)
返回
=-3x3(x2-4)2=-3x3(x+2)2(x-2)2.
题型3 先局部再整体法
7.把下列各式分解因式:
(1)(x+3)(x+4)+x2-9; =(x+3)(x+4)+(x+3)(x-3) =(x+3)[(x+4)+(x-3)] =(x+3)(2x+1)
取每项相同的多项式,多项式的次数取最低的。
3.如果多项式的第一项是负的,一般要提出“-”号,
使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

因式分解的方法与技巧有什么

因式分解的方法与技巧有什么

因式分解的方法与技巧有什么因式分解的方法与技巧有什么?同学们还有印象吗,如果没有快来小编这里瞧瞧。

下面是由小编为大家整理的“因式分解的方法与技巧有什么”,仅供参考,欢迎大家阅读。

因式分解的方法与技巧有什么一、分解因式技巧1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注意:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

3.提公因式法基本步骤:(1)找出公因式;二、因式分解方法分类把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法、分组分解法和十字相乘法、待定系数法、双十字相乘法、对称多项式轮换对称多项式法、余数定理法、求根公式法、换元法、长除法、除法等。

(1)提公因式法几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提净;全家都搬走,留1把家守。

要变号,变形看正负。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a2+1/2变成2(a2+1/4)不叫提公因式(1)公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

因式分解的方法和技巧

因式分解的方法和技巧

因式分解的方法和技巧
因式分解是将一个多项式表示成若干个乘积的形式。

下面介绍几种常见的因式分解方法和技巧。

1. 公因式提取法:当多项式中的每一项都有公共因子时,可以先将公因式提取出来,然后再进行因式分解。

例如,对于多项式2x+4xy,可以先提取出公因式2,得到2(x+2y)。

2. 完全平方三项式的因式分解:形如a^2+2ab+b^2的多项式可以因式分解为(a+b)^2。

这是一个常见的公式,可以用来快速分解平方多项式。

3. 提取因式中的平方因子:当多项式中存在平方因子时,可以将其提取出来。

例如,对于多项式x^2+2x+1,可以将其因式分解为(x+1)^2。

4. 分组因式分解法:对于一些多项式,可以通过将其中的项进行分组,然后提取公因式的方式进行因式分解。

例如,对于多项式x^2+3x+2,可以将其分为(x^2+2)+(x+1),然后分别提取每一组的公因式,得到(x+2)(x+1)。

5. 特殊因式分解:有一些特殊的多项式可以通过特殊的因式分解公式进行分解。

例如,差二平方公式a^2-b^2可以分解为(a-b)(a+b),和二平方公式a^2+b^2可以分解为(a+bi)(a-bi),其中i为虚数单位。

6. 使用因式分解公式:有一些常见的因式分解公式可以用来分
解特定类型的多项式,例如二次三项式的因式分解公式
(a+b)^2=a^2+2ab+b^2和差二三项式的因式分解公式(a-
b)^2=a^2-2ab+b^2。

以上是因式分解的一些常见方法和技巧,可以根据不同的情况选择合适的方法进行因式分解。

因式分解的考点十二种方法(已整理)

因式分解的考点十二种方法(已整理)

因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x -2x -x(2003淮安市中考题)x -2x -x=x(x -2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)解:a +4ab+4b =(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m解:m +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-19解:7x -19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b)7、换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

本文将介绍因式分解的方法、技巧和应用。

1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。

下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。

在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。

例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。

因式分解法的四种方法

因式分解法的四种方法

因式分解法的四种方法因式分解是代数学中常见的一种运算方法,通过因式分解可以将多项式分解成若干个一次或二次因式的乘积,从而简化计算和解题过程。

在代数学中,因式分解是一个非常重要的内容,掌握因式分解的方法对于学习代数学和解决实际问题都具有重要意义。

本文将介绍因式分解的四种常见方法,希望能够帮助读者更好地理解和掌握因式分解的技巧。

一、提公因式法。

提公因式法是因式分解中最基本的方法之一,它适用于多项式中存在公因式的情况。

具体的步骤是先找出多项式中的公因式,然后将多项式中的每一项都除以这个公因式,最后将得到的商式相乘即可得到原多项式的因式分解形式。

例如,对于多项式2x^2+6x,我们可以先找出公因式2x,然后将每一项除以2x,得到x+3,因此原多项式的因式分解形式为2x(x+3)。

二、配方法。

配方法是因式分解中常用的一种方法,它适用于多项式中存在完全平方公式的情况。

具体的步骤是将多项式中的每一项根据完全平方公式进行配方,然后利用配方公式将多项式进行因式分解。

例如,对于多项式x^2+2x+1,我们可以将其写成(x+1)^2的形式,因此原多项式的因式分解形式为(x+1)^2。

三、分组法。

分组法是因式分解中常用的一种方法,它适用于多项式中存在四项式的情况。

具体的步骤是将多项式中的项进行分组,然后利用分组的形式进行因式分解。

例如,对于多项式x^3+3x^2+2x+6,我们可以将其写成(x^3+3x^2)+(2x+6)的形式,然后再对每一组进行提公因式或配方法进行因式分解。

四、公式法。

公式法是因式分解中常用的一种方法,它适用于多项式中存在特定公式的情况。

具体的步骤是将多项式根据特定的公式进行变形,然后利用公式进行因式分解。

例如,对于多项式x^3+y^3,我们可以利用公式x^3+y^3=(x+y)(x^2-xy+y^2)进行因式分解。

综上所述,因式分解的方法有很多种,但是掌握其中的基本方法对于解题和学习都非常重要。

希望通过本文的介绍,读者能够更好地理解和掌握因式分解的技巧,从而更好地应用于实际问题中。

因式分解中的变形技巧

因式分解中的变形技巧

数学篇学思导引因式分解是代数式化简、求值过程中的重要一环,是解答许多代数问题的关键钥匙.但有些问题直接因式分解难度较大,常常需要进行变形,才能找到解答的突破口.那么,如何变形呢?对此,笔者总结了因式分解中常用的几种变形技巧,希望同学们能够熟练掌握,灵活运用.一、添项变形添项变形,即添加某个适当的项,将原式进行变形后再去分解因式.需注意的是,当添加某个项后,务必要减去所添加的项.例1分解因式:①y4+64;②y5+y+1.分析:①该式子按照常规思路无法直接分解因式.若能把y4变为(y2)2,64变为82,再添加上2×8y2,使之能够配成完全平方式,再在其后减去2×8y2,这样问题自然就迎刃而解了.②本题直接分解因式,有点棘手.若能在y5与y之间添上y2与-y2,然后再分组,即可利用立方差公式提取公因式.解:①原式=(y2)2+2×8y2+82-2×8y2=(y2+8)2-(y)2=(y2+4y+2)(y2-4y+2);②原式=y5+y2-y2+y+1=(y5-y2)+(y2+y+1)=y2(y3-1)+(y2+y+1)=y2(y-1)(y2+y+1)+(y2+y+1)=(y2+y+1)(y3-y2+1).二、拆项变形拆项变形,即把多项式中的某个字母项或常数项拆分成两项或几项后,再按照基本方法去提取公因式,实现因式分解的目的.例2分解因式:①m3-m2-m-2;②m2-n2+4m+2n+3.分析:①本题分解因式需要先进行分组,但把多项式进行分组,显然并不容易.观察该多项式,可以发现题中的二次项m2可以拆分成-2m2+m2,一次项m可以拆分成-2m+m,这样原本不易直接分组的四项就可以分组,并方便提取公因式了.②观察题目多项式结构,可以看出若把式中的常数3拆分成4与-1后,就可以将它们与m2+4m、n2+2n配成完全平方式.解:①原式=m3-2m2+m2-2m+m-2=m2(m-2)+m(m-2)+(m-2)=(m-2)(m2+m+1);②原式=m2-n2+4m+2n+4-1=(m2+4m+4)-(n2-2n+1)=(m+2)2-(n-1)2=(m+n+1)(m-n+3).三、主元变形主元变形,即先把次数较低的字母视为主元,重新排列原多项式后再去因式分解.这种变形技巧多适用于次数较高的多项式的因式分解.因式分解中的变形技巧28数学篇学思导引例3分解因式:①a 3-2ma 2+2a -4m ;②a 2bc +abd +bc -ab 2-ac 2-cd .分析:①观察该多项式中,字母a 的最高次数为3,而字母m 的最高次数为1,不妨变换主元,将字母m 视为主元,以m 的降幂的形式重新排列.②本题若直接以字母a 或b 或c 为主元展开分解,较为复杂.观察多项式的特点,很容易看出式中的字母a ,b ,c ,d 中只有d 为一次,不妨选择d 为主元进行变形,对原式重新整理排列后再去分解因式,则简单得多.解:①原式=(-2ma 2-4m )+(a 3+2a )=-2m (a 2+2)+a (a 2+2)=(a 2+2)(a -2m );②原式=(ab -c )d +[bca 2-a (b 2+c 2)+bc ]=(ab -c )d +(ba -c )(ca -b )=(ab -c )(d +ac -b ).四、换元变形换元变形,即在分解因式时,把题目中重复出现的式子看作一个整体,以新元进行替换,这样可以简化运算,避免出错.例4分解因式:①(m 2+n -5)(m 2+n -13)+12;②(x +3)(x +4)(x +5)(x +6)-360.分析:①观察该多项式,可以看出括号内含有相同的m 2+n ,不妨设m 2+n =x ,之后再去因式分解,则可以化繁为简.②把(x +3)(x +4)(x +5)(x +6)分组后展开,会发现它们存在相同的式子,利用换元变形,则可以轻松得解.解:①设m 2+n =x ,原式=(x -5)(x -13)+12=x 2-18x +77=(x -7)(x -11)=(m 2+n -7)(m 2+n -11);②(x +3)(x +4)(x +5)(x +6)=[(x +3)(x +6)][(x +4)(x +5)]=[x 2+9x +18][x 2+9x +20].设x 2+9x =t ,则原式=[x 2+9x +18][x 2+9x +20]-360=[t +18][t +20]-360=t 2+38t +360-360=t 2+38t =t (t +38)=(x 2+9x )(x 2+9x +38)=x (x +9)(x 2+9x +38).总之,因式分解离不开变形,巧妙的变形可以使解题思路更明朗,解题过程更简单.所以,在平时的学习中,同学们除了掌握基本的解题方法外,还要注意一些解题技巧的灵活运用,这样才能提高解题的效率.上期《<三角形>拓展精练》参考答案1.A ;2.B ;3.A ;4.A ;5.BD ;6.9cm ;7.12或14;8.105°;9.(1)203≤b <10;(2)∵203≤b <10,b 为整数,∴b =7,8,9,∵b =3c ,c 为整数,∴b =9,c =3,∴a =20-b -c =8.故△ABC 的三边长为c =3,a =8,b =9.10.解:(1)∵∠F =30°,∠EAC =45°,∴∠ABF =∠EAC -∠F =45°-30°=15°,∵∠FBC =90°,∴∠ABC =∠FBC -∠ABF =75°;(2)∵∠B =60°,∠BAC =90°,∴∠C =30°,∵AE ∥BC ,∴∠CAE =∠C =30°,∴∠AFD =∠CAE +∠E =30°+45°=75°.29。

因式分解的14 种方法

因式分解的14 种方法

因式分解的14 种方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则:1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:3 .3 1. 2 . x . x . .x x . )分解因式技巧:1.分解因式与整式乘法是互为逆变形。

2.分解因式技巧掌握:①等式左边必须是多项式;②分解因式的结果必须是以乘积的形式表示;③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

基本方法:⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。

口诀:找准公因式,一次要提净;全家都搬走,留 1 把家守;提负要变号,变形看奇偶。

因式分解常用的六种方法详解

因式分解常用的六种方法详解

因式分解常用的六种方法详解因式分解常用的六种方法详解多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x 看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.4.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.。

因式分解的多种技巧

因式分解的多种技巧

因式分解的多种技巧
因式分解是在代数中经常用到的一种重要技巧,它能够将一个多项式拆分成更简单的因式。

以下是一些因式分解的常见技巧:
1. 提取公因式:当多项式中的每一项都有一个共同的因子时,可以通过提取公因式的方式进行因式分解。

例如,对于多项式
3x+6y,可以提取出公因式3,得到3(x+2y)。

2. 使用特殊因子公式:有些多项式可以根据特殊的因式公式进行因式分解。

例如,差平方公式(a^2 - b^2 = (a+b)(a-b))可以用于将差平方形式的多项式因式分解。

3. 分解成完全平方形式:如果一个多项式可以写成两个平方数之差的形式,那么可以将其因式分解为两个平方数的乘积。

例如,多项式x^2 - 4可以分解为(x+2)(x-2)。

4. 分组法:对于一些复杂的多项式,可以通过重新组合并分组来进行因式分解。

例如,对于多项式x^3 - 3x^2 + 2x - 6,可以将其重新组合为(x^3 - 3x^2) + (2x - 6),然后再进一步进行因式分解。

5. 使用换元法:有时候可以通过进行变量替换来进行因式分解。

例如,对于多项式x^4 + x^2 + 1,可以令y = x^2,然后将其转化为
二次方程y^2 + y + 1,再进行因式分解。

这些是因式分解中常用的一些技巧,通过灵活运用它们,可以
帮助我们更好地理解和简化多项式。

请根据具体的多项式形式和特点,选择合适的因式分解技巧进行求解。

因式分解的12种方法

因式分解的12种方法

因式分解的12种方法因式分解是将一个多项式分解成两个或多个乘法因子的过程。

它在数学中有着广泛的应用,特别是在代数和数论中。

下面将介绍12种常见的因式分解方法。

1.相异二次因式法:当一个二次多项式的两个根分别为a和-b时,可以使用相异二次因式法进行因式分解。

例如,对于多项式x^2-4x+4,可以使用相异二次因式法将其分解为(x-2)^22.平方差公式:平方差公式可以将一个二次或更高次幂的多项式分解成两个平方差相减的形式。

例如,对于多项式x^2-9,可以使用平方差公式将其分解为(x-3)(x+3)。

3.割项公式:割项公式用于将一个高次多项式分解成两个低次多项式的乘积。

例如,对于多项式x^3+3x^2-4x-12,可以使用割项公式将其分解为(x+4)(x-1)(x+3)。

4.公因式提取法:公因式提取法是将一个多项式中的公因式提取出来,并将其余部分用括号括起来。

例如,对于多项式2x^2+6x,可以提取出公因式2x,得到2x(x+3)。

5.分组因式法:分组因式法是将一个多项式分成两组,并在每一组中找到一个公因式。

然后,将公因式提取出来,并将其余部分用括号括起来。

例如,对于多项式x^3+x^2+x+1,可以将其分成两组x^3+x和x^2+1,并分别提取出公因式x(x^2+1),得到(x^2+1)(x+1)。

6.组合因式法:组合因式法是将一个多项式分成若干个互补的因子,并将其进行组合。

例如,对于多项式x^2-5x+6,可以将其分解为(x-2)(x-3)。

7.差平方公式:差平方公式可以将一个多项式分解为两个平方差的形式。

例如,对于多项式x^2-4,可以使用差平方公式将其分解为(x-2)(x+2)。

8.完全平方公式:完全平方公式可以将一个二次多项式分解为两个平方和的形式。

例如,对于多项式x^2+6x+9,可以使用完全平方公式将其分解为(x+3)^29.配方法:配方法用于将一个二次多项式分解为两个一次多项式的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的常见变形技巧
技巧一 符号变换
有些多项式有公因式或者可用公式,但是结构不太清晰的情况下,可考虑变换部分项的系数,先看下面的体验题。

体验题1 (m+n)(x-y)+(m-n)(y-x)
指点迷津 y-x= -(x-y)
体验过程
原式=(m+n)(x-y)-(m-n)(x-y)
=(x-y)(m+n-m+n)=2n(x-y) 小结 符号变化常用于可用公式或有公因式,但公因式或者用公式的条件不太清晰的情况下。

实践题1 分解因式:-a 2-2ab-b 2
实践详解 各项提出符号,可用平方和公式.
原式=-a 2-2ab-b 2=-( a 2+2ab+b 2)= -(a+b)2
技巧二 系数变换
有些多项式,看起来可以用公式法,但不变形的话,则结构不太清晰,这时可考虑进行系数变换。

体验题2
分解因式 4x 2-12xy+9y 2 体验过程
原式=(2x)2-2(2x)(3y)+(3y)2=(2x -3y)2 小结 系数变化常用于可用公式,但用公式的条件不太清晰的情况下。

实践题2 分解因式2
21439
xy y x ++ 实践详解 原式=(2x )2+2.2x ∙3y ∙+(3y )2=(2x +3y ) 技巧三 指数变换
有些多项式,各项的次数比较高,对其进行指数变换后,更易看出多项式的结构。

体验题3
分解因式x 4-y 4 指点迷津
把x 2看成(x 2)2,把y 4看成(y 2)2,然后用平方差公式。

体验过程
原式=(x 2)2-(y 2)2=(x 2+y 2)(x 2-y 2)=(x 2+y 2)(x+y)(x-y) 小结 指数变化常用于整式的最高次数是4次或者更高的情况下,指数变化后更易看出各项间的关
系。

实践题3 分解因式 a 4-2a 4b 4+b 4
指点迷津
把a 4看成(a 2)2,b 4=(b 2)2 实践详解 原式=(a 2-b 2)2=(a+b)2(a-b)2
技巧四展开变换
有些多项式已经分成几组了,但分成的几组无法继续进行因式分解,这时往往需要将这些局部的因式相乘的形式展开。

然后再分组。

体验题4a(a+2)+b(b+2)+2ab
指点迷津表面上看无法分解因式,展开后试试:a2+2a+b2+2b+2ab。

然后分组。

体验过程原式= a2+2a+b2+2b+2ab= a2+ b2+2a+2b+2ab= a2+ b2+2(a+b+ab)
小结展开变化常用于已经分组,但此分组无法分解因式,当于重新分组。

实践题4x(x-1)-y(y-1)
指点迷津表面上看无法分解因式,展开后试试:x2-x-y2+y。

然后重新分组。

实践详解原式= x2-x-y2+y=(x2-y2)-(x-y)=(x+y)(x-y)-(x-y)=(x-y)(x+y-1)
技巧五拆项变换
有些多项式缺项,如最高次数是三次,无二次项或者无一次项,但有常数项。

这类问题直接进行分解往往较为困难,往往对部分项拆项,往往拆次数处于中间的项。

体验题5 分解因式3a3-4a+1
指点迷津本题最高次是三次,缺二次项。

三次项的系数为3,而一次项的系数为-4,提公因式后,没法结合常数项。

所以我们将一次项拆开,拆成-3a-a试试。

体验过程原式= 3a3-3a-a+1=3a(a2-1)+1-a=3a(a+1)(a-1)-(a-1)
=(a-1)[3a(a+1)-1]=(a-1)(3a2+3a-1)
另外,也可以拆常数项,将1拆成4-3。

原式=3a3-4a+4-3=3(a3-1)-4(a-1)=3(a-1)(a2+a+1)-4(a-1)
=(a-1)(3a2+3a+3-4)=(a-1)( 3a2+3a-1)
小结拆项变化多用于缺项的情况,如整式3a3-4a+1,最高次是三,其它的项分别是一,零。

缺二次项。

通常拆项的目的是将各项的系数调整趋于一致。

实践题5分解因式 3a3+5a2-2
指点迷津三次项的系数为3,二次项的系数为5,提出公因式a2后。

下一步没法进行了。

所以我们将5a2拆成3a2 +2a2,化为 3a3+3a2+2a2-2.
实践详解原式=3a3+3a2+2a2-2=3a2(a+1)+2(a2-1)
=3a2(a+1)+2(a+1)(a-1)
=(a+1)(3a2+2a-2)
技巧六添项变换
有些多项式类似完全平方式,但直接无法分解因式。

既然类似完全平方式,我们就添一项然后去一项
凑成完全平方式。

然后在考虑用其它的方法。

体验题6分解因式x2+4x-12
指点迷津本题用常规的方法几乎无法入手。

与完全平方式很象。

因此考虑将其配成完全平方式再说。

体验过程原式= x2+4x+4-4-12
=(x+2)2-16
=(x+2)2-42
=(x+2+4)(x+2-4)
=(x+6)(x-2)
小结添项法常用于含有平方项,一次项类似完全平方式的整式或者是缺项的整式,添项的基本目的是配成完全平方式。

实践题6分解因式x2-6x+8
实践详解原式=x2-6x+9-9+8
=(x-3)2-1
=(x-3)2-12
=(x-3+1)(x-3-1)
=(x-2)(x-4)
实践题7分解因式a4+4
实践详解原式=a4+4a2+4-4a2
=(a2+2)2-4a2
=(a2+2+2a)(a2+2-2a)
=(a2+2a+2)(a2-2a+2)
技巧七换元变换
有些多项式展开后较复杂,可考虑将部分项作为一个整体,用换元法,结构就变得清晰起来了。

然后再考虑用公式法或者其它方法。

体验题7分解因式 (x+1)(x+2)(x+3)(x+4)+1
指点迷津直接展开太麻烦,我们考虑两两结合。

看能否把某些部分作为整体考虑。

体验过程(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1*
令x2+5x=m.
上式变形为(m+4)(m+6)+1
=m2+10m+24+1
=(m+5)2
=(x2+5x+5)2
*式也可以这样变形,令x2+5x+4=m
原式可变为:
m(m+2)+1
=m2+2m+1
=(m+1)2
=(x2+5x+5)2
小结换元法常用于多项式较复杂,其中有几项的部分相同的情况下。

如上题中的x2+5x+4与x2+5x+6就有相同的项 x2+5x.,换元法实际上是用的整体的观点来看问题。

实践题8分解因式x(x+2)(x+3)(x+5)+9
指点迷津将x(x+5)结合在一起,将(x+2)(x+3)结合在一起..
实践详解原式=[x(x+5)][(x+2)(x+3)]+9
=(x2+5x)(x2+5x+6) +9
令x2+5x=m
上式可变形为
m(m+6)+9
=m2+6m+9
=(m+3)2
=(x2+5x+3)2
要想熟练掌握这些技巧,还需要同学们结合平时的练习去体验我们所讲的方法和思路。

相关文档
最新文档