材料力学第三章 扭转.
材料力学 第03章 扭转
sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章
扭
转
§3.1
一、定义 二、工程实例 三、两个名词
概
述
一、定义
Me Me
扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(
4
d /2
4
)
0
πd 4 32
d
d A 2π d
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学:第三章扭转强度
解:
A
TA
Ip
1000 0.015 0.044 (1 0.54 )
63.66MPa32max来自T Wt1000
0.043 (1 0.54 )
84.88MPa
16
min
max
10 20
42.44 MPa
例:一直径为D1的实心轴,另一内外径之 比α=d2/D2=0.8的空心轴,若两轴横截面上 的扭矩相同,且最大剪应力相等。求两轴外直
NA=50 马力,从动轮B、C、D输出功率分 别为 NB=NC=15马力 ,ND=20马力,轴的 转速为n=300转/分。作轴的扭矩图。
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300
351 N m
mD
7024 NC n
/m
例:实心圆轴受扭,若将轴的直径减小一半
时,横截面的最大剪应力是原来的 8 倍?
圆轴的扭转角是原来的 16 倍?
max
T Wt
T
d3
16
Tl Tl
GIp
d4
G
32
例:图示铸铁圆轴受扭时,在_45_ 螺_旋_ 面上 发生断裂,其破坏是由 最大拉 应力引起的。 在图上画出破坏的截面。
例:内外径分别为20mm和40mm的空心圆截 面轴,受扭矩T=1kN·m作用,计算横截面上A 点的切应力及横截面上的最大和最小切应力。
7024 20 468 N m 300
N A 50 PS N B N C 15 PS N D 20 PS n = 300 rpm
mA 1170 N m mB mC 351 N m mD 468 N m
材料力学力S03扭转
4M
2M
第三章
扭转
8
受扭杆件内力计算的例题
例1: : 解: T1=M T2=2M T3=-2M 绘出扭矩图 最后总结规律: 最后总结规律: 左上右下” “左上右下” 自己证明。 自己证明。
M M 4M 2M
M
1 T1 1 M
M
2 T2
2
T3 3
2M
M
2M
3
T
第三章 扭转
−2 M
9
受扭杆件内力计算的例题
1.1 变形几何关系
通过实验知,圆截面杆发生扭转变形后: 通过实验知,圆截面杆发生扭转变形后:横截面仍 为平面,仍垂直于轴线,绕圆心刚体旋转; 为平面,仍垂直于轴线,绕圆心刚体旋转;横截面绕圆 心的角位移为扭转角;半径仍为直线段且长度不变。 心的角位移为扭转角;半径仍为直线段且长度不变。 这一规律称为圆截面杆扭转变形的平面假设。 这一规律称为圆截面杆扭转变形的平面假设。 平面假设
例2: : 如图杆件,已知m,试绘制扭矩图。 如图杆件,已知 ,试绘制扭矩图。
Me
m
Me
l
第三章
扭转
10
受扭杆件内力计算的例题
例2: : 解: 轴所受力系是连续分布的, 轴所受力系是连续分布的, 无须分段。默认坐标x轴起 无须分段。默认坐标 轴起 点左端,沿轴线向右。 点左端,沿轴线向右。 Me=ml/2 T=Me-mx=m(l/2-x) 该杆上的载荷力系关于杆中 截面对称 可以发现, 的 对称。 截面对称。可以发现,T的 分布关于杆中截面是反对称 分布关于杆中截面是反对称 的。
第三章
扭转
21
习题
• P84, 3-2 • P85, 3-5
第三章
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学第3章扭转
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第三章 扭转
W P t 1000P 60(N m)
外力偶矩Me一分钟做功:
W Me Me 2 n(N m)
令 W W
则:
Me
1000P 60
2 n
9549
P n
(N m)
注意:
主动轮上外力偶矩的转 向和轴的转向一致
从动轮上外力偶矩的转 向和轴的转向相反
二、扭矩与扭矩图 方法:截面法
Me
Mx 0 T1 M A 0
A
B
C
D
得: T1 M A 1.91kN m
MA 1 MB 2 MC 3 MD
2-2截面
M x 0 T2 M A MB 0
得: T2 M A MB 5.73kN m 3-3截面
A 1 B2 C
MA
T1
MA
M B T2
3D
M x 0 T3 M A MB MC 0
由扭矩图可知: T 5.73kN m
max
在BC和CD段
A
B
C
D
MA
MB
A
B
T / kN m
MC
MD
C
D
5.73
O
x
1.91
5.73
D
B
§3-3 薄壁圆筒的扭转 R0 10
一、薄壁圆筒扭转时的应力与变形
D
δ
D / 20
实验情形
ab cd
① 各圆周线的形状、大小和间距均未改变,只是绕轴线作相 对转动。
dx
将(a)式代入上式得:
G
G
d
dx
(b)
由(b)式可知,圆杆横截面上的切应力 和 成正比,即
切应力沿半径方向按线性规律变化,其方向垂直于半径。
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
第三章扭转
T=Fs×r
材料力学
0
Fs=2 r
0
扭转/圆轴扭转时的应力
一.圆轴扭转时的应力分布规律
T
T
材料力学
扭转/圆轴扭转时的应力
1. 单元格的变化
A
B
C
A B
C
D
D
现象一: 方格的左右两边发生相对错动
横截面上存在切应力
方格的左右两边距离没有发生改变 现象二:
材料力学
横截面上没有正应力
2. 半径的变化
材料力学
扭转/纯剪切
§3.3 纯剪切
材料力学
相关概念
纯剪切:单元体各个面上只承受切应力而没有正应力。
单元体:是指围绕受力物体内一点截取一边长为无限小 的正立方体,以表示几何上的一点。
材料力学
扭转/纯剪切
一.薄壁圆筒扭转时的切应力
纯剪切的变形规律通过薄壁圆筒的纯扭转进 行研究。 受扭前,在薄壁圆筒的表面上用圆周线和 纵向线画成方格。
扭转/圆轴扭转时的变形
两横截面间相对扭转角的计算:
=TL/GIP
T:扭矩;
L:两横截面间的距离; G:切变模量; IP:极惯性矩。
材料力学
扭转/圆轴扭转时的变形
=TL/GIP
GIP越大,则越小。 GIP称为抗扭刚度。
材料力学
扭转/圆轴扭转时的变形
`=/L
`:单位长度扭转角(rad/m)。
思路:
最大扭矩
最大切应力
max
校核强度
相等
强度相同,则两轴的最大切应力 求出实心轴直径
材料力学
两轴面积比即为重量比
扭转/圆轴扭转时的应力
计算Wt:
3 Wt=D
材料力学 第三章 扭 转
T2
T1
d
T3
Mx1=0.5kN· m
Mx2 =0.32kN· m lAB=300mm G=80GPa d=50mm
B
T2
φAB
lAB
A T1
lAC d φAC
C T3
B
lAB
A
lAC
C
M x1l AB j AB = GI P 500 0.3 = 9 80 10 0.054 32
r O
Mx
几何分析
变 形 应变分布
物理关系
应力分布
平面假定 静力学方程
应力公式
1. 变形几何关系
周线
a b c d
T
周线
a c d
γ
T
φ
b
纵线
dx
纵线
dx
a
c
a
γ
c c' d d'
b
d
b
(1)变形后所有圆周线的大小、形状和间距均不变,绕杆轴线相对转动。 (2)所有的纵线都转过了同一角度g。
T
周线
A
dρ
ρ o
ρ2dA
∫ 0ρ2·2πρdρ =
π d = 32
4
d/2
d
3 Ip π d Wp = r = 16
2. 空心圆截面
π D 4 - π d 4 π D 4(1-α4) Ip= 32 32 = 32 α=d/D
ρ o
dρ
π D3 Wp = 16 (1-α4)
d D
3.薄壁圆环截面
I P = 2r0
故该轴满足切应力强度要求。
二、刚度计算 等直圆杆扭转的刚度条件为
θ max = Mxmax ≤[θ] GI
材料力学-第三章
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
材料力学 第三章 扭转
为一很小的量,所以
tan 1.0103rad
G
(80 109 Pa)(1.0 103rad) 80 MPa
注意: 虽很小,但 G 很大,切应力 不小
例 3-3 一薄壁圆管,平均半径为R0,壁厚为,长度为l, 横截面上的扭矩为T,切变模量为G,试求扭转角。
解:
T
2πR02
G
T
2πGR02
塑性材料:[] =(0.5~0.6)[s] 脆性材料:[] = (0.8~1.0)[st]
例 3-1 已知 T=1.5 kN . m,[τ] = 50 MPa,试根据强度条 件设计实心圆轴与 a = 0.9 的空心圆轴,并进行比较。 解:1. 确定实心圆轴直径
max [ ]
max
T Wp
T πd 3
表示扭矩沿杆件轴线变化的图线(T-x曲线)-扭矩图
Tmax ml
[例3-1]已知:一传动轴, n =300r/min,主动轮输入 P1=500kW, 从动轮输出 P2=150kW,P3=150kW,P4=200kW,试绘制扭矩图。
解:1、计算外力偶矩
m2
m3
m1
m4
m1
9.55
P1 n
9.55
一、薄壁圆筒扭转时的应力
t
1、试验现象
壁厚
t
1 10
r0(r0:平均半径)
rO
各圆周线的形状不变,仅绕轴线作相对转动,距离不变。 当变形很小时,各纵向平行线仍然平行,倾斜一定的角度。
由于管壁薄,可近似认 为管内变形与管表面相 同,均仅存在切应变γ 。
2、应力公式 微小矩形单元体如图所示:
´
①无正应力
d T
dx GI p
材料力学 第 三 章 扭转
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ
dϕ
dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。
材料力学课件第三章 扭转
工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的应力
3.4.2 最大扭转切应力和强度条件
第三章 扭转
1. 最大扭转切应力:
由
T
Ip
知:当
R , max
max
TR Ip
T Ip R
T Wp
(令 Wp I p R )
max
T Wp
Wp — 扭转截面系数,单位:mm3或m3。
对于实心圆截面: 对于空心圆截面:
Wp
d3
16
Wp
(D4
16
d4)
D3(1 4 )
16
3.4 圆轴扭转时横截面上的应力
2、强度条件
强度条件:
max
Tm a x Wp
[ ]
第三章 扭转
许用切应力 u
n
τ s---- 扭转屈服极限 ——塑性材料 τ b---- 扭转强度极限 ——脆性材料 τ u---- 扭转极限应力 ——τs和τb的统称
MB
MC
MA
MD
B
C
解:计算外力偶矩
A
D
MA
9549 PA n
1592N m
MB
MC
9549 PB n
477.5N m
MD
9549 PD n
637N m
3.2 外力偶矩的计算 扭矩和扭矩图
第三章 扭转
3.2.2 扭矩和扭矩图
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
剪应力在互相垂直的面上同时存在,数值相等,其方向都垂直于这 两个面的交线,且都指向或者都背离该交线。
材料力学_扭转
2
A1 =
πD12
4
= 2122mm 2
因此在承载能力相同的条件下,使用空心轴比较节约材料,比较经济. 因此在承载能力相同的条件下,使用空心轴比较节约材料,比较经济.
3.4 圆轴扭转时的变形 刚度条件
一,扭转变形 圆轴扭转的变形用相对扭转角度量
d T = dx GI p
d =
T dx GI p
Tdx l GI p Tl = GI p
用截面法计算各段轴内的扭矩
T = MB = 1637Nm 1 T2 = MB MC = 3274Nm T3 = MD = 2183Nm
根据扭矩方程画扭矩图 从图上可看出,最大扭矩发生在 段内各截面 从图上可看出,最大扭矩发生在CA段内各截面 扭矩方程
1637
3274 ( Nm )
Tmax = 3274Nm
例: 某传动轴,用45号钢无缝钢管制成,其外径D =66mm,壁厚 t=5 某传动轴, 45号钢无缝钢管制成,其外径 =66 , =5mm,使用时 , 号钢无缝钢管制成 =5 最大扭矩为T =1500N.m,试校核此轴的强度.已知[τ]=60 最大扭矩为 =1500 ,试校核此轴的强度.已知[ ]=60MPa.若此轴改为实心轴, .若此轴改为实心轴, 并要求强度仍与原空心轴相当, 为多少? 并要求强度仍与原空心轴相当,则实心轴的直径 D1为多少? 解:计算传动轴的抗扭截面模量
Ip R
=
πD / 32
4
D/2
=
πD
3
16
空心圆截面: 空心圆截面:
Ip = ∫
D/2
d /2
2πρ 3dρ =
α =d/D πD 4 πd 4 πD 4
32 32 = 32
材料力学第三章扭转
材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ
∫
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)横截面大小和形状不变,只是绕轴线作了相对转动 → 径向无正应力 (3)纵向线倾斜→ 横截面上有切应力,且垂直于半径. (4)各纵向线均倾斜了同一微小角度
→ 同一圆周上的切应力均匀分布.
γ
o
x
二、等圆截面直杆扭转横截面上切应力的建立 1.静力关系
T A dA (1)
2.剪切胡克定律 3.变形几何关系
G
Me
(2)
dx d (3)
由(1)(2)(3)式得
x
dx
dA
γ d
3m
2m
3.3 纯剪切
一、薄壁圆筒切应力
圆筒沿轴线方向尺寸没变——
横截面上没有正应力
1 r (:为平均半径) 10
p q
Me
圆筒沿径向方向尺寸没变——
横截面径向切应力为零
p
q
A A' o B r B'
Me
圆筒横截面沿轴线有相对转动——
横截面切应力方向与半径垂直
l
B
B' A' A
由 M x 0 有M e 2r r
Me
T
x
按右手螺旋法则,T矢量背离截面为正,指向截面为 负(或矢量与截面外法线方向一致为正,反之为负)
3.扭矩图 表示扭矩沿轴线各截面上的变化情况。
目 ①扭矩变化规律; 的 ②|T| 值及其截面位置 max
强度计算(危险截面)。
注意
用截面法求扭矩时,建议均假设各截面扭矩T为正,
如果由平衡方程得到T为正,则说明是正的扭矩,如 果为负,则是负的扭矩。在画轴的扭矩图,正的扭 矩画在x轴上方,负的扭矩画在x轴下方。
这就是剪切胡克定律。其中G为材料的剪切 模量。 剪切模量、弹性模量,泊松比三个弹性常量 满足以下关系: E G 2(1 )
3.4 圆轴扭转时的应力
一、平面假设 圆周扭转变形前的横截面变形后仍为平 面, 形状和大小不变,半径仍保持为直线;且相邻 两截面间的距离不变。
γ
o
x
平面假设推论:
x
z
dx
在单元体上、下、左、右四个侧面上只有切应力, 没有正应力的情况称为纯剪切。
三、切应变
p q
Me
M
r l
l为圆筒的长度
r
p q
l
其中, 为两端面横截面的相对 扭转角
四、剪切胡克定律
扭转实验表明,切应力低于材料的剪切比例 极限时,扭转角与扭转力偶矩成正比,可以 得到:
G
Me 2r 2
二、切应力互等定理
1. 用相邻的两个横截面 和两个过轴线的纵向 面,从圆筒中取出微 y 单元体。
Me
r
x
dy
z
dx
x
y
两侧面的切应力数值相等, 方向相反,组成一个力矩为 (dy)dx的力偶。 为保持平衡,上下两个 侧面必有切应力组成力偶与 之相平衡。 '
'
由此求出外力偶矩的计算公式:
P M e 9549 (N m) n
P——轴传递的功率kw n——轴的转速r/min Me——作用在轴上的力偶矩N m
二、扭矩和扭矩图 1.截面法求内力
n
M
x
0
Me
T Me 0 T Me
“ T ”称为横截面 上的扭矩 2.扭矩的符号规定:
n
(b)
mC
T2
(c)
T3
mD
T1 350N m T2 700N m
350
1
350 2
1146 3
446
T3 446N m
3)绘制扭矩图
B
T ( N m)
1
C
2
A
D 3
446
x
350 700
跟踪训练
1.受扭圆轴如图所示,1一1.2-2横截面上的 扭矩分别是( ).
3m
【重点和难点】 重点:外力偶矩的计算,扭矩图的作法,圆轴扭转时 强度条件和刚度条件的应用 难点:横截面上切应力的推导
3.1 扭转的概念和实例
一、工程实例
二、受力特点 杆件的两端作用两个大小相等、方向相反、 且作用平面垂直于杆件轴线的力偶。
三、变形特点 杆件的任意横截面绕杆件轴线发生相对 转动。 扭转变形的零件,通常为轴类零件,横截面大 都是圆形的,所以本章主要介绍圆轴扭转。
第3章 扭转
3.1 3.2 3.3 3.4 3.5 扭转的概念和实例 外力偶矩的计算 扭矩和扭矩图 纯剪切 圆轴扭转时的应力 圆轴扭转时的变形
第3章 扭转
【基本内容】 一、外力偶矩的计算 扭矩和扭矩图 二、纯剪切的概念,薄壁圆筒扭转时的切应力 三、切应力互等定理 四、圆轴扭转的强度条件 五、圆轴扭转的刚度条件
dy
z
'
x
( dx)dy ' M 0 z ( tdx)dy (tdy)dx
得
dx
'
y
上式表明:在单元体相互垂直 t 的两个平面上,切应力成对存 在且数值相等,两者都垂直于 两平面的交线,其方向则共同 dy 指向或共同背离该交线,这就 是切应力互等定理。
'
'
2)截面法求扭矩(扭矩按正方向设) 由平衡方程 Mx 0依次有
T1 m B 0 T1 350 N m
T2 m B m C 0 T2 700 N m
(a) B 1 C 2 A D 3 350 1 350 2 1146 3 446
mB mB
T1
T3 m D 0 T3 446 N m
3.2 外力偶矩的计算 扭矩和扭矩图
直接计算
3.2 外力偶矩的计算 扭矩和扭矩图
一、外力偶矩 作用于轴上的外力偶矩往往是由轴所传递 的功率和轴的转速来计算的。 已知:传动轴功率p(kw) 转速n(r/min), 求: 外力偶矩Me
( N m) 传动轴每秒输入功:W P 1000
Me
n 力偶每秒完成做功: W M e 2 ( N m) 60
例3.1 轴的转速为n =300r/min,主动轮A输入功率为 PA=36kW,从动轮B、C、D的输出功率分别为PB=PC=11kW, PD=14kW,试做轴的扭矩图。
解:1)计算外力偶矩
m A 9549
B
C
A
D
PA 36 9549 1146 ( N m) n 300 P 11 mB mC 9549 B 9549 350( N m) n 300 PD 14 mD 9549 9549 446( N m) n 300