七年级数学角的重点习题
七年级数学下册《角》练习题及答案(青岛版)
七年级数学下册《角》练习题及答案(青岛版)一、选择题1.如图,下列表示∠1正确的是( )A.∠OB.∠AOBC.∠AOCD.∠OAC2.下列各角中,是钝角的是( ).A.14周角 B.23周角 C.23平角 D.14平角3.画一个钝角∠AOB,然后以点O为顶点,以OA为一边,在角的内部画一条射线OC,使∠AOC=90°,正确的图形是( )4.在时刻8:30时,时钟上的时针与分针之间的所成的夹角是( )A.60°B.70°C.75°D.85°5.在同一个平面内,两条直线的位置关系是()A.平行或垂直B.相交或垂直C.平行或相交D.不能确定6.下列图形中,∠1与∠2是对顶角的是( )7.如图,有三条公路,其中AC与AB垂直,小明和小亮分别沿AC,BC同时出发骑车到C城,若他们同时到达,则下列判断中正确的是()A.小亮骑车的速度快B.小明骑车的速度快C.两人一样快D.因为不知道公路的长度,所以无法判断他们速度的快慢8.下列选项中,过点P画AB的垂线CD,三角尺放法正确的是( )9.如图,点C到直线AB的距离是指哪条线段长()A.CBB.CDC.CAD.DE10.一个角的余角比它的补角的27多5°,则这个角是( )A.35°B.47°C.74°D.76.5°11.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM 为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是( )A.30°B.45°C.55°D.60°12.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有( )A.1个B.2个C.3个D.4个二、填空题13.如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短.理由是 .14.如图,直线CD、EF相交于点O,则∠1+∠2+∠3的度数是度.15.计算:45°39′+65°41′= .16.比较大小:52°52′________ 52.52°.(填“>”、“<”或“=”)17.如图,将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC=________.18.用一副三角板可以直接得到30°,45°,60°,90°四种角,利用一副三角板可以拼出另外一些特殊角,如75°,120°等,请拼一拼,使用一副三角板还能拼出哪些小于平角的角,这些角的度数是: .三、作图题19.如图,一辆汽车在直线形公路AB上由A向B行驶,M、N是分别位于公路AB两侧的村庄.设汽车行驶到点P时,离村庄M最近,汽车行驶到点Q时,离村庄N最近,请在图中公路AB上分别画出点P、Q 的位置.四、解答题20.如图,O为直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.21.已知∠α=76°,∠β=41°31′,求:(1)∠β的余角;(2)∠α的2倍与∠β的12的差.22.如图所示,OE平分∠AOC,OF平分∠BOC,若∠AOB+∠EOF=156°,求∠EOF的度数.23.如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM,若∠AOM=350,求∠CON的度数。
七年级数学下册线段的长度和角的度量练习题
七年级数学下册线段的长度和角的度量练习题在数学学科中,线段的长度和角的度量是七年级学生需要掌握的重要内容之一。
在下册中,我们将继续学习和练习线段的长度以及角的度量。
本文将带领大家进行一系列的练习题,帮助巩固和提高对这些概念的理解和应用。
一、线段的长度练习题1. 请计算下列线段的长度:(1) 一条线段的两个端点分别是A(-3, 2)和B(4, 7);(2) 一条线段的两个端点分别是C(1, -2)和D(5, 3);(3) 一条线段的两个端点分别是E(-1, 0)和F(3, 4)。
2. 在平面直角坐标系中,已知三个点G(1, -2)、H(3, 1)和I(4, -1),请判断线段GH和线段HI的长度是否相等。
3. 已知三角形ABC中,A(1, 2)、B(-3, -4)和C(5, 6),请计算线段AB的长度。
4. 在平面直角坐标系中,已知两个端点为D(1, 1)和E(5, 1)的线段DE与x轴平行,请计算线段DE的长度。
二、角的度量练习题1. 请判断下列各组角度是否相等:(1) 60°和1/3π弧度;(2) 45°和π/4弧度;(3) 90°和π/2弧度。
2. 在平面直角坐标系中,已知一条射线OA的坐标为O(0, 0)和A(3, 4),请计算射线OA与x轴的夹角(结果保留到最接近的整数)。
3. 已知一条射线OB与x轴平行,角AOB为90°,请问这条射线的斜率是多少?(结果保留到最简分数形式)4. 在平面直角坐标系中,已知一条射线OC与x轴平行,角COB为45°,请计算射线OC的斜率。
总结:通过以上的练习题,我们巩固了线段的长度和角的度量的相关知识。
在计算线段的长度时,我们需要掌握两点间距离公式,并应用到实际问题中。
而在角的度量中,我们学习了角度和弧度的换算关系,以及角度的加减运算。
在解题过程中,我们也需要熟练地运用平面直角坐标系的知识,了解坐标点的含义和关系。
七年级数学角练习题
七年级数学角练习题【例1】下列说法中正确的是()A.由两条射线组成的图形叫做角B.角的大小与角的两边长度有关C.角的两边是两条射线D.用放大镜看一个角,角的度数变大了【变式1-1】(2022·山东淄博·期中)∠AAAAAA的两边分别是()A.射线AC、BC B.射线CA,CB C.线段AC,BC D.直线CA,CB 【变式1-2】如图,用量角器度量∠AOB,可以读出∠AOB的度数为______°.【变式1-3】如图,下列说法错误的是()A.∠AAAAAA也可用∠AA来表示B.∠ββ与∠AAAAAA是同一个角C.图中共有三个角:∠AAAAAA,∠AAAAAA,∠AAAAAAD.∠1与∠AAAAAA是同一个角【例2】若∠1=25°15′,∠2=25°13′30″,∠3=25.35°,则()A.∠3>∠1>∠2B.∠2>∠1>∠3C.∠1>∠3>∠2D.∠1>∠2>∠3【变式2-1】下面等式成立的是()A.83.5°=83°50′B.90°−57°23' 27"=32°37' 33"C.15°48′36′′+37°27' 59"=52°16' 35"D.41.25°=41°15' 【变式2-2】计算:(1)45°10ʹ﹣21°35ʹ20ʹʹ;(2)48°39ʹ+67°31ʹ﹣21°17ʹ;(3)42°16ʹ+18°23ʹ×2.【变式2-3】如图1是一个14的圆(∠AOB=90°),芳芳第一次在图1中画了一条线,将图1等分成2份,第二次又加了两条线,将图1等分成4份,第三次由加了四条线,将图1等分成8份,第四次又加了八条线,将图1等分成16份,如图2所示,则第n(n>1)次可将图1等分成_____份,当n=5时,图1中的每份的角度是_____(用度,分,秒表示)【例3】在锐角∠AOB内部,画出1条射线,可以画出3个锐角;画出2条不同的射线,可以画出6个锐角;画出3条不同的射线,可以画出10个锐角.照此规律,画19条不同的射线,可以画出锐角的个数为()A.165B.186C.199 D.210【变式3-1】如图所示,∠AAAAAA=90°,则图中锐角有()A.12个B.14个C.15个D.16个【变式3-2】如图,线段条数为mm,小于平角的角的个数为nn,则nn−mm的值为()A.4 B.3 C.2 D.1【变式3-3】在一幅七巧板中,有我们学过的()A.8个锐角,6个直角,2个钝角B.12个锐角,9个直角,2个钝角C.8个锐角,10个直角,2个钝角D.6个锐角,8个直角,2个钝角【例4】下列说法中正确的是()A.3时30分,时针与分针的夹角是90° B.6时30分,时针与分针重合C.8时45分,时针与分针的夹角是30° D.9时整,时针与分针的夹角是90°【变式4-1】时钟的分针从8点整转到8点20分,分针旋转了()度.A.20 B.120 C.90 D.150【变式4-2】当分针指向12,时针这时恰好与分针成120°的角,此时的时刻是______.【变式4-3】钟面角是指时钟的时针与分针所成的角.一天24小时中,当钟面角为0°时,时针与分针重合_____次.【例5】如图,某海域中有A,B两个小岛,其中B在A的北偏东40°方向,那么小岛A相对于小岛B的方向是()A.南偏东40° B.北偏东50° C.南偏西40° D.北偏西50°【变式5-1】如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85° B.105° C.125° D.160°【变式5-2】(如图,渔船A的方向可以由距小岛20 km和在小岛的西南方向这两个数据来确定.问:(1)渔船B相对小岛的位置应怎样表述?(2)小岛的北偏东30°方向,距离小岛30 km处是哪艘渔船?【变式5-3】某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“红军”两方.蓝军的指挥所在A地,红军的指挥所地B地,A地在B地的正西边(如图).部队司令部在C地.C在A的北偏东60°方向上、在B的北偏东30°方向上.(1)∠AAAAAA=______°;(2)演习前,司令部要蓝军、红军派人到C地汇报各自的准备情况.红军一辆吉普车从AA地出发、蓝军一部越野车在吉普车出发3分钟后从A地出发,它们同时到达C地.已知吉普车行驶了18分钟.A到C的距离是B到C的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B地到C地的距离(速度单位用:千米/时).【例6】如图,∠AAAAAA=90°,∠AAAAAA=αα(0°<αα<180°),AAOO,AAOO分别是∠AAAAAA,∠AAAAAA的平分线.(1)如图1,当AAAA在AAAA左侧,且αα=80∘时,∠OOAAOO的度数是_________;(2)当AAAA的位置不确定时,请利用备用图,画出相关图形,探究∠OOAAOO的大小与αα的数量关系;(3)当∠OOAAOO的度数为36°时,请直接写出αα的度数.【变式6-1】有公共顶点的两个角,∠AAAAAA=∠AAAAOO,且AAOO为∠AAAAAA的角平分线.(1)如图1,请探索∠AAAAOO和∠OOAAOO的大小关系,并说明理由;(2)如图2,∠AAAAOO和∠OOAAOO是否仍然满足(1)中关系?请说明理由;(3)若∠AAAAAA=90°,∠AAAAAA=64°,求出∠AAAAOO的度数.【变式6-2】如图1,已知∠AOB=60°,OM平分∠AOB.(1)∠BOM=________;(2)若在图1中画射线OC,使得∠BOC=20°,ON平分∠BOC,求∠MON的大小;(3)如图2,若线段OA与OB分别为同一钟表上某一时刻的时针与分针,∠AOB=60°,在时针与分针转动过程中,OM始终平分∠AOB,则经过多少分钟后,∠BOM的度数第一次等于50°.【变式6-3】已知∠AOB内部有三条射线,其中,AAOO平分∠AAAAAA,AAOO平分∠AAAAAA.(1)如图1,若∠AAAAAA=90°,∠AAAAAA=30°,求∠OOAAOO的度数;(2)如图2,若∠AAAAAA=αα,求∠OOAAOO的度数(用含αα的式子表示);(3)若将题中的“平分”条件改为“3∠OOAAAA=∠AAAAAA,3∠AAAAOO=2∠AAAAAA”,且∠AAAAAA=αα,用含αα的式子表示∠OOAAOO的度数为.【例7】如图,点A、C、B三点在一直线上,从点C引射线CD、CE、CF,∠DCE=1∠ECA,∠FCE=13∠ECB.(1)求∠DCF的大小,并说明理由;(2)当∠DCE=1nn∠ECA,∠FCE=1nn∠ECB时,直接写出∠DCF的大小(用含n的代数式表示).【变式7-1】如图,在∠AOB的内部有3条射线OC、OD、OE,若∠AOC=70°,∠BOE=1nn∠BOC,∠BOD=1nn∠AOB,则∠DOE=________°.(用含n的代数式表示)【变式7-2】已知:∠AAAAAA和∠AAAAOO是直角.(1)如图,当射线AAAA在∠AAAAOO内部时,请探究∠AAAAOO和∠AAAAAA之间的关系;(2)如图2,当射线AAAA,射线AAAA都在∠AAAAOO外部时,过点О作射线AAOO,射线AAOO,满足∠AAAAOO= 13∠AAAAAA,∠OOAAOO=23∠AAAAOO,求∠OOAAOO的度数.(3)如图3,在(2)的条件下,在平面内是否存在射线AAOO,使得∠OOAAOO:∠OOAAOO=2:3,若不存在,请说明理由,若存在,求出∠OOAAOO的度数.【变式7-3】【阅读理解】射线OC是∠AOB内部的一条射线,若∠AOC=12∠BOC,则称射线OC是射线OA在∠AOB内的一条“友好线”.如图1,若∠AOB=75°,∠AOC=25°,则∠AOC=12∠BOC,所以射线OC是射线OA在∠AOB内的一条“友好线”.【解决问题】(1)在图1中,若作∠BOC的平分线OD,则射线OD(填“是”或“不是”)射线OB在∠AOB内的一条“友好线”;(2)如图2,∠AOB的度数为n,射线OM是射线OB在∠AOB内的一条“友好线”,ON平分∠AOB,则∠MON的度数为(用含n的代数式表示);(3)如图3,射线OB先从与射线OA重合的位置出发,绕点O以每秒1°的速度逆时针旋转;10秒后射线OC也从与射线OA重合的位置出发,绕点O以每秒5°的速度逆时针旋转,当射线OC与射线OA的延长线重合时,运动停止.问:当射线OC运动时间为多少秒时,射线OA,OB,OC中恰好有一条射线是余下两条射线中某条射线在余下两条射线所组成的角内的一条“友好线”?【例8】将一副三角板如图1摆放.∠AAAAAA=60°,∠AAAAOO=45°,AAOO平分∠AAAAOO,AAOO平分∠AAAAAA.(1)∠OOAAOO=___________ ;(2)将图1中的三角板AAAAOO绕点OO旋转到图2的位置,求∠OOAAOO;(3)将图1中的三角板AAAAOO绕点OO旋转到图3的位置,求∠OOAAOO.【变式8-1】如图,将两个直角三角板的顶点叠放在一起进行探究.(1)如图①,将一副直角三角板的直角顶点C叠放在一起,若CE恰好是∠ACB的平分线,请你猜想此时CB是不是∠ECD的平分线,并简述理由;(2)如图②,将一副直角三角板的直角顶点C叠放在一起,若CB始终在∠DCE的内部,请猜想∠ACE与∠DCB是否相等,并简述理由.【变式8-2】在一次数学活动课上,李磊同学将一副宜角三角板AAAAAA、AAOOOO按如图1放置,点A、C、D在同一直线上,(∠OOAAOO=30°、∠AAAAAA=45°),并将三角板AAAAAA绕点A顺时针旋转一定角度,且始终保持0°<∠AAAAOO≤30°.(1)在旋转过程中,如图2,当点A、C、E在同一直线上时,则∠AAAAOO=____;(2)在旋转过程中,如图3,当∠AAAAOO=30°时.请说明AAAA平分∠OOAAOO;(3)在旋转过程中,如图4,当∠AAAAOO=4∠AAAAOO时,求此时∠AAAAOO的度数.【变式8-3】以直线AAAA上一点AA为端点作射线AAAA,使∠AAAAAA=30°,将一个直角三角板的直角顶点放在AA处,即∠OOAAOO=90°.(1)如图1,若直角三角板OOAAOO的一边AAOO放在射线AAAA上,则∠AAAAOO=______;(2)如图2,将直角三角板OOAAOO绕点AA顺时针转动到某个位置,①若AAOO恰好平分∠AAAAAA,则∠AAAAOO=______;②若AAOO在∠AAAAAA内部,请直接写出∠AAAAOO与∠AAAAOO的数量关系为______;(3)将直角三角板OOAAOO绕点AA顺时针转动(AAOO与AAAA重合时为停止)的过程中,恰好有∠AAAAOO= 15∠AAAAOO,求此时∠AAAAOO的度数.【例9】如图,点O在直线AB上,AAAA⊥AAAA,∠1=28°,OE是∠AAAAOO的平分线,AAOO⊥AAOO.(1)求∠AAAAOO的度数.(2)找出图中与∠AAAAOO互补的角,并求出∠AAAAOO补角的度数.【变式9-1】一个角的余角比它的补角的15还少2°,则这个角的度数是_______.【变式9-2】如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.(1)图中∠AOD的补角是和;∠BOD的余角是和.(2)已知∠AAAAOO=40°,求∠COE的度数.【变式9-3】已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB是否互补,并说明理由;(3)若∠BOC=α,∠AOC=β,则∠DOE 与∠AOB是否互补,并说明理由.【例10】如图,在同一平面内,∠AAAAAA=∠AAAAOO=90°,∠AAAAOO=∠OOAAOO,点OO为AAOO反向延长线上一点(图中所有角均指小于180°的角).下列结论:①∠AAAAOO=∠AAAAOO;②∠AAAAOO+∠AAAAAA=180°;③∠AAAAAA−∠AAAAOO=90°;④∠AAAAOO+∠AAAAOO=180°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【变式10-1】如图,AAAAOO是一条直线,AAAA⊥AAOO,AAAA⊥AAOO,图中互补的角有()A.4对B.5对C.6对D.7对【变式10-2】如图,已知直线AB、CD、EF、MN相交于点O,CD⊥AB,OC平分∠EOM,图中∠EOC的余角的个数是()A.1 B.2 C.3 D.4【变式10-3】如图,∠AAAAAA=90°,直线bb经过点AA.在下面的五个式子中:①180°−∠2;②∠3;③2∠1+∠2;④2∠3−2∠1−∠2;⑤180°−∠1,等于∠2的补角的式子的个数是()A.2 B.3 C.4 D.5。
人教版七年级数学上册第四章《角》课时练习题(含答案)
人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。
七年级数学角的比较和运算练习题
角的比较和运算◆随堂检测1、如图,∠AOC和∠BOD都是直角,如果∠AOB=1400,则∠DOC的度数是()A、300B、400C、500D、6002、一副三角尺可拼成很多角,如下图是由一副三角尺拼成的2个图形,请你计算:在第一个图中:∠ACD= °,∠ABD= °;在第二个图中:∠BAG= °,∠AGC= °。
图1 图23、将一副直角三角板(如图)叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 。
4、计算:102°43′32″+77°16′28″=____________;87 o2′36″—36o37′24″=______________。
5、如图,已知∠AOB=50º,OD平分∠BOC,OE平分∠AOC。
求∠EOD的度数。
_1 _ D_ C_ B_ A_ O6.如图,(1)已知∠AOB 是直角,∠BOC=30°,OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数。
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON 的度数。
(3)你从(1)、(2)的结果中能发现什么规律? 课后检测1、平面内两个角∠AOB=60°,∠AOC=20°,OA 为两角的公共边,则∠BOC 为( ) A 、40° B、80° C、40°或80° D、无法确定2、下面一些角中,可以只用一副三角尺(不用量角器)画出来的角是( ) (1)150的角 (2)650的角 (3)750的角 (4)1350的角 (5)1450的角 A 、(1)(3)(4) B 、(1)(3)(5) C 、(1)(2)(4) D 、(2)(4)(5) 3、已知:∠A=50º24’,∠B=50.24º,∠C =50º14’24”,那么下列各式正确的是( ) A 、∠A>∠B>∠C B 、∠A>∠B=∠C C 、∠B>∠C>∠A D 、∠B=∠C>∠A4.在∠AOB 的内部取一点,作射线OC,则一定存在( ) A.∠AOB>∠AOC B ∠AOC>∠BOC C ∠BOC>∠AOC D ∠AOC =∠BOC5.如图:∠AOB =∠COD =90°,∠AOC=∠1,则∠BOD 的度数是( ) A. 90°+∠1 B. 90°+2∠1 C. 180°-∠1 D. 180°-2∠1_ O_ D_ C_ B_ A_ F_ E_ C_ B_ A_ E _ D_ B_ A6. .如图已知∠AOB=90°,∠BOC=60°, OD 是∠AOC 的平分线,求 ∠BOD 的度数。
七年级数学上册《角》练习题
七年级数学上册《角》练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100'2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D.5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________. 10.如图,写出图中以A 为顶点的角______.三、解答题A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的11.读句画图如图,点,,图形为准):(1)画图:①画射线AB;①画直线BC;=.①连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC12.【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由.参考答案:1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键. 10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。
七年级数学《角》练习题及答案
14.计算:1 / 3七年级数学《角》练习题及答案、选择题1 .下列说法正确的是( )A. 两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2.下列4个图形中,能用/ 1,Z AOB ,/ O 三种方法表示同一角的图形是()3. 下列关于平角、周角的说法正确的是( A .平角是一条直线 B C .反向延长射线 0A 就形成一个平角 4、 右图中,小于平角的角有( )B. 6个C. 7个D. 8个5. 如图所示,射线 / AOB=()A.155 °B.205C.85 °D.1057. 角也可以看作由 ______________________ 旋转面形成的图形。
8. 2周角= 1 平角= _________10. 1周角= _____ 平角= ____ 直角= ___________12.2点15分,钟表的时针与分针所成的锐角是 ________________ 度;13.钟面上从4点到5点,时针与分针重合时,此时 4点 _________ 分B /X"一、4题图 | 、/ D A .60 ° B .15 二、填空题: 北I ”A6、西个人5^题图4点出发东向北偏东 向走到-B 点,再从B 东出发向南 15 °方向走到 C 点,那么 乙ABC=(南 )C.45 °D.70 °6题图5 60 ° 方 偏西)..周角是一条射线D .两个锐角的和不一定小于平角A.5个 0A 表示的方向,射线 0B 表示的方向,则11.换算:42° 27' ,68° 45' 36〃 = __________(1)53° 18' 36〃一16° 51'(2) (43°13' 28〃十2 - 10°5' 18〃)X316 .(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求/ACB16. 解:如图,15.如图,货轮O在航行过程中,发现灯塔东40°南偏西10°西北(即北偏西45° 仿照表示灯塔方位的方法画出表示客轮B,A在它南偏东60。
(完整版)七年级数学角练习题及答案
七年级数学角练习题及答案一、选择题1.A.15°B.20°C.85°D.105°答案:A 北A?4题图东西?B 南题图题图6、×=×=11°31′26″×3=33°93′78″=34°34′18″15.AOD25. 如图14,将一副三角尺的直角顶点重合在一起.若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.若叠合所成的∠BOC=n°,则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,一个机器人从点O出发,每前进2米就向左转体45°.假设机器人从O点出发时,身体朝向正北方向,试用1厘米代表1米,在图中画出机器人走过6米路程后所处的位置,并指明点A在点O的什么方向上?机器人从出发到首次回到O点,共走过了多远的路程?数学七年级上第4章直线与角检测题一、选择题1.如图,,若∠1=40°,则∠2的度数是AO第1题图A.20°B.40°C.50°D.60°.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是1B第2题图 A BCD3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,?,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点.已知=65°,则的补角等于A.125°B.105°C.115°D.95°.下列说法正确的个数是①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形. A.①②B.①③ C.②③ D.①②③6. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是 A.∠2=∠B.C.D.以上都不对7. 在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝8. 下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有A. ①②B. ①③C. ②④D. ③④9. 如图,下列关系式中与图不符合的式子是 A.C. B.D.第9题图10. 下列叙述正确的是A.180°的角是补角 B.110°和90°的角互为补角 1C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题 11.已知=67°,则的余角等于度.12. 如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=. 13.有下列语句:①在所有连接两点的线中,直线最短;②线段③取直线是点与点的距离;的中点;,得到射线,其中正确的是 .第12题图④反向延长线段14. 要在墙上钉一根木条,至少要用两个钉子,这是因为:. 15. 一个角的补角是这个角的余角的3倍,则这个角的度数是 . 16. 已知直线上有A,B,C三点,其中AB=cm,BC=cm,则AC=_______. 17. 计算:180°2313′6″__________. 18.若线段MN=_______.,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则三、解答题19. 将下列几何体与它的名称连接起来.圆锥三棱锥圆柱正方体球长方体20.如图所示,线段AD=cm,线段AC=BD=cm ,E、F分别是线段AB、CD的中点,求EF.第20题图21.如图,已知画直线画射线三点.;;2找出线段画出的中点,连结的平分线与;相交于,与相交于点.第21题图第22题图22. 如图,的度数.23. 火车往返于A、B两个城市,中途经过4个站点,不同的车站往返需要不同的车票.共有多少种不同的车票?如果共有≥3)个站点,则需要多少种不同的车票?°,°,求、24. 如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?第24题图3第4章直线与角检测题参考答案1.C 解析:∵,∴ ∠∠1∠290°,∴ ∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为,故6条直线最多有=15交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=cm,因为O是线段AC的中点,所以OA=OC= cm.OB=AB-OA=5-4=1. 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,故本选项错误;,正确;,正确.故选C.,而10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确. 11.2312. 121° 解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC?∠BOC=78°?35°?43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.13.④ 解析:∵ 在所有连接两点的线中,线段最短,∴ ①错误;∵ 线段点的距离,∴ ②错误;∵ 直线没有长度,∴ 说取直线向延长线段,得到射线的长是点与的中点错误,∴ ③错误;∵ 反正确,∴ ④正确.故答案为④.14.两点确定一条直线15.45° 解析:设这个角为,所以,根据题意可,所以416.cm或cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,.17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″.18. 解析:.19.分析:正确区分各个几何体的特征. 解:圆锥三棱锥圆柱正方体球长方体20.解:如题图,∵ 线段AD=cm,线段AC=BD=cm,∴ BC?AC?BD?AD?4?4?6?2. ∴ AB?CD?AD?BC?6?2?4. 又∵ E、F分别是线段AB、CD的中点, ∴ EB?112AB,CF?2CD ,∴ EB?CF?1122CD?12?2.∴ EF?EB?BC?CF?2?2?4. 答:线段EF的长为cm.21.分析:根据直线是向两方无限延长的画出直线即可;根据射线是向一方无限延长的画出射线即可;找出的中点,画出线段即可;画出∠的平分线即可.解:如图所示.5。
七年级数学角练习题
七年级数学角练习题1. 已知三角形ABC是直角三角形,∠C为直角。
其中AB=5cm,BC=12cm。
求∠A的大小。
解:由勾股定理可得AC的长度为√(12^2 - 5^2) = √(144 - 25) =√119 cm。
因为∠A + ∠C = 90°,所以∠A = 90° - ∠C = 90° - arcsin(5/12) ≈ 72.90°。
2. 已知∠A = 60°,∠B = 45°,求∠C的大小。
解:由三角形内角和定理可得∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。
3. 已知三角形ABC中∠A = 30°,∠B = 50°,求∠C的大小。
解:由三角形内角和定理可得∠C = 180° - ∠A - ∠B = 180° - 30° - 50° = 100°。
4. 已知三角形ABC中AB=AC,且∠A = 100°,求∠B和∠C的大小。
解:由三角形内角和定理可得∠B + ∠C = 180° - ∠A = 180° - 100°= 80°。
又因为AB=AC,所以∠B = ∠C。
5. 已知三角形ABC中AB=13cm,BC=12cm,AC=5cm,判断其类型(等边三角形、等腰三角形、直角三角形、普通三角形)。
解:由边长关系可知AC + BC > AB,AB + AC > BC,AB + BC > AC。
根据三角形的定义,AC + BC > AB表示AC、BC构成的线段大于AB,类似地,AB + AC > BC表示AB、AC构成的线段大于BC,AB + BC > AC表示AB、BC构成的线段大于AC。
人教版数学七年级上册:4.3.1《角》习题课件(附答案)
4.如图,图中共有 3 个角,它们分别是 ∠BOC, ∠AOB,∠AOC .
第4题图
第5题图
5.如图,∠ABC 可以表示成∠ 1 或∠ B ,∠α 可
以表示成 ∠ACB ,∠2 可以表示成 ∠CAD .
6.如图,写出符合下列条件的角(图中所有的角均指 小于平角的角). (1)能用一个大写字母表示的角; (2)以点 A 为顶点的角. 解:(1)能用一个大写字母表示 的角有∠C,∠B. (2)以点 A 为顶点的角有∠CAB, ∠CAD 和∠DAB.
知识点一 角的定义及表示方法 1.下面表示∠ABC 的图是( C )
2.如图,下面四种表示角的方法,其中正确的是
(A) A.∠A B.∠B C.∠C D.∠D
3.下列说法正确的是( B ) ①平角就是直线;②角的大小与边的长短无关;③ 角的两边可以画一样长,也可以画一长一短;④角 的两边是两条线段. A.①② B.②③ C.②④ D.③④
(1)时针每分钟转动的角度为 0.5 °,分针每分钟转 动的角度为 6 °; (2)8 点整,钟面角∠AOB= 120 °,钟面角与此相 等的整点还有 4 点;
(3)如图,设半径 OC 指向 12 点方向,在图中画出 6 点 15 分时半径 OA、OB 的大概位置,并求出此时 ∠AOB 的度数. 解:如图,∠AOB=3×30°+ 15×0.5°=97.5°.
13.如图,点 O 在直线 AB 上,则图中小于平角的角 共有( C ) A.7 个 B.8 个 C.9 个 D.10 个
14.若∠P=25°12′,∠Q=25.12°,∠R=25.2°,则下 列结论:①∠P=∠Q;②∠Q=∠R;③∠P=∠R; ④∠P=∠Q=∠R.其中错误的有 ①②④ (填序号). 15.某校在上午 9:30 开展“大课间”活动,上午 9:30 这一时刻钟面上分针与时针所夹的角等于
(完整word版)七年级数学角的重点习题
(完整word版)七年级数学角的重点习题亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~七年级数学角的重点练习题1、如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOC=2∠AOD,∠BOC=2∠______.∵∠AOD=40°,∠BOE=25°,∴∠BOC=______,∠AOC=______.∴∠AOB=____2、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.3、已知:如图∠ABC=30°,∠CBD=70°BE是∠ABD的平分线,求∠DBE的度数。
4、如图,①∠AOC=60°,∠AOB和∠COD都是直角,则∠AOD+∠BOC= ;②若∠AOC=30°,∠AOB=90°,∠COD=90°,则∠AOD+∠BOC= ;③∠AOB和∠COD都是直角,试猜想∠AOD和∠BOC这两个角在数量上存在怎样的关系?并说明理由;④当∠COD绕点O旋转到图(2)的位置,你原来的猜想的结论还正确吗?为什5、.如图,AO⊥BO,直线CD经过点O,∠AOC=30°,求∠BOD的度数.6、如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46’,OD平分∠COE,求∠COB的度数EDCBAO7、如图,已知直线AB和CD相交于O点,COE∠是直角,OF平分AOE∠,34COF∠,求BOD∠的度数.8、如图,点O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线,若∠AOD=14°,求∠DOE、∠BOE的度数.9、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的度数.10、如图14,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少11、如图,已知∠AOB=90°,OM,ON分别平分∠AOC和∠BOC,(1)若∠AOC=30°,求∠MON的度数,(2)若∠BOC=50°,求∠MON的度数,(3)由(1)(2)你发现了什么,请写出结论,并说明理由。
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》知识点分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
七年级数学上册《角》练习题及答案
七年级数学上册《角》练习题及答案一、选择题(共11小题)1. 用100倍的放大镜看一个60∘的角,这时这个角是( )A. 6∘B. 60∘C. 600∘D. 6000∘2. 如图,某轮船在O处,测得灯塔A在它北偏东40∘的方向上,渔船B在它的东南方向上,则∠AOB的度数是( )A. 85∘B. 90∘C. 95∘D. 100∘3. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A. 45∘B. 55∘C. 125∘D. 135∘4. 甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是( )A. 甲说 3 点时和 3 点 30 分B. 乙说 6 点 15 分和 6 点 45 分C. 丙说 9 时整和 12 时 15 分D. 丁说 3 时整和 9 时整5. 如图,图中锐角共有( )A. 4个B. 6个C. 7个D. 8个6. 下列语句正确的是( )A. ∠A就是∠BACB. 在∠BAC的边AB延长线上取一点DC. 对一个角的表示没有要求,可任意书写D. 角可以看作是由一条射线绕角的端点旋转而成7. 下面等式成立的是( )A. 83.5∘=83∘50ʹB. 37∘12ʹ36ʺ=37.48∘C. 24∘24ʹ24ʺ=24.44∘D. 41.25∘=41∘15ʹ8. 如图,射线OA的方向是北偏东30∘,若∠AOB=90∘,则射线OB的方向是( )A. 北偏西30∘B. 北偏西60∘C. 东偏北30∘D. 东偏北60∘9. 下面四幅图中,用量角器测得∠AOB的度数是40∘的是( )A. B.C. D.10. 若∠A=20∘18ʹ,∠B=20∘15ʹ30ʺ,∠C=20.25∘,则( )A. ∠A>∠B>∠CB. ∠B>∠A>∠CC. ∠A>∠C>∠BD. ∠C>∠A>∠B11. 钟面上4点10分,时针与分针所夹的角为( )A. 55∘B. 65∘C. 75∘D. 以上结论都不对二、填空题(共7小题)12. 45∘=直角=平角=周角.13. 将18.25∘换算成度、分、秒的结果是 .14. 57.32∘=∘ʹʺ.15. 由2点30分到2点55分,时钟的时针旋转了度,分针旋转了度,此刻时针与分针的夹角是度.16. 如图,圆规的张角(即∠α)的度数约为∘.17. 如图,OA的方向是北偏东15∘,OB的方向是北偏西40∘,若∠AOC=∠AOB,则OC的方向是.18. 24.29∘=.三、解答题(共5小题)19. 仿照左图,在右图上画角,并根据图形填空,已知∠α,用直尺和圆规作∠AOB,使∠AOB=∠α.解:作射线OA;以∠α的顶点为圆心,以任意长a为半径作弧,分别交∠α的两边于点E,F;以为圆心,以为半径作弧,交OA于点C;以为圆心,以长为半径作弧,交前弧于点D;经过点D作射线OB,∠AOB就是所求作的角.20. 用计算器计算:(1)4∘4ʹ4ʺ+2∘56ʹ56ʺ.(2)15∘15ʹ24ʺ+55∘14ʹ35ʺ−32∘28ʹ19ʺ.21. 如图,以B为顶点的角有几个?把它们表示出来.以D为顶点的角有几个(不包括平角)?把它们表示出来.22. 已知∠α,∠β,如图,用量角器求作∠α+∠β.23. 如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26∘方向,从B处测得灯塔C在北偏西52∘方向,求B处到达塔C的距离.参考答案1. B2. C3. B【解析】由题图可知,∠AOB的边OA在0刻度线上,边OB在55∘对应的刻度线上,所以∠AOB的度数应为55∘.4. D【解析】A、3 点 30 分不到90∘,故 A 错误;B、6 点 15 分比90∘多,故 B 错误;C、12 时 15 分不到90∘,故 C 错误;D、3 时整和 9 时整钟面角都是90∘,故 D 正确.5. A6. D7. D8. B 【解析】如图所示:∵OA 是北偏东 30∘ 方向的一条射线,∠AOB =90∘,∴∠1=90∘−30∘=60∘,∴OB 的方向角是北偏西 60∘.9. A【解析】用量角器度量角的度数时,需要把量角器的中心和角的顶点重合,量角器的零刻度线和角的一边重合,角的另一边在量角器上所指示的读数就是角的度数,故选A .10. A11. B12. 12,14,1813. 18∘15ʹ14. 57,19,1215. 12.5,150,117.5【解析】∵ 时针在钟面上每分钟转 0.5∘,分针每分钟转 6∘,又从 2 点 30 分到 2 点 55 分经过了 25 分钟,∴ 时钟的时针旋转了 0.5∘×25=12.5∘,时钟的分针旋转了 6∘×25=150∘.∵2 点 55 分时时针距离 3 还有 5×0.5∘,分针指向 11,中间相差 3 个数字,钟表 12 个数字,每相邻两个数字之间的夹角为 30∘,∴ 此时分针与时针的夹角是 4×30∘−5×0.5∘=117.5∘.16. 35【解析】可用量角器测量约为 35∘.17. 北偏东 70∘18. 24∘17ʹ24ʺ19. 图略;O ;a ;C ;EF20. (1)7∘1ʹ.(2)38∘1ʹ40ʺ.21. B为顶点的角有3个,分别是∠ABD,∠CBD,∠ABC.以D为顶点的角有4个,分别是∠ADB,∠ADM,∠BDC,∠MDC.22. 用量角器量得∠α=66∘,∠β=30∘,∴∠α+∠β=96∘.用量角器作∠AOB=96∘,则∠AOB就是所求作的角(如图).23. 据题意得∠A=26∘,∠DBC=52∘,∵∠DBC=∠A+∠C,∴∠A=∠C=26∘,∴AB=BC,=35,∵AB=20×74∴BC=35(海里).∴B处到达塔C的距离是35海里.。
人教七年级数学上册-角(附习题)
问题 角用符号“∠”来表示.那么如何表示
下面这个角? A
O
B
a.用三个大写字母表示:∠AOB 或∠BOA;
b.用一个大写字母表示:∠O.
注意
1 用三个大写字母表示时,
A
中间字母是顶点字母;
2 用一个大写字母表示时, O
B
顶点处只能有一个角.
思考 还有别的表示方法吗?
(1)弄清楚余角、补角的意义及其性质. (2)运用余角、补角的性质解决一些简单的问题. (3)会根据方位角确定物体的方位.
推进新课
知识点1 余角和补角的定义 问题 根据你的理解,如何定义余角?
90°
如果两个角的和等于90º(直角),就说这两个角 互Hale Waihona Puke 余角,即其中每一个角是另一个角的余角.
问题 类比余角的定义,怎么定义补角?
O
B
1. 如果EC与OD重合,那么∠AEC等于∠BOD, 记作∠AEC=∠BOD.
D C
E
A
O
B
2. 如果EC落在∠BOD的内部,那么∠AEC小 于∠BOD,记作∠AEC<∠BOD.
C D
E
AO
B
3. 如果EC落在∠BOD的外部,那么∠AEC大于 ∠BOD,记作∠AEC>∠BOD.
思考 图中共有几个角?它们之间有什么关 系?
分析:∠AOB是 平角, ∠BOC= ∠AOB-∠AOC .
解:由题意可知,∠AOB是平角, ∠AOB=∠AOC+∠BOC,
所以∠BOC= ∠AOB-∠AOC =180°- 53°17′ =126°43′.
例2 把一个周角7等分,每一份是多少度的 角(精确到分)?
解:360°÷7=51°+3°÷7 =51°+180′÷7 ≈51°26′.
七年级(上)数学角的习题
七年级(上)数学角的习题1. 如图,能用∠1,∠ACB,∠C三种方法表示同一个角的是()A. B.C. D.2. 以下列各组数为边长,能组成直角三角形的是()A.3,4,5B.4,5,6C.5,6,7D.6,7,83. 将21.54∘用度、分、秒表示为()A.21∘54′B.21∘50′24″C.21∘32′40″D.21∘32′24″4. 等腰三角形中,有一个角是40∘,它的一条腰上的高与底边的夹角是()A.20∘B.50∘C.25∘或40∘D.20∘或50∘5. 10时整,钟表的时针与分针之间所成的角的度数是( )A.30∘B.60∘C.90∘D.120∘6. 下列说法正确的是()A.角的大小与角的两边的长度有关B.两条射线组成的图形叫做角C.直线就是平角D.右图中∠ABC可记作∠B7. 若a+|a|=0,则√(a−1)2+√a2等于( )A.1−2aB.2a−1C.−1D.18. 如图所示,在∠AOB的内部有4条射线,则图中角的个数为()A.10B.15C.5D.209. 已知∠1=17∘18′,∠2=17.18∘,∠3=17.3∘,下列说法正确的是( )A.∠1=∠2B.∠1=∠3C.∠1<∠2D.∠2>∠310. 如图,在此图中小于平角的角的个数是( )A.9B.10C.11D.1211. 如图,在平行四边形ABCD中,BC=10cm,AB=7cm,BE平分∠ABC交AD边于点E,则线段DE的长度为________.12. 一块正常运行的手表,当时针旋转15∘时,则分针旋转________度.13. 钟表在3点30分时,它的时针与分针所夹的角是________度.14. ∠AOB=60∘,∠BOC=30∘,则∠AOC=________.15. 如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0, 0),A(1, 2),B(3, 1)(每个方格的边长均为1个单位长度).(1)将△OAB向右平移1个单位后得到△O1A1B1,请画出△O1A1B1;(2)请以O为位似中心画出△O1A1B1的位似图形,使它与△O1A1B1的相似比为2:1;(3)点P(a, b)为△OAB内一点,请直接写出位似变换后的对应点P′的坐标为________.16. 列式计算.(1)25个185相加的和是多少?(2)一个因数是124,另一个因数是48,积是多少?17. 读句画图填空:(1)画∠AOB;∠AOB;(2)作射线OC,使∠AOC=12(3)由图可知,∠BOC=________∠AOB.18. 一辆汽车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1小时到达;如果以原速度行驶100km后再将车速提高30%,那么也比原定时间提前1小时到达。
最新版初中七年级数学题库 角练习题
4.6 角(1)一、填空 1.判断(1)平角是一条直线( ) (2)两个锐角的和一定小于平角 ( ) (3)周角是一条射线( ) (4)角的大小与两条边的长短有关( ) 2.57°28′30″=___________度; 37.5°=________度________分 3.如图1,OC 是∠AOB 的平分线,则∠_______=∠_______=1∠______。
(图1)(图2)4.如图2 ∠AOC=________+________ = ________ - ________∠AOD-∠AOB =_________=_________+_________; ∠BOC=________ - ________ - ________ - _______=∠AOC - ________=________ - ∠COD5.如图3,写出如图所示的每条射线与四个不同方向所表示的角。
(1)OA 的方向是_____________;(2)OB 的方向是_______________; (3)OC 的方向是_____________;(4)OD 的方向是_______________。
6.如图4,A 、B 、C 三点分别代表邮局、医院、学校中的某一处,邮局和医院分别在学校的北偏西方向,邮局又在医院的北偏东方向,那么图中A 点应该是__________,B 点是__________,C 点是_________________。
(图4)二、选择7.下列说法正确的是 ( )(A ) 两条射线所组成的图形叫做角 (B )周角是一条射线 (C )在直线上任取一点作顶点,就可以把这条直线看做一个平角 (D )在∠ABC 的边BC 的延长线上任取一点D 8.两个锐角的和是 ( )NE。
A 。
B。
C10.在下列四个式子中,不能表示“OC ”是∠AOB 的平分线的是 ( )(A )∠AOC = ∠BOC (B )∠AOC = ∠BOC =21∠AOB(C )∠AOB = 2∠BOC (D )∠AOC + ∠BOC = ∠AOB 11.在钟表上,分针与时针构成直角的情况是( )(A )12点15分 (B )9点整 (C )3点20分 (D )6点45分 12.电视塔在学校的东南方向,则学校在电视塔的( )(A )西南方向 (B )东北方向 (C )东南方向 (D )西北方向 三、解答题13. 如图,∠AOB=60°,OC 是∠AOB 平分∠COB ,求∠MON 的度数。
七年级数学角练习题及答案
七年级数学角练习题及答案一、选择题1.下列说法正确的是A.两点之间直线最短B.用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C.把一个角分成两个角的射线叫角的平分线D.直线l经过点A,那么点A在直线l上呢2. 下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是3.下列关于平角、周角的说法正确的是.A.平角是一条直线 B.周角是一条射线C.反向延长射线OA,就形成一个平角 D.两个锐角的和不一定小于平角4、右图中,小于平角的角有个个个个5. 如图所示,射线OA表示的方向,射线OB表示的方向,则∠AOB=°°°°6、一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方题图5题图6题图向走到C点,那么 ABC=A .60°B .15°°°二、填空题:7. 角也可以看作由旋转面形成的图形;8. 2周角= 1平角=9. 1°的_____ 是1′10. 1周角= 平角= 直角= ;11. 换算:42°27′= °,68°45′36″= °;点15分,钟表的时针与分针所成的锐角是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:153°18′36″-16°51′243°13′28″÷2-10°5′18″×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北即北偏西45°方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.16.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数;答案:1-6:DBCDAC 7.一条射线绕着它的端点 8. 720°180° 9. 错误!、4、360° 11. °, ° 12. 13. 21错误!14. 136°27′36″ 234°34′18″解:根据题意作图即可.15.16. 解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.17. 解:∵∠AOE=∠AOC+∠COE=100°,∠DOF=∠DOC+∠COF=80°,∴∠DOC=2∠COE,∠AOC=2∠COF,∠EOF=∠COE+∠COF;∵∠AOE+∠DOF=∠AOC+∠COE+∠DOC+∠COF =3∠COF+3∠COE=3∠EOF=180°,∴∠EOF=60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学角的重点练习题
1、如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠AOC=2∠AOD,
∠BOC=2∠______.
∵∠AOD=40°,∠BOE=25°,
∴∠BOC=______,
∠AOC=______.
∴∠AOB=____
2、如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.
3、已知:如图∠ABC=30°,∠CBD=70°BE是∠ABD的平分线,求∠DBE的度数。
4、如图,①∠AOC=60°,∠AOB和∠COD都是直角,则∠AOD+∠BOC= ;
②若∠AOC=30°,∠AOB=90°,∠COD=90°,则∠AOD+∠BOC= ;
③∠AOB和∠COD都是直角,试猜想∠AOD和∠BOC这两个角在数量上存在怎样的关系?并说明理由;
④当∠COD绕点O旋转到图(2)的位置,你原来的猜想的结论还正确吗?为什
5、.如图,AO⊥BO,直线CD经过点O,∠AOC=30°,求∠BOD的度数.
6、如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46’,OD平分∠COE,求∠COB的度数
E
D
C
B A
O
7、如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠,求BOD ∠ 的度数.
8、如图,点O 是直线AB 上的一点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,若∠AOD =14°, 求∠DOE 、∠BOE 的度数.
9、如图10,将长方形纸片沿AC对折,使点B落在B′,CF平分∠B′CE,求∠ACF的
度数.
10、如图14,将一副三角尺的直角顶点重合在一起.
(1)若∠DOB 与∠DOA 的比是2∶11,求∠BOC 的度数.
(2)若叠合所成的∠BOC =n°(0<n<90),则∠AOD 的补角的度数与∠BOC 的度数之比是多少
11、如图,已知∠AOB =90°,OM ,ON 分别平分∠AOC 和∠BOC ,
(1) 若∠AOC =30°,求∠MON 的度数,
(2) 若∠BOC =50°,求∠MON 的度数,
(3) 由(1)(2)你发现了什么,请写出结论,并说明理由。
图10
A C
B
E
F
B '
B C N
M
12、 如图,已知∠AOB =90°,OM ,ON 分别平分∠AOC 和∠BOC ,
(1) 若∠AOC =40°,求∠MON 的度数, (2) 若∠AOC =α,求∠MON 的度数,
(3) 若∠BOC =β,求∠MON 的度数,
(4) 由(1)(2)(3)的结果,你发现了什么规律,请写出结论,并说
明理由。
13、已知∠AOB =α,过O 任作一射线OC ,OM 平分∠AOC ,ON 平分∠BOC , (1) 如图,当OC 在∠AOB 内部时,试探寻∠MON 与α的关系;
(2) 当OC 在∠AOB 外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由。
14、已知:如图,O 是直线AB 上一点,∠AOC=∠BOD ,射线OE 平分∠BOC ,
∠EOD=42︒,求∠EOC 的大小
15、1
2
AOB AOC AOD AOC BOC BOD ∠∠∠∠∠=
∠如图,已知是的余角,是的补角,且,
AOC BOD ∠∠求、的度数。
16、如图,从点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =100︒,OF 平分∠BOC ,∠AOE =∠DOE ,∠EOF =140︒,求∠COD 度数。
O
A
B
C
D
B
A O O A
B C D
E
17、如图,∠AOB 的平分线为OM ,ON 为∠MOA 内的一条射线,OG 为∠AOB 外的一条射线,某同学经过认真的分析,得
出一个关系式是∠MON =2
1
(∠BON -∠AON ),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来。