初等数论第三章同余
初等数论§3同余
这时,有40 46(mod6), 但20 23(mod6)不成立!
2019/4/3
8
⑥ a b c(mod m ) a c b(mod m )
证:a b c(mod m ) m c a b
m (c b ) a a (c b)(mod m ).
由71 1(mod4), 72 1(mod4), 76 1(mod4), 7 1 3(mod4), r3
7
所以7 7r 7 3 7 2 7 ( 1) ( 3) 3(mod10).
77
即7 的个位数是3.
2019/4/3
77
13
一般地,求a 对模m的同余的步骤如下:
—— 7|a 7|a2a1a0 a5a4a3
7 11 13 1001 1000 1(mod7)
a n a n 1
a 0 a n a n 1
a3 1000 a2a1a0 a6
a2a1a0 anan1
(mod7).
a3 a2a1a0 a5a4a3 anan1
① 求出整数k,使ak 1 (mod m);
bc
② 求出正整数r,r < k,使得bc r (mod k);
——减小幂指数
③ a a (mod m )
r bc
练习:若a Z , 证明 10|a1985 a1949 . 提示: a 5 a(mod10)
2019/4/3
14
例4
3、9 的整除特征
——各位上的数字之和能被3(9)整除 10i 1mod(3)
初等数论总复习题及知识点总结
初等数论学习总结本课程只介绍初等数论的的基本内容。
由于初等数论的基本知识和技巧与中学数学有着密切的关系, 因此初等数论对于中学的数学教师和数学系(特别是师范院校)的本科生来说,是一门有着重要意义的课程,在可能情况下学习数论的一些基础内容是有益的.一方面通过这些内容可加深对数的性质的了解,更深入地理解某些他邻近学科,另一方面,也许更重要的是可以加强他们的数学训练,这些训练在很多方面都是有益的.正因为如此,许多高等院校,特别是高等师范院校,都开设了数论课程。
最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。
数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中着名的“哥德巴赫猜想”和费马大定理的阅读材料。
初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法 最大公因数和辗转相除法 整除的进一步性质和最小公倍数 素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求3p :2,3 ; 8p :4 ;12p :1;17p :1,2,5;20p :1。
第二章:不定方程(4学时)自学12学时二元一次不定方程c by ax =+多元一次不定方程c x a x a x a n n =++ 2211 勾股数 费尔马大定理。
习题要求29p :1,2,4;31p :2,3。
第三章:同余(4学时)自学12学时同余的定义、性质 剩余类和完全剩余系 欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用 习题要求43p :2,6;46p :1;49p :2,3;53p 1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念 孙子定理高次同余方程的解数和解法 素数模的同余方程 威尔逊定理。
初等数论第三章同余
第三章同余§ 1 同余的概念及其基本性质定义1设m Z,称之为模。
若用m去除两个整数a与b所得的余数相同,则称a, b对模m同余,记作:a b (mod m);若所得的余数不同,则称a, b对模m不同余,记作: a b(mod m)。
例如,8 1(mod 7),;所有偶数 a 0(mod 2),所有奇数 a 1(mod 2)。
同余是整数之间的一种关系,它具有下列性质:1、a a(mod m); (反身性)2、若a b (mod m),则b a (mod m);(对称性)3、若a b (mod m),b c (mod m),则a c(mod m);(传递性) 故同余关系是等价关系。
定理1 整数a,b对模m同余的充分必要条件是m|(a b),即卩a b mt,t Z。
证明设 a mq1r1, b mq2r2,0 r1,r2m,则 a b(mod m) r1r2a b m(q1q2) m|(a b)。
性质1 (1)若a i b i (mod m),a? b2 (mod m),贝U a i a? b i b2 (mod m);(2) 若a b c (mod m),贝U a c b (mod m)。
性质2 若a1b1 (mod m),a2b2 (mod m),贝U a1a2b1b2(mod m);特别地,若 a b (mod m),贝U ka kb (mod m)。
定理2 若A1kB 1 k (mod m),x i y i (mod m),i 1,2, ,k,则 A 1 k x1 11k k xk k B 1 k y1 11kky k k(mod m);特别地,若a i b i (mod m),i 0,1,2, ,n,则n a n x n1a n 1x a0 n n 1b n x b n 1x b0 (mod m)。
性质3 若aa1d, b b1d,(d,m) 1, a b(mod m),则a1 b1 (mod m)。
初等数论 同余
注意:这条与前面的(5)的推论和(7)不同, 模变了. 证明: m | (a-b) => km | k(a-b)
a b m a b mt t. d d d
2013年11月13日10时5分
我喜欢数学
性质(9)
若 a ≡b (mod m1), a ≡b (mod m2), m=[ m1, m2 ], 则 a ≡ b (mod m) . 证明: 由充要条件, 有 m2 | (a-b), m1 | (a-b)
2013年11月13日10时5分
性质的应用:
由 10≡1(mod 9),有 102≡12(mod 9), 103≡13(mod 9),…,10n≡1n(mod 9),
an an 1 a2 a1a0 an 10n an 1 10n 1 a1 10 a0 an an 1 a1 a0 (mod 9).
性质⑺ 同余式的“除”.
性质⑻⑼⑽
涉及模的改变!分别与a,b和m的约 数,倍数,公约数,最小公倍数有关.
性质⑾是关于a,b和m最大公约数的。
2013年11月13日10时5分
例 2
分析
今天是星期二,101000天之后的那天是星期几?
由于1乘a为a ,1n=1,先求得某数的n次幂与1对模同余 是非常方便的. 我们已知 7 | 1001, 即103 +1≡0 (mod 7), , 103 ≡-1(mod 7), 得106 ≡1 (mod 7).
又23m1 2(mod 7), 从而当且仅当
23m 2 4(mod 7),
n 3m时, 7 2n 1.
(2)由23m 1 2(mod 7),3m 1 1 3(mod 7), 23m 2 1 5(mod 7), 2 可知,对任何正整数n, 2n 1不能被7整除.
三讲:初等数论3——同余的性质和应用
第三讲:初等数论3——同余的性质和应用三、巩固练习1. 今天是星期三,到第1000天是星期几?解:从今天到第1000天相隔999天,1000-1≡5(mod 7),3+5-7=1,是星期一.2. 若1059,1417,2313分别被自然数x除时,所得余数都是y,则x-y= .解:∵1059≡y(mod x) ,1417≡y(mod x) , 2313≡y(mod x),∴1417-1059=358≡0(mod x),2313-1417=896≡0(mod x), 2313-1059=1254≡0(mod x)又(358,896,1254)的最大公约数为2,则x=2, y=1,x-y=1.3. 若正整数a和1995对于模6同余,则a的值可以是()A. 25B. 26C. 27D. 28解:1995除以6的余数是3,a≡1995 (mod 6),a除以6的余数也是3,只有a=27,选C.4. 一个两位数被7除余1,它的反序数被7除也余1,那么这样的两位数共有()A. 2个B. 3个C. 4个D. 5个解:列出满足条件的所有两位数:15,22,29,36,43,50,57,64,71,78,85,92,99 两位数据反序数也满足条件的有:22,29,92,99,选C.5. 设n为自然数,则32n+8被8除的余数是_________.解:由32n+8=9n+8,知32n+8≡1n+0(mod 8)≡1(mod 8) ,故32n+8被8除余1.6. 黑板上写着13个数:1908,1918,1928,1938,1948,1958,1968,1978,1988,1998,2008,2018,2028.小明第一次擦掉其中的一个数,第二次擦掉剩下数中的两个数,第三次擦掉剩下数中的三个数,第四次擦掉剩下数中的四个数,他想使得每次擦掉数后剩下的所有数之和为13的倍数,小明的意图能否达到?如果可以,给出一种可行的方法,不能请说明理由.答案:可以:依次擦掉(2028);(1958,1968);(1908,1938,1978);(1918,1928,1998,2008)。
初等数论第三章课件
, n 1)时,每一项3i xi 各取3个值, 3x1 x0共通过3n 1 个数;
② 在这3n 1 个数中,若有 3n 1 xn 1 3n xn x0 =3n xn 3n 1 xn 1 3x1 3x1 x0 3n ( xn xn ) 3n 1 ( xn 1 xn 1 ) 则x0 x0 x0 x0 3 x0 x0 x1 ) 3( x1
同余的一个应用——检查因数的一些方法
A、一整数能被3(9)整除的充要条件是它的十进位 数码的和能被3(9)整除。
证:a Z , 将a写成十进位数的形式: a an10 an 110
n
i n n
n 1
a0 , 0 ai 10.
i n
因10 1(mod 3), 故10 1(mod 3), ai 10 ai (mod 3), 从而 ai 10i ai (mod 3),即a ai (mod 3).
n
n 1
3 x1 x
也是模3 =2H+1的绝对最小完全剩余系。(再由 模2H+1的绝对最小完全剩余系具有唯一性得到结论)
① 3n xn 3n 1 xn 1 xi 1, 0,1(i 0,1, 故3n xn 3n 1 xn 1
3x1 x0共有n 1项,当
i ! p( p 1)
( p i 1) Z i! ( p i 1)
当i 1, 2, 故C ip pq,
, p 1时, (i !, p) 1 即p C ip
i ! ( p 1)
( p i 1),
例3、( 1)求所有的正整数n,使得2n 1能被7整除; (2)证明:对于任何正整数n,2n +1不能被7整除。
初等数论 期末复习 同余精选例题分析
第三章同余例题分析例1:求3406的末二位数。
解:∵(3,100)=1,∴3)100(φ≡1(mod 100)φ(100)=φ(22·52)=40,∴340≡1(mol 100)∴3406=(340)10·36≡(32)2·32≡-19×9≡-171≡29(mod 100)∴末二位数为29。
例2:证明(a+b )p ≡a p +b p (mod p )证:由费尔马小定理知对一切整数有:a p ≡a (p ),b p ≡b (P ),由同余性质知有:a p +b p ≡a+b (p )又由费尔马小定理有(a+b )p ≡a+b (p )(a+b )p ≡a p +b p (p )例3:设素数p >2,则2P -1的质因数一定是2pk +1形。
证:设q 是2p -1的质因数,由于2p -1为奇数,∴q ≠2,∴(2·q )=1,由条件q|2p -1,即2p ≡1(mod q ),又∵(q ,2)=1,2p ≡1(mod q )设i 是使得2x ≡1(mod p )成立最小正整数若1<i <p ,则有i |p 则与p 为素数矛盾∴i=p ,∴p |q -1又∵q -1为偶数,2|q -1,∴2p |q -1,q -1=2pk ,即q =2pk +1例4:证明13|42n +1+3n +2证:∵42n +1+3n +2≡4·16n +9·3n≡3n (4+9)≡13×3n ·≡0(13)∴13|42n +1+3n +2例5:证明5y +3=x 2无解证明:若5y +3=x 2有解,则两边关于模5同余有5y +3≡x 2(mod 5)即3≡x 2(mod 5)而任一个平方数x 2≡0,1,4(mod 5)∴30,1,4(mod 5)∴即得矛盾,即5y +3=x 2无解例6:求50111......被7除的余数。
初等数论(三)同余
初等数论(三)--同余基本性质:(1) 反身性:(mod )a a m ≡(2) 对称性:若(mod ),a b m ≡则(mod ),b a m ≡(3) 传递性:如果(mod ),a b m ≡(mod ),b c m ≡那么(mod ),a c m ≡以上三个性质说明∙“同余是一个等价关系,Z 中元素可以按照模m 分成m 个类,粗略地讲,用一类中的元素可以认为是相同的”(4) 如果(mod ),a b m ≡(mod ),c d m ≡那么(mod ),(mod ),a c b d m ac bd m ±≡±≡(5) 如果(mod ),a b m ≡那么(mod ),n n a b m ≡(6) 如果(mod )ac ab m ≡,不一定有(mod )c b m ≡(整数之间的乘法消去律不一定成立),(7) 若(mod ),ac bc m ≡则mod (,)m a b c m ⎛⎫≡ ⎪⎝⎭。
因此,(,)1c m =时,才会有(mod )a b m ≡。
例1.若质数5,p ≥并且21p +也是质数,证明:41p +是合数。
例2.对于任何n 个整数的集合,存在一个子集,该子集的元素之和被n 整除。
例3.证明表达式23,95x y x y ++按照相同的,x y 被17整除。
例4.设3p ≥为奇质数且111...21a p b +++=-, 证明:p a 。
作业:证明:3131421x x ++++被7整除。
例5.30对夫妻围着圆桌而坐。
证明:至少有两名妻子到各自丈夫的距离相等。
例6.设(,)1a m =,证明方程(mod )ax b m ≡在{0,1,2,3,...,1}m -中有唯一解。
例7.设01,,,,1,2,3,...n n a b x N x ax b n -∈=+=。
证明:数列12,,....,,...n x x x 不可能都是质数。
例8.证明方程2222x y z xyz ++=只有一个整数解0x y z ===。
初等数论教程3
• 即:120=7×17+1,365=7×52+1;15=12×1+3, 3=12×0+3
记为:120 365mod7 ;15 3mod12 。
并称为 120 与 365 对模 7 同余;15 与 3 对模 12 同余。
若 r1 r2, 则 称 a和 b对 于 模 m不 同 余 , 记 作 a b(mo d m).
例3.1(P.121)
练习: (1)142与43对模11是否同余? (2)13与3对模5是否同余? (3)7与7对模7是否同余? (4)2与-2对模3是否同余?
例3.2 求证(1)如果a除以m的余数为r ( 0 r m ), 则 a r(modm) ; (2)如果 a r(modm) ,0 r m ,则a除 以m的余数为r.
b不是a对模m的剩余,
记作
a b (mod m);
关系式(1)称为模m的同余式,或简称同余式.
注:
由于m a b等价于-m a b,所以同余式(1) 等价于 a b (mod ( - m));
因此,以后总假设m 1.在同余式(1)中, 若0 b m ,则 称b 是a 对模m的最小非负剩余; 若1 b m ,称b是a 对模m的最小正剩余; 若 - m / 2 b m / 2 (或 m / 2 b m / 2) ,称 b 是 a 对 模 m 的绝对最小剩余.
• 下面的四个叙述是等价的: • (ⅰ) a b (mod m); • (ⅱ) m|(a-b); • (ⅲ) 存在整数q,使得a = b qm; • (iv) 存在整数q1,q2,使得a=mq1 r,
《初等数论(闵嗣鹤、严士健-高等教育出版社)》习题解答完整版
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++ 是m 得倍数.证明: 12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++ 1122n n q p m q p m q p m =+++ 1122()n n p q q p q p m =+++即1122n n q a q a q a +++ 是m 的整数 2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+又(1)(2)n n n ++ ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b --- 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t < ()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b ---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b rq r -=,┄, d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。
§3同余课件
即7 的个位数是3.
2018/11/3
77
数学与财经学院
18
例8 设n的十进制表示是 13 xy 45 z , 且792n, 求 x,y,z. 解 因为792 = 8×9×11,故 8n,9n及11n。
8|n 8|45 z z 6.
9n 9(1 3 x y 4 5 z )= 19 x y 9x y 1, (1) 11n 11(z 5 4 y x 3 1) = 3 y x 11(3 y x)。 (2) 即有 x y 1 = 9或18, 3 y x = 0或11
第三章
同 余
• 教学目的和要求 • (1)熟练掌握同余的基本概念及性质。 • (2)熟练掌握剩余类、完全剩余系、简 化剩余系和欧拉函数的概念及其性质。 • (3)熟练掌握欧拉定理、费马定理和解 某些同余问题。 • 本章是初等数论的核心内容,是学生必须 掌握的基础知识。
2018/11/3
数学与财经学院
如: 21 6mod5, 43 7mod10, 3 8mod2
2018/11/3
数学与财经学院
4
§3.1
同余的概念及其基本性质
2、判断a,b对模m同余 ①定义 ②定理1 整数a,b对m同余的充要条件是
m (a b),即a b mt, t Z
注:下面的三个表示是等价的:
解方程组,得到x = 8,y = 0,z = 6。
2018/11/3
数学与财经学院
19
五、弃九法〔验算计算结果〕
若ab c, 则有 ab a b c(mod9)
应用这种方法可以验算较大整数的乘法。 例9. 验算 28997×39495=1145236415是否正确。
初等数论期末复习
2015年5月8日9时1分
二、剩余类与剩余系
定理2.2.1 设m为正整数,则全部整数可分成m个 集合,记作[0],[1],…,[m-1],其中[r] (0 ≤ r ≤m-1)是由一切形如 mq + r (q∈Z) 的整数所组 成的,并且具有下列性质: (1)每一整数必包含在而且仅在上述的一个集合中.
(2) x3 + 2x-12≡0 (mod7). 0, 1, …, 6逐一代入(2) 求解
定义: 如果 a , b 都是整数, m 是一个正整数,那么 当 a ≡ 0 ( mod m)时,我们把 ax ≡ b ( mod m ) 叫做 模m的一次同余方程(或同余式) . 定理 3.1.1 若设m为正整数, a , b为整数, (a,m)=1,
一次同余方程有解的解法 一、欧拉定理法解一次同余方程
定理 3.1.2 若 m 为正整数, a , b为整数, (a, m)=1,则一次同余方程ax ≡ b ( mod m )的唯 m 1 一解为 x ba mod m .
二.同余变形法(系数消去法)
根据同余性质,施行适当的变形求解a≡b(modm):
第二章
同余
一、同余的概念及基本性质
1、同余的概念:
定义2. 1
设m为正整数,称为模。若用m去除两 个整数 a 和 b 所得的余数相同,则称a 和b 对模 m 同余, 记作 a ≡b (mod m). ( 1) 读作a 同余于b 模m。 若a 和b 除以m 所得余数不同,则称a, b 对模m 不同余,记作 a b (mod m).
2015年5月8日9时1分
E
New
弃九法
正整数四则运算(含乘方) 的快速验算方法
若通过计算,a、b的和与积分别是s与p. 而r1、r2、
初等数论第三章同余
第三章同余§ 1同余的概念及其基本性质定义1设meZ\称之为模。
若用加去除两个整数“与b所得的余数相同,则称"上对模加【可余,记作:a = b (mod /n);若所得的余数不同,则称w,〃对模加不同余,记作:"圭b(mod〃2)。
例如,8 = 1 (mod 7),:所有偶数“三0 (mod 2),所有奇数“ =1 (mod 2)。
同余是整数之间的一种关系,它具有下列性质:R a = a (mod m);(反身性)2、若"三b (mod加),贝肪三a (mod m);(对称性)3、若"三b (mod m), b = c (mod m),贝h 三 c (mod 加);(传递性) 故同余关系是等价关系。
定理1整数对模加同余的充分必要条件是RP a = b + mt,r eZo证明设"=+ b = mq2 + r v 0 < r2 < m,贝l] a = b (mod m) O 打=r2 O a — b = m(q{一⑴)O I (" 一b)°性质1(1)若%三S (mod m)> a2 = b2 (mod m)> 则a x + a2 +b2 (mod /n);(2)若"+ h = c (mod 〃?),贝ij a = c-b (mod m)o性质2 若=/?, (mod /??), a2 =b2 (mod m),则"]5 "心(mod m):特别地,若a = b (mod m),则畑三kb (mod加)。
定理2若比…亞三〃叶・%(mod/),兀三片(mod皿),j = 1,2,…人则艺比…致坊‘…場三另3时灼)吓…yj (mod/);特别地,若%三化(mod加),i = OJ2・・・,n,则心* +"心]北1 + - - +u()=b n x n +/>n_|x71'1 + …+ "o (mod 加)。
【最新整理】初等数论同余
例2:证明5y+3=x2无解 证明:若5y+3=x2有解,则两边关于模5同余 有5y+3≡x2(mod 5) 即3≡x2(mod 5)
而任一个平方数x2≡0,1,4(mod 5) ∴ 3 ≡ 0,1,4(mod 5),不可能 ∴ 即得矛盾,即5y+3=x2无解 注:在证明方程无解时,经常用不同余就不相等的 方法。
性质7 a b(modm).d|(a,b),(d,m)=1 则
a b (modm). dd
证: 因为 m | d( a b ) ,(d,m)=1 ,所以有
dd
m| a b dd
性质8 若a b(modm).则 (a,m)=(b,m) 证:由已知a=b+mt,故 (a,m)|a, (a,m)|m, 有(a,m)|b,所以有 (a,m)|(b,m), 同理可证(b,m)|(a,m), 即(a,m)=(b,m).
因为0 X,Y 9,所以有
21 21+X+Y 39,4 X-Y+13 22,由此
可知 21+X+Y=27,X-Y+13=11 或21+X+Y=36,X-Y+13=22 X+Y=6,X-Y=-2,或X+Y=15,X-Y=9, 解得X=2,Y=4。
例3 :求111 被7除的余数。
50
解:∵111111被7整除,
(2)若 a b c(modm). 则 a c b(modm).
证:由(1)因为 b b(modm), 即得。
注4:性质2相当于等式中的两个等式相加和 移项. 结合前二条性质,我们来看几个例子.
例1:对任意整数a,8a+7不可能 是三个整数的平方.
初等数论知识点总结
《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。
有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。
这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。
老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。
知识点总结第一章整数的可除性1.2性质:(1)传递性质);(2)闭。
若反复运用这一性质,易则对于任意的整更一般,(3)若p 是质数,若n a p |,则a p |;(6)(带余数除法)设b a ,为整数,0>b ,则存在整数q 和r ,使得r bq a +=,其中b r <≤0,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数。
注意:r 共有b 种可能的取值:0,1,……,1-b 。
若0=r ,即为a 被b 整除的情形;易知,带余除法中的商实际上为⎥⎦⎤⎢⎣⎡b a (不超过b a 的最大整数),而带余除法的核心是关于余数r 的不等式:b r <≤0。
证明a b |的基本手法是将a 分解为b 与一个整数之积,在较为初级的问题中,这种数的分解常通过在一些代数式的分解中取特殊值而产生若n 是正整数,则))((1221----++++-=-n n n n n n y xy y x x y x y x Λ;若n 是正奇数,则))((1221----+-+-+=+n n n n n n y xy y x x y x y x Λ;(在上式中用y -代y )(7)如果在等式∑∑===mk k ni i b a 11中取去某一项外,其余各项均为c 的倍数,则这一项也是c 的倍数;(8)个连续整数中,有且只有一个是n 的倍数;(9)任何n 个连续的整数之积一定是n!的倍数,特别地,三个连续的正整数之积能被6整除;第二章 不定方程1. 定义:二元一次不定方程的一般形式是ax +by = c ,其中a ,b ,c 是整数2. 定理:(1) 不定方程有整数解的充要条件为 (a,b) | c. (2) 设是方程的一组解,则不定方程有无穷解,其一切解可表示成⎩⎨⎧+=-=t a yy t b x x 1010 Λ,2,1,0±±=t 其中),(,),(11b a b b b a a a ==3. 不定方程的解法:(1)观察法:当a,b 的绝对值较小时可直接观察不定方程的一组特解,然后用⎩⎨⎧+=-=ta y y tb x x 1010得到其所有解(2)公式法:当a,b 的绝对值较小时,可用公式211021110,,1,0,,1----+===+===k k k k k k k k P Q q Q Q Q P P q P q P P 得到特解n n n n P y Q x )1(,)1(010-=-=-,然后用公式写出一切解。
初等数论知识点总结
《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。
有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。
这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。
老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。
知识点总结第一章 整数的可除性1. 定义:设是给定的数,,若存在整数,使得则称整除,记作,并称是的一个约数,称是的一个倍数,如果不存在上述,则称不能整除 2性质:(1)若且,则(传递性质);(2)若且,则即为某一整数倍数的整数之集关于加、减运算封闭。
若反复运用这一性质,易知及,则对于任意的整数有。
更一般,若都是的倍数,则。
或着,则其中;(3)若,则或者,或者,因此若且,则; (4)互质,若,则;(5)是质数,若,则能整除中的某一个;特别地,若b a ,0≠bc bc a =b a a b |b a a b c b a c b |a c |a b |a b |c b |)(|c a b ±a b |c b |v u ,)(|cv au b ±n a a a ,,,21 b )(|21n a a a b +++ i b a |∑=ni ii b c a 1|n i Z c i ,,2,1, =∈a b |0=a ||||b a ≥a b |b a |b a ±=b a ,c b c a |,|c ab |p n a a a p 21|p n a a a ,,,21是质数,若,则;(6)(带余数除法)设为整数,,则存在整数和,使得,其中,并且和由上述条件唯一确定;整数被称为被除得的(不完全)商,数称为被除得的余数。
初中数学重点梳理:同余式
同余式知识定位数论是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常发比例,其中同余理论是初等数论中的重要内容之一,其同余式概念及应用,剩余系概念要熟练掌握。
本文归纳总结了同余的若干性质,将通过例题来说明这些方法的运用。
知识梳理1、同余概念定义1:给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m 同余,记作a≡b(modm),并读作a同余b,模m。
(1)若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b。
反之,(2)若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2。
于是,我们得到同余的另一个等价定义:定义2:若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.2、同余定理定理1:(1)a≡a(modm).(2)若a≡b(modm),则b≡a(modm).(3)若a≡b(modm),b≡c(modm),则a≡c(modm).定理2:若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证:由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d),m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).定理3:若ac≡bc(modm),且(c,m)=1,则a≡b(modm).定理4: 若n ≥2,a ≡b(modm 1),a ≡b(modm 2),…………a ≡b(modm n ),且M=[m 1,m 2,…,m n ]表示m 1,m 2,…,m n 的最小公倍数,则a ≡b(modM)3、剩余类和完全剩余系全体整数集合可按模m 来划分:当且仅当()mod a b m ≡时,a 和b 属于同一类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 同 余§1 同余的概念及其基本性质。
,所有奇数;所有偶数,例如,。
不同余,记作:对模则称;若所得的余数不同,同余,记作:对模则称所得的余数相同,与去除两个整数,称之为模。
若用设)2(mod 1)2(mod 0)7(mod 18)(mod ,)(mod ,≡≡≡≡/≡∈+a a m b a m b a m b a m b a b a m m Z 定义1。
故同余关系是等价关系;(传递性),则,、若;(对称性),则、若;(反身性)、:关系,它具有下列性质同余是整数之间的一种)(mod )(mod )(mod 3)(mod )(mod 2)(mod 1m c a m c b m b a m a b m b a m a a ≡≡≡≡≡≡。
则,,,设。
,,即同余的充分必要条件是对模整数)(|)()(mod ,0)(|,2121212211b a m q q m b a r r m b a m r r r mq b r mq a t mt b a b a m m b a -⇔-=-⇔=⇔≡<≤+=+=∈+=-证明定理1Z。
,则若;,则,若)(mod )(mod )2()(mod )(mod )(mod )1(21212211m b c a m c b a m b b a a m b a m b a -≡≡++≡+≡≡性质1。
,则特别地,若;,则,若)(mod )(mod )(mod )(mod )(mod 21212211m kb ka m b a m b b a a m b a m b a ≡≡≡≡≡性质2。
,则,;特别地,若则,,,若)(mod ,,2,1,0)(mod )(mod ,,2,1)(mod )(mod 0110111111111111m b x b x b a x a x a n i m b a m y y Bx x Ak i m y x m B A n n n n n n n n i i k k i i kk kkk kk k +++≡+++=≡≡=≡≡----∑∑ αααααααααααααααα定理2。
,则,,,若)(mod )(mod 1),(1111m b a m b a m d d b b d a a ≡≡===性质3。
的任一公因数,则及是,若;,则,若)(mod ,)(mod (2))(mod 0)(mod )1(d m d b d a m b a d m b a mk bk ak k m b a ≡≡≡>≡性质4反之亦然。
,则,若]),,,[(mod ,,2,1)(mod 21k i m m m b a k i m b a ≡=≡性质5。
,则,,若)(mod 0|)(mod d b a d m d m b a ≡>≡性质6 中的另一数。
必能整除之一,则两数及能整除,因而若,则若b a d m b a d m b m a m b a ,,),(),()(mod =≡性质7。
即个位数码是,,所以因为。
的数,事实上,只需求满足数码。
写成十进位数时的个位求9)10(mod 91)1()3(3)10(mod 19390)10(mod 3320320324062406406≡-≡-≡≡-≡≡≤≤≡a a a 解例1 。
,故为偶数时,当,,故为奇数时,当,所以,因为。
为偶数时,,当为奇数时,证明:当12|3)3(mod 2111)1(1212|3)3(mod 0111)1(12)3(mod 1)1(12)3(mod 1212|312|3+/≡+≡+-≡++≡+-≡+-≡++-≡+-≡+/+n n n nnnn n n n n n n n 证明例2同余性质在算术中的一些应用。
一、检查因数的方法1、一整数能被3(或9)整除的充分必要条件是它的十进位数码之和能被3(或9)整除。
证明 只需讨论正整数即可。
任取+∈Z a ,则a 可以写成十进位的形式: 同理可证。
对于。
,从而可知,于是,由,9|3|3)3(mod )3(mod 11010010100101011a a a a a a a a a a a a a n n n n i n n n n +++⇔+++≡≡<≤+++=----2、设正整数1000010001000011<≤+++=--i n n n n a a a a a , ,则7(或11或13)|a 的充分必要条件是7(或11或13)|。
)()(3120 ++-++a a a a证明 因为7×11×13=1001。
例3 a =5874192能被3和9整除。
例4 a =435693能被3整除,但不能被9整除。
例5 a =637693能被7整除;a =能被13整除。
二、弃九法(验算整数计算结果的方法)例6 设a =28997,b =39495,P =ab =15,检查计算是否正确。
解 令 1001010011<≤+++=--i n n n n a a a a a ,1001010011<≤+++=--j m m m m b b b b b ,1001010011<≤+++=--k l l l l c c c c P ,则 )9(mod ))((0∑∑∑===≡lk k m j j n i i c b a (*)若(*)不成立,则P ≠ab ,故在本题中,计算不正确。
注 (1) 若(*)不成立,则计算不正确;但否命题不成立。
(2) 利用同样的方法可以用来验证整数的加、减运算的正确性。
§2 剩余类及完全剩余系中。
必处于同一,则反之,若。
,故,,则设整数中。
只能在的唯一性可知,由的存在性可知于是由,,是任一整数,则必有设同余。
的充分必要条件是对模两个整数同在一个集合;仅在上述的一个集合中每个整数必包含在而且质:,这些集合具有下列性,中,其个集合,记作:,则全体整数可分成设r r r a r a a a r m K b a m b a m b a r mq b r mq a K b a K a r K a r m r r mq a a m m r q r qm K K K K m m a a ,)(mod )(mod ,)2(0)1()2()1(1,,1,0}|{,,,021110≡≡+=+=∈∈<≤+=-=∈+=>-证定理1 Z的一个完全剩余系。
称为模一剩余类,则中任何两个数都不在同个整数若。
数称为它同类数的剩余中的任一的剩余类,一个剩余类称为模中的定理m a a a a a a m m K K K m m m 110110110,,,,,,,,,1--- 定义1 推论 m 个整数作成模m 的一个完全剩余系的充分必要条件是它们对模m 两两不同余。
例如,下列序列都是模m 的完全剩余系:系)。
(绝对最小完全剩余为奇数时,当;;为偶数时,当;;)(最小非负完全剩余系;21,,1,0,1,,212,12,,1,0,1,,12212,,1,0,1,,12,21)4()1()1(,,)1(,,1,0)3()1()1(,,,,1,0)2(1,,2,1,0)1(1------+---+---+-+-+--+-++--m m m m m m mm m m m m a m m m m m a am m m m a的完全剩余系。
也是模故,与已知矛盾,,于是又,,则设反证法。
两两不同余即可,采用只需证明的完全剩余系。
也是模则的完全剩余系,是模若的一个完全剩余系,即也通过模的一个完全剩余系,则通过模,若,,设m b aa b aa b aa j i m a a m a m aa aa j i m b aa b aa b aa b aa b aa m b aa b aa b aa m a a a m b ax m x b m a m m j i j i j i m m m +++≠≡=≡≠+≡++++++++∈=∈----+110110110110,,,)()(mod 1),()(mod )()(mod ,,,,,,,,,1),( 证定理2Z Z 的完全剩余系。
也通过模,因此,所通过的数两两不同余,这说明,,故又,,数,则通过的完全剩余系中的所分别是,其中设两两不同余。
个整数对模下证这个整数,通过个整数,所以分别通过因为的完全剩余系。
也通过模余系,则的完全剩分别通过模,而,设212112211222211121221211121221221121211221122121212112212121211221212121)(mod ''')(mod '''1),()(mod ''')(mod ''','',','',')(mod '''''',,,,1),(,m m x m x m x m x m m x x m x x m m m x m x m m x m x m x x x x x x m m x m x m x m x m m m m m m m x m x m m m x x m m x m x m m m x x m m m m ++≡≡=≡≡+≡+++=∈+证定理3Z的完全剩余系。
不是模因此,,矛盾。
的完全剩余系,则是模若,从而,,同理所以的完全剩余系,都是模及:因为的完全剩余系。
不是模的完全剩余系,则都是模及,设mbabammbambabammmbabammbmmmmiambbaambabambbaammmmiiimmmiimiimiiimiimimiimmmmmm++≡+++≡+≡+≡+≡≡+=≡++≡∑∑∑∑∑∑∑=======,,)(mod2)(,,)(mod22)()(mod2)(mod22)1(,,,,,,,,,,)2(mod11111111111111111证例1。
,则,,,设类中,至少有两个在同一同余,它们对模个数:考察。
,使得组成的数,存在着仅有数字证明:对任何正整数个个个个个acbnncbcbcbnnanansskskn==-≡==>+-+1111100111)(|)(mod111111111,,11,11|0,1证:例2。
故,通过从而剩余系,的一个完全通过模以的一个完全剩余系,所通过模因为。
则的一个完全剩余系,通过模,,,设)1(21111,,1,)1(211),(-=-+++=⎭⎬⎫⎩⎨⎧+-⎭⎬⎫⎩⎨⎧++-=⎭⎬⎫⎩⎨⎧+∈=∈∑∑+mmmmmmbaxmmmmmbaxmbaxmxmmbaxmxbmamxx证例3ZZ§3 简化剩余系与欧拉函数。