数列强化训练题
高考文科数学数列经典大题训练(附答案)

1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。
有条件9可知a>0,故1q。
311a。
故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。
〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。
高考数学模拟试题与解析(数列)-普通用卷

数学强化训练(数列)1. 等比数列{a n }中,a 4,a 8是关于x 的方程x 2+10x +4=0的两个实根,则a 2a 6a 10=( )A. 8B. −8C. 4D. 8或−82. 已知等差数列{a n }{b n }的前n 项和分别为S n ,T n (n ∈N ∗)若S nT n=2n−1n+1则实数a 12b 6( ) A. 154B. 158C. 237D. 33. 定义数列{a n }的“项的倒数的n 倍和数”为T n =1a 1+2a 2+⋯+na n(n ∈N ∗),已知T n =n 22(n ∈N *),则数列{a n }是 ( )A. 单调递减的B. 单调递增的C. 先增后减的D. 先减后增的4. 已知数列{a n }中,a 1=2,a n =-1an−1(n ≥2),则a 2010等于 ( )A. −12B. 12C. 2D. −25. 数列{a n }满足a n +a n +1=(-1)n •n ,则数列{a n }的前20项的和为 ( )A. −100B. 100C. −110D. 110 6. 等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A. 1+log 35B. 2+log 35C. 12D. 10 7. 设数列{a n }的前n 项和为S n ,若S n =2a n -2n +1(n ∈N +),则数列{a n }的通项公式为______. 8. 在数列{a n }中,若a 1=1,a n+1=2a n +3(n ∈N ∗),则数列的通项公式是______ . 9. 已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin2x +2cos 2x2,记y n =f(a n ),则数列{y n }的前7项和为______.10. 已知数列{a n }的通项公式为a n =n +λn ,若{a n }为递增数列,则实数λ的取值 范围是________.11. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为______.12. 已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式a n =______.13. 已知数列{a n }的前n 项和为S n ,且S n =a n +n 2−1(n ∈N ∗). (Ⅰ)求数列{a n }的通项公式(Ⅱ)定义x =[x ]+<x >,其中[x ]为实数x 的整数部分,<x >为x 的小数部分, 且0≤<x ><1,记c n =<a n a n+1S n>,求数列{c n }的前n 项和T n .14.设数列{a n}满足:a1=1,a n+1=2a n+1.(1)证明:数列{a n}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.15.已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2-na n+12=0设数列{b n}满足b n=a n2t n}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(1)求证:数列{n√n(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n-a14n2=16b m成立,求满足条件的所有整数a1的值.答案和解析1.【答案】B解:根据题意,等比数列{a n}中,有a4a8=a2a10=(a6)2,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a4<0,a8<0,则有a6=a4q2<0,即a6=-2,a2a6a10=(a6)3=-8;2.【答案】A解:由题意可设,,,(k≠0).则a12=S12-S11=288k-12k-242k+11k=45k.b6=T6-T5=36k+6k-25k-5k=12k.∴实数=.3.【答案】A解:当n=1时,,解得a1=2.当n≥2时,,所以,综上有,所以a1>a2>a3>…,即数列{a n}是单调递减的.(或用).4.【答案】A解:数列{a n}中,a1=2,a n=-(n≥2),则a2=-=-,a3=-=2,a4=-=-,a5=-=2,…,则数列{a n}为最小正周期为4的数列,则a2010=a4×502+2=a2=-,5.【答案】A解:∵数列{a n}满足,∴a2k-1+a2k=-(2k-1).则数列{a n}的前20项的和=-(1+3+……+19)=-=-100.6.【答案】D解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.7.【答案】a n=(n+1)•2n解:∵S n=2a n-2n+1(n∈N+),∴n=1时,a1=2a1-4,解得a1=4;n≥2时,a n=S n-S n-1=2a n-2n+1-,化为:a n-2a n=2n,∴=1,∴数列是等差数列,公差为1,首项为2.∴=2+(n-1)=n+1,∴a n=(n+1)•2n.8.【答案】a n=2n+1-3解:∵a n+1=2a n+3,两边同时加上3,得a n+1+3=2a n+6=2(a n+3)∴=2数列{a n+3}是一个等比数列,首项a1+3=4,公比为2故数列{a n+3}的通项公式是a n+3=4•2n-1=2n+1,∴a n=2n+1-3,9.【答案】7解:根据题意数列{a n}满足a n+2-2a n+1+a n=0则数列{a n}是等差数列,又由a4=,则a1+a7=a2+a6=a3+a5=2a4=π,函数f(x)=sin2x+2cos2=sin2x+cosx+1,f(a1)+f(a7)=sin2a1+cosa1+1+sin2a7+cosa7+1=sin2a1+cosa1+1+sin2(π-a1)+cos(π-a1)+1=2,同理可得:f(a2)+f(a6)=f(a3)+f(a5)=2,f(a4)=sinπ+cos+1=1,则数列{y n}的前7项和f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)+f(a7)=7;10.【答案】(-∞,2)解:∵数列{a n}的通项公式为a n=n+(n=1,2,3,…),数列{a n}是递增数列,∴a n+1-a n=(n+1)-n+=>0恒成立所以=∴当n=1时,有最小值2,即实数λ的取值范围是(-∞,2).11.【答案】-1解:由题意可得,a n=a1+(n-1)(-1)=a1+1-n,S n==2,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1-6),解得a1=-12.【答案】1n(n+1)解:因为a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1、2公差为1的等差数列,所以当n≥2时a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=n+,又因为a1=1满足上式,所以,13.解:(Ⅰ)∵S n=a n+n2−1(n∈N∗),当n ≥2时,a n =S n −S n−1=a n +n 2−1−[a n−1+(n −1)2−1], 整理得:a n -1=2n -1,∴a n =2n +1; (Ⅱ)由(Ⅰ)知,S n =n 2+2n , ∴a n a n+1S n=(2n+1)(2n+3)n 2+2n =4n 2+8n+3n 2+2n=4+3n 2+2n .∴当n =1时,c 1=<4+1>=0,当n ≥2时,有0<3n 2+2n <1.∴c n =3n 2+2n =32(1n −1n+2)(n ≥2). ∴T n =c 1+c 2+…+c n=0+32(12−14+13−15+14−16+⋯+1n−1−1n+1+1n −1n+2) =32(12+13−1n+1−1n+2)=5n 2+3n−84n 2+12n+8.验证n =1成立,∴T n =5n 2+3n−84n 2+12n+8. 14.(1)证明:a 1=1,a n +1=2a n +1.可得:a n +1+1=2(a n +1).∴数列{a n +1}是等比数列,公比为2,首项为2.∴a n +1=2n ,可得a n =2n -1.(2)解:n •(a n +1)=n •2n .数列{n •(a n +1)}的前n 项和T n =2+2×22+3×23+…+n •2n , ∴2T n =22+2×23+…+(n -1)•2n +n •2n +1, ∴-T n =2+22+…+2n -n •2n +1=2(2n −1)2−1-n •2n +1=(1-n )•2n +1-2,故T n =(n -1)•2n +1+2.15.(1)证明:数列{a n }满足a n >0,4(n +1)a n 2-na n +12=0,∴2√n +1a n =√n a n +1,即n+1√n+1=2n √n ,∴数列{n√n }是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得:n √n =a 1×2n−1,∴a n 2=n a 12•4n -1.∵b n =a n 2tn,∴b 1=a 12t,b 2=a 22t2,b 3=a 32t3, ∵数列{b n }是等差数列,∴2×a 22t2=a 12t+a 32t3,∴2×2a 12×4t=a 12+3a 12×42t2, 化为:16t =t 2+48,解得t =12或4.(3)解:数列{b n }是等差数列,由(2)可得:t =12或4. ①t =12时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 1212+na 124×3n )2-a 14n 2=16×ma 124×3m,∴a 12(n3+n 23n −n 2)=4m 3m ,n =1时,化为:-13a 12=4m3m >0,无解,舍去. ②t =4时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 124+na 124)2-a 14n 2=16×ma 124,∴n a 12=4m ,∴a 1=2√m n.∵a 1为正整数,∴√m n=12k ,k ∈N *.∴满足条件的所有整数a 1的值为{a 1|a 1=2√mn,n ∈N *,m ∈N *,且√m n=12k ,k ∈N *}.。
高中数学专题强化练习《数列求和》含答案解析

=2 -1,
1-2
=
∴Sn=(21-1)+(22-1)+…+(2n-1)
2 × (1 - 2)
-n=2n+1-n-2.故选
1-2
=
D.
2.B 由题意可得,当 n 为奇数时,an=f(n)+f(n+1)=n2-(n+1)2=-2n-1;
当 n 为偶数时,an=f(n)+f(n+1)=-n2+(n+1)2=2n+1.
公差不为 0,其前 n 项和为 Sn.若 a2,a4,a7 成等比数列,S3=12.
(1)求 an 及 Sn;
1
1
1
(2)已知数列{bn}满足+1-=an,n∈N*,b1=3,Tn 为数列{bn}的前 n 项和,
求 Tn 的取值范围.
答案全解全析
一、选择题
1.D ∵an=1+2+22+…+2n-1
又 a14=b4,所以 1+13d=1×33,解得 d=2,
( - 1)
1 - 3
2+3 - 1.
·2+
=n
2
1-3
2
所以数列{an+bn}的前 n 项和为 n+
8.答案 6
6
解析 设等比数列{an}的首项为 a1,公比为 q,由 a4=24,a6=96,得 q2=4
=4,所以 q=2 或 q=-2,
(n ≤ 6,n ∈ N*),
2
∴Tn= n2 - 11n + 60
(n ≥ 7,n ∈ N*).
2
=15+
数列大题训练50题

(III)求和: 1 1 1 1 1 1
a1 a2 a3 a4
a2 n1 a2 n
25.已知 a1=2,点(an,an+1)在函数 f(x)=x2+2x 的图象上,其中 n=1,2,3,… (1)证明数列{lg(1+an)}是等比数列; (2)设 Tn=(1+a1) (1+a2) …(1+an),求数列{an}的通项及 Tn;
n N*都成立,数列{bn1 bn} 是等差数列. (1)求数列{an} 与{bn} 的通项公式; (2)问是否存在 k N*,使得 bk ak (0,1) ?请说明理由. 8 .已知数列{an }中, a1 5且an 3an1 3n 1 (n 2,3,)
(I)试求 a2,a3 的值;
(2)求数列{ an }的通项公式;
第 4 页 共 32 页
(3)若 bn nan , 求数列{bn }的前n项和Sn .
数列大题训练 50 题
31.已知二次函数 y f (x) 的图像经过坐标原点,其导函数为 f ' (x) 6x 2 ,数列{an} 的前 n 项和为 Sn , 点 (n, Sn )(n N ) 均在函数 y f (x) 的图像上。
an
(2)求数列{bn}的通项公式;
(3)求数列{ bn }的前 n 项和 Sn.
15.已知函数 f (x) =a·bx 的图象过点 A(4, 1 )和 B(5,1). 4
(1)求函数 f (x) 解析式;
(2)记 an=log2 f (n) n∈N*, Sn 是数列 an 的前 n 项和,解关于 n 的不等式 an Sn 0
1
的所有项的和(即前
n
项和的极限)。
an
数列大题训练50题及答案

数列大题训练50题及答案本卷含答案及知识卡片,同学们做题务必认真审题,规范书写。
保持卷板整洁。
一.解答题(共50题),2a n+1a n+a n+1−a n=0.1. (2019•全国)数列{an}中, a1=13(1)求{aₙ}的通项公式 ;(2)求满足a1a2+a2a3+⋯+a n−1a n<1的n的最大值 .72.( 2019•新课标Ⅰ )记 Sn为等差数列{aₙ}的前 n项和 .已知Sg= -a₅.(1)若 a₃=4,求{aₙ}的通项公式 ;(2)若 a₁>0, 求使得Sₙ≥aₙ的n的取值范围 .3.( 2019·新课标Ⅱ)已知数列aₙ和bₙ满足a₁=1,b₁=0,4aₙ₊₁=3aₙ−bₙ+4,4bₙ₊₁=3bₙ−aₙ−4.( 1) 证明 : aₙ+bₙ是等比数列,aₙ−bₙ是等差数列;(2)求{aₙ}和bₙ的通项公式 .4.( 2019•新课标Ⅱ)已知{ aₙ}是各项均为正数的等比数列, a₁=2,a₃=2a₂+16.(1)求{aₙ}的通项公式 ;(2)设bₙ=log₂aₙ,求数列bₙ的前n项和 .5.(2018•新课标Ⅱ)记 Sn为等差数列aₙ}的前 n项和 , 已知a₁= - 7 , S₃= -15 .(1)求{ aₙ}的通项公式;(2)求Sₙ,并求Sₙ,的最小值 ..6 .( 2018•新课标Ⅰ )已知数列{ aₙ满足a₁=1,naₙ₊₁=2(n+1)aₙ,设b n=a nn(1)求b₁,b₂,b₃;( 2) 判断数列{bₙ}是否为等比数列,并说明理由;(3)求{aₙ}的通项公式 .7.( 2018•新课标Ⅲ ) 等比数列{aₙ}中 ,a₁=1,a₅=4a₃·(1)求{aₙ}的通项公式 ;(2)记 Sn为{aₙ}的前 n项和 .若Sₙ=63,求m..8.(2017•全国)设数列{bₙ}的各项都为正数 , 且b n+1=b nb n+1}为等差数列;( 1) 证明数列{1b n(2)设 b₁=1,求数列{ bₙbₙ₊₁的前n项和Sₙ.9 .( 2017•新课标Ⅱ )已知等差数列{aₙ}的前 n项和为 Sₙ,等比数列{bₙ}的前 n项和为Tₙ,a₁=−1,b₁=1,a₂+b₂=2(1)若 a₃+b₃=5,又求{bₙ}的通项公式 ;(2)若 T₃=21, 求 S₃.10 .( 2017•新课标Ⅰ )记. Sₙ,为等比数列{aₙ}的前 n项和 .已知 S₂=2,S₃=-6.(1)求{aₙ}的通项公式 ;(2)求Sₙ,并判断Sₙ₊₁,Sₙ,Sₙ₊₂是否成等差数列 .11 .( 2017•新课标Ⅲ)设数列{aₙ}满足a1+3a2++(2n−1)a n=2n.(1)求{an}的通项公式 ;}的前 n项和 .(2)求数列{a n2n+112.( 2016·全国) 已知数列aₙ}的前 n项和Sₙ=n².( Ⅰ )求{aₙ}的通项公式 ;,求数列{bₙ}的前 n项和 .(Ⅱ)记b n=√a n+√a n+113 .( 2016•新课标Ⅲ ) 已知数列aₙ}的前n项和Sₙ=1+λaₙ,其中λ≠0.(1) 证明{aₙ}是等比数列,并求其通项公式;,求λ .(2)若S5=313214 .( 2016•新课标Ⅰ ) 已知{aₙ}是公差为 3 的等差数列 , 数列{ bₙ满足b₁=1,,a n b n+1+b n+1=nb n.b2=13( Ⅰ )求{aₙ}的通项公式 ;(Ⅱ)求{bₙ}的前n项和.15 .( 2016•新课标Ⅲ) 已知各项都为正数的数列aₙ满足a1=1,a n2−(2a n+1(1)aₙ−2aₙ₊₁=0.(1)求 a₂, a₃;(2)求{aₙ}的通项公式 .16 .( 2016•新课标Ⅱ ) 等差数列{aₙ}中 ,a₃+a₄=4,a₅+a₇=6.( Ⅰ )求{aₙ}的通项公式 ;数列全国高考数学试题 参考答案与试题解析一 . 解答题(共50 小题)1.( 2019•全国)数列{a ₙ}中 , a 1=13,2a n+1a n +a n+1−a n =0.(1)求{a ₙ}的通项公式 ;( 2)求满足 a 1a 2+a 2a 3+⋯+a n−1a n <17的n 的最大值 .【解答】解:(1) ∵2a n+1a n +a n+1−a n =0.∴1a n+1−1a n=2,∴a 1a 2+a 2a 3++a n−1a n =12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a 1a 2+a 2a 3++a n−1a n <17,∴12(13−12n+1)<17, ∴4n +2<42,∴n <10,∵n ∈N ∗, ∴n 的最大值为9.【点评】本题考查了等差数列的定义 ,通项公式和裂项相消法求出数列的前 n【分析】(1)由 2aₙ₊₁aₙ+aₙ₊₁−aₙ=0可得−=2,可知数列 {}是等差数列 ,求出- 的通项公式可得 an ;(2)由(1)知1a a =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),然后利用裂项相消法求出 a 1a 2+a 2a 3+⋯+a n−1a n 再解不等式可得n 的范围,进而得到n 的最大值 . 又1a =3,∴数列 {}是以3为首项 ,2 为公差的等差数列 , ∴1a =2n +1,∴a n =12n+1;(2)由(1)知 , a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),。
数列专项训练(含答案)

数列与数学归纳法专项训练1. 如图,曲线y2= x(y�0)上的点E与x轴的正半轴上的点Q及原点0构成一系列正三角形D.OP从,D.Q1P从,…D.Qn-1P从…设正三角形Q n-l�Q n的边长为a n'n EN*记Q。
为0),�(S n,O). Cl)求a l的值,(2)求数列{a n}的通项公式a n02. 设忆},{九}都是各项为正数的数列,对任意的正整数n,都有a n, 历,a n+l成等差数列,历,a n+l'b�+l成等比数列.(1)试问仇}是否成等差数列?为什么?1(2)如果a,=l,b1 =五,求数列厂}的前n项和s".3. 已知等差数列{a n }中,a2=8,S6=66. 。
yQ1 QX2C I)求数列{a n }的通项公式;2 1C II)设仇=,兀=b l + b2 + ... + b n , 求证:T n 2—.(n+l)a n 63 1 14. 酰n数列{a n}中a l=—,a n=2-(n?:2, n EN十),数列{仇},满足丸=5 a n-1 a n -1C n E N+)Cl)求证数列{b n}是等差数列;(2)求数列{a n}中的最大项与最小项,并说明理由;(3)记S n=b l +b2 +…+b求1iin(n-I)b nn➔oo sn+l5已知数列{a,,}中,a,>O,且8,c=厂汇,(I)试求a的值,使得数列{a n}是一个常数数列;(II)试求a的取值范围,使得a,i+1>a n对任何自然数n都成立;(III)若a1=2,设b n=I a叶1-a n l c严1,2, 3, …),并以$表示数列{妇的前n项的和,求证:55,<—·1 x+l 1 6. (1)已知:x E (O+oo ), 求证<l n <—;x+lx x 1 1 1 1 1(2)已知:nEN且n�2,求证:—+—十···+—<n n <l+—+···十2 3 n 2 n-l7. 已知数列忆}各项均不为0'其前n 项和为S n , 且对任意nEN*, 都有(1-p )· 旯=p -p a n(p为大于1的常数),并记f(n) =1 + C ! . a l + c �. a2 + ... + c : . a n 2n .s n(1)求a n ;p+l(2)比较f (n+l )与·f (n)的大小nE N 勹2p (3)求证:(2n -l)·f (n) :5笘/(i ):', ; : �·[勹;::厂}nE N 勹.8. 已知nEN*,各项为正的等差数列{a n }满足a 2·a 6 = 21, a 3 + a 5 = 10 , 又数列{lgb n }的前n 项和是1S n = n (n+ l ) l g 3 --n (n -l)。
高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
数列等差等比数列问题综合强化训练专题练习(一)附答案人教版新高考分类汇编

高中数学专题复习《数列等差等比数列综合》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前100项和为( ) ( )A .100101 B .99101C .99100D .101100(汇编大纲理)答案A2.设S n 是公差为d(d≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d<0,则数列{S n }有最大项B .若数列{S n }有最大项,则d<0C .若数列{S n }是递增数列,则对任意的n ∈N*,均有S n >0D .若对任意的n ∈N*,均有S n >0,则数列{S n }是递增数列(汇编浙江理)3.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( )C A .13 B .35 C .49 D . 63 (汇编湖南文)4.已知等差数列{n a },n S 表示前n 项的和,,0,0993<>+S a a 则N S S S ,,21中最小的是( ) A .S 4B .5SC .S 6D .9S (汇编)5.在等差数列}{n a 中,3a 、8a 是方程0532=--x x 的两个根,则10S 是 ( ) A .15 B .30 C .50 D .15+1229(汇编)6.设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于( ) A .6B .7C .8D .9(汇编福建理)7.在等比数列{a n }中, S 4= 1,S 8= 3,则a 17+ a 18+ a 19+ a 20的值等于 A.12 B.14 C.16 D.188.已知数列 ,14,23,32,41,13,22,31,12,21,1,则65是此数列中的 A.第48项 B.第49项 C.第50项 D.第51项9.在等比数列{a n }中,若a 3 、a 9是方程3x 2-11x+9=0的两个根,则a 6 等于 ( )A . 3B .±3C .3±D .310.三角形三个边长组成等差数列,周长为36,内切圆周长为6π,则此三角形是 [ ]. A .正三角形 B .等腰直角三角形C .等腰三角形,但不是直角三角形D .直角三角形,但不是等腰三角形11.已知等差数列a1,a2,a3,…,an 的公差为d,则ca1,ca2,ca3,…,can(c 为常数,且c ≠0)是 A.公差为d 的等差数列 B.公差为cd 的等差数列 C.非等差数列 D.以上都不对12.数列{a n }前n 项和为S n =3n-2n 2,当n ≥2时,下列不等式成立的是( ) A,na 1>S n >na n B,S n >na 1>na n C,na n >S n >na 1 D,S n >na n >na 1(北京东城练习一)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题13.等比数列{}n a 中,n S 是其前n 项和,且8100S =,16300S =,则24S = ▲ 14.ABC ∆中,,,a b c 分别为,,A B C ∠∠∠的对边,如果,,a b c 成等差数列,30B ∠=,ABC ∆的面积为32,那么b =__ ________.15.在数列{}n a 中,若对任意211,(n n n na a n N k k a a *+++-∈=-都有为常数),则称{}n a 为“等差比数列”,下面是对“等差比数列”的判断:(1)k 不可能为0;(2)等差数列一定是等差比数列;(3)等比数列一定是等差比数列;(4)通项公式为(,nn a a b c a b =⋅+均不为0或者1)的数列一定是等差比数列。
数列大题训练20题

数列大题训练20题1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2.已知数列{}n a 是首项为114a =,公比14q =的等比数列,设1423log n n b a +=()n *∈N ,数列{}n c 满足n n n c a b =⋅.(Ⅰ)求证:数列{}n b 成等差数列;(Ⅱ)求数列{}n c 的前n 项和nS ;(Ⅲ)若2114n c m m ≤+-对一切正整数n 恒成立,求实数m 的取值范围.3 .已知函数x ab x f =)( (,a b 为常数)的图象经过点11,8P ⎛⎫⎪⎝⎭和()4,8Q .(1) 求函数)(x f 的解析式;(2) 记()2log n a f n =,n 是正整数,n S 是数列}{n a 的前n 项和,求n S 的最小值.4 .已知()y f x =为一次函数,且(2)f 、(5)f 、(4)f 成等比数列,(8)15f =.求(1)(2)()n S f f f n =++⋅⋅⋅+的表达式.5.已知数列}{n a 的前n 项和)(n f 是n 的二次函数,)(n f 满足),2()2(n f n f -=+且.3)1(,0)4(-==f f(1)求数列}{n a 的通项公式; (2)设数列}{n b 满足21++=n n n a a b ,求}{n b 中数值最大和最小的项.6.已知数列{}n a 中,12a =,且当2n ≥时,1220n n n a a ---=(1)求数列{}n a 的通项公式; (2)若{}n a 的前n 项和为n S ,求n S .7.正数数列{}n a 的前n 项和n S ,满足1n a =+,试求:(I )数列{}n a 的通项公式;(II )设11n n n b a a +=,数列的前n 项的和为n B ,求证:12n B <.8.已知函数)(x f =157++x x ,数列{}n a 中, 11220n n n n a a a a ++-+=,11a =,且0n a ≠,数列}{n b 中,()1n n b f a =- (1)求证:数列{na 1}是等差数列; (2)求数列}{n b 的通项公式; (3)求数列{n b }的前n 项和n S .9.设正数数列{n a }的前n 项和n S 满足2)1(41+=n n a S . (I )求数列{n a }的通项公式; (II )设11+⋅=n n n a a b ,求数列{}n b 的前n 项和n T .10.在数列12,2,}{11+==+n nn n a a a a a 已知中 (I )求数列}{n a 的通项公式;(II )求证:3)1()1()1(2211<-++-+-n n a a a a a a11.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且(1)求证:数列{nna 2}是等差数列;(2)求数列{n a }的通项公式; (3)设数列{n a }的前n 项之和n S ,求证:322->n S n n. 12.设数列{}n a 的前n 项和为22n S n =,{}n b 为等比数列,且11a b =,()2211b a a b -=。
【新高考】数学 强化训练--专题04 如何由数列前n项和Sn求数列通项an(含答案解析)

b1
6 , bn
Sn
1 an
4
n N*
.
(I)求数列an 的通项公式;
1 (Ⅱ)记数列
bn
的前 n 项和为 Tn ,来自明: Tn1 2.
16.(2020·福建省高三期末)记 Sn 为数列an 的前 n 项和.已知 an 0 , 6Sn an2 3an 4 .
(1)求an 的通项公式;
于( )
A. 2
B.0
C.2
D.4
5.(2020·河南省高三期末)已知数列an 满足 a1 4a2 7a3 3n 2 an 4n ,则
a2a3 a3a4 a21a22 ( )
5
A.
8
3
B.
4
二、填空题
C. 5 4
5
D.
2
6.(2020·山西省高三期末)已知数列 an 的前 n 项和为 Sn ,若 Sn 2 2n1 ,则 an ______.
31 A.
16
B. 31 2
1
C.
32
31
D.
32
3.(2020·全国高三专题练习)已知数列 an 的前 n 项和为 Sn ,若 3Sn 2an 3n ,则 a2018 ( )
A. 22018 1
B. 32018 6
C.
1 2
2018
7 2
D.
1 2018 3
10 3
4.(2020·海南省高三)已知数列 an 的前 n 项和为 Sn ,且 Sn1 Sn n2 25n n N * ,则 a12 a13 等
B. 32018 6
C.
1 2
2018
7 2
D.
1 2018 3
高中数学数列经典题型专题训练试题(含答案)

高中数学数列经典题型专题训练试题学校:___________姓名:___________班级:___________考号:___________说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间120分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(共15小题,每题2分,共30分)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-12.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-39.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.9910.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.52212.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项二.填空题(共10小题,每题2分,共20分)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.17.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.18.数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.22.设正项等比数列{an}的公比为q,且,则公比q=______.23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.第Ⅱ卷(非选择题)三.简答题(共5小题,50分)26.(10分)已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.27.(8分)已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.28.(7分)已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.29.(12分)已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.30.(12分)在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.参考答案一.单选题(共__小题)1.数列{a n},已知对任意正整数n,a1+a2+a3+…+a n=2n-1,则a12+a22+a32+…+a n2等于()A.(2n-1)2B.C.D.4n-1答案:C解析:解:∵a1+a2+a3+…+a n=2n-1…①∴a1+a2+a3+…+a n-1=2n-1-1…②,①-②得a n=2n-1,∴a n2=22n-2,∴数列{a n2}是以1为首项,4为公比的等比数列,∴a12+a22+a32+…+a n2==,故选C.2.若{a n}为等比数列a5•a11=3,a3+a13=4,则=()A.3B.C.3或D.-3或-答案:C解析:解:∵{a n}为等比数列a5•a11=3,∴a3•a13=3①∵a3+a13=4②由①②得a3=3,a13=1或a3=1,a13=3∴q10=或3,∴=或3,故选C.3.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.答案:A解析:解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.4.等差数列{a n}中,a1=1,a3=4,则公差d等于()A.1B.2C.D.答案:D解析:解:∵数列{a n}是等差数列,a1=1,a3=4,∴a3=a1+2d,即4=1+2d,解得d=.故选:D.5.数列的前n项和为S n,a n=,则S n≥0的最小正整数n的值为()A.12B.13C.14D.15答案:A解析:解:令a n=<0,解得n≤6,当n>7时,a n>0,且a6+a7=a5+a8=a4+a9=a3+a10=a2+a11=a1+a12=0,所以S12=0,S13>0,即使S n≥0的最小正整数n=12.故选A.6.若数列{a n}的前n项和S n=2n2-2n,则数列{a n}是()A.公差为4的等差数列B.公差为2的等差数列C.公比为4的等比数列D.公比为2的等比数列答案:A解析:解:∵S n=2n2-2n,则S n-S n-1=a n=2n2-2n-[2(n-1)2-2(n-1)]=4n-4故数列{a n}是公差为4的等差数列故选A.7.已知数列{a n}的前n项和S n=2n-1,则此数列奇数项的前n项和为()A.B.C.D.答案:C解析:解:当n=1时,a1=S1=21-1=1,当n≥2时,a n=Sn-Sn-1=2n-1-(2n-1-1)=2•2n-1-2n-1=2n-1,对n=1也适合∴a n=2n-1,∴数列{a n}是等比数列,此数列奇数项也构成等比数列,且首项为1,公比为4.∴此数列奇数项的前n项和为==故选C8.在等比数列{a n} 中,a1=4,公比为q,前n项和为S n,若数列{S n+2}也是等比数列,则q 等于()A.2B.-2C.3D.-3答案:C解析:解:由题意可得q≠1由数列{S n+2}也是等比数列可得s1+2,s2+2,s3+2成等比数列则(s2+2)2=(S1+2)(S3+2)代入等比数列的前n项和公式整理可得(6+4q)2=24(1+q+q2)+12解可得q=3故选C.9.在数列{a n}中,a1=2,a2=2,a n+2-a n=1+(-1)n,n∈N*,则S60的值为()A.990B.1000C.1100D.99答案:A解析:解:当n为奇数时,a n+2-a n=1+(-1)n=0,可得a1=a3=…=a59=2.当n为偶数时,a n+2-a n=1+(-1)n=2,∴数列{a2n}为等差数列,首项为2,公差为2,∴a2+a4+…+a60=30×2+=930.∴S60=(a1+a3+…+a59)+(a2+a4+…+a60)=30×2+930=990.故选:A.10.若数列{a n}是公差为2的等差数列,则数列是()A.公比为4的等比数列B.公比为2的等比数列C.公比为的等比数列D.公比为的等比数列答案:A解析:解:∵数列{a n}是公差为2的等差数列∴a n=a1+2(n-1)∴∴数列是公比为4的等比数列故选A11.在数列{a n}中,a1=0,a n=4a n-1+3,则此数列的第5项是()A.252B.255C.215D.522答案:B解析:解:由a n=4a n-1+3可得a n+1=4a n-1+4=4(a n-1+1),故可得=4,由题意可得a1+1=1即数列{a n+1}为首项为1,公比为4的等比数列,故可得a5+1=44=256,故a5=255故选B12.数列{a n}、{b n}满足a n•b n=1,a n=n2+3n+2,则{b n}的前10项之和等于()A.B.C.D.答案:B解析:解:∵a n•b n=1∴b n==∴s10==(-)+=-=故选项为B.13.等比数列{a n}中,a1+a2=8,a3-a1=16,则a3等于()A.20B.18C.10D.8答案:B解析:解:设等比数列{a n}的公比为q,∵a1+a2=8,a3-a1=16,∴,解得,∴=2×32=18.故选:B.14.已知在等比数列{a n}中,S n为其前n项和,且a4=2S3+3,a5=2S4+3,则此数列的公比q为()A.2B.C.3D.答案:C解析:解:∵a4=2S3+3,a5=2S4+3,即2S4=a5-3,2S3=a4-3∴2S4-2S3=a5-3-(a4-3)=a5-a4=2a4,即3a4=a5∴3a4=a4q解得q=3,故选C15.数列{a n}的通项,则数列{a n}中的最大项是()A.第9项B.第8项和第9项C.第10项D.第9项和第10项答案:D解析:解:由题意得=,∵n是正整数,∴=当且仅当时取等号,此时,∵当n=9时,=19;当n=9时,=19,则当n=9或10时,取到最小值是19,而取到最大值.故选D.二.填空题(共__小题)16.已知等差数列{a n},有a1+a2+a3=8,a4+a5+a6=-4,则a13+a14+a15=______.答案:-40解析:解:设等差数列{a n}的公差为d,∵a1+a2+a3=8,a4+a5+a6=-4,∵a4+a5+a6=(a1+3d)+(a2+3d)+(a3+3d)=a1+a2+a3+9d,∴-4=8+9d,解得d=-,∴a13+a14+a15=a1+a2+a3+36d=8-×36=-40,故答案为:-4017.在等差数列{a n}中,a3+a5+a7+a9+a11=20,则a1+a13=______.答案:8解析:解:由等差数列的性质可得a3+a5+a7+a9+a11=(a3+a11)+a7+(a5+a9)=2a7+a7+2a7=5a7=20∴a7=4∴a1+a13=2a7=8故答案为:818.(2015秋•岳阳校级月考)数列{a n}的通项公式为a n=2n+2n-1,则数列a n的前n项和为______.答案:2n+n2-1解析:解:数列a n的前n项和S n=(2+22+23+…+2n)+[1+3+5+…+(2n-1)]=+=2n-1+n2.故答案为:2n-1+n2.19.数列{a n}中,a1=1,a n+1=2a n+1,则通项a n=______.答案:2n-1解析:解:由题可得,a n+1+1=2(a n+1),则=2,又a1=1,则a1+1=2,所以数列{a n+1}是以2为首项、公比的等比数列,所以a n+1=2•2n-1=2n,则a n=2n-1.故答案为:2n-1.20.数列{a n}是公差不为0的等差数列,且a2+a6=a8,则=______.答案:3解析:解:设等差数列{a n}的首项为a1,公差为d,由a2+a6=a8,得a1+d+a1+5d=a1+7d,即a1=d,所以==.故答案为3.21.已知数列{a n},a n+1=2a n+1,且a1=1,则a10=______.答案:1023解析:解:由题意,两边同加1得:a n+1+1=2(a n+1),∵a1+1=2∴{a n+1}是以2为首项,以2为等比数列∴a n+1=2•2n-1=2n∴a n=2n-1∴a10=1024-1=1023.故答案为:1023.22.设正项等比数列{an}的公比为q,且,则公比q=______.答案:解析:解:由题意知得∴6q2-q-1=0∴q=或q=-(与正项等比数列矛盾,舍去).故答案为:23.已知数列{a n}满足a1=3,a n+1=2a n+1,则数列{a n}的通项公式a n=______.答案:2n+1-1解析:解:由题意知a n+1=2a n+1,则a n+1+1=2a n+1+1=2(a n+1)∴=2,且a1+1=4,∴数列{a n+1}是以4为首项,以2为公比的等比数列.则有a n+1=4×2n-1=2n+1,∴a n=2n+1-1.24.数列{a n}为等差数列,已知a3+2a8+a9=20,则a7______.答案:=5解析:解:等差数列{a n}中,∵a3+2a8+a9=20,∴(a1+2d)+2(a1+7d)+(a1+8d)=4a1+24d=4(a1+6d)=4a7=20,∴a7=5.故答案为:5.25.设数列{a n}为正项等比数列,且a n+2=a n+1+a n,则其公比q=______.答案:解析:解:由题设条件知a1+a1q=a1q2,∵a1>0,∴q2-q-1=0解得,∵数列{a n}为正项等比数列,∴.故答案:.三.简答题(共__小题)26.已知等差数列{a n},前n项和为S n=n2+Bn,a7=14.(1)求B、a n;(2)设c n=n•,求T n=c1+c2+…+c n.答案:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+1解析:解:(1)∵a7=14.即a7=S7-S6=72+7B-62-6B=14.解得B=1,当n=1时,a1=S1=2;当n≥2时,a n=S n-S n-1=n2+n-(n-1)2-(n-1)=2n.n=1时也适合∴a n=2n(2)由(1)c n=n•=n•4n,T n=c1+c2+…+c n.=1•41+2•42+3•43+…n•4n①4T n=1•42+2•43+3•44+…(n-1)•4n+n•4n+1,②①-②得-3T n=41+42+43+…4n-n•4n+1=-n•4n+1=•4n+1∴T n=•4n+127.已知等差数列{a n}满足:a5=11,a2+a6=18(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n+3n,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.解析:解:(Ⅰ)设等差数列{a n}的公差为d,∵a5=11,a2+a6=18,∴,解得a1=3,d=2.∴a1=2n+1.(Ⅱ)由(I)可得:b n=2n+1+3n.∴S n=[3+5+…+(2n+1)]+(3+32+…+3n)=+=n2+2n+-.28.已知数列{a n}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.答案:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.解析:解:(Ⅰ)设数列{a n}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.∴d=2,∴a n=a1+(n-1)d=2+2(n-1)=2n.即数列{a n}的通项公式a n=2n;(Ⅱ)由a n=2n,得b n==,∴S n=b1+b2+b3+…+b n==.29.已知数列{a n}满足.(1)求a2,a3,a4的值;(2)求证:数列{a n-2}是等比数列;(3)求a n,并求{a n}前n项和S n.答案:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)解析:解:(1)∵数列{a n}满足,∴.…(3分)(2)∵,又a1-2=-1,∴数列{a n-2}是以-1为首项,为公比的等比数列.…(7分)(注:文字叙述不全扣1分)(3)由(2)得,…(9分)∴.…(12分)30.在数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)在数列{b n}中,若存在正整数p,q使b p=q,b q=p(p>q),求p,q得值;(Ⅲ)若记c n=a n•b n,求数列{c n}的前n项的和S n.答案:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.解析:解:(Ⅰ)数列{a n}中,a1=16,数列{b n}是公差为-1的等差数列,且b n=log2a n;∴b n+1=log2a n+1,∴b n+1-b n=log2a n+1-log2a n=log2=-1;∴=,∴{a n}是等比数列,通项公式为a n=16×=;∴{b n}的通项公式b n=log2a n=log2=5-n;(Ⅱ)数列{b n}中,∵b n=5-n,假设存在正整数p,q使b p=q,b q=p(p>q),则,解得,或;(Ⅲ)∵a n=,b n=5-n,∴c n=a n•b n=(5-n)×;∴{c n}的前n项和S n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×①,∴s n=4×+3×+2×+…+[5-(n-1)]×+(5-n)×②;①-②得:s n=4×----…--(5-n)×=64--(5-n)×=48+(n-3)×;∴s n=96+(n-3)×.。
高三数列提速练习题

高三数列提速练习题在高三数学学习中,数列是一个重要的概念和内容。
为了帮助同学们提高对数列的理解和应用能力,下面将提供一些数列的练习题,帮助同学们提速。
一、选择题(每题2分,共20分)1. 设数列an的通项公式为an = 3n + 2,则该数列的首项为:A. 2B. 5C. 3D. 12. 已知数列bn的前n项和为Sn = n^2 + 2n,则数列bn的首项为:A. 1B. 0C. 2D. -13. 数列cn的通项公式为cn = 2^n + 3,则数列cn的公比为:A. 2B. 3C. 4D. 54. 若数列dn的公差为3,且d4 = 13,则数列dn的前n项和Sn为:A. 6n - 6B. 3n^2 - 3nC. 2n^2 - nD. n^2 + n5. 数列en的前n项和Sn = 2n^2 + 4n,则数列en的首项为:A. 2B. 3C. 4D. 16. 设数列fn的通项公式为fn = n^3 + n^2 + n,则数列fn的首项为:A. 3B. 6C. 5D. 17. 若数列gn满足g1 = 1,g2 = 2,且gn = 2gn-1 - gn-2,则数列gn的前5项依次为:A. 1, 2, 3, 4, 5B. 1, 2, 4, 8, 16C. 1, 2, 0, -4, -8D. 1, 2, -2, -6, -108. 若数列hn的公差为2,且h3 = -1,则数列hn的前n项和Sn为:A. n^2B. n^2 - 2C. n^2 - 3nD. n^2 - 4n9. 已知数列kn的前n项和为Sn = 2n^2 + 3n,则数列kn的公差为:A. 0B. 1C. 2D. 310. 设数列ln的通项公式为ln = 4n - 3,则数列ln的第6项为:A. 15B. 18C. 21D. 24二、填空题(每题4分,共40分)1. 对于等差数列an,若公差为3,前n项和为Sn = 2n^2 + 5n,则数列an的通项公式为_____________________。
(完整版)高三数列专题练习30道带答案

数列,首项
(1)求an和bn通项公式;
(2)
27.在数列{an}中,a1=1,a4=7,an+2—2an+计an=0(n€N)
(1)求数列an的通项公式;
(2)若h—-)(n€N+),求数列{bn}的前n项和S.
nO a
28
a b
令
知
(1)求数列{an},bn的通项公式;
a
(1)求数列{an}、{bn}的通项公式;
(2)令Cn2(ann),求数列{Cn}的前n项和Tn.
n(b
1
8•已知an是各项均为正数的等比数列,且a1a22(— —),
a?
(1)求an的通项公式;
12
(2)设bn(an—)2,求数列bn的前n项和「.
9
(I)求证:数列{an1}为等比数列;
(n)令bnnan,求数列{bn}的前n项和Tn.
23.(本小题满分14分)等比数列{an}的前n项和Sn2n6a,数列{bn}满足bn'log;1log22log2n)(n N*).
n
(1)求a的值及{an}的通项公式;
1
(2)求数列的前n项和;
bnbn1
a
(3)求数列 -的最小项的值.
bn
24.数列{an}的通项an是关于x的不等式X2x nx的解集中正整数的个数,
(2)设cnbnlog3an,求数列cn的前n项和£.
参考答案
a12
解得d 1
an2n11 n 1
S3n3n 23n 3n 119nn 1
bn992111
2%2 9n n 1 n n 1 n n 1
1
1
1 ,
《数列》强化训练题及答案课件

新课标必修五第二章《数列》强化训练题1.已知三个正数成等差数列,如果最小的数乘以2,最大的数加上7,则成等比数列,且它们的积为1000,求等差数列的公差。
2.设{}n a 是一个公差为)0(≠d d 的等差数列,它的前10项和11010=S ,且1a ,2a ,4a 成等比数列。
(1)证明d a =1;(2)求公差d 的值和数列{}n a 的通项公式.3.一个首项为正数的等差数列中,前3项的和等于前11项的和. (1)若这个数列前n 项和最大,求n 的值. (2)求该数列前14项的和4.设n S 是等差数列{}n a 的前n 项的和,已知7S =7,15S =75,n T 为数列{||nS n}的前n 项的和,求n T5.已知数列{}n a 中,n n n a a a S a +++=>Λ21,0,且36+=n nn a S a ,求n S 。
6.已知数列{}n a 中,n s 是其前n 项的和,且对不小于2的正整数n 满足关系11-+=+n n n a S a . (I )求321,,a a a ; (II )求数列{}n a 的通项.7.数列{}n a 共有k 项(k 为定值),它的前n 项和S n =2n 2+n(1≤n≤k ,n ∈N),现从k 项中抽取一项(不抽首项、末项),余下的1-k 项的平均值是79。
(1)求数列{}n a 的通项。
(2)求出k 的值并指出抽取的是第几项。
8.数列{}n a 的前n 项和为S n ,且S n =2a n -1,数列{}n b 满足1b =2,n n n b a b +=+1. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和为T n9.已知等差数列{}n a 的首项1a =1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{}n b 的第二、三、四项.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{c n }对任意自然数n 均有1332211+=++++n nn a b c b c b c b c Λ成立,求2007321c c c c ++++Λ的值.10.设数列{}n a 前项和为n S ,且32)3(+=+-m ma S m n n ),(+∈N n 其中m 为常数,m .3≠ (1)求证: 数列{}n a 是等比数列;(2)若数列{}n a 的公比)(m f q =,数列{}n b 满足),2,)((231,11≥∈==+-n N n b f b a b n n 求证:⎭⎬⎫⎩⎨⎧n b 1为等差数列,求n b . 11.已知数列对于任意的项和为前中,,1,}{1n n S n a a =)(2*∈≥N n n ,1232,,43---n n n S a S 总成等差数列.(1)求2a ,3a ,4a 的值; (2)求通项n a ;12.已知数列}{n a 满足212+++=n n n a a a ),3,2,1(Λ=n ,它的前n 项和为n S ,且53=a ,366=S .(Ⅰ)求n a ;(Ⅱ)已知等比数列}{n b 满足a b b +=+121,4354a a b b +=+)1(-≠a ,设数列}{n n b a ⋅的前n 项和为n T ,求n T .13. 已知等差数列{}n a 中,2a =8,前10项和S 10=185. (1)求数列{}n a 的通项;(2)若从数列{}n a 中依次取第2项、第4项、第8项……第2n 项……按原来的顺序组成一个新的数列{}n b ,求数列{}n b 的前n 项和T n . 14.已知数列}{n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.15.设正数数列{n a }的前n 项和S n 满足2)1(41+=n n a S .求: (I )求数列{n a }的通项公式; (II )设}{,11n n n n b a a b 记数列+⋅=的前n 项和为T n ,求T n16.设数列}{n a 的前n 项和为S n ,若{}n S 是首项为S 1各项均为正数且公比为q 的等比数列. (Ⅰ)求数列}{n a 的通项公式n a (用S 1和q 表示); (Ⅱ)试比较122+++n n n a a a 与的大小,并证明你的结论.新课标必修五第二章《数列》强化训练题参考答案1.因成等比数列的三个数的积为1000,故设成等比数列的三个数为.10,10,10q q当成等差的三个正数为710,10,5-q q 时,有20)710(5=-+q q ,解得25=q 或21=q (舍去)。
高中数学数列专题训练6套含答案

目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。
数列专项练习题大题

数列专项练习题大题1. 一个等差数列的首项是1,公差是3。
求数列的第10项是多少?解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
对于这个题目,a1=1,d=3,n=10。
代入公式计算,可得:a10 = 1 + (10-1) * 3 = 1 + 9 * 3 = 28所以数列的第10项是28。
2. 一个等比数列的首项是2,公比是5。
求数列的第6项是多少?解析:根据等比数列的通项公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
对于这个题目,a1=2,r=5,n=6。
代入公式计算,可得:a6 = 2 * 5^(6-1) = 2 * 5^5 = 2 * 3125 = 6250所以数列的第6项是6250。
3. 一个递推数列的首项是1,规律是每一项都是前一项的平方。
求数列的第5项是多少?解析:根据递推数列的规律,可以列出数列的前几项:1, 1^2,(1^2)^2, ((1^2)^2)^2, (((1^2)^2)^2)^2可以观察到规律,每项都是前一项的平方。
所以第5项就是前一项的平方的平方的平方的平方。
计算过程如下:1^2 = 1(1^2)^2 = 1^2 = 1((1^2)^2)^2 = (1^2)^2 = 1(((1^2)^2)^2)^2 = ((1^2)^2)^2 = 1所以数列的第5项是1。
4. 一个等差数列的首项是3,末项是11。
求数列的公差和项数。
解析:对于这个题目,已知数列的首项和末项,可以使用公式an = a1 + (n-1)d来求解。
代入已知的值,即3 = 3 + (n-1)d,然后化简得到:0 = (n-1)d由于等差数列的公差是非零的常数,所以只有当n-1=0时,等式才成立。
也就是n=1。
所以数列的公差是0,项数是1。
5. 一个等比数列的首项是2,前三项的和是14。
求数列的公比。
专题01 数列大题拔高练(原卷版)

【一专三练】 专题01 数列大题拔高练-新高考数学复习分层训练(新高考通用)1.(2023·湖北武汉·华中师大一附中校联考模拟预测)数列{}n a 满足11a =,1113n n a a n +=+.(1)设27n nn n b a -=,求{}n b 的最大项;(2)求数列{}n a 的前n 项和n S .2.(2023·安徽蚌埠·统考三模)已知数列{}n a 满足11a =,2121n n a a +=+,2212n n a a -=.(1)求数列{}n a 的通项公式;(2)设12111n nT a a a =+++ ,求证:23n T <.3.(2023·吉林通化·梅河口市第五中学校考模拟预测)已知数列{}n a 满足11a =,1,,,;n n na n n a a n n ++⎧=⎨-⎩为奇数为偶数数列nb 满足2n n b a =.(1)求数列{}n b 的通项公式;(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .4.(2023·广东广州·统考一模)已知数列{}n a 的前n 项和为n S ,且221n n n S a +=+(1)求1a ,并证明数列2nn a ⎧⎫⎨⎬⎩⎭是等差数列:(2)若222k k a S <,求正整数k 的所有取值.5.(2023·湖南岳阳·统考二模)已知数列{}n a 的前n 项和为111,1,22n n n n S a S S ++==+(1)证明数列2n n S ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)设3n n n b S =,若对任意正整数n ,不等式21827n m m b -+<恒成立,求实数m 的取值范围.6.(2023·广东深圳·深圳中学校联考模拟预测)在数列{}n a 中,149a =,()()()2313912n n n n a n a ++⋅+=+.(1)求{}n a 的通项公式;(2)设{}n a 的前n 项和为n S ,证明:525443n nn S +<-⋅.7.(2023·山西·校联考模拟预测)在①n b =②11n n n b a a +=;③2n n n b a =,这三个条件中任选一个补充在下面横线上,并解答问题.已知数列{}n a 的前n 项和23322n n S na n n =-+.(1)证明:数列{}n a 是等差数列;(2)若12a =,设___________,求数列{}n b 的前n 项和n T .8.(2023·吉林长春·校联考一模)已知等差数列{}n a 的首项11a =,记{}n a 的前n 项和为n S ,4232140S a a -+=.(1)求数列{}n a 的通项公式;(2)若数列{}n a 公差1d >,令212n n nn n a c a a ++=⋅⋅,求数列{}n c 的前n 项和n T .9.(2023·浙江·校联考三模)已知数列{}n a 是以d 为公差的等差数列,0,n d S ≠为{}n a 的前n 项和.(1)若6336,1S S a -==,求数列{}n a 的通项公式;(2)若{}n a 中的部分项组成的数列{}n m a 是以1a 为首项,4为公比的等比数列,且214a a =,求数列{}n m 的前n 项和n T .10.(2023·山西·统考模拟预测)已知数列{}n a 是正项等比数列,且417a a -=,238a a =.(1)求{}n a 的通项公式;(2)从下面两个条件中选择一个作为已知条件,求数列{}n b 的前n 项和n S .①()21n n b n a =-;②()22121log n n b n a =+.11.(2023·辽宁沈阳·统考一模)设*n ∈N ,向量()1,1AB n =- ,()1,41AC n n =-- ,n a AB AC =⋅ .(1)令1n n n b a a +=-,求证:数列{}n b 为等差数列;(2)求证:1211134n a a a ++⋅⋅⋅+<.12.(2023·福建厦门·厦门双十中学校考模拟预测)设数列{}n a 的前n 项和为n S .已知11a =,222n n na S n n -=-,*N n ∈.(1)求证:数列{}n a 是等差数列;(2)设数列{}n b 的前n 项和为n T ,且21nn T =-,令2n n n a c b =,求数列{}n c 的前n 项和n R .13.(2023·山东潍坊·统考一模)已知数列{}n a 为等比数列,其前n 项和为n S ,且满足()2n n S m m R =+∈.(1)求m 的值及数列{}n a 的通项公式;(2)设2log 5n n b a =-,求数列{}n b 的前n 项和n T .14.(2023·辽宁抚顺·统考模拟预测)已知n S 是等差数列{}n a 的前n 项和,n T 是等比数列{}n b 的前n 项和,且10a =,11b =,223344S T S T S T +=+=+.(1)求数列{}n a 和{}n b 的通项公式;(2)设211nn n i c a n ==⋅∑,求数列的前n 项和n P .15.(2023·湖北·校联考模拟预测)已知数列{}n a 满足()112,(1)02,N n n a n a na n n *-=-+=≥∈.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,求2023S .16.(2023·安徽合肥·校考一模)已知数列{}n a 满足221n n n a a a ++=,13a =,23243a a =.(1)求{}n a 的通项公式;(2)若3log n n b a =,数列{}n b 的前n 项和为n S ,求12111nS S S ++⋯+.17.(2023·辽宁葫芦岛·统考一模)设等差数列{}n a 的前项和为n S ,已知1239a a a ++=,2421a a ⋅=,等比数列{}n b 满足2334b b +=,234164b b b =.(1)求n S ;(2)设n n c =,求证:1234n c c c c ++++< .18.(2023·山东枣庄·统考二模)已知数列{}n a 的首项13a =,且满足2122n n n a a +++=.(1)证明:{}2n n a -为等比数列;(2)已知2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数,n T 为{}n b 的前n 项和,求10T .19.(2023·山东聊城·统考一模)已知数列{}n a 满足1322a a a +=,13,2,n n na n a a n +⎧=⎨+⎩为奇数为偶数,数列{}n c 满足21n n c a -=.(1)求数列{}n c 和{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S .20.(2023·江苏·二模)已知数列{}n a 满足112a =-,()1120n n n a na +++=.数列{}nb 满足11b =,1n n n b k b a +=⋅+ .(1)求{}n a 的通项公式;(2)证明:当1k ≤时,1132n n n b -+≤- .21.(2023·江苏·统考一模)在数列}n a 中,若()*1123N n n a a a a a d n +-⋅⋅⋅=∈,则称数列{}n a 为“泛等差数列”,常数d 称为“泛差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ;(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}nb 的通项n b .22.(2023·辽宁辽阳·统考一模)某体育馆将要举办一场文艺演出,以演出舞台为中心,观众座位依次向外展开共有10排,从第2排起每排座位数比前一排多4个,且第三排共有49个座位.(1)设第n 排座位数为()1,2,,10n a n =L ,求n a 及观众座位的总个数;(2)已知距离演出舞台最远的第10排的演出门票的价格为500元/张,每往前推一排,门票单价为其后一排的1.1倍,若门票售罄,试问该场文艺演出的门票总收入为多少元?(取101.1 2.594=)23.(2023·浙江温州·统考二模)已知{}n a 是首项为1的等差数列,公差{}0,n d b >是首项为2的等比数列,4283,a b a b ==.(1)求{}{},n n a b 的通项公式;(2)若数列{}n b 的第m 项m b ,满足__________(在①②中任选一个条件),*N k ∈,则将其去掉,数列{}n b 剩余的各项按原顺序组成一个新的数列{}n c ,求{}n c 的前20项和20S .①4log m k b a =②31m k b a =+.24.(2023·山西太原·统考一模)已知等差数列{}n a 中,11a =,n S 为{}n a 的前n 项和,且也是等差数列.(1)求n a ;(2)设()*1n n n n S b n a a +=∈N ,求数列{}n b 的前n 项和n T .25.(2023·云南红河·统考二模)已知等差数列{}n a 的公差0d >,12a =,其前n 项和为n S ,且______.在①1a ,3a ,11a 成等比数列;333S =;③221133n n n n a a a a ++-=+这三个条件中任选一个,补充在横线上,并回答下列问题.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11nn n b a =+-,求数列{}n b 的前2n 项和2n T .注:如果选择多个条件分别解答,那么按第一个解答计分.26.(2023·辽宁大连·校联考模拟预测)已知数列{}n a 的前n 项之积为()(1)22N n n n S n -*=∈.(1)求数列{}n a 的通项公式;(2)设公差不为0的等差数列{}n b 中,11b =,___________,求数列{}2log 2n b n a +的前n 项和n T .请从①224b b =;②358b b +=这两个条件中选择一个条件,补充在上面的问题中并作答.注:如果选择多个条件分别作答,则按照第一个解答计分.27.(2023·山东·烟台二中校联考模拟预测)已知等差数列{}n a 的前n 项和为n S ,且413a =,672S =,数列{}n b 的前n 项和为n T ,且344n n T b =-.(1)求数列{}n a ,{}n b 的通项公式.(2)记()152n n n n a b c +-⋅=,若数列{}n c 的前n 项和为n Q ,数列的前n 项和为n R ,探究:n n nQ R c +是否为定值?若是,请求出该定值;若不是,请说明理由.28.(2023·湖南常德·统考一模)已知数列{}n a 满足1224444n n n a a a n +++=L (*n ∈N ).(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a +=,求{}n b 的前n 项和n S .29.(2023·山东济宁·统考一模)已知数列{}n a 的前n 项和为n S ,且满足:*111,2(N )n n a na S n n +==+∈. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭为常数列;(2)设3123123333n n n a a a a a a a a T =++++ ,求n T .30.(2023·湖南长沙·湖南师大附中校考一模)如图,已知曲线12:(0)1x C y x x =>+及曲线21:(0)3C y x x=>.从1C 上的点)n P n +∈N 作直线平行于x 轴,交曲线2C 于点n Q ,再从点n Q 作直线平行于y 轴,交曲线1C 于点1n P +,点n P 的横坐标构成数列{}1102n a a ⎛⎫<< ⎪⎝⎭.(1)试求1n a +与n a 之间的关系,并证明:()21212n n a a n -+<<∈N ;(2)若113a =,求n a的通项公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列强化训练题1.已知三个正数成等差数列,如果最小的数乘以2,最大的数加上7,则成等比数列,且它们的积为1000,求等差数列的公差。
2.设{}n a 是一个公差为)0(≠d d 的等差数列,它的前10项和11010=S ,且1a ,2a ,4a 成等比数列。
(1)证明d a =1;(2)求公差d 的值和数列{}n a 的通项公式. 3.一个首项为正数的等差数列中,前3项的和等于前11项的和. (1)若这个数列前n 项和最大,求n 的值.(2)求该数列前14项的和 4.设n S 是等差数列{}n a 的前n 项的和,已知7S =7,15S =75,n T 为数列{||nS n}的前n 项的和,求n T5.已知数列{}n a 中,n n n a a a S a +++=>Λ21,0,且36+=n nn a S a ,求n S 。
6.已知数列{}n a 中,ns 是其前n 项的和,且对不小于2的正整数n 满足关系11-+=+n n n a S a .(I )求321,,a a a ;(II )求数列{}n a 的通项.7.数列{}n a 共有k 项(k 为定值),它的前n 项和S n =2n 2+n(1≤n≤k ,n ∈N),现从k 项中抽取一项(不抽首项、末项),余下的1-k 项的平均值是79。
(1)求数列{}n a 的通项;(2)求出k 的值并指出抽取的是第几项。
8.数列{}n a 的前n 项和为S n ,且S n =2a n -1,数列{}n b 满足1b =2,n n n b a b +=+1. (1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和为T n9.已知等差数列{}n a 的首项1a =1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{}n b 的第二、三、四项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{c n }对任意自然数n 均有1332211+=++++n nn a b c b c b c b c Λ成立,求2007321c c c c ++++Λ的值.10.设数列{}n a 前项和为n S ,且32)3(+=+-m ma S m n n ),(+∈N n 其中m 为常数,m .3≠(1)求证: 数列{}n a 是等比数列;(2)若数列{}n a 的公比)(m f q =,数列{}n b 满足),2,)((231,11≥∈==+-n N n b f b a b n n 求证:⎭⎬⎫⎩⎨⎧n b 1为等差数列,求n b . 11.已知数列对于任意的项和为前中,,1,}{1n n S n a a =)(2*∈≥N n n ,1232,,43---n n n S a S 总成等差数列. (1)求2a ,3a ,4a 的值;(2)求通项n a ;12.已知数列}{n a 满足212+++=n n n a a a ),3,2,1(Λ=n ,它的前n 项和为n S ,且53=a ,366=S .(Ⅰ)求n a ;(Ⅱ)已知等比数列}{n b 满足a b b +=+121,4354a a b b +=+)1(-≠a ,设数列}{n n b a ⋅的前n 项和为n T ,求n T .13. 已知等差数列{}n a 中,2a =8,前10项和S 10=185. (1)求数列{}n a 的通项;(2)若从数列{}n a 中依次取第2项、第4项、第8项……第2n 项……按原来的顺序组成一个新的数列{}n b ,求数列{}n b 的前n 项和T n . 14.已知数列}{n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.15.设正数数列{n a }的前n 项和S n 满足2)1(41+=n n a S .求: (I )求数列{n a }的通项公式; (II )设}{,11n n n n b a a b 记数列+⋅=的前n 项和为T n ,求T n16.设数列}{n a 的前n 项和为S n ,若{}n S 是首项为S 1各项均为正数且公比为q 的等比数列.(Ⅰ)求数列}{n a 的通项公式n a (用S 1和q 表示); (Ⅱ)试比较122+++n n n a a a 与的大小,并证明你的结论. 参考答案1.因成等比数列的三个数的积为1000,故设成等比数列的三个数为.10,10,10q q当成等差的三个正数为710,10,5-q q 时,有20)710(5=-+q q ,解得25=q 或21=q (舍去)。
此时2,10,18成等差数列,公差为8。
当成等差的三个正数为q q 5,10,710-时,有205)710(=+-q q,类似可求得公差为8-。
2.(1)证明:因1a ,2a ,4a 成等比数列,故4122a a a =,而{}n a 是等差数列,有d a a +=12,d a a 314+=,于是 21)(d a +)3(11d a a +=,即d a a d d a a 121212132+=++,化简得 d a =1(2)解:由条件11010=S 和d a S 291010110⨯+=,得到11045101=+d a ,由(1),d a =1,代入上式得11055=d ,故 2=d ,所以n d n a a n 2)1(1=-+=,Λ,3,2,1=n3.(1)由已知113s s =,得01110654=+++++a a a a a ΛΛ,又87105114a a a a a a +==+=+ΛΛ.所以087=+a a因数列首项为正,故公差0<d ,且07>a ,08<a ,所求n 的值为7. (2)设{}n a 首项为1a ,公差为d ,113s s =,即d a d a 2)111(11112)13(3311-+=-+,01321=+d a . 故0)132(72)114(14141114=+=-+=d a d a s .4.设数列{}n a 的公差为d ,则1172171510575a d a d +=⎧⎨+=⎩,解之得:121a d =-⎧⎨=⎩,所以(5)2n n n S -=;设52n n S n b n -==,则{}n b 是等差数列,设49'221n n b b b S n n -=+++=Λ。
令502n n b -=≥,解得:5n ≥,所以1234,,,b b b b 小于0,50b =,6n ≥时,0n b >;所以 当5n ≤时,49||||||221n n b b b T n n -=+++=Λ;当6n ≥时,||||||||||6521n n b b b b b T ++++++=ΛΛ4409)''(')(2556521+-=-+-=++++++-=n n S S S b b b b b n n ΛΛ所以2295494064n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪≥⎪⎩5.由已知,36111+=a a a ,得31=a ,且)3(61+=n n n a a S 。
当2≥n 时,=-=-1n n n S S a )3(61+n n a a )3(6111+---n n a a , 整理得:()()0311=--+--n n n n a a a a ,001>+⇒>-n n n a a a Θ,所以31=--n n a a , 2)1(3+=n n S n 。
6.(I )112a =、214a =、318a =; (II )由11-+=+n n n a S a 得2111---+=+n n n a S a ,这两式相减,得211----+=-n n n n n a a a a a ,化简得,2121=--n n a a ,所以数列{a n }的通项12n n a =. 7. (1))1(14)1()1(22221k n n n n n n S S a n n n ≤≤-=----+=-=-(2)设抽取的是第i (k i <<1)项,且14-=i a i 。
依题意,k i S a k =+-)1(79,即k k i k +=-+-2214)1(79解得 240392+-=k k i ,由 k i <<1 , 得 ⎪⎪⎩⎪⎪⎨⎧<+->+-kk k k k 2403912403922解得4038<<k ,又*N k ∈,所以39=k ,此时20=i 8. (1)当n=1时,a 1=2a 1-1,∴a 1=1,当n≥2时,a n =S n -S n-1=2a n -1-2a n-1+1, ∴a n =2a n-1. 于是数列{a n }是首项为1,公比为2的等比数列. ∴a n =2n-1. (2)∵b n+1=a n +b n ,∴b n+1-b n =2n-1. 从而b n -b n-1=2n-2, b n-1-b n-2=2n-3, …… b 2-b 1=1,以上等式相加,得b n -b 1=1+2+22+…+2n-2=2n-1-1,又b 1=2,∴b n =2n-1+1 T n =b 1+b 2+…+b n =(20+21+…+2n-1)+n.=2n -1+n.9. (1)由题意得(a 1+d)(a 1+13d)=(a 1+4d)2(d >0). 解得d=2,∴a n =2n-1,可得b n =3n-1.(2)当n=1时,c 1=3;当n≥2时,由n n b c =a n+1-a n ,得c n =2·3n-1,故c n =⎩⎨⎧≥=-•).2(32),1(31n n n 故c 1+c 2+c 3+…+c 2007=3+2×3+2×32+…+2×32006=32007.10.(1)由,32)3(32)3(11+=+-+=+-++m ma s m m ma s m n n n n 得,3,2)3(1-≠=++m ma a m n n 两式相减得,321+=∴+m ma a n n ∴{}n a 是等比数列。
(2)2,32)(,111≥∈∴+====+n N n m mm f q a b .23,3231113111.3111333223)(23111111+=∴+=-+=∴⎭⎬⎫⎩⎨⎧∴=-⇒=+⇒+⋅==------n b n n b b b b b b b b b b b f b n n n n n n n n n n n n n 为公比的等差数列为首项是11.(1)由题意知1232432--+-=n n n S S a ,)2(43≥-=∴n S a n n 81,41,2114321=-===a a a a 可得由 11113,43,43,2)2(++++=-+=∴-=≥n n n n n n n a a a S a S a n 两式相减得时当Θ 成等比数列为常数Λ,,,214321a a a a a n n ∴-=∴+ ⎪⎩⎪⎨⎧≥--==∴-==-)2()21()1(1,21,2112n n a q a n n 其中 12.(Ⅰ)由212+++=n n n a a a 得n n n n a a a a -=-+++112, 则数列}{n a 是等差数列. ⎩⎨⎧=+=+∴.36156,5211d a d a ⇒⎩⎨⎧==.2,11d a 因此,12-=n a n .(Ⅱ)设等比数列}{n b 的公比为q ,由⎩⎨⎧+=++=+)1()1(1)1(3311a a q q b aq b 得a q =,11=b . 则111--==n n n a qb b ,1)12(--=n n n a n b a . 132)12(7531--+++++=n n a n a a a T Λ ………………①当1≠a 时,nn a n a a a a aT )12(753432-+++++=Λ ………… ② 由①-②得n n n a n aa a a T a )12(22221)1(132--+++++=--Λn n a n aa )12(11)1(2-----=,所以,a a n a a T nn n --+---=1)12(1)1()1(22. 当1=a 时,2n T n =.13.(1)设{a n }公差为d ,有⎪⎩⎪⎨⎧=⨯+=+185291010811d a d a 解得a 1=5,d =3,∴a n =a 1+(n -1)d =3n +2 (2)依题意 2232+⋅==nn n a b∴T n =b 1+b 2+…+b n =(3×21+2)+(3×22+2)+…+(3×2n +2)=3(21+22+…+2n )+2n =6×2n +2n -6. 14. (Ⅰ)解:设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a 所以所以.2n a n =(Ⅱ)解:令,21n n b b b S +++=Λ则由,2nn n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=-Λ①,2)22(42132++-+++=n n n nx x n x x xS Λ②当1≠x 时,①式减去②式,得 ,21)1(22)(2)1(112++---=-++=-n n n nn nx xx x nxx x x S x Λ所以.12)1()1(212xnx x x x S n n n ----=+当1=x 时, )1(242+=+++=n n n S n Λ综上可得当1=x 时,)1(+=n n S n ;当1≠x 时,.12)1()1(212xnx x x x S n n n ----=+15.(I )2)1(41+=n n a S Θ ① 211)1(41+=∴--n n a S ② ①-②得2121)1(41)1(41+-+=-=--n n n n n a a S S a ,整理得0)2)((11=--+--n n n n a a a a11100202(2)n n n n n n n a a a a a a a n --->∴+>∴--=-=≥Q 即}{n a ∴是等差数列.又,1)1(4112111=∴+==a a S a 12-=∴n a n(II ))121121(21)12)(12(111+--=+-=⋅=+n n n n a a b n n n Θ)]121121()4131()311[(21+--++-+-=∴n n T n Λ.12)1211(21+=+-=n n n 16.(Ⅰ)∵{}n S 是各项均为正数的等比数列.∴)0(11>=-q q S S n n . 当n=1时,a 1=S 1,当.)1(,2211---=-=≥n n n n q q S S S a n 时 ∴⎩⎨⎧≥-==-)2()1()1(211n qq S n S a n n(Ⅱ)当n=1时,.0]43)23[()1(2)1(221111231>+-=---+=-+q S q S q q S S a a a当,2时≥n1112112)1(2)1()1(2--++---+-=-+n n n n n n q q S q q S q q S a a a 231)1(--=n q q S因为.0,021>>-n q S 所以①当q=1时,.2,0)1(123++=+∴=-n n n a a a q ②当,10时<<q .2,0)1(123++<+∴<-n n n a a a q ③当,1时>q .2,0)1(123++>+∴>-n n n a a a q 综上可知: 当n=1时,2312a a a >+ 当;2,1,212++=+=≥n n n a a a q n 则若时若;2,1012++<+<<n n n a a a q 则 若.2,112++<+>n n n a a a q 则。