材料力学第11章压杆稳定

合集下载

材料力学-压杆稳定

材料力学-压杆稳定
欧拉公式是针对着两端铰支的情况推得的。
Pcr
2 EI
l2
此时若杆件横截面不同时 ,取 I I m in ,弯曲发生在抗弯 能力最弱的平面内。称最小刚度平面。 对于其他约束条件,常数 c1, c2 , k 由约束条件确定,经推导得: 两端铰支: 1 微弯曲线为正弦半波形状 2 EI 一端固定一端自由: 2 微弯曲线为半个正弦半波 pcr 2 ( l ) 两端固定: 0.5 一端固定一端铰支: 0.7
n0 p 0
不符合情况
n 1 pcr
2 EI
l2
这就是确定两端铰支压杆临界载荷的 欧拉公式,其临界力称欧拉临界力。它 与抗弯刚度EI成正比,与杆长L2成反比。 这公式只适用于弹性稳定问题
7
此时挠度
n y ( x) c1 sin k x c1 sin x l x y ( x) c1 sin (0 x l ) 正弦半波形 l
10
§13-5
临界应力与柔度、三类不同的压杆
杆件尺寸不同,其失稳的形式也不同。P335 对于“细长”杆:发生弹性失稳的可能性较大。 ---“弹性屈曲” 对于“粗短”杆:发生材料屈服的可能性较大。 ---“屈服” 对于“中长”杆:有可能发生失稳,但其临界应力已超过比例极 限, 局部区域已进入塑性。 ----“弹塑性屈曲” 怎样区分三类不同的压杆?即多长的杆会发生弹性屈曲、屈服 、弹—塑性屈服?下面引入“柔度”概念。 临界应力 cr : Pcr cr
3
当纵向力P较小时,可看到扰动除去后,杆经若干次振动 而恢复原来的直线形式,即表明此时压杆直线形式的弹性平衡 是稳定的。 当总向力P较大时,可看到扰动除去后,杆不能恢复原来 的直线形式,而且继续弯曲,最后转入新的稳定平衡形式。即 曲线形式或由于弯曲太甚而杆被折断,此表明原来的弹性平衡 不稳定。 这说明:当压力大于一定数值时,压杆存在两种可能的平衡 形式。即直线和弯曲的平衡形式。但直线形式是不稳定的。而 压杆从直线平衡形式到弯曲平衡形式的转变称为“失稳”或“ 弯曲”。 那么当压力多大时,直线平衡形式不稳定(被破坏)?

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

材料力学面试重点概念36题

材料力学面试重点概念36题

材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。

2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。

(2)均匀性:构件内各处的力学性能相同。

(3)各向同性:物体内各方向力学性能相同。

3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。

4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。

5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。

(2)用截面法求解内力。

6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。

9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。

2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。

横截面上正应力为零。

3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。

第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。

答:(1)受力特点:外力的合力作用线与杆的轴线重合。

(2)变形特点:沿轴向伸长或缩短。

11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。

σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。

材料力学答案- 压杆稳定

材料力学答案- 压杆稳定

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。

15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。

解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。

即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。

解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。

材料力学 压杆稳定答案共5页

材料力学 压杆稳定答案共5页

9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)?解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。

(a)=1×5=5m(b)=0.7×7=4.9m(c)=0.5×9=4.5m(d)=2×2=4m(e)=1×8=8m(f)=0.7×5=3.5m故图e所示杆最小,图f所示杆最大。

返回9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间,这时杆不受力。

已知钢的线膨胀系数。

试问当温度升高至多少度时,杆将丧失稳定?解:返回9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。

试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按细长杆考虑),确定最小临界力的算式。

解:在总压力F作用下,立柱微弯时可能有下列三种情况:(a)每根立柱作为两端固定的压杆分别失稳:(b)两根立柱一起作为下端固定而上端自由的体系在自身平面内失稳失稳时整体在面内弯曲,则1,2两杆组成一组合截面。

(c)两根立柱一起作为下端固定而上端自由的体系在面外失稳故面外失稳时最小返回9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。

若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。

解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。

此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故返回9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。

材料力学作业(8-11)

材料力学作业(8-11)

第八章 应力应变状态分析一、选择或填空题1、过受力构件内任一点,取截面的不同方位,各个面上的( )。

A 、正应力相同,切应力不同;B 、正应力不同,切应力相同;C 、正应力相同,切应力相同;D 、正应力不同,切应力不同。

2、在单元体的主平面上( )。

A 、正应力一定最大;B 、正应力一定为零;C 、切应力一定最小;D 、切应力一定为零。

3、图示矩形截面悬臂梁,A-A 为任意横截面,1点位于截面上边缘,3点位于中性层,则1、2、3点的应力状态单元体分别为( )。

A-AA B C4、图示单元体,其最大主应力为( )A 、σ;B 、2σ;C 、3σ;D 、4σ。

5、下面 单元体表示构件A 点的应力状态。

6、图示单元体,如果MPa 30=ασ,则βσ=( ) A 、100Mpa ; B 、50Mpa ; C 、20MPa ; D 、0MPa 。

(C)7、图示单元体应力状态,沿x 方向的线应变εx 可表示为( )A 、Eyσ; B 、)(1y x E μσσ−;C 、)(1x y E μσσ− ;D 、Gτ。

8、图示应力圆对应于单元体( )。

9、已知单元体及应力圆如图所示,σ1所在主平面的法线方向为( )。

A 、n 1;B 、 n 2;C 、n 3;D 、n4。

二、计算题1、已知应力状态如图所示,试用解析法计算图中指定截面上的正应力和切应力。

2、试画图示应力状态的三向应力圆,并求主应力、最大正应力和最大切应力。

3、边长为20mm的钢立方块置于刚性模中,在顶面受力F=14kN作用。

已知材料的泊松比为0.3,求立方体各个面上的正应力。

4、图示矩形截面梁某截面上的弯矩和剪力分别为M=10 kN.m,Q=120 kN。

试绘出截面上1、2、3、4各点的应力状态单元体,并求其主应力。

第九章 强度理论一、选择题或填空题 1、在冬天严寒天气下,水管中的水会受冻而结冰。

根据低温下水管和冰所受力情况可知( )。

A 、冰先破裂而水管完好;B 、水管先破裂而冰完好;C 、冰与水管同时破裂;D 、不一定何者先破裂。

材料力学-压杆稳定

材料力学-压杆稳定

1.直线型经验公式
对于柔度(λs≤λ<λp)的中柔 度杆(中长压杆),临界应力 与λ的关系采用直线公式:
cr a b 13 8
式(13-8)中的系数a,b可查书中表 13-1。 λ的最低界限:
s
a
s
b
(塑性材料)
b
a
b
b
(脆性材料)
---------(13-9)
图13-3
2.抛物线型经验公式
式中有c1,c2,k三个未知量。根据边界条件:当x=0时, yA=0;代入式(c)得c2=0。式(c)成为
y c1 sinkx (d )
当x=l时,yB=0;代入式(d)后可得 c1 sinkl 0 (e)
要满足式(e),必然是c1或sinkl等于零,若c1=0,则压杆 上各点的位移都为零,这显然与压杆在微弯状态下保持平衡 的前提不符,故必须是sinkl=0。要满足这一条件的kl值为:
kl 0, ,2 ,L ,n (n为正整数)
由k P n 可得:
EI l
P
n2 2 EI
l2
(
f
)
使压杆可能在微弯状态下保持平衡的最大轴向压力,应
该是式(f) 中n=1时的P值,这就是所求的两端铰支压杆的临
界力Pcr,即
Pcr
2 EI
l2
(13 1)
式(13-1)习惯上称为两端铰支压杆的欧拉公式。当各个 方向的支承情况相同时(如两端为球铰),压杆总是在它的 抗弯能力最小的纵向平面内失稳,所以式(13-1)中的EI是压 杆的最小抗弯刚度,即I应取截面的最小形心主惯性矩Imin。
2
图13-4 对于柔度(λ<λc)的杆件,临界应力与λ的关系采用抛物线公式:

材料力学-第十一章-压杆稳定

材料力学-第十一章-压杆稳定


π2
×
206 52
×109
×
π
×
160 ×10-3 64
4
= 2.6 ×106 N = 2.60 ×103 kN
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
2.已知: d =160 mm, Q235钢, E =206 GPa ,确定两根杆的临 界载荷
对于两端固定的压杆,就有
F
d2w + k2w = 0 k2 = F
dx 2
EI
M
F
F
w
微分方程的解: w =Asinkx + Bcoskx
边界条件:=x 0= , w 0 :
B=0
=x l= , w 0 :
Asin kl = 0
系数A,B不能全为0:sin kl = 0
= kl nπ , =n 1, 2,⋅ ⋅ ⋅
k=2
F n2π 2
EI l2
屈曲位移函数: w = Asin nπ x l
弯曲幅值A取决于弯曲程度,与压力F有关。
分叉点 F
Fcr
材料力学-第11章 压杆稳定
§11-2 两端铰支细长压杆的临界载荷
压杆稳定平衡路径
F
平衡路径
F<Fcr 时,直线平衡态为稳定且唯一的
平衡路径
F>Fcr 时,直线平衡态不稳定,一旦有 扰动,杆将转为弯曲平衡态
=
, =n 1, 2,⋅ ⋅ ⋅
EI l2
临界载荷: F=cr
n2π 2EI , =n
l2
1, 2,⋅ ⋅ ⋅
最小临界载荷:
Fcr
=
π 2EI
l2

第11章 压杆稳定性问题

第11章  压杆稳定性问题

相等,则此压杆的临界压力又为多少?
(压杆满足欧拉公式计算条件)
h
动脑又动笔
解: 一端固定,一端自由,长度因数 μ=2 在应用欧拉公式时,截面的惯性
矩应取较小的I 值。
Iy 1 3 1 hb 90 403 mm 4 48 104 mm 4 12 12
b
F
l
1 3 1 I z bh 40 903 mm 4 243 104 mm 4 12 12
理解长细比、临界应力和临界应力总图的概念,熟 悉各类压杆的失效形式。
§11–1 压杆稳定性的基本概念
① 强度 衡量构件承载能力的指标 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 可靠地工作。 杆件在各种基本变形下的强度和刚度问题在前述各章节中 已作了较详细的阐述,但均未涉及到稳定性问题。事实上, 杆件只有在受到压力作用时,才可能存在稳定性的问题。
屈曲曲线是偏离原直线轴线不远的微弯状态。
F F EI L
M d2w 2 EI dx
§11–2 细长压杆的临界荷载—欧拉临界力
一、两端铰支压杆的临界力
多大的轴向压力才会使压杆失稳?
d2w EI 2 Fw 0 dx
y
M EI x w L

F
k2
F EI
F
F
x
d2w 2 k w0 2 dx
§11–3长细比的概念 三类不同压杆的判断
三、临界应力总图
cr
S
P
cr s
cr a b
2E cr 2
粗短杆 s
s s a
b
中长杆
P
细长杆

材料力学-压杆稳定

材料力学-压杆稳定

A
பைடு நூலகம்
B
L
L
C
3、钢制矩形截面杆的长度为L=1.732米,横截面为 60×100,P=100KN,许用应力为[σ]=30MPa, 弹性模量E=200GPa,比例极限σP=80MPa, 屈服极限σS=160MPa,稳定安全系数nw=2, a=304MPa,b=1.12MPa。构件安全吗?
L
100
60
4、AB杆的两端固定,在20OC时杆内无内力。已知: 杆长为L=400毫米,杆的直径d=8毫米,材料的弹性 模量为E=200GPa,比例极限为σP=200Mpa,线胀 系数α=1.25×10-51/OC,杆的稳定安全系数为2,当 温度升高到40OC时,校核杆的稳定性。
i I D2d2 16mm A4
得11.713 61230108 P
3、选用公式,计算临界应力
AB为大柔度杆
FcrcrA
2E 2
A
2lE2I118kN
4、计算安全系数
n F cr FN
1184.4 26.6
2nst3
5、结论
AB杆满足稳定性要求
1、圆截面杆BD的直径为d=35毫米,采用普通碳 钢,弹性模量 E=200GPa,比例极限为σP= 200MPa,屈服极限为σS=235MPa,a=304 MPa,b=1.12 MPa,稳定安全系数取nw=3, 载荷G=30K N,校核BD杆的稳定性。
cr
2E 2
临界应力的欧拉公式
塑性材料在压缩时的应力应变曲线
σ
σp
σs
O
σ
σp
σs
O
细长杆 1
σ
当临界应力小于或等于材料的比例极限时 cr p σp
σs

第11章 压杆稳定

第11章 压杆稳定
答案 初弯曲、压力偏心、材料不均匀和支座缺陷
(Buckling of Columns)
3、图示矩形截面细长压杆,两端用圆柱铰连接。其约束在纸平 面内可视为两端铰接,在垂直于纸面的平面内可视为两端固定, 从稳定性考虑,截面合理的长、宽比为h/b= `
压杆在纸平面内的工作柔度为λ=μL/i=1.0L/h/(2×1.732); 在垂直于纸面的平面内的工作柔度为λ’=μL/i=0.5L/b/(2×1.732);
(Buckling of Columns) 1、一受压的圆截面杆件,已知材料的机械性质参数σ p, σ s,σ b,E,杆长L,直径D,长度系数u,并设已知压杆临界应 力的线性经验公式常数a、b为已知。欲计算压杆的临界压力, 写明计算过程,列出有关的公式。 (1)计算工作柔度λ =μ L/i,计算第一特征柔度 λ 1=(π 2E/σ P)1/2 σ
(Buckling of Columns) 7、两根细长压杆a与b的长度、横截面面积、约束状态及材料均 相同,若其横截面形状分别为圆形和正方形,则二压杆的临界压 力Pacr和Pbcr的关系为( )。 C A.Pacr=Pbcr;B.Pacr<Pbcr;C.Pacr>Pbcr;D.不确定 8、材料和柔度都相同的两根压杆( A. B. C. D. )。A 临界应力一定相等,临界压力不一定相等; 临界应力不一定相等,临界压力一定相等; 临界应力和压力都一定相等; 临界应力和压力都不一定相等。
(Buckling of Columns)
1、图示中的桁架结构,两细长杆的长为L,与铅垂线的夹角相 等,均为α。但EI1>EI2,则结构的临界载荷为 。
Fcr=2 cosαπ2EI2/L2
2、在一般情况下,稳定安全系数比强度安全系数要大,这是因 为实际压杆总是不可避免地存在 , ,以及 等不利因素。

材料力学课件:压杆稳定

材料力学课件:压杆稳定

kl n (n = 0、1、2、3……)
Fcr 由 k 2 Fcr
EI
y 杆微弯时的弹性曲线方程式 :
y ( x ) A sin n x
可得
l
n2 2 EI
Fcr
l2
§10.2 细长压杆临界力的计算公式
n 2 2 EI
临界载荷:
Fcr
l2
杆微弯时的弹性曲线方程式 : y ( x ) A sin n x
(a) : 木杆的横截面为矩形( 12cm), 高为3cm,当荷载重 量为6kN 时杆还不致破坏。
(b): 木杆的横截面与(a)相同, 高为1.4m(细长压杆),当压力 为0.1KN时杆被压弯,导致破坏。
(a) F Nmax = A b > 6 KN
(a)
(b)
(b)
Fcr
2 EI min
l2
压杆稳定
§10.1 压杆稳定性的概念 §10.2 轴心受压细长直杆临界力的计算公式 §10.3 临界应力及欧拉公式的适用范围 §10.4 经验公式 §10.5 压杆稳定性的计算
§10.1 压杆稳定性的 概念
§10.1 压杆稳定性的概念
工程中把承受轴向压力的直杆称为压杆
压杆
§10.1 压杆稳定性的概念
一、临界应力与柔度
cr
Fcr A
2EI (l)2 A
2E (l)2
i 2
2E ( l )2
2E 2
i
——临界应力的欧拉公式
l ——压杆的柔度(长细比)
i
反映了杆长、约束情况、截面形状和尺寸对临界应力的综合影响
cr 压杆容易失稳
§10.3 临界应力以及欧拉公式的适用范围
二、欧拉公式的适用范围 p, cr p

建筑力学 第11章 压杆稳定

建筑力学 第11章 压杆稳定

第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。

本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。

11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。

前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。

但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。

杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。

我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。

所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。

为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。

图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。

当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。

因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。

P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。

但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。

因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。

P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。

材料力学第11章 压杆稳定

材料力学第11章 压杆稳定

长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔

度度

压压

杆杆

可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800

材料力学(单辉祖)第十一章压杆稳定问题

材料力学(单辉祖)第十一章压杆稳定问题
形心主惯矩I的选取准则
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −

1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l

x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 11.4
11.2不同约束条件下细长压杆的欧拉公式
11.2.1两端铰支细长压杆的临界压力
两端为球铰支座的中心受压细长直杆如图11.5所示。如前所述,当压力达到 临界值Fcr时,在横向因素的干扰下,压杆可在微弯状态下保持平衡。可见 ,临界压力Fcr就是使压杆保持微弯平衡的最小压力。
图11.5 建立如图11.5所示坐标系xOy,距原点为x的任意截面的挠度为v。由截面法 ,该截面的弯矩为
式(a)右端的负号是由于图示坐标系中弯矩M与挠度v恒为异号。在小变形的
前提下,挠曲线近似微分方程为式(7.5),即
由于两端是球铰,允许杆件在任意纵向平面内发生弯曲变形,因而杆件的微
小弯曲变形一定发生在抗弯能力最小的纵向平面内。所以,上式中的I应是 横截面的最小惯性矩。将式(a)代入式(b),得

于是式(c)改写为一常系数线性二阶齐次微分方程
此微分方程的通解为
式中A,B——积分常数,可由杆的边界条件来确定。 杆的边界条件为:x=0和x=l时,v=0。代入式(f),得
其中第2个式子只有在A=0或sin kl=0时才成立。结合B=0,若A=0,则由式( f)知v≡0,压杆任意截面的挠度均等于零,即压杆并无弯曲而处于直线平 衡状态,这与在临界力作用下压杆保持微弯的平衡状态这一前提不相符,因 此,必然是

式(11.6)即为欧拉公式的适用范围。也就是说,只有当压杆的实际柔度λ 大于或等于柔度临界值λ p时,欧拉公式才适用。
算中是一个非常重要的参数。
11.3.2欧拉公式的适用范围 在推导压杆临界压力的欧拉公式时,使用了挠曲线的近似微分方程,而该方
程是在材料服从胡克定律即在线弹性范围内才成立的。因此,欧拉公式的应
用也有其适用的范围,即压杆的临界应力不能超过材料的比例极限。所以
由此可得
式中比例极限σ p及弹性模量E均是只与材料有关的参数。若令
当然,除了压杆以外,某些其他构件也存在稳定性问题。例如,薄壁球形容
器在径向压力作用下的变形(见图11.4(a));狭长矩形截面梁在弯曲时 的侧弯失稳(见图11.4(b));两铰拱在竖向载荷作用下变为虚线所示形
状而失稳(见图11.4(c))等。这些都是稳定性问题,在工程设计中应当
注意。本章仅讨论中心受压直杆的稳定性问题。
定性,简称为失稳,也称屈曲。不难看出,压杆能否保持稳定,与压力F的 大小有着密切的关系。随着压力F的逐渐增大,压杆就会失稳。这就是说, 轴向压力的量变,将引起压杆平衡状态的质变。压杆从稳定平衡过渡到非稳 定平衡时的压力临界值称为临界压力,以Fcr表示。显然,当压杆所受的压
力达到临界值时,压杆开始丧失稳定。由此可见,确定压杆临界压力的大小 ,将工作压力控制在临界压力范围内,是解决压杆稳定问题的关键。
把横截面的惯性矩I写成
式中i为截面的惯性半径,则式(a)改写为

式(b)改写为
式(11.4)即为计算细长压杆临界应力的欧拉公式,是公式(11.2)的另一 种表达形式,两者并无实质性差别。式中λ 为无量纲的量,称为柔度或长细
比。它集中反映了压杆长度、约束条件、截面尺寸和形状对临界应力的综合
影响。由公式(11.4)看出,压杆的临界应力与其柔度的平方成反比,压杆 的柔度越大,其临界应力越小,压杆越容易失稳。可见柔度λ 在压杆稳定计
使上式成立的kl值为
其中,n为任意整数,即n=0,1,2,…。由此可得
上式代入式(d),得
因为n为任意整数,所以使压杆保持微弯平衡状态的临界压力在理论上可以 有无穷多个。但实际上,当压杆在最小临界压力作用下,就已经处于由稳定 平衡向不稳定平衡过渡的临界平衡状态并将丧失稳定性了。但n=0,不符合 要求。所以当n=1时,Fcr为最小值,这就是保证压杆安全工作的临界压力 Fcr,即
第11章 压杆稳定
11.1压杆稳定的概念 例如,支承机械的千斤顶(见图11.1)、托架中的压杆(见图11.2)等,可
能在工作时被压弯,发生较大的弯曲变形进而折断,这就.2
下面以如图11.3所示的两端铰支的细长压杆来说明这类问题。在杆件两端施
加轴向压力F,当压力F较小时,压杆保持直线平衡状态,图11.3若给杆件一
查得22a工字钢,Iz =3 400 cm4,Iy=225 cm4。所以,根据式(11.2)压杆 的临界压力为
11.3欧拉公式的适用范围经验公式
11.3.1计算临界应力的欧拉公式
压杆在弹性范围内失稳时,其在临界压力作用下横截面上的平均应力称为临 界应力,用σ cr表示。若压杆的横截面面积为A,则临界应力为
个微小的侧向干扰力使其发生轻微弯曲(见图11.3(a))
,当干扰力消除后,杆件将恢复其直线平衡状态(见图
11.3(b)),此种平衡状态称为稳定平衡。当轴向压力 F增大到某一定值时,杆件仍可暂时维持直线平衡状态, 但若给杆件一个微小的侧向干扰力使其轻微弯曲,在干 扰力消除后,压杆将不能恢复直线平衡而处于微弯平衡 状态(见图11.3(c)),此种平衡状态称为非稳定平衡。 压杆由稳定平衡状态过渡到非稳定平衡状态,称为丧失稳 图11.3
x=l/2处,最大挠度vmax=A。
11.2.2其他约束条件下细长压杆的临界压力 表11.1概括了上述几种工程实际中常见的理想约束条件下细长压杆的挠曲线
形状及其相应的欧拉公式表达式。
由表11.1可知,对于各种不同的约束条件下的等截面中心受压细长直杆的临
界压力的计算公式可写成统一的形式
例11.1如图11.6所示,一端固定,一端自由的细长压杆用22a 工字钢制成,压杆长度l=4 m,弹性模量E=210 GPa。试用欧 拉公式计算此压杆的临界压力。 解压杆一端固定,一端自由,长度因数μ =2。由型钢表可以 图11.6
这就是两端铰支细长压杆临界压力的计算公式,由于最早是由欧拉导出的, 所以也称为两端铰支细长压杆的欧拉公式。式(11.1)表明Fcr与抗弯刚度
EI成正比,与杆长的平方l2成反比。压杆失稳时,总是绕抗弯刚度最小的轴 发生弯曲变形。
将k=π /l代入式(f),得压杆的挠度方程为
可见,在两端铰支的情况下,压杆微弯的挠曲线为半个正弦波曲线,在
相关文档
最新文档