二次根式加减法课件2
《二次根式的加减运算》PPT课件
步骤:
第一步:把每个二次根式 化为最简二次根式。 第二步:对能合并 的二次根式进行合并。
x2
3分钟
总结:
像 3, 12 , 75 这样的二次根式,化简后 被开方数 相同 我们把它们叫做同类二次根式。
因此对于二次根式的加减运算,
首先是将每个二次Байду номын сангаас式化为最简二次根式 ,
然后 是 将被开方数相同的最简二次根式的项进行合并 。
1.预习下一节 2.完成《中考考什么》本节的习题
只有登上山顶,才能看到那边的风光。 不要常常觉得自己很不幸,世界上比我们痛苦的人还要多。 多用心去倾听别人怎么说,不要急着表达你自己的看法。 越是没有本领的就越加自命不凡。——邓拓 生命力的意义在于拚搏,因为世界本身就是一个竞技场。 奋斗的双脚在踏碎自己的温床时,却开拓了一条创造之路。 狂妄的人有救,自卑的人没有救。 没有热忱,世间便无进步。 对于每一个不利条件,都会存在与之相对应的有利条件。 在幸运时不与人同享的,在灾难中不会是忠实的友人。——伊索 错误犯过一次,尽可能的不要再犯第二次。 诚实的面对你内心的矛盾和污点,不要欺骗你自己。
《二次根式的加减》_完美课件
第三步的依据是:合并同类项.
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
例2 计算:
讲授新课
(1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
解:(2)( 5+ 3)( 5- 3)=( 5)2 -( 3)2
= 5-3= 2 .
思考1:(2)中,每一步的依据是什么?
(2)先算除,再化简,若有相同的二次根 式进行合并,把所有的二次根式化成最简二次根式.
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
讲授新课
例2 计算: (1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 二次根式
用分配 律合并
整式 加减
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载 【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
讲授新课
二次根 式性质
分配律
整式加 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
讲授新课
算式 8+ 18与算式 3 2- 2 有什么相同点与不同
点? 请化简算式
8+
18 ,并说出每一步化简的理由.
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
《二次根式的加减法》课件2
先化简,
解:原式 4 2 9 2 43 再合并
2 2 3 2 2 3
5 2 2 3.
பைடு நூலகம்
1.同类二次根式的定义?
2.二次根式加减运算的步骤? 3.如何合并同类二次根式?
合并同类二次根式与合并同类项类似.
例2 计算: (1) 12 18 - 8 - 32; (2) 40 - 5 1 10.
10 解:(1) 12 18 - 8 - 32
2 33 2-2 2-4 2 2 3 - 3 2; (2) 40 - 5 1 10
10 2 10 - 5 10 10
10 5 10.
2
例3 计算: (1)( 5 2 3) 15; (2)(3 10)( 2 - 5).
12
解:(1)( 5 2 3) 15
12
5 15 2 3 15 12
5 5 2 9 5 5 6 5;
4
2
(2)(3 10)( 2 - 5)
3 2 - 3 5 10 2 - 10 5
3 2-3 52 5-5 2
-2 2 - 5.
例4 计算: (1)(2 3 3 2)(2 3 - 3 2)(;2)( 6-3 3)2 . 解:(1)(2 3 3 2)(2 3 - 3 2)
总结二次根式加减运算的步骤
二次根式加减法的步骤:
交流 归纳 (1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式.
一化 二找 三合并
练习:计算
(1)3 2 3 2 2 3 3
解:原式 (3 2 2 2)( 3 3 3)
2 2 3.
强调:
(2) 8 18 12
4 3 3 3 2.
二次根式的加减PPT课件
1+912+1102
人教版 九年级上
第十九章 生活用电
第1节 家庭电路
课堂导练
3.下图是家庭电路的组成,请填出各组成部分的名称。
①__电__能__表__;②_总__开__关__;③_保__险__装__置__;④_三__孔__插__座__; ⑤__火__线____;⑥__零__线____;⑦___地__线___。
19 见习题
15 C
答案显示
1.同类二次根式:将几个二次根式化成_最__简__二__次__根__式___, 如果被开方数__相__同____,那么这样的二次根式称为同类 二次根式.
2.二次根式的加减,与整式的加减类似,关键是将 _同__类__二__次__根__式_ 合 并 . 其 步 骤 为 先 将 二 次 根 式 化 为 最__简__二__次__根__式__,再将同类二次根式合并.
课后训练
13.(2020·常州)请以笔画线代替导线,将三孔插座、开关控 制的电灯接入电路。 解:如图所示。
课堂导练
【点拨】开关应安装在火线上,当断开开关时,用电器与 火线断开,不会发生触电事故; 空气开关“跳闸”后,电 流无法形成通路,故家庭电路整体上处于断路状态;零线、 地线和大地间的电压都是0 V,用试电笔分别接触零线与 地线时,氖管都不发光,所以试电笔不能辨别零线与地线, 但试电笔可以辨别火线和零线。 【答案】火;断路;不能
【答案】会;44
课后训练
1.下列各式中,与 2 是同类二次根式的是( C ) A. 3 B. 4 C. 8 D. 12
2.下列二次根式中,与 a 是同类二次根式的是( C ) A. a2 B. 2a C. 4a D. 4+a
3.下列二次根式中,与 20是同类二次根式的是( B )
二次根式的加减-PPT-课件资料
运算原理
运算律同适用
运算顺序
与实数的运 算顺序一样
布Байду номын сангаас作业
教科书第13页练习第2,3题. 第15页习题16.3第1-3题 .
希望对您的工作和学习有所帮助!
使用说明
为了更好地方便您的理解和使用,发挥本文档的价值,请在使用本文档之前仔细阅读以下说明: 本资料突出重点,注重实效。贴近实战,注重品质。适合各个成绩层次的学生查漏补缺,学习效果翻倍。本文档为 PPT格式,您可以放心修改使用。祝孩子学有所成,金榜题名。 希望本文档能够对您有所帮助!!!感谢使用
知识讲解
典型示例
例1
归纳:确定可以合并的二次根式中字母取值的方法: 利用被开方数相同,指数都为2,列关于待定字母的 方程求解即可.
知识讲解
练一练
知识讲解
加减法的运算步骤: (1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)合——把被开方数相同的二次根式合并.
第 十六章 二次根式
二次根式的加减
(第1课时)
精品模版-助您成长
学习目标
1 了解二次根式的加、减运算法则.(重点) 2 会用二次根式的加、减运算法则进行简单的运算.(难点)
新课导入
知识回顾
1.同类项的概念: 所含字母相同,并且相同字母的指数也相同的项 叫做同类项.
2.合并同类项的概念: 把多项式中的同类项合并成一项,叫做合并 同类项.
3.合并同类项法则: 合并同类项后,所得项的系数是合并前各同类项 的系数的和,且字母连同它的指数不变.
新课导入
问题引入
问题1 满足什么条件的根式是最简二次根式? (1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式.
二次根式的加减法(第二课时)
二次根式的加减法(第二课时)概述在数学中,二次根式是指以根号形式表示的含有平方根的表达式。
二次根式的加减法是对这样的表达式进行求和或求差的操作。
本文将介绍二次根式的加减法的基本概念和步骤,并通过一些例子来帮助读者理解和掌握这个重要的数学技巧。
二次根式的定义二次根式是形如√a或a√b的表达式,其中a和b是实数,且b大于0。
其中,a√b的形式称为含有系数的二次根式,√a的形式称为不含有系数的二次根式。
二次根式的加法二次根式的加法是指对两个二次根式进行求和的操作。
要执行二次根式的加法,需要满足以下两个条件:1.两个二次根式的根号下的数目和根号前的系数必须相同。
2.如果两个二次根式的根号前的系数不同,需要将它们化为相同的琍(即通分),再进行求和。
例子1我们以一个简单的例子来说明二次根式的加法:√3 + 2√3要求这两个根式的和,首先我们注意到根号下的数目都是3,根号前的系数分别是1和2。
由于这两个系数不同,我们需要将它们化为相同的分母。
这里我们可以将第一个根式的系数2改为2的平方,即2√3 = √12,然后再进行求和。
√3 + √12现在根号前的系数相同了,我们可以将根号下的数目相加。
√3 + √12 = 3√3所以,√3 + 2√3 = 3√3我们再来看一个复杂一些的例子:3√5 + 2√7 - √5对于这个表达式,我们首先注意到根号下的数目有两个5和7,根号前的系数分别是3、2和-1。
这里我们需要将这些根式化为相同的分母。
首先,将第一个根式和最后一个根式化为相同的表达式:3√5 - √5 = 2√5现在,我们重新整理一下表达式:2√5 + 2√7因为根号下的数目相同而且根号前的系数也相同,所以将它们相加即可:2√5 + 2√7 = 4√5 + 2√7所以,3√5 + 2√7 - √5 = 4√5 + 2√7二次根式的减法二次根式的减法是指对两个二次根式进行求差的操作。
要执行二次根式的减法,需要满足以下两个条件:1.两个二次根式的根号下的数目和根号前的系数必须相同。
《二次根式的加减》课件
VS
详细描述
在进行二次根式的加减运算时,有时需要 对二次根式进行合并或简化。学生在合并 或简化过程中,容易出错,导致计算结果 错误。例如,将$sqrt{5} + sqrt{2}$错误 地合并为$sqrt{7}$,或将$sqrt{4} sqrt{9}$错误地简化为$3 - 2$。
PART 05
练习与巩固
2023 WORK SUMMARY
《二次根式的加减》 ppt课件
REPORTING
目录
• 二次根式的加减概述 • 二次根式的加减运算方法 • 二次根式的加减运算实例 • 二次根式的加减易错点解析 • 练习与巩固
PART 01
二次根式的加减概述
二次根式的加减定义
定义
二次根式的加减运算是指将具有 相同被开方数的二次根式进行合 并或分离的过程。
计算
$(sqrt{5} + 2sqrt{2})(sqrt{5} 2sqrt{2})$
计算
$(sqrt{3} + sqrt{2})^{2}$
计算
$(sqrt{5} - sqrt{3})^{2}$
综合练习题
解方程
$3sqrt{2}x = 4sqrt{3}x$
解方程
$(sqrt{3} + sqrt{2})x = 5$
THANKS
感谢观看
REPORTING
解方程
$(sqrt{5} - sqrt{3})x^{2} - (sqrt{5} + sqrt{3})x = 0$
解方程组
${begin{array}{l}sqrt{2}x - sqrt{6}y = 4 sqrt{3}x + sqrt{5}y = 7 end{array}$
二次根式的加减ppt课件
解决实际问题
在解决一些实际问题时,如物理、工 程、建筑等领域,需要使用二次根式 的加减法来计算结果。
02
二次根式的加减法运算
根式的合并同类项
合并二次根式中的同类项
在二次根式的加减法中,需要将具有相同根指数和被开方数 的项进行合并,简化表达式。
在几何图形中,周长的计算也需要使用到二次根式加减法运算。例如,在矩形、三角形、 多边形等图形中,需要使用到周长公式进行计算。
04
二次根式的加减法注意事项
根式加减法的限制条件
根式加减法仅适用于 被开方数相同的二次 根式。
根式加减法要求根号 内的表达式必须有意 义,即不能有虚数次 方根。
被开方数相同的二次 根式才能进行加减运 算。
计算 $2sqrt{2} - sqrt{3}$ 计算 $3sqrt{2} + 2sqrt{3}$
提高练习题
01
计算 $(sqrt{2} + sqrt{3})^2$
02
计算 $(2sqrt{2} - sqrt{3})^2$
03
计算 $(sqrt{2} - sqrt{3})^2$
04
计算 $(3sqrt{2} + 2sqrt{3})^2$
二次根式下的数必须是非负的 。
二次根式具有非负性,即 $sqrt{a^2} = |a|$。
根式的加减法规则
合并同类二次根式
只有同类二次根式才能进行加减 运算。同类二次根式是指被开方 数相同的二次根式。
二次根式的加减法
将同类二次根式的系数相加减, 被开方数和根号符号保持不变。
根式加减法的意义
简化二次根式
函数中的根式加减
二次根式加减ppt课件
答案及解析
计算
化简
$sqrt{27} + sqrt{3} = 3sqrt{3} + sqrt{3} = 4sqrt{3}$
$2sqrt{3} - sqrt{2} = sqrt{3} - sqrt{2}$
比较大小
$sqrt{25} = 5$,因为 $5 > 3$,所以 $sqrt{25} > 3$
判断正误
01
02
03
识别同类二次根式
首先需要识别出表达式中 的同类二次根式,即具有 相同被开方数的二次根式 。
合并同类二次根式
将同类二次根式进行合并 ,即将它们的系数相加减 ,根号下的被开方数保持 不变。
举例说明
将表达式中的 $sqrt{2}$ 和 $sqrt{2}$ 合并为 $2sqrt{2}$。
$sqrt{8} + sqrt{18} = 2sqrt{2} + 3sqrt{2} = 5sqrt{2}$,不等于 $2sqrt{2}$,所以判 断为错。
THANKS
感谢观看
sqrt{2}}{sqrt{2} times sqrt{2}} = frac{sqrt{6}}{2}$。
二次根式的化简技巧
利用平方差公式
对于形如 $sqrt{a^2 - b^2}$ 的表达式,可以利 用平方差公式进行化简。
利用完全平方公式
对于形如 $sqrt{a + b}$ 或 $sqrt{a - b}$ 的表达 式,可以利用完全平方公式进行化简。
二次根式的加减法规则
总结词
掌握二次根式的加减法规则是进行运 算的关键。
详细描述
二次根式的加减法需先将各项化为最 简二次根式,然后合并同类二次根式 。
21.3 二次根式的加减(2)
3 2 3 2 2
2 2 1 81 9
已知x 2 3,y 2 3 试求(x 1 )(y 1 )的值。
yx
不用计算器, 不求平方根的值, 比较 2 与 1数部分为 b. 52
3 2 3 2 2
3 2 3 2 2
2 2 1 81 9
1.若x 1 ,则 x2 2x 1 ( D )
2 1
A. 2
B. 2 2
C.2 2
D.2
2. 已知:x2 y2 19, xy 3,
求
x y
2x, 75 , 1 , 1 , 3x, 2 8ab3 ,6b a , 3 2
50 27
3
2b
彗眼识真: 下列计算哪些正确,哪些不正确?
⑴ 3 2 5 (不正确)
⑵ a b a b (不正确) ⑶ a b a b (不正确)
⑷ a a b a (a b) a (正确)
(x 3)2 3 (x 3)2
x2 2 3x 3 3 x2 2 3x 3
4 3x 3 x 3 4
已知a 3 2, b 3 2,
求a2 ab b2的值.
解二:a2 ab b2
a2 2ab b2 ab (a b)2 ab
1、化简或计算下列各题.
①1 23
② 2 1
2 1 ③ 11
2 3 2 1
2、计算或化简:
① 8 2( 2 2)
②
( 1 )1 (2 )0
2
2
1 2 1
③ 18 2 1 4 1 2 1 8
二次根式的加法和减法PPT课件11张
如图,学校要砌一个正方形花坛,若两 个正方形的面积分别为27cm2、12cm2, 则两正方形的周长和为多少?
两个正方形的周长和为:
4 27 4 12
以上是什么运算? 如何计算?
学习目标
• 1、知道什么是同类二次根式,会辨别两 个根式是否是同类二次根式。
• 2、学会通过合并同类二次根式,进行二 次根式的加法ห้องสมุดไป่ตู้减法运算。
4- 2 2
• C、
D、
2、如果最简二次根式
的值是 2 。
可以合并,那么
• 3、计算
(1) 90 - 2 20 5 4
解
:
90 2
20 5
4
5
5
(2() 24 1) 2 2 ( 1 6)
2
38
解:
( 24
1)2
2 (
1
6)
2 38
3 10 2 2 5 5 2 5 2 6 1 2 2 6 1 2 6
(1)将每个二次根式化为最简二次根式; (2)找出其中的同类二次根式; (3)合并同类二次根式。
一化 二找 三合并
讨论
2 3?
仿照前一题,你能算出这个题吗? 有什么发现?
类比 迁移 感悟
交流提升
• 1、下列计算正确的是( C )
• A、 3 3 - 3 2 B、 2 3 6
2 2 23 2
5
2
34
3 10 4 5 2 5 3 10 2 5
5 63 2 34
梳理巩固
1.几个二次根式化成最简二次根式后,如果它们的被开 方式相同,那么,这几个二次根式称为同类二次根式.
2、 二次根式的加减即为对同类二次根 式的合并。