示范教案{第二章函数}
函数2-优秀公开课教学设计
函数教学目标:知识目标:1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。
能力目标:通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;情感目标:在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神教学重点:函数的概念及函数的三种表示方法教学难点:函数概念的理解教学策略:引导学生从特殊到一般的研究过程,采用归纳概括的研究方法来加深学生对关系式的一般表达式的的理解和运用。
教学准备教具:教材,课件,电脑学具:教材,笔,练习本教学课时:一课时教学过程:摩天轮上一点的高度h与旋转时间t之间有一定的关系,下图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。
随着层数的增加,物体的总数是如何变化的?填写下表:问题3。
一定质量的气体在体积不变时,假若温度降低到-273℃,则气体的压强为零.因此,物理学把-273℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别等于-43,-27,0,18时,相应的热力学温度T是多少?(2)给定一个大于-273 ℃的t值,你能求出相应的T值吗?步了解、体会、思考三种方式表示两个变量之间关系的各自特点.三种函数表示方法个问题量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等)第三环节:概念的抽象1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:在上面的问题中,都有两个变量,给定其中板书设计:教学反思:。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:函数单调性的概念及意义1.1 函数单调性的定义引入函数单调性的概念,让学生理解函数单调性的含义。
举例说明函数单调性的两种类型:单调递增和单调递减。
1.2 函数单调性的意义解释函数单调性在数学分析中的重要性,如在求解极值、最值等问题中的应用。
通过实际例子展示函数单调性在现实生活中的应用,如经济学中的需求函数等。
第二章:函数单调性的判断方法2.1 图像法教授如何通过观察函数图像来判断函数的单调性。
引导学生学会识别函数图像中的单调区间。
2.2 导数法介绍导数与函数单调性的关系。
教授如何利用导数的正负来判断函数的单调性。
第三章:函数单调性的应用3.1 求函数的极值讲解如何利用函数单调性来求解函数的极值。
通过例题让学生掌握求解极值的方法。
3.2 求函数的最值介绍如何利用函数单调性来求解函数的最值。
通过例题让学生理解最值的求解过程。
第四章:函数单调性的进一步探讨4.1 单调区间与导数的关系讲解单调区间与导数之间的关系,让学生理解导数在单调性判断中的作用。
通过例题展示导数在单调区间判断中的应用。
4.2 单调性在实际问题中的应用介绍单调性在实际问题中的应用,如优化问题、经济问题等。
通过实际例子让学生学会如何运用单调性解决实际问题。
第五章:综合练习与拓展5.1 综合练习题提供综合练习题,让学生巩固函数单调性的概念、判断方法和应用。
引导学生学会如何运用所学知识来解决问题。
5.2 拓展与应用引导学生思考函数单调性在其他数学领域的应用,如微分方程、线性代数等。
提供一些拓展问题,激发学生的学习兴趣和思考能力。
第六章:函数单调性的高级应用6.1 函数的单调性与其他数学概念的联系探讨函数单调性与其他数学概念的联系,如微分、积分、极限等。
通过例题展示函数单调性在其他数学领域的应用。
6.2 函数单调性在优化问题中的应用介绍函数单调性在优化问题中的应用,如求解最大值、最小值等。
通过实际例子让学生学会如何运用函数单调性来解决优化问题。
第二章二次函数-二次函数的图象与系数的关系(教案)
- a决表图象与y轴的交点。
(2)二次函数图象的顶点坐标、对称轴和开口方向。
-顶点坐标为(-b/2a,(4ac-b^2)/4a),是图象的最高点或最低点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的图象与系数的关系,包括开口方向、对称轴、顶点坐标和实数根等基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-对称轴x=-b/2a,是图象的对称中心。
-开口方向由a的正负决定。
(3)二次函数实数根的判定:通过判别式Δ=b^2-4ac来判断实数根的个数。
- Δ>0,有两个实数根;
- Δ=0,有一个实数根;
- Δ<0,无实数根。
2.教学难点
(1)理解系数a、b、c对二次函数图象的综合影响。
-难点举例:当a、b、c同时变化时,如何判断图象的开口方向、对称轴和顶点坐标的变化。
第二章二次函数-二次函数的图象与系数的关系(教案)
一、教学内容
本节课选自教材第二章“二次函数”中的“二次函数的图象与系数的关系”。教学内容主要包括以下三个方面:
1.二次函数的一般形式:y=ax^2+bx+c,其中a、b、c为常数,a≠0。
2.二次函数图象的开口方向、对称轴和顶点坐标与系数的关系:
- a>0时,图象开口向上;a<0时,图象开口向下。
高中数学《函数图象的变换》教案
高中数学《函数图象的变换》精品教案第一章:函数图象的变换概述1.1 教学目标了解函数图象变换的概念和基本方法。
理解函数图象变换的实质和作用。
1.2 教学内容函数图象的平移变换:水平方向的平移和垂直方向的平移。
函数图象的缩放变换:横向缩放和纵向缩放。
函数图象的旋转变换。
1.3 教学方法采用多媒体演示和实际操作相结合的方式,让学生直观地理解函数图象的变换。
通过例题和练习题,让学生巩固所学内容。
1.4 教学评估通过课堂讲解和练习题,评估学生对函数图象变换概念的理解程度。
通过实际操作和练习题,评估学生对函数图象变换方法的掌握程度。
第二章:函数图象的平移变换2.1 教学目标掌握函数图象的水平方向和垂直方向的平移变换方法。
能够运用平移变换方法改变函数图象的位置。
2.2 教学内容水平方向的平移变换:左加右减的原则。
垂直方向的平移变换:上加下减的原则。
实际操作示例:通过几何画板或函数图象软件,演示函数图象的平移变换过程。
2.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的平移变换方法。
通过例题和练习题,让学生巩固所学内容。
2.4 教学评估通过课堂讲解和练习题,评估学生对函数图象平移变换方法的理解程度。
通过实际操作和练习题,评估学生对函数图象平移变换的掌握程度。
第三章:函数图象的缩放变换3.1 教学目标掌握函数图象的横向缩放和纵向缩放变换方法。
能够运用缩放变换方法改变函数图象的大小。
3.2 教学内容横向缩放变换:横坐标的乘以一个非零常数。
纵向缩放变换:纵坐标的乘以一个非零常数。
实际操作示例:通过几何画板或函数图象软件,演示函数图象的缩放变换过程。
3.3 教学方法通过多媒体演示和实际操作,让学生直观地理解函数图象的缩放变换方法。
通过例题和练习题,让学生巩固所学内容。
3.4 教学评估通过课堂讲解和练习题,评估学生对函数图象缩放变换方法的理解程度。
通过实际操作和练习题,评估学生对函数图象缩放变换的掌握程度。
第二章二次函数-二次函数与几何综合(教案)
三、教学难点与重点
1.教学重点
(1)二次函数图像的几何变换:重点理解图像的平移、伸缩、对称等几何变换的规律及其对函数表达式的影响。
-平移变换:掌握二次函数图像向左、向右、向上、向下平移的规律,理解平移变换对函数解析式中常数项的影响。
-难点举例:在图像的平移、伸缩、对称变换中,如何正确调整函数解析式中的常数项和系数。
-解决方法:通过动态演示和实际操作,帮助学生直观地理解图像变换规律,并学会应用于实际问题。
(2)二次函数与几何关系的综合应用:学生对二次函数图像与坐标轴、直线、圆的交点的理解可能不深刻。
-难点举例:如何确定二次函数图像与坐标轴、直线、圆的交点,以及如何利用这些交点解决几何问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次函数与几何综合》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算抛物线与坐标轴围成图形面积的情况?”(如篮球投篮的抛物线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数与几何综合的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数与几何综合在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-解决方法:通过典型例题的分析和讲解,使学生掌握求解交点的方法,并运用这些交点解决几何问题。
示范教案(函数的表示法
示范教案(函数的表示法)第一章:函数的基本概念1.1 函数的定义教学目标:1. 了解函数的定义及功能;2. 掌握函数的表示方法。
教学内容:1. 函数的定义:函数是一种关系,在数学中,我们称一个非空数集A到另一个非空数集B的规则f:x→y(x属于A,y属于B)为从A到B的一个函数,简称函数。
2. 函数的表示方法:(1)列表法:将函数的输入值和输出值一一对应地列出来;(2)解析法:用数学公式表示函数的关系;(3)图象法:在平面直角坐标系中,将函数的输入值和输出值对应的点依次连接起来,得到函数的图象。
教学活动:1. 引入函数的概念,引导学生理解函数的定义及功能;2. 讲解函数的表示方法,并通过实例让学生掌握列表法、解析法和图象法的具体应用;3. 布置练习题,让学生巩固所学知识。
教学评价:1. 课堂问答:检查学生对函数定义的理解程度;2. 练习题:评估学生对函数表示方法的掌握情况。
第二章:函数的列表法2.1 列表法的概念及应用教学目标:1. 掌握列表法的概念;2. 学会使用列表法表示函数。
教学内容:1. 列表法的概念:将函数的输入值和输出值一一对应地列出来,称为列表法;2. 列表法的应用:通过列表法表示函数,可以直观地了解函数的值域和函数的单调性等性质。
教学活动:1. 引导学生回顾上一章的内容,了解函数的表示方法;2. 讲解列表法的概念,并通过实例让学生掌握列表法的具体应用;3. 布置练习题,让学生巩固所学知识。
教学评价:1. 课堂问答:检查学生对列表法概念的理解程度;2. 练习题:评估学生对列表法的掌握情况。
第三章:函数的解析法3.1 解析法的概念及应用教学目标:1. 掌握解析法的概念;2. 学会使用解析法表示函数。
教学内容:1. 解析法的概念:用数学公式表示函数的关系,称为解析法;2. 解析法的应用:通过解析法表示函数,可以方便地研究函数的性质和变化规律。
教学活动:1. 引导学生回顾上一章的内容,了解函数的表示方法;2. 讲解解析法的概念,并通过实例让学生掌握解析法的具体应用;3. 布置练习题,让学生巩固所学知识。
2019-2020年高一数学上第二章函数:函数2.1.2优秀教案
[教学目的]1.以集合、映射的观点加深学生对函数概念的理解,明确决定函数的三个要素(定义域、值域和对应法则);2.掌握函数的三种主要表示方法(解析法、列表法、图象法);3.能够正确使用“区间”、“无穷大”等记号;4•会求某些函数的定义域和值域,会画一些简单函数的图象.[重点难点]重点:在映射的基础上理解函数的概念;难点:函数的概念.[教学设想]1.教法2.学法3.课时[教学过程]§ 2.2.1函数(一)--函数的概念和表示方法[教学目的]1.以集合、映射的观点加深学生对函数概念的理解,明确决定函数的三个要素(定义域、值域和对应法则);2.掌握函数的三种主要表示方法(解析法、列表法、图象法).[重点难点]重点:在映射的基础上理解函数的概念;难点:函数的概念.[教学过程]一、复习引入1•复习提问:在从集合A到集合B的映射中,⑴对于集合A中的任意一个元素a,在集合B中是不是一定有象?是不是只有一个象?答:必定有象,且只有一个象.⑵对于集合B中的任意一个元素b,在集合A中是不是一定有原象?是不是只有一个原象?答:对于集合B中任意一个元素b,在集合A中不一定有原象,在有原象时,也不一定只有一个.2.复习引入:我们在初中已经学过函数,例如,正比例函数、反比例函数、一次函数、二次函数等.那么函数的概念是什么?在初中我们是怎样定义它呢?那时的定义可叙述为:设在一个变化过程中有两个变量x和y, 如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y 是x的函数.并将自变量x取值的集合叫做函数的定义域,和自变量x的值对应的y值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.我们回想映射的定义,不难知道,上面所说的函数实际上就是集合A到集合E的一个特殊映射f : A-B,构成这种映射的集合A,B 是非空的数集,而且对于自变量在定义域A内的任何一个值x,在集合 B 中都有唯一的函数值和它对应;自变量的值是原象,和它对应的函数值是象;原象的集合A就是函数的定义域,象的集合C就是函数的值域,显然CB.这种用映射刻划的函数定义是我们高中阶段学习的函数定义.二、学习、讲解新课1•用映射刻划的函数定义如果A, B都是非空的数集,那么A到B的映射f : A- B就叫做A 到B的函数,记作y=f(x),其中x€ A, y € B.原象的集合A叫做函数y=f(x)的定义域,象的集合C (CB)叫做函数y=f(x)的值域.函数符号y=f(x)表示“ y是x的函数”,有时简记作函数f(x).这种用映射刻划的函数定义我们称之为函数的近代定义.例如,一次函数是集合 A (A=R到集合B (B=R的映射f : A- B,它使集合B中的元素y=ax+b(aO)与集合A中是元素x对应,记为f(x)=ax+b(a0),集合A为定义域,集合C(C=R为值域(这里C=B .反比例函数是集合A={x|x0}到集合B (B=R的映射f: A-B, 它使集合B中的元素y=k/x(k0)与集合A中是元素x对应,记为f(x)= k/x(k0),集合A为定义域,集合C={y|yO}为值域(这里CB .二次函数是集合 A (A=R到集合B (B=R的映射f: A-B,它使集合B中的元素y=ax2+bx+c(a0)与集合A中是元素x对应,记为f(x)=ax2+bx+c (a0) , 集合A 为定义域 , 当a>0 时 , 集合C={y|y(4ac-b )/4a}为值域;当a<0 时,集合C={y|y(4ac-b )/4a}为值域(这里CB .2.函数的三要素⑴函数符号y=f(x) 的含义:它表示y 是x 的函数,而不是 f 和x 的乘积. 其中 f 表示对应法则,小括号表示把对应法则 f 施加于x 这个变量之上,而等号表示施加之后对应于y.例如,f(x)=2x 2+3,这里是用一个代数式把f 所表示的对应法则具体化了,就是说“把自变量x 先平方再二倍再加3”即得x 对应的函数值,而 f 就表示了这一套运算手续.另外,f还可能是由图表表示的数之间的对应法则(后面再举例).⑵符号f(a)的含义:f(a)表示自变量x取a时所对应的函数值.f 如果由解析式表达,则可算出f(a).例如,f(x)二x 2+2X-1在x=0,x=1,x=2时的函数值分别为f(0)=-1 ,f(1)=2 ,f(2)=7 ;若f 由图表给出,那么就可以通过点的坐标或查表找出f(a).要注意f(a) 与f(x) 的联系与区别:f(a) 表示当自变量x=a 时函数f(x)的值,它是一个常量;而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a) 是f(x) 的一个特殊值.⑶函数的三要素:由函数的定义可知,函数由定义域、值域和对应法则三部分组成,这三部分就叫做函数的三要素, 而确定函数的要素是定义域和对应法则. 当定义域和对应法则确定之后,函数的值域也就随着确定了, 至于用什么字母表示自变量和函数则是无关紧要的,因此y=f(x)=x 2与z=f(t)=t 2表示的是同一函数.另外,在同时研究两个或多个函数时,要用不同的符号来表示它们.除了f(x) 外还常用g(x),F(x),G(x) 等符号.3.函数的表示方法表示函数的方法,常用的有解析法、列表法和图象法三种.⑴解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.例如,s=60t 2,A=r2,S=2,y=ax2+bx+c(a0),y=(x2) 等等都是用解析式表示函数关系的.用解析式表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值. 中学阶段研究的函数主要是用解析法表示的函数.⑵列表法:就是列出表格来表示两个变量的函数关系例如,数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等等都是用列表法来表示函数关系的.用列表法表示函数关系的优点:不需要计算就可以直接看出与自变量的值相对应的函数值.⑶图象法:就是用函数图象表示两个变量之间的关系.例如,气象台应用自动记录器描绘温度随时间变化的曲线,课本中我国人口出生率变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的.用图象法表示函数关系的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质.4•例题评价例1(P54) 已知函数f(x)=3x 2-5x+2 ,求f(3), f(-), f(a+1).解:f(3)=3 x 32-5 X 3+2=14;f(-)=3 X (-) 2-5 X (-)+2=8+5 ;22f(a+1)=3(a+1) 2-5(a+1)+2=3a 2+a.例2( 补) 已知函数f(x)=4x+3 ,g(x)=x 2, 求f[f(x)] ,f[g(x)] ,g[f(x)] ,g[g(x)].解:f[f(x)]=4f(x)+3=4(4x+3)+3=16x+15 ;2f[g(x)]=4g(x)+3=4x 2+3;2 2 2g[f(x)]=[f(x)] 2=(4x+3) 2=16x2+24x+9;g[g(x)]=[g(x)] 2=(x2)2=x4.5.目标检测⑴课本P56练习:1, 2.⑵(补充题)已知f(x)=3x+1,求f(x 2+1)与f(x 2)+1相差多少.答案:⑴课本练习:1.⑴定义域是{-3,-2,-1,0,1,2,3} ,值域是{0,1,4,9};⑵和x=-2对应的象是4;⑶y=9和原象-3,3对应.2.f(0)=-3 ,f(2)=1 ,f(5)=7 ;函数的值域是{-3,-1,1,3,7}.⑵(补充题):解:T f(x 2+1)=3(X2+1)+1=3X2+4, f(x 2)+1=3x2+1 + 1 =3X2+2,而f(x 2+1)-f(x 2)+仁3x2+4-(3x 2+2)=2,二f(x 2+1)与f(x 2)+1 相差2.三、小结1. 函数是一种特殊的映射f: A-B,其中集合A, B必须是非空的数集;y=f(x)表示y是x的函数;2. 定义域、值域和对应法则是函数的三要素,定义域和对应法则一经确定,值域随之确定.3. f(x)与f(a)既有区别也有联系:f(a)表示f(x)在x=a时的函数值,是常量;而f(x)是x的函数,通常是变量.4. 表示函数的方法,常用的有解析法、列表法和图象法三种.四、布置作业(一) 复习:课本内容,熟悉巩固有关概念(二) 书面:课本P57习题2.2 : 1, 3.数学:4.1.2《同角三角函数的基本关系》教案(旧人教版高一下)【同步教育信息】本周教学内容:同角三角函数的基本关系式二.重点、难点:本节重点是同角三角函数的基本关系式1. 平方关系:2. 商数关系:, sin a , COSGtan , cot:cos:si n:3. 倒数关系:【典型例题】[例1]已知,求的其它三角函数值。
高一数学上 第二章 函数:函数2.2.1优秀教案
§2.2.2 函数(二)--函数的解析式[教学目的]使学生进一步巩固函数的概念,能根据函数所具有的某些性质或它所满足的一些关系,求出它的解析式,并掌握解析式的一些形式的变换.[重点难点]重点、难点:函数解析式的求法.[教学过程]一、复习引入⒈用映射刻划的函数的定义是什么?函数符号的含义是什么?函数的表示方法常用的有哪些?答:函数是两个非空数集A到B的特殊映射f:x→y=f(x),x∈R,y∈C⊆B;定义域A、值域C和定义域到值域的对应法则f称为函数的三要素;符号y=f(x)表示y是x的函数,不是f与x的乘积;函数的表示方法常用的有解析法、列表法和图象法,而中学阶段所研究的函数主要是能用解析式表示的函数..⒉引入:我们已经了解了函数的概念和表示方法.在此基础上,今天我们来学习确定函数解析式的几种常见方法.二、学习、讲解新课我们知道,把两个变量的函数关系用一个等式表示,这个等式就叫做函数的解析表达式,简称解析式.下面我们通过例题来说明求函数解析式的几种常用方法例1⑴已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);⑵已知f(x+1)=x+2x,求f(x+1);⑶已知f(x)满足2f(x)+f(1/x)=3x,求f(x);⑷设二次函数f(x)满足f(x+2)=f(2-x)且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式.解:⑴设f(x)=ax+b,则3f(x+1)-2f(x-1)=3[a(x+1)+b]-2[a(x-1)+b]=ax+(5a+b)=2x+17,比较系数得a=2且5a+b=17, ∴a=2,b=7,∴f(x)=2x+7.⑵设u=x+1≥1,则x=u-1,x=(u-1)2,于是f(u)=(u-1)2+2(u-1) =u2-1(u≥1),即f(u)=u2-1(u≥1), ∴f(x+1)=(x+1)2-1=x2+2x(x+1≥1),即f(x+1)=x2+2x(x≥0).⑶∵已知2f(x)+f(1/x)=3x ---①,将①中x换成1/x得2f(1/x) +f(x)=3/x ---②,①×2-②得3f(x)=6x-3/x,∴f(x)=2x-1/x.⑷设f(x)的解析式是f(x)=ax2+bx+c(a≠0), ∵图象过点(0,3),∴有f(0)=c=3,故c=3;又∵f(x)满足f(x+2)=f(2-x)且f(x)=0的两实根平方和为10,∴得对称轴x=2且x12+x22=(x1+x2)2-2x1x2=10,即(-b/2a)=2且(b2/a2)-(6/a)=10,∴a=1,b=-4,∴f(x)=x2-4x+3.说明:求函数解析式常用的方法有:待定系数法(如⑴⑷)、换元法(如⑵)、构造方程法(如⑶)等.例2 高为h,底面半径为r的圆柱形容器内,以单位时间内体积为a 的速度充水,试求出水面高y 与时间t 的函数关系式,并求其定义域.(提示:圆柱的体积=底面积×高)解:由题意有at=πr 2y ,即y=(a/πr 2)t,∵0≤y ≤h,即0≤(a/πr 2)≤h, ∴0≤t ≤πr 2h/a ,即定义域是[0,πr 2h/a].说明:这是函数知识在实际问题中的应用,其定义域是由实际问题所决定的.练习:⑴若f(1/x)=1/(1+x),则f(x)= ;⑵已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x ,则f(x)= ;⑶已知g(x)=1-2x ,f[g(x)]=(1-x 2)/x 2(x ≠0),则f(1/2)= ; ⑷将长为a 的铁丝折成矩形,面积y 关于边长x 的函数关系是 ,其定义域是 ;⑸已知f(x)=⎩⎨⎧>-≤+)0(2)0(12x x x x ,若f(x)=10,则x= ; ⑹已知函数f(x)满足f(ab)=f(a)+f(b)且f(2)=p ,f(3)=q ,则f(36)= .解:⑴令u=1/x ,则x=1/u ,f(u)=u/(1+u),∴f(x)=x/(1+x); ⑵设f(x)=ax 2+bx+c(a ≠0),∵f(0)=1,∴c=1,又f(x+1)-f(x)=2x ,∴a(x+1)2+b(x+1)+1-ax 2-ba-1=2x ,即2ax+a+b=2x ,比较系数得2a=2且a+b=0,∴a=1,b=-1,∴f(x)=x 2-x+1.⑶由g(x)=1-2x=1/2,得x=1/4,∴f(1/2)=[1-(1/4)2]/(1/4)2=15.⑷设矩形的长为x ,则宽为(a-2x)/2,∴y=x[(a-2x)/2]=ax/2-x 2,定义域是(0,a/2).⑸由已知-2x<0,∴f(x)=x2+1=10,即x=±3,又x≤0,∴x=-3.⑹f(36)=f(6×6)=f(6)+f(6)=2f(6)=2f(2×3)=2[f(2)+f(3)]=2(p+q).三、小结⒈解析式表示函数与自变量之间的一种对应关系,是函数与自变量之间建立联系的桥梁;⒉解析式只表示一种对应关系,与所取的字母无关,如y=2x-1与u=2t-1是同一个函数;⒊求函数解析式的方法一般有待定系数法和换元法,若已知函数的构造模式,可用待定系数法;若已知复合函数f[f(x)]的表达式来求f(x),常用换元法;当已知表达式较简单时,甚至可直接用凑合法求解.⒋用赋值法(特殊值法)求函数式中的参数,是一种比较常用的方法.⒌根据实际问题求函数的表达式,是应用函数知识解决实际问题的基础,在设定或选定自变量后去寻找等量关系,以求得表达式,要注意函数定义域应由实际问题确定.四、布置作业(一)复习:课本和课堂上的有关内容.(二)书面:⒈填空:⑴若f(x)=2x+1,则f[f(2)]= ;f(-x)= ;f[f(x)]= .⑵若f(x+1)=x2-2x+5,则f(x)= .⑶若f(x)=2x+3,g(x+2)=f(x),则g(x)= .⑷若3f(x)+2f(1/x)=4x,则f(x)= .⑸若f(x)=x2-mx+n,f(n)=m,f(1)=-1,则f(-5)= .⒉设函数f(x)=x2-4x-4的定义域为[t-2,t-1],对任意t∈R,求函数f(x)的最小值 (t)的解析式,并画出图象.(练习册P26B组第2题)。
北师大版九年级数学下册:第二章 2.3.2《确定二次函数的表达式》精品教案
北师大版九年级数学下册:第二章 2.3.2《确定二次函数的表达式》精品教案一. 教材分析北师大版九年级数学下册第二章第三节《确定二次函数的表达式》的内容是在学生已经掌握了二次函数的一般形式和图象的基础上进行讲解的。
本节课的主要目的是让学生学会如何根据二次函数的图象或者给定的条件来确定二次函数的表达式。
内容主要包括:待定系数法求二次函数的表达式,根据图象确定二次函数的顶点式,利用配方法将一般式化为顶点式。
这些内容对于学生来说,既有挑战性,又有实用性,对于提高学生的数学素养和解决实际问题的能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的一般形式和图象,对于如何从图象或给定条件中获取函数信息有一定的了解。
但是,对于如何运用待定系数法求解二次函数的表达式,如何根据图象确定二次函数的顶点式,以及如何利用配方法将一般式化为顶点式,可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生通过观察、思考、操作、交流等活动,逐步掌握这些方法。
三. 教学目标1.让学生掌握待定系数法求解二次函数的表达式。
2.让学生学会如何根据二次函数的图象确定其顶点式。
3.让学生掌握利用配方法将二次函数的一般式化为顶点式。
4.培养学生的观察能力、思考能力、操作能力和交流能力。
四. 教学重难点1.教学重点:待定系数法求解二次函数的表达式,根据图象确定二次函数的顶点式,利用配方法将一般式化为顶点式。
2.教学难点:待定系数法求解二次函数的表达式,利用配方法将一般式化为顶点式。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过观察、思考、操作、交流等活动,掌握本节课的内容。
六. 教学准备1.准备相关的教学案例和图象。
2.准备教学PPT。
3.准备练习题。
七. 教学过程1.导入(5分钟)通过展示一些二次函数的图象,让学生观察并思考:这些图象有什么特点?你能从中获取哪些信息?从而引出本节课的主题——如何确定二次函数的表达式。
高中数学 第2章 函数教案 苏教版必修1
【课堂新坐标】(教师用书)2013-2014学年高中数学第2章函数教案苏教版必修12.1函数的概念2.1.1 函数的概念和图象第1课时函数的概念(教师用书独具)●三维目标1.知识与技能函数是描述客观世界变化规律的重要数学模型,高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.2.过程与方法(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;3.情感、态度与价值观使学生感受到学习函数的必要性与重要性,激发学习的积极性.●重点、难点重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示.(教师用书独具)●教学建议1.用集合和对应的观点来理解函数建议教师在学生学过的初中函数概念的基础上,利用对不同实例的探究,通过学生积极参与问题讨论并结合对应的观点,引导学生从集合的角度总结函数的概念.2.对函数符号y=f(x)的理解建议教师通过丰富的实例,将问题中两个变量存在的依赖关系抽象为一种对应关系,然后用集合的语言进行刻画,从而得到函数更为确切的定义.●教学流程错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!⇒错误!课标解读1.在集合对应的基础上理解函数的概念,并能应用函数的有关概念解题(重点、难点).2.会求几种简单函数的定义域、值域(重点).函数的概念【问题导思】汽车匀速行驶在高速公路上,行驶速度为v,行驶路程为s,行驶时间为t. 1.上述三个量中,哪个是常量?哪个是变量?【提示】v是常量,s、t是变量.2.三者之间有何关系?【提示】s=vt,s随时间t而变化.3.s,t有何限制?【提示】t≥0,s≥0.4.t给定,s是否确定?【提示】确定并且唯一.1.函数的定义一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.函数值域若A是函数y=f(x)的定义域,则对于A中的每一个x,都有一个输出值y与之对应,我们将所有输出值y组成的集合称为函数的值域.函数的概念判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.【思路探究】求解本题的关键是判断在对应法则f的作用下,集合A中的任意一个元素在集合B中是否都有唯一的元素与之对应.【自主解答】(1)对于A中的元素,如x=9,y的值为y=±9=±3,即在对应法则f之下,B中有两个元素±3与之对应,不符合函数的定义,故不能构成函数.(2)对于A中的元素x=2,在f作用下,|2-2|=0∉B,故不能构成函数.(3)依题意,f(1)=f(2)=3,f(3)=4,即A中的每一个元素在对应法则f之下,在B 中都有唯一元素与之对应,虽然B中有很多元素在A中无元素与之对应,但依函数的定义,仍能构成函数.(4)对于集合A中任意一个实数x,按照对应法则在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.1.判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.2.函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.【解析】能否构成从集合A到集合B的函数,就是看自变量在其定义域内的每一个值是否有确定且唯一的函数值与之对应.容易作出题中给出的前三个函数的图象,结合图象可知它们是函数关系,对于④中函数y=4-x2,集合A中的2对应的数为0,但0不在集合B 中,所以不能构成从A到B的函数.由于⑤中的集合A不是数集,所以此对应法则一定不是函数.故填④⑤.【答案】④⑤函数的定义域求下列函数的定义域.(1)y =x -1+1-x ;(2)y =x +32|x |-3+2-x ;(3)y =x +10|x |-x.【思路探究】 由函数解析式,列出自变量满足的不等式组求解. 【自主解答】 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,即⎩⎪⎨⎪⎧x ≥1,x ≤1,∴x =1,即函数的定义域为{1}. (2)要使函数有意义,需满足⎩⎪⎨⎪⎧2-x ≥0,|x |-3≠0,即⎩⎪⎨⎪⎧x ≤2,x ≠±3,∴x ≤2且x ≠-3,即函数定义域为{x |x ≤2,且x ≠-3}. (3)要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0,即⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,即函数的定义域为{x |x <0,且x ≠-1}.1.求函数定义域时,不要化简所给解析式,而是直接从所给的解析式寻找使解析式有意义时自变量满足的条件.2.函数的定义域要用集合或区间形式表示,这一点初学者易忽视.3.定义域的求法(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f(x)为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况.求下列函数的定义域: (1)y =x -2·x +5;(2)y =x -4|x |-5.【解】 (1)要使函数式有意义,必须满足⎩⎪⎨⎪⎧x -2≥0x +5≥0,∴x ≥2,即函数定义域为[2,+∞).(2)要使函数式有意义,必须满足⎩⎪⎨⎪⎧x -4≥0|x |-5≠0,解得x ≥4且x ≠5.即函数定义域为[4,5)∪(5,+∞).求函数值若f (x )=1-x1+x(x ≠-1),求f (0),f (1),f (1-x ),f (f (x )).【思路探究】 将相应的x 的值代入函数解析式. 【自主解答】 f (0)=1-01+0=1;f (1)=1-11+1=0;f (1-x )=1-1-x 1+1-x =x2-x(x ≠2).f (f (x ))=1-f x1+f x =1-1-x 1+x 1+1-x1+x=x (x ≠-1).1.求函数值时,只需将f (x )中的x 用对应的值(包括值在定义域内的代数式)代入即可. 2.求f (f (x ))时,一般要遵循由里到外的原则.已知f (x )=11+x (x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ),求:(1)f (2),g (2)的值;(2)f (g (2))的值.【解】 (1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.求函数值域求下列函数的值域.(1)y =2x +1,x ∈{1,2,3,4,5};(2)y =x +1; (3)y =x 2-4x +6,x ∈[1,5].【思路探究】 (1)采用代入法;(2)采用直接法;(3)采用配方法. 【自主解答】 (1)∵y =2x +1,且x ∈{1,2,3,4,5}, ∴y ∈{3,5,7,9,11},∴函数的值域为{3,5,7,9,11}. (2)∵x ≥0,∴x +1≥1,∴函数的值域为[1,+∞).(3)配方得y=(x-2)2+2.∵x∈[1,5],由例题)图知2≤y≤11,即函数的值域为[2,11].常用的求值域的几种类型:(1)用表格形式给出的函数,其值域是表格中实数y的值构成的集合;(2)用图象形式给出的函数,其值域是图象在y轴上的投影所覆盖的实数y的集合;(3)用解析式给出的函数:用相应方法(如观察法、配方法,换元法等),由解析式与定义域去确定;(4)实际问题给出的函数:由实际问题的意义确定.在(3)中,如果x的范围改为x∈[4,5],结果又如何?【解】配方得:y=(x-2)2+2,∵x∈[4,5],由例题图知:f(4)≤y≤f(5),即6≤y≤11,即该函数的值域为[6,11].函数的概念理解不清致误判断下列各组函数是否表示同一函数.(1)y =x 2-1x -1与y =x +1;(2)y =x 2-1与y =x -1.【错解】 (1)∵y =x 2-1x -1=x +1x -1x -1=x +1,∴y =x 2-1x -1与y =x +1表示同一函数.(2)∵y =x 2-1=x -1,∴y =x 2-1与y =x -1表示同一函数.【错因分析】 (1)y =x 2-1x -1的定义域为{x |x ∈R 且x ≠1},而y =x +1的定义域为R ,定义域不同.(2)∵y =x 2-1=|x |-1=⎩⎪⎨⎪⎧x -1x ≥0,-x -1x <0,∴y =x 2-1与y =x -1的对应关系不相同.【防范措施】 函数的三要素:定义域、对应法则和值域,实质上有两个关键要素:定义域和对应法则,因为值域通常可以由定义域和对应法则推出来,但是在解题时常常由于忘记了定义域而导致错误.【正解】 (1)∵y =x 2-1x -1的定义域与y =x +1的定义域不相同,∴两个函数不是同一函数.(2)∵y =x 2-1与y =x -1的对应关系不相同, ∴两个函数不是同一函数.函数的概念既是本节课的重点也是本节课的难点,准确理解函数的概念,应明确以下几点:(1)定义域、对应法则和值域是函数的三要素,实际上,值域是由定义域和对应法则决定的,所以看两个函数是否相同,只要看这两个函数的定义域与对应法则是否相同.(2)y=f(x)中f为对应法则,当情况比较简单时,对应关系f可用一个解析式来表示.但在不少问题中,对应关系f也可能不便用或不能用一个解析式来表示,这时就必须采用其他方式,如数表或图象等.(3)函数定义域是使函数有意义的自变量的范围,实际问题要结合自变量的实际意义求解.(4)函数值域是函数值的集合,目前求函数值域仅限于在定义域下求二次函数、一次函数、反比例函数的值域.1.有以下4个对应法则:①A=R,B=R,f:x→y=-1 x ;②A=Z,B=Z,f:x→y=3x;③A=R,B=R,f:x→y=x2+3x-4;④A=R,B=R,f:x→y2=x.其中不能构成从集合A到集合B的函数关系的是________.(填序号)【解析】①中,当集合A中的元素取0时,在集合B中无元素和它对应;②③容易作出题中给出的函数的图象,结合图象可以知道它们是函数关系;④中,当集合A中的x为正数时,集合B中有两个元素和它对应,而当x为负数时,集合B中无元素和它对应.【答案】①④2.函数y=1x+1的定义域是________.【解析】 由题意可知,要使函数有意义,只需x +1>0,解得x >-1.故函数y =1x +1的定义域是{x |x >-1}.【答案】 {x |x >-1}3.函数g (x )=3x +1,x ∈{0,1,2,3,4}的值域为________.【解析】 ∵x ∈{0,1,2,3,4},∴当x 依次取值时,对应g (x )的值为{1,4,7,10,13}. 【答案】 {1,4,7,10,13} 4.求下列函数的定义域. (1)f (x )=x +2·x -2; (2)f (x )=11+1x.【解】 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x +2≥0,x -2≥0,即⎩⎪⎨⎪⎧x ≥-2,x ≥2,∴x ≥2,故函数定义域为[2,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧x ≠0,1+1x≠0,即⎩⎪⎨⎪⎧x ≠0,x =≠-1,故函数定义域为{x |x ∈R ,且x ≠-1,x ≠0}.一、填空题1.下列式子:(1)x 2+y 2=2;(2)x -1+y -1=1;(3)y =x -3+1-x .能确定y 是x 的函数的是________.【解析】 (1)由x 2+y 2=2,得y =±2-x 2,每给一个定义域内的x 值则可能有两个y 值与之对应,由此它不能确定y 是x 的函数.(2)由x -1+y -1=1,得y =(1-x -1)2+1,所以当x 在{x |x ≥1}中任取一个数时,有唯一确定的y 值与之对应,故由它可确定y 是x 的函数.(3)由⎩⎪⎨⎪⎧x -3≥01-x ≥0,得x ∈∅,故由它不能确定y 是x 的函数.【答案】 (2)2.(2013·济宁高一检测)函数f (x )=2-xx +3的定义域是________. 【解析】 要使f (x )=2-xx +3有意义,只需⎩⎪⎨⎪⎧2-x ≥0,x +3≠0,解得x ≤2且x ≠-3,故所求函数的定义域为{x |x ≤2且x ≠-3}.【答案】 {x |x ≤2且x ≠-3}3.若f (x )=x 2+a ,f (2)=3,则f (3)=________. 【解析】 ∵f (2)=2+a =3,∴a =1. ∴f (3)=3+a =3+1=4.【答案】 44.(2013·东营高一检测)函数f (x )=x 2+2x 2+1的值域为________.【解析】 f (x )=x 2+2x 2+1=x 2+1+1x 2+1=1+1x 2+1,∵x 2+1≥1,∴0<1x 2+1≤1,1<1+1x 2+1≤2, ∴f (x )值域为(1,2]. 【答案】 (1,2]5.已知四组函数:①f (x )=x ,g (x )=(x )2;②f (x )=x ,g (x )=(3x )3;③f (n )=2n -1,g (n )=2n +1;④f (x )=x 2-2x -1,g (t )=t 2-2t -1.其中表示同一函数的是________.【解析】 在①中f (x )的定义域为R ,g (x )的定义域为{x |x ≥0},在③中两个函数的对应法则不同,故①③中两个函数是不同函数.在②中(3x )3=x ,且两函数的定义域均为R ,而④中虽然自变量用不同的字母表示,但两个函数的定义域和对应法则都相同,故②④中的两个函数表示同一函数.【答案】 ②④6.若f (x )=9x +1,g (x )=x 2,则f (g (1))=________. 【解析】 由已知得g (1)=12=1, ∴f (g (1))=f (1)=9×1+1=10. 【答案】 107.(2013·杭州高一检测)已知函数f (2x +1)=3x +2,且f (a )=4,则a =________. 【解析】 f (2x +1)=3x +2,令2x +1=a ,则x =a -12,∴f (a )=3×a -12+2=4,解得a =73.【答案】 738.已知等腰△ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为________.【解析】 由题意可知0<y <10,即0<10-2x <10, 解得0<x <5,又底边长y 与腰长x 应满足2x >y , 即4x >10,x >52,综上可知52<x <5.【答案】 {x |52<x <5}二、解答题9.已知函数f (x )=x 2+x -1. (1)求f (2);(2)若f (x )=5,求x 的值. 【解】 (1)f (2)=22+2-1=5. (2)由f (x )=5,即x 2+x -1=5, ∴(x -2)(x +3)=0,∴x =2或x =-3. 10.求下列函数的值域. (1)y =x 2-3x +1;(2)f (x )=1x ,x ∈{-3,-2,-1,1,2};(3)f (x )=1x,x ∈[1,2].【解】 (1)y =(x -32)2-94+1=(x -32)2-54≥-54,故函数f (x )=x 2-3x +1的值域为[-54,+∞).(2)函数的定义域为{-3,-2,-1,1,2},因为f (-3)=-13,f (-2)=-12,f (-1)=-1,f (1)=1,f (2)=12,所以这个函数的值域为{1,12,-13,-12,-1}.(3)当1≤x ≤2时,12≤1x≤1,∴函数f (x )=1x ,x ∈[1,2]的值域为[12,1].11.(2013·贵阳高一检测)已知 f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2.(1)求f (2)和g (a ); (2)求g [f (2)]和f [g (x )].【解】 (1)f (2)=11+2=13,g (a )=a 2+2;(2)f (2)=13,g [f (2)]=(13)2+2=199,f[g(x)]=f(x2+2)=11+x2+2=13+x2.(教师用书独具)知识扩展复合函数的概念和定义域1.复合函数的概念如果函数y=f(t)的定义域为A,函数t=g(x)的定义域为D,值域为C,则当C⊆A时,称函数y=f(g(x))为f与g在D上的复合函数,其中t叫做中间变量,t=g(x)叫做内函数,y=f(t)叫做外函数.2.复合函数的定义域复合函数的定义域是由外函数的定义域、内函数的值域以及内函数的定义域共同确定的.对于复合函数f(g(x)):(1)如果函数f(x)的定义域为A,则f(g(x))的定义域是使函数g(x)∈A的x的取值范围;(2)如果f(g(x))的定义域为A,那么函数f(x)的定义域是函数g(x)的值域.第2课时函数的图象(教师用书独具)●三维目标1.知识与技能(1)能根据函数的解析式利用描点法作出常见函数的图象.(2)能根据函数图象比较函数值的大小.2.过程与方法通过作出函数的图象,渗透数形结合的思想.3.情感、态度与价值观培养学生勇于探索、善于探究的精神,从而激发学生的主体意识,培养学生良好的数学学习品质.●重点、难点重点:根据函数的解析式利用描点法作出常见函数的图象.难点:函数图象的应用.(教师用书独具)●教学建议1.关于函数图象的教学建议教师从初中已学习过的一次函数、二次函数、反比例函数的图象以及现实生活中的常见的函数图象如心电图等入手,让学生先有感性认识,然后再从这些例子中抽象出函数图象的教学定义.这样做符合认识事物的规律,从而使数学的学习变得轻松自如.在作函数图象时,建议教师先让学生回忆初中学过的知识,然后再讲解说明描点作图法作函数图象的步骤以及应注意的地方.要特别提醒学生在画函数图象时注意:一是x的取值分布要恰当,二是连线时要用光滑曲线连结,不要把光滑的曲线画成踞齿状.2.关于应用函数的图象比较函数值大小的教学建议教师在教学中,着重引导学生学习如何作函数的图象,并应用函数图象比较函数值的大小,同时注意数形结合思想的应用.●教学流程通过具体实例,引入学生抽象出函数图象的定义⇒引导学生回忆初中学过的作函数图象的知识,总结用描点法函数图象的基本步骤及注意要点⇒通过例1及其变式训练,使学生掌握画定义域为某一区间的函数图象的方法⇒通过例2及其变式训练,使学生掌握函数图象的识别方法⇒错误!⇒错误!⇒错误!课标解读1.理解函数图象的概念,并能画出一些比较简单的函数的图象(重点).2.能够利用图象解决一些简单的函数问题(难点).函数的图象【问题导思】你能画出函数y=x和函数y=x2的图象吗?【提示】将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.画函数的图象作下列函数的图象,并指出其值域.(1)y =x 2+x (-1≤x ≤1); (2)y =2x(-2≤x <1,且x ≠0).【思路探究】 采用描点法很快可以作出这两个函数的图象,但要注意定义域对它的限制.由图可知y =x 2+x (-1≤x ≤1)的值域为[-14,2];y =2x (-2≤x <1,且x ≠0)的值域为(-∞,-1]∪(2,+∞).【自主解答】 (1)如图(1)所示.其值域为[-14,2].(2)如图(2)所示.其值域为(-∞,-1]∪(2,+∞).(1) (2)1.利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线2.在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.作出下列函数的图象:(1)y=1+x(x∈Z);(2)y=x2-2x,x∈[0,3).【解】(1)这个函数的图象由一些点组成,这些点都在直线y=1+x上,如图(1)所示.(2)∵x∈[0,3),∴这个函数的图象是抛物线y=x2-2x在0≤x<3之间的一段弧,如图(2)所示.函数图象的识别(2013·常州高一检测)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是________.(填序号)【思路探究】分析每个函数图象→提取相应a,b,c的信息→判断abc>0是否成立→得出正确结论【自主解答】①不正确,由图①可知a<0,f(0)=c<0,-b2a<0,∴abc<0与abc>0相矛盾;②不正确,由图②可知a<0,f(0)=c>0,-b2a>0,∴abc<0与abc>0相矛盾;③不正确,由③可知a>0,f(0)=c<0,-b2a<0,∴abc<0与abc>0相矛盾;④正确,由图④可知a>0,f(0)=c<0,-b2a>0,∴abc>0.符合题意.【答案】④求解与二次函数图象有关的问题时,常根据二次函数图像开口向上或向下,分a>0或a<0两种情况分类考虑,另外还要注意c值是抛物线与y轴交点的纵坐标,对称轴的位置或定点坐标等对系数a,b,c的影响.如图所示,函数y=ax2+bx+c与y=ax+b(a≠0)的图象可能是________(填序号).【解析】(1)由抛物线的对称轴是y轴可知b=0,而此时直线应该过原点,故不可能;(2)由抛物线图象可知,a>0,-b2a>0,所以b<0,而此时直线应该与y轴负半轴相交,故不可能;(3)由抛物线图象可知,a<0,-b2a>0,所以b>0,而此时直线应该与y轴正半轴相交,故不可能,由此可知(4)可能是两个函数的图象.【答案】(4)函数图象的应用画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.【思路探究】画图→识图→分析→下结论【自主解答】因为函数f(x)=-x2+2x+3的定义域为R,列表:x …-2-101234…y …-503430-5…描点,连线,得函数图象如图:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0,所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x1<x2<1时,有f(x1)<f(x2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].1.函数图象较形象直观的反映了函数的对称性,函数的值域及函数值随自变量变化而变化的趋势.2.常借助函数图象求解以下几类问题:(1)比较函数值的大小;(2)求函数的值域;(3)分析两函数图象交点个数;(4)求解不等式或参数范围.在题设不变的情况下,求“若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k 的取值范围”.【解】原方程可变形为:-x2+2x+3=k,进而转化为函数y=-x2+2x+3和函数y =k的交点个数问题,根据f(x)=-x2+2x+3在[-1,2]的图象,移动y=k,易知0≤k<3或k=4时,只有一个交点.∴0≤k<3或k=4.数形结合思想在方程问题中的应用(12分)若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.【思路点拨】将方程进行等价变形,转化为一元二次方程在某个范围内有实解的问题,再利用二次函数的图象进行解决.【规范解答】原方程变形为x2-4x+4=1-m,2分即(x-2)2=1-m,设曲线y1=(x-2)2,x∈(0,3)和直线y2=1-m,图象如图所示,由图可知:①当1-m=0时,有唯一解,m=1;②当1≤1-m<4时,有唯一解,即-3<m≤0,∴m=1或-3<m≤0,(此题也可设曲线y1=-(x-2)2+1,x∈(0,3)和直线y2=m后画出图象求解.)一般地,方程的解、不等式的解集、函数的性质等进行讨论时,可以借助于函数的图象直观解决,简单明了.此题也可用代数方法来讨论方程的解的情况,还可用分离参数法来求(也注意结合图象分析只有一个x值).画函数的图象一般还是采用列表、描点、绘图的描点法,主要解决两个问题:位置和形状.函数图象位置的确定是以它的定义域为主要依据;函数图象形状的刻画是依据对应法则而定的.函数的图象也可以是一些点,一些线段,一段曲线等,从函数的图象可以直观地指出函数的定义域和值域.1.已知函数f(x)的图象如图2-1-1所示,则此函数的定义域是________,值域是________.图2-1-1【解析】由图可知,f(x)的定义域为[-3,3],值域为[-2,2].【答案】[-3,3] [-2,2]2.函数y=x+1,x∈Z,且|x|<2的图象是________.(填序号)【解析】由题意知,函数的定义域是{-1,0,1},值域是{0,1,2},函数的图象是三个点,故③正确.【答案】③图2-1-23.(2013·绵阳高一检测)如图2-1-2,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f(1f3)的值等于________.【解析】由图象可知:f(3)=1,∴f(1f3)=f(1)=2. 【答案】 24.画出函数y=x2+2x,x∈[-2,2]的图象,并求其值域.【解】列表如图所示:x -2-101 2y 0-1038描点并连线得如上图象,由图象可得函数的值域为[-1,8].一、填空题1.下列图形中,不可能是函数y=f(x)的图象的是________.【解析】由函数定义知,一个x只能对应一个y值,而在④中当x>0时,一个x值有两个y值与之对应;所以④不可能是函数y=f(x)的图象.【答案】④2.一个函数f (x )的图象如图2-1-3:图2-1-3则该函数的值域是________.【解析】 由图可知f (x )≥-1,故函数的值域为[-1,+∞). 【答案】 [-1,+∞)图2-1-43.已知函数y =ax 2+b 的图象如图2-1-4所示,则a =________,b =________. 【解析】 由图象可知,当x =1时,y =0; 当x =0时,y =-1,即⎩⎪⎨⎪⎧a +b =0b =-1.解得⎩⎪⎨⎪⎧a =1b =-1.【答案】 1 -14.函数y =f (x )的图象如图2-1-5所示,则:图2-1-5(1)使f (x )=0成立的x 的集合________;(2)若1<x 1<x 2<2,则f (x 1)与f (x 2)的大小关系是________; (3)若1<x 0<3,则f (x 0)的符号为________.(填正或负) 【解析】 (1)由图可知,使f (x )=0成立的x 值有-1,1,3; (2)由图可知当1<x 1<x 2<2时,f (x 1)>f (x 2);(3)由于当1<x 0<3时,f (x )的图象在x 轴的下方,故f (x 0)的符号为负. 【答案】 {-1,1,3} f (x 1)>f (x 2) 负5.(2013·连云港高一检测)函数y =|x |x+x 的图象是________.【解析】 函数y =|x |x+x 的定义域为{x |x ≠0},故图象与y 轴交点处应为空心小圆圈,故排除①、②. 当x <0时,y =-1+x <0,故排除④. 【答案】 ③6.作出函数y =1x,x ∈[1,3]的图象后,可知函数的值域为________.【解析】 作出y =1x,x ∈[1,3]的图象如图.由图可知y =1x ,x ∈[1,3]的值域为[13,1].【答案】 [13,1]7.已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2(填“>”“<”或“=”).【解析】 因为对称轴为x =1,所以当x =2时与x =0时的函数值相等. 作出如图所示的大致图象,由图象可知y 1>y 2. 【答案】 >8.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一:则a 的值为________.【解析】 由x =-b2a知,当a >0时,对称轴在y 轴左侧,开口向上;当a <0时,对称轴在y 轴右侧,开口向下,故第三个图正确,由图得⎩⎪⎨⎪⎧a <0,f 0=0,∴a =-1.【答案】 -1 二、解答题9.画出下列函数的图象,并求其值域. (1)f (x )=-x 2+4x ,x ∈[0,5]; (2)f (x )=-1x+2,x ∈(2,4].【解】 f (x )=-x 2+4x(1)=-(x -2)2+4在[0,5]上简图如图(1).故f (x )max =f (2)=4,f (x )min =f (5)=-5.所以f (x )的值为[-5,4]. (2)由f (x )=-1x+2在(2,4]上简图如图(2).(2)可知函数有最大值,无最小值, 且f (x )max =f (4)=-14+2=74.f (x )min >f (2)=-12+2=32.∴f (x )的值域为(32,74].10.已知函数f (x )=12(x -1)2+1的定义域与值域都是[1,b ],其中b >1,求实数b 的值.【解】 f (x )=12(x -1)2+1,图象如图所示.∵x ∈[1,b ]时,f (x )的图象是上升的, 又值域为[1,b ],∴⎩⎪⎨⎪⎧f 1=1,f b =b ⇒12b -12+1=b ,解得b =1或b =3. ∵b >1,∴b =3.11.若关于x 的方程2x 2-3x -k =0在(-1,1)内仅有一个实根,求k 的取值范围.【解】 本题可转化为函数y =2x 2-3x 与函数y =k 在区间(-1,1)内交点个数问题,作出函数y =2x 2-3x =2(x -34)2-98在(-1,1)上的图象,如图所示.由图象知当-1≤k <5或k =-98时,y =k 与y =2x 2-3x 仅有一个交点.知识拓展 函数图象的变换有些函数的解析式之间有一定的联系,因此它们的图象之间也有一定的联系. (1)左右平移:函数y =f (x )的图象向右(a >0)或向左(a <0)平移|a |个单位长度得到函数y =f (x -a )的图象.(2)上下平移:函数y =f (x )的图象向上(k >0)或向下(k <0)平移|k |个单位长度得到函数y =f (x )+k 的图象.平移遵循“左加、右减”,“上加、下减”原则.平移问题除了要分清平移的先后顺序,即平移的方向,还要注意平移的长度.例如:用“x -1”换“x ”是把y =f (x )的图象向右平移一个单位长度,得到y =f (x -1)的图象;点(0,f (0))――→平移到点(1,f (0)),点(1,f (1))――→平移到点(2,f (1))……这样把y =f (x )的图象上的每个点向右平移一个单位长度即可.因此函数解析式中的变量的替换就带来了函数图象的平移了.2.1.2 函数的表示方法(教师用书独具)●三维目标 1.知识与技能(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数; (2)通过具体实例,了解简单的分段函数及应用. 2.过程与方法学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.3.情感、态度与价值让学生感受到学习函数表示的必要性,渗透数形结合思想方法.●重点、难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,分段函数的表示及其图象.(教师用书独具)●教学建议1.关于选用适当的方法来表示函数的教学建议教师在教学中,多结合一些实例,使学生了解各种不同的表示函数的方法的特点,并能学会选择适当的方法表示函数.2.对于函数与其图象的关系的理解与把握建议教师从函数概念出发,结合对应的概念,使学生能够从数形结合的角度准确把握函数与其图象的关系.●教学流程创设问题情境,通过实例,列出函数的三种表示方法:列表法、解析法、图象法⇒引导学生探究3种函数表示方法的特点,并结合一些实例,说明如何选择合适的方法表示函数⇒通过实例,引出分段函数的定义,并探究求分段函数的定义域、值域的方法⇒通过例1及其变式训练,使学生掌握求函数解析式的几种常用方法⇒通过例2及其互动探究,使学生掌握解决有关分段函数的综合问题的方法⇒通过例3及其变式训练,使学生初步掌握函数在实际问题中的应用⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正课标解读1.理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数(重点).2.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值(重点、难点).函数的表示方法。
函数教学教案设计优秀4篇
函数教学教案设计优秀4篇函数教学教案设计篇一教学目标:(一)教学学问点:1.对数函数的概念;2.对数函数的图象和性质。
(二)本领训练要求:1.理解对数函数的概念;2.把握对数函数的图象和性质。
(三)德育渗透目标:1.用联系的观点分析问题;2.认得事物之间的相互转化。
教学重点:对数函数的图象和性质教学难点:对数函数与指数函数的关系教学方法:联想、类比、发觉、探究教学辅佑襄助:多媒体教学过程:一、引入对数函数的概念由同学的预习,可以直接回答“对数函数的概念”由指数、对数的定义及指数函数的概念,我们进行类比,可否料想有:问题:1.指数函数是否存在反函数?2.求指数函数的反函数.3.结论所以函数与指数函数互为反函数.这节课我们所要讨论的便是指数函数的反函数——对数函数.二、讲授新课1.对数函数的定义:定义域:(0,+∞);值域:(∞,+∞)2.对数函数的图象和性质:由于对数函数与指数函数互为反函数.所以与图象关于直线对称.因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.讨论指数函数时,我们分别讨论了底数和两种情形.那么我们可以画出与图象关于直线对称的曲线得到的图象.还可以画出与图象关于直线对称的曲线得到的图象.请同学们作出与的草图,并察看它们具有一些什么特征?对数函数的图象与性质:(1)定义域:(2)值域:(3)过定点,即那时候,(4)上的增函数(4)上的减函数3.练习:(1)比较下列各组数中两个值的大小:(2)解关于x的不等式:思考:(1)比较大小:(2)解关于x的不等式:三、小结这节课我们紧要介绍了指数函数的反函数——对数函数.而且讨论了对数函数的图象和性质.四、课后作业课本P85,习题2.8,1、3函数教学教案设计篇二一、教学内容分析本节内容是高一数学必修4(苏教版)第三章《三角恒等改换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。
函数数学教案(精选7篇)
函数数学教案(精选7篇)函数数学教案(精选7篇)在教学工作者实际的教学活动中,常常需要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
那么问题来了,教案应该怎么写?以下是小编整理的函数数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
函数数学教案篇1一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
九年级数学下册 第二章 二次函数教案 (新版)北师大版 教案
第二章 二次函数一、学生知识状况分析学生的知识技能基础:学生在前面几节课已经学习过并能够独立作出一个二次函数的图像,掌握了二次函数y =ax 2和y=ax 2+c 的一般性质。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了二次函数y=ax 2和y=ax 2+c 的性质的探索过程,在探究过程中体会到了由特殊到一般的辩证规律,积累了解决数学问题的经验和方法。
学生愿意动手操作,乐于和同伴交流意见,形成不同的意见,积极参加探索解决问题的活动,在活动中感受数学的严密性、严谨性。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析第2.4节将讨论一般形式的二次函数)0(2≠++=a c bx ax y 的图象和性质。
它和学生前面几节课学习的2ax y =、c ax y +=2的图象之间有什么区别和联系?如何在已经学习过的类型上通过变化学习新的类型?如何探索一般二次函数的性质等等都是这一节需要关注的。
具体的,本节课的教学目标是:知识与技能1.能够作出y=a (x-h )2和y=a (x-h )2+k 的图象,并能够理解它与y=ax 2的图象的关系,理解a,h 和k 对二次函数图像的影响。
2.能正确说出y=a (x-h )2+k 的图象的开口方向、对称轴和顶点坐标。
过程与方法1.经历探索二次函数y=a (x-h )2+k 的图象的作法和性质的过程。
情感态度与价值观1.在小组活动中体会合作与交流的重要性。
2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识。
教学难点:理解y=a (x-h )2和y=a (x-h )2+k 的图象与y=ax 2的图象的关系,理解a 、h 和k 对二次函数图像的影响。
教学重点:y=a (x-h )2和y=a (x-h )2+k 与y=ax 2的图象的关系,y=a (x-h )2+k 的图象性质三、教学过程分析本课设计了5个教学环节:复习引入、合作探究、练习提高、课堂小结、布置作业。
第二章 函数的应用举例教材分析二 人教版 教案
第二章 函数的应用举例教材分析二一、教学任务的分析1.函数的应用是函数内容里的一个重要方面.学生学习函数的应用,目的就是利用已有的函数知识分析问题解决问题.在初中学习了一次函数、二次函数和反比例函数的基础上,本章又学习了指数函数和对数函数,这就为学生函数的应用奠定了一定的知识基础.通过函数的应用,对学生完善函数的思想、激发应用数学的意识、培养分析问题解决问题的能力、增强进行实践的能力等,都有很大的帮助.2.例2作为函数的应用举例这一节的一个主要内容,它源于实际,取材于学生身边的买房和购车,背景又是学生熟悉的消费贷款.解答该题和解答教科书中的许多函数应用题一样,都需要经历一个建立函数模型并利用所得模型解决问题的过程.但是,由于该题的信息量大、变量多,需要筛选(特别是两个还本付息表有较多的干扰因素,这与过去要用到几个量已知条件就有且只有几个量的题就完全不同),且建模的方向不明,在推理、计算和对问题的回答上都有一定的难度,学生难以直接通过题目得到暗示,从而到一条解决问题的途径,所以在解决问题的过程中一定会遇到不少困难.然而,正因为如此,例2才更贴近实际,才更有可能让学生参与到深层的思维和推理活动中去,才更能体现数学建模的思想,也才更具有挑战性和探索、研究的价值.3.例2是本小节第二堂课的内容,通过上一堂课对例1和练习、习题中部分问题的解决,学生已经初步学习了用数学模型方法解决问题.在此基础上,根据问题的实际情况,例2的教学就应着眼于学生可能遇到的困难,围绕建立函数模型并利用模型解决问题这一重点展开.这样,课堂教学活动就可以依据下列环节来设计:实际问题 函数模型 实际问题的解 函数模型的解还原说明 推理演算抽象概括在以上每一个环节的具体教学活动中,教师都要力求自始至终保持让学生“做数学”的认知要求,从教师和学生两方面来组织和实施解决例2问题的双边活动,从而达到函数应用的目的.二、教学情景的设计每一位学生都清楚,这堂课就是要解决例2的问题.通过上一堂课的教学,学生应该了解了用数学模型方法解决问题的步骤,教师就应当按照这条主线来设计教学任务.但考虑到学生认知发展水平的不同,可能依然会有部分学生没有将这些步骤内化,使得他们在解决问题时不知所措.对此,教师要有充分的准备,使教学情景的设计建立在学生可能遇到的困难之上,以此引导学生按照这些步骤去解决问题,从而进一步地提高对问题解决的认识,而不应该事先告诉学生将要做什么,甚至教他怎么去做.1.尝试回答题目中的问题学生一开始就会主动地阅读题目,迫切地想了解问题情景.教师可以借此鼓励学生尝试回答题目中的问题,以激发学生探索的热情.(1)阅读题目题目信息量大,要留给学生一定的阅读时间.教师可以通过下列问题来了解学生对题意的理解.1)你认为题目要解决的问题是什么?学生可能会有下列不同的回答:A.为该家庭设计一个尽快购到车和房的合理贷款方案;B.先购房后买车快,还是先买车后购房快;C.建立函数模型来选择贷款方案,等.不同的回答反映了对题意理解的不同层次.2)你能解决你的问题吗?教师可以让学生尝试回答自己认为需要解决的问题,当学生陷入困境时,让他们进行讨论,在交流中将学习引向建立函数模型的思考上.思维遇到障碍就会渴望帮助,但教师不能包办代替.3)究竟我们现在需要去解决哪个问题?此时,学生看到了需要解决的数学问题.从实际中提出数学问题是由学生完成的,这就是一种数学意识的培养.(2)尝试建立函数关系式,帮助正确地选择方案学生的思考再次陷入困境,应让他们展开讨论,相互得到启发.教师从中了解学生对问题认识的情况.2.将实际问题概括为函数模型学生要通过下列活动来达到对这一任务的认识和实施.(1)带着问题审题根据学生讨论中暴露出来的困难,引导学生围绕如何建立函数关系式这一问题,从题目中获取所需信息.当明确了实际问题转化的方向后,带着数学问题积极地去题目中扑捉所需的信息才是有效的审题.1)题目中哪些信息对你建立函数关系式有帮助?当教师为学生搭了这个“脚手架”之后,学生就能够主动地从题目中提取有关的数据,发现存在的变量.由学生去建立变量、常量与函数关系式的联系,保持了高水平的认知要求.2)能不能把你获取的信息归归类?由于学生的分类标准不同,他们可能会作出如下分类:A.变量与常量,B.买车与购房数据,C.汽车与住房消费贷款数据,D.积蓄、收入与支出,等.对信息的检索与整理,拉近了与函数关系式的距离,为后面的推理提供了方便,其中蕴含着分类的思想.3)应该从哪一类信息中寻找函数?让学生发表不同的意见,在对比中达成共识.学生发表意见,就会有高水平行为的示X,这就使得教学任务从组织到实施都保持着较高的认知水平;从形成个人意见,到对比不同意见,再到达成共识,就是一个概括的具体过程.4)建立哪个变量的函数对选择方案有利?它是随着哪个变量的变化而变化的?这个问题也许是学生自己提出来的,因为此时他们急切地想建立起这个函数关系式.能否购房买车,关键要看家庭积累的资金够不够,找到家庭积累资金与时间的等量关系自然就变成了他们自己确立的下一阶段的任务.通过教师在学生原有的认知基础上不断地搭“脚手架”,学生始终保持着高水平的认知活动,并在积极的思维过程中发现问题内在的联系,函数关系式开始浮出水面.(2)建立方案一中家庭积累资金关于时间的函数关系式只要能解决其中的一个方案,另一个方案就不再难了.不妨先让学生解决方案一.要留给学生适量的思考时间,并让他们把想法告诉大家.然后,在教师的引导下,将大家的思路进行整理,逐渐得出建立函数关系式的如下几个步骤.先由教师将问题分解为若干个子问题后再让学生去解决(即先告诉学生要做什么只需做什么…,然后再让学生倒过来做),和先由学生发现解决问题所涉及到的若干个子问题再在教师引导下去解决,这两者的认知要求是不同的.前者的认知要求没有保持在“做数学”的水平,教师要求学生用教师认为是最正确的方法去得到正确答案,学生未能探究问题情景,也未能思考多种解题策略,从而使教学任务的实施处于“无联系的程序”水平;而后者则不同,学生是先通过对问题情景的亲身探究,自己提出解题策略,然后才在教师的引导下形成合理的解题方法,教学任务的实施自始至终都保持在“做数学”的认知要求水平上.1)选择贷款期限,并计算出首付房款后家庭的剩余资金.根据表1、表2学生容易想到,贷款期限越长,每月的还款数就越少,家庭的积累资金就增长得越快,于是就能尽快购房买车,所以住房贷款选30年期.容易算得,按70%的比例可贷住房款21万元,首付30%后家中还剩资金1万元.2)建立买车前的家庭积累资金y关于买车时间x的函数关系式.只有得到买车前的家庭积累资金y关于买车时间x的函数关系式后,才有可能知道何时有资金买车.通过审题,这一点学生是能够想到的.在建立函数关系式时,应该反映出学生由一个实际的等量关系式转化为一个抽象的函数关系式的过程,即yx, (x ∈N) .得到实际的等量关系并将其转化为数学模型,是数学建模的核心,是抽象概括能力的具体体现.购房后买车前增加的资金3)建立首付汽车款y关于买车时间x的函数关系式.只有再得到首付汽车款y关于买车时间x的函数关系式后,才能求出买车后的结余资金,从而最终了解何时有资金能力买车.然而,能考虑到首付汽车款是一个影响资金积累的变量,并通过建立函数关系式将其纳入资金积累的函数关系式中,对学生来说可能是一个困难.教师可以让学生讨论,“根据买车前的家庭积累资金y关于买车时间x的函数关系式,能否算出何时有能力买车?”若学生认为求出y=0时的x值即为所求,则再让他们讨论,“此时的首付车款是多少?”让学生在计算中发现自己认识上的不足,从而建立多个量之间的联系.认识的提高是一个循环往复螺旋上升的过程.由于车价每月都在下降,所以首付车款y就存在一个关于买车时间x的函数关系式,即 y = 30%×15(1-1%)x,亦即y×x (x∈N) .4)建立刚买车后家庭的结余资金y1关于买车时间x的函数关系式.-,即y1×x x+1 (x∈N).学生也许会想,求出y1=0时的x值就应该是买车的最早时间了.这是教学过程的一个转折点,应该给学生适量的时间讨论.在学生难以发现存在的问题时,教师不能因此而降低认知要求,应再次为学生搭“脚手架”,让学生思考,“买车后家庭还能维持正常的开支吗?”以此来启发大家.当学生发现了决策存在的漏洞时,会真正感觉到方案选择的复杂和难度.此时最需要教师做的是鼓励大家,因为这离问题的解决只有一步之遥.由于解决问题的途径不可预见,学生会有不同程度的焦虑,这就需要他们有相当大的认知努力,并在任务的完成过程中对自己的认知过程进行自我调控.这样才能保持高水平的认知要求.5)建立买车后月支出y关于买车时间x的函数关系式.由于买车后的月支出所包含的几个量中,只有月偿还汽车贷款是变量,而它是与买车时间有关,所以函数关系式中的自变量应为买车时间.对此,可以让学生在建立函数关系式的过程中得到认识.即y×x+0.370288 (x∈N) .6)建立还清汽车贷款时的家庭结余资金y2关于买车时间x的函数关系式.即,y2 =×x x +8.78272 (x∈N).至此,就得到了解决问题所需的函数.3.利用所得函数关系式求方案一买车所需的最短时间学生从前面的分析已经认识到,y1=0时的x值只说明了何时有资金能力买车,而最快买车的时间应该是由y2 =0时的x值来确定.要认识到这一步是有困难的.教学中,可以让学生利用信息技术工具进行实验,当他们通过自己的探索获得结果后,就能加强对问题的理解.(1)求出y1=0时的x值如何求出y1=0时的x×x x+1=0求x的值;2)通过图形计算器或计算机中相应软件的解方程功能直接求出x的值;3)通过图形计算器或计算机中相应软件的作图功能,作出函数y1×x x+1和y=0的图象,并求出它们的交点坐标,从而求出x的值.若采取第一种策略,显然难以求出x的值,教师就应该引导他们利用图形计算器或计算机进行探索;若采取第二种策略,虽然可以很快地求出x的值,但超出了学生的认知水平;若采取第三种策略,就可以使学生在已学过的利用图象解简单的绝对值方程和一元二次方程的基础上,得到对求x值的认识.所以,教师应该引导学生最终采取第三种策略,利用信息技术工具进行实验,通过探索得到x=13.引入信息技术工具,就为学生提供了一个新的情景,实现了方程-函数-图象的联系,使学生能够利用已有知识解决未知问题.学生的这种实践就是一种创造性的活动.(2)求出y2=0时的x值同样,用图形计算器或计算机中作出函数y2=-16.68864 ×x xy=0的图象,并求出它们的交点坐标,便可求出x=21.这说明,购房后13个月该家庭有资金能力买车,但此时买车就不能保证家庭的收支平衡.所以按照方案一,该家庭购房后至少需要21个月才能买车.然而,这是不是购房买车所需的最短时间呢?这就要求学生还需对所得的解进行验证.4.验证21个月是不是购房买车所需的最短时间这其实就是对两个方案作出抉择.学生们都明白,解决了方案一的问题,同理就可以解决方案二的问题.但是,还需要经过同样多的过程吗?教师可以让学生先讨论,然后在解决问题的过程中得到认识.买车后为了能尽快购房,汽车和住房贷款同样分别选5年期和30年期.按的70 % 比例可贷汽车款10.5万元,首付30 % 后,家中还剩5.5万元.同方案一理,可建立在汽车贷款期内购房前的积累资金y关于购房时间x的函数关系式.汽车贷款期内购房前的积累资金=买车后的剩余资金+,即y x (x ∈N) .由于尚不知在汽车贷款期内是否能购房,而21个月就能实现方案一,所以只需在汽车贷款期内验证方案二是否有可能在21个月内实现即可.这就是在解题过程中得到的认识.令=21,则y ×21=6.483997.而此时购房需首付30%×30×(1+0.8%)21 =10.639315(万元)> 6.483997 (万元).这说明,方案二购房买车所需的时间比方案一的长,应该选择方案一.对方案一结果的验证,就是用数学模型的解还原说明实际问题的解的过程.具有数学模型方法解决问题思想的学生,就能意识到采取验证的策略对两种方案作出选择;相反,不具备这这段时间增加的资金种思想的学生,就很可能采取模仿方案一的方法再次研究方案二的策略.对后者,让他们讨论和实践,就会促进数学模型方法解决问题的思想形成.5.小结当最终找到实际问题的解之后,教师完全有必要让学生对这个复杂的解决问题的过程进行回顾与反思,形成评价.在这里可以通过本道题的第2个问题来创设情景,从而使整个学习活动自始至终都保持在高水平的认知要求上.没有问题情景的回顾,不易调动学生积极的思维活动,常常流于形式,可能下降为低认知水平的简单重复.要最终得到家庭积累资金关于所经过时间的函数关系式,就要根据不同的时间段来划分家庭积累资金的情况,并从中找到不同阶段函数自变量的取值X围.因购房后21个月买车,汽车贷款期限为60个月,住房贷款期限为360个月,所以根据前面得到的函数关系式,分别列出以下函数关系式.(1)购房后买车前的家庭积累资金关于时间的函数关系式为y x (x∈N 且1≤x≤21) ;(2)购车后但还清汽车贷款前,= +( x∈N 且21< x≤81) ,即 y x+2.910535 (x∈N 且21< x≤81) ;(3)还清汽车贷款后,= +刚买车后家庭的结余资金购房后还清汽车贷款前增加的资金还清汽车贷款时的结余资金还清汽车贷款后增加的资金( x∈N 且81< x≤360) ,即 y x+10.413236 (x∈N 且81< x≤360) .综上所述,便可得到家庭积累资金关于所经过时间的函数关系式通过进一步的概括,学生得到了一个完整的数学模型,并在此过程中对应用函数模型方法解决问题的思想有了更深刻的体会,认识过程更加系统了.6.开展课外研究性学习从教材中挖掘素材并结合实际进行探究性活动,是研究性学习的一种方式.教师可以让学生课外在例2的基础上,继续探索.如,提出其它方案,并与例2的方案比较,说明哪种方案更利于尽快地买到车和房;进行实际调查后,改变题目中的一些条件,再来进行相应的研究.研究性学习把课堂学习任务延伸到了课外,使学生的课外学习能够继续保持在高水平的认知要求上.三、使用信息技术的设想1.本题源于实际,特别是题中大量的数据更是来自现实.但是,如果没有信息技术工具的支持,这些复杂数据的处理是比较麻烦的,所以在教学中,学生必须利用科学计算器或图形计算器、计算机,才能处理这些数据,并且要求能熟练地进行运算操作.否则,数据的处理就会变成教学中新的难点,从而影响学生高水平认知活动的持续,破坏了学生思维的连续性.而在处理本题数据上,三种工具的选择应该是平等的,只是对科学计算器的选择,要尽可能选择有保留运算过程、修改、预置小数位数、常数模式等功能的机型,特别要注意的是,简单计算器是不支持本题运算的.2.本题涉及到求函数y×x x+1 (x∈N) 和y =×xx+8.78272 (x∈N) 在y=0时的x值.对于学生来说,这无疑是一个难度很高的问题,只有建立在信息技术支持的基础上才能得到解决.学生可以利用图形计算器或计算机分别作出这两个函数的图象,然后求出它们与直线y=0交点的横坐标,便可得解.但是,这里存在着几个问⎪⎩⎪⎨⎧≤<∈-≤<∈+-≤≤∈+.)36081(413236.10129712.0,)8121(910535.2034779.0,)211(229712.01xNxxxNxxxNxxy且且且=题.(1)机器作出的是连续的图象,而这两个函数的图象应该是散点图,这如何看待?(2)机器求出的交点的横坐标并不是自然数,又该怎么看待?首先我们要认识到,在本道例题的教学中,利用信息技术并不仅仅是为了得到结果.如果是复杂繁琐的数字运算,运算法则学生已很清楚,那么就可以运用信息技术直接得到结果,因为学生把时间花费在这些问题上,对能力的培养没有帮助;如果象该问题,它涉及到学生刚刚学过的指数函数,又是形式比较陌生的初等函数,通过解决它对学生能力的培养有帮助,那么利用信息技术就不仅仅是为了得到结果,更要给学生一个实验的机会,帮助他们用已有的知识来提高认识.既然如此,尽管机器作出的不是要研究的函数图象,但要研究的函数图象却在机器作出的图象上,那么就完全可以利用机器作出的图象来研究这两个函数值的情况.另外,正是通过机器作出图象并求出交点,才了解到交点的横坐标不是自然数,从而才使学生能够认识到,要研究的函数图象与直线y×x x+1 =0 和×x x+8.78272=0并无整数解.这样,才为学生解决问题找到方法,使他们在交点横坐标的基础上结合实际得到一个有效的整数解.四、整合信息技术后对教和学带来的影响1.传统应用题由于受信息技术条件的约束,背景不丰富,远离时代,和学生的实际结合得不紧密,大量数据需要人为加工,题目还常常有明显的解题途径的暗示,所以学生难以通过解这些题,提高自己数学建模的能力,领会问题解决的思想.由于有图形计算器和计算机这些信息技术工具,就使得学生解决象例2这样贴近实际并能体现建模思想的问题成为可能.学生在信息技术的帮助下解决这样的问题,必然带来学习方式的重大变革,对培养分析问题解决问题的能力也有较大的帮助.2.例2的学习与信息技术整合最突出的一点就是,利用图形计算器或计算机作函数图象.具体表现在如下几点.(1)在解决例2问题的过程中,建立函数关系式对学生来说会是最大的困难,而这一困难又主要表现在,建立函数关系式的方向不明,且需要建立的函数关系式又太多.利用机器的函数作图功能,就可以作出学生已经求出的函数的图象,学生一方面就可以对图象上点的坐标进行跟踪研究,将多个量联系起来,对函数(特别是那些不通过机器就难以作出图象的复合函数)会有更深刻的认识;另一方面还可以通过函数图象,从一个局部看到问题的发展规律.这些对学生建立函数关系式是会有积极帮助的.但这种帮助又有别于教师告诉学生应该从哪方面考虑word的“帮助”.二者本质的区别在于,一种是由学生自主探索而获得,另一种则是被动地去走教师指好的路,自然对能力培养的结果就不一样.(2)在分别求函数y×x x+1 (x∈N) 和y=×x x+8.78272 (x∈N) 的y=0对应的x×x x×x x+8.78272=0的解,那么就超出了学生的认知水平.即使是利用图形计算器或计算机的解方程功能直接得解,学生也不易认识.如果是看作求两个函数的自变量值,尽管学生对其很陌生,但它们都是由学生熟悉的函数复合而得的,没有超出学生的认知水平,借助机器作出它们的图象并求出与直线y=0交点的横坐标,就可以探索出所需的x的值.在这里,机器能做的都是学生会做但又不方便做的事.这就不会影响学生能力的发展,相反,还可以促进学生积极的思维,形成数、形、式等多元的.这对帮助学生认识问题的本质,保持高水平的认知活动,都有不可替代的作用.(3)在本题的计算中出现了大量的近似值,特别是在分别求函数y×x x+1 (x∈N) 和y=×x x+8.78272 (x∈N) 的y=0对应的x值时,用机器得到的不是一个自然数值,而是一个近似的非自然数值.这一方面反映了机器并不能替代学生的思维,它主要是通过解决一些单调而繁杂的工作,让学生看到一些不易看到的问题,来发展学生深刻的思维;另一方面又反映了,借助信息技术,可以使学生有机会接触实际生活中常见的近似值,对培养学生合理处理数据的能力是会有帮助的.11 / 11。
初中函数2教案
初中函数2教案教学目标:1. 知识与技能:使学生了解函数的概念,理解函数的表示方法,能够找出实际问题中的函数关系。
2. 过程与方法:培养学生通过实例探究函数特点的能力,提高学生运用函数解决实际问题的能力。
3. 情感、态度与价值观:培养学生对数学的兴趣,使学生感受数学与生活的联系,培养学生的团队协作精神。
教学重难点:1. 重点:函数的概念及表示方法。
2. 难点:函数关系在实际问题中的应用。
教学过程:一、情境导入(5分钟)1. 教师展示一些生活中的实例,如温度与高度的关系,物体运动的路程与时间的关系等,引导学生发现这些实例中都存在一种变量之间的依赖关系。
2. 学生通过观察实例,初步理解函数的概念。
二、新课讲解(15分钟)1. 教师讲解函数的定义,引导学生理解函数的概念。
2. 学生通过实例,学习函数的表示方法,如解析式、表格、图象等。
3. 教师引导学生找出实际问题中的函数关系,并运用函数的表示方法进行表示。
三、课堂练习(10分钟)1. 学生独立完成练习题,巩固所学知识。
2. 教师选取部分学生的练习进行点评,指出优点和不足。
四、拓展与应用(10分钟)1. 教师展示一些实际问题,引导学生运用函数知识解决。
2. 学生分组讨论,合作解决问题,培养团队协作精神。
3. 各组汇报解题过程和结果,教师进行点评。
五、总结与反思(5分钟)1. 教师引导学生总结本节课所学内容,巩固函数的概念和表示方法。
2. 学生分享自己在解决实际问题中的收获和体会。
教学评价:1. 课后作业:检查学生对函数概念和表示方法的掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、思考问题和解决问题的能力。
3. 实际应用:评估学生在解决实际问题中的运用能力。
教学反思:本节课通过生活实例,引导学生认识函数的概念,理解函数的表示方法,并能够找出实际问题中的函数关系。
在教学过程中,注意调动学生的积极性,培养学生的团队协作精神。
在课堂练习和拓展应用环节,注重培养学生的实际应用能力。
高中数学函数二教案模板
高中数学函数二教案模板
教学内容:高中数学
教学目标:
1. 理解函数的概念,掌握函数的定义和性质;
2. 掌握函数的运算,包括函数的加减乘除、函数的复合、函数的逆运算等;
3. 能够解决与函数相关的实际问题。
教学重点与难点:
1. 函数的定义和性质;
2. 函数的运算;
3. 实际问题的应用。
教学准备:
1. 教材:高中数学教材;
2. 教具:黑板、彩色粉笔、电子白板;
3. 辅助资料:相关习题、实际问题。
教学步骤:
一、复习导入(5分钟)
1. 复习函数的定义和性质,并与学生讨论函数的概念;
2. 提出本节课的学习目标和重点。
二、函数的运算(10分钟)
1. 讲解函数的加减乘除运算,并进行相关练习;
2. 讲解函数的复合运算,并进行相关练习。
三、函数的逆运算(10分钟)
1. 讲解函数的逆运算,并进行相关练习;
2. 引导学生运用函数的逆运算解决实际问题。
四、综合练习(15分钟)
1. 给学生布置综合练习题,并让他们在课堂上完成;
2. 对学生的答题情况进行点评和讲解。
五、课堂总结(5分钟)
1. 对本节课的重点内容进行总结,并强调学习要点;
2. 提出下节课的预习任务。
教学反思:
本节课的教学重点是函数的运算和实际问题的应用,通过丰富的练习和例题,学生能够更好地掌握函数的相关知识和运用方法。
在教学过程中,要注重引导学生思考和解决问题的能力,提高他们对数学知识的理解和运用能力。
学高中数学第二章函数函数函数的表示法教案北师大版必修第一册
第二章函数第2.2节函数的表示法教学设计函数的表示法是“函数及其表示”这一节的主要内容之一.学习函数表示法,可以加深对函数概念的理解,领悟数形结合,化归等函数思想,函数的不同表示法能丰富对函数的认识,帮助理解抽象的函数概念.一.教学目标:(1)明确函数的三种表示方法;(2)会根据不同实际情境选择合适的方法表示函数;a(3)通过具体实例,了解简单的分段函数及应用.二. 核心素养1.数学抽象:函数的表示方法的理解2.逻辑推理:通过引导学生回答问题,培养学生的自主学习能力;通过画图像,培养学生的动手操作能力;3.数学运算:会函数图像,根据图像分析函数的定义域,值域4.直观想象:通过一些实际生活应用题,让学生感受到学习函数表示的必要性,并体会数学源于生活用于生活的价值;通过函数的解析式与图像的结合,渗透数形结合思想方法。
5.数学建模:通过本节课的教学,使学生进一步认识到,数学源于生活,数学也可应用于生活,能够解决生活中的实际问题.教学重点函数的三种表示方法,分段函数的概念 教学难点根据题目的已知条件,写出函数的解析式并画出图像PPT1. 函数的表示方法(1)解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
如初中: 学习的一次函数、一元二次函数、反比例函数的关系式,都是解析法.(2)列表法:列表法直接通过表格读数,不必通过计算,就表示出了两个变量之间的对应值,非常直 观.但任何一个表格内标出的数都是有限个,也就只能表示有限个数值之间的函数关系.若 自变量有无限多个数,则只能给出局部的对应关系.(3)图象法:用函数图象表示两个变量之间的关系。
例如:气象台应用自动记录器,描绘温度随时间变化的曲线就是用图象法表示函数关系的。
(见课本P 53页图2—2 我国人口出生变化曲线)比如心电图:但不是所有函数都可以用图像表示:如狄利克雷函数:{1,0()x x f x =为有理数,为无理数2. 函数表示的三种方法对比: 函数表示方法优点缺点 解析法1、简明、全面地概括了变量间的关系; 2、通过解析式求出任意一个自变量的值对应的函数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章复习整体设计教学分析本节课是对第二章的基本知识和方法的总结和归纳,从整体上来把握本章,使学生的基本知识系统化和网络化,基本方法条理化.本章内容,用集合定义函数,将函数拓展为映射,层层深入,环环相扣,组成了一个完整的整体.三维目标通过总结和归纳函数的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.重点难点教学重点:①函数的基本知识.②含有字母问题的研究.③抽象函数的理解.教学难点:①分类讨论的标准划分.②抽象函数的理解.课时安排1课时教学过程导入新课函数的概念和性质以及二次函数是高考的必考内容之一,为了系统掌握本章知识,教师直接点出课题.推进新课新知探究提出问题①本章内容分为几部分?②画出本章的知识结构图.讨论结果:①第1~3节是函数的概念和性质;第4,5节是基本初等函数的性质,可以分为两部分.(答案不唯一)②本章的知识结构图,如图1所示.(答案不唯一)图1应用示例思路1例1 求函数y =3x x 2+4的最大值和最小值. 分析:把变量y 看成常数,则函数的解析式可以整理成必有实数根的关于x 的方程,利用判别式的符号得关于y 的不等式,解不等式得y 的取值范围,从而得函数的最值.解:(判别式法)由y =3x x 2+4得yx 2-3x +4y =0, ∵x ∈R ,∴关于x 的方程yx 2-3x +4y =0必有实数根.当y =0时,则x =0,故y =0是一个函数值;当y ≠0时,则关于x 的方程yx 2-3x +4y =0是一元二次方程,则有Δ=(-3)2-4³4y 2≥0,∴0<y 2≤916.∴-34≤y <0或0<y ≤34, 综上所得,-34≤y ≤34. ∴函数y =3x x 2+4的最小值是-34,最大值是34. 点评:形如函数y =ax 2+bx +c dx 2+ex +f(d ≠0),当函数的定义域是R (此时e 2-4df <0)时,常用判别式法求最值,其步骤是:①把y 看成常数,将函数解析式整理为关于x 的方程的形式mx2+nx +k =0;②分类讨论m =0是否符合题意;③当m ≠0时,关于x 的方程mx 2+nx +k =0中有x ∈R ,则此一元二次方程必有实数根,得n 2-4mk ≥0即关于y 的不等式,解不等式组⎩⎪⎨⎪⎧n 2-4mk ≥0,m ≠0.此不等式组的解集与②中y 的值取并集得函数的值域,从而得函数的最大值和最小值.例2 函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f x x在区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数解析:函数f (x )=x 2-2ax +a 的对称轴是直线x =a ,由于函数f (x )在开区间(-∞,1)上有最小值,所以直线x =a 位于区间(-∞,1)内,即a <1.g (x )=f x x =x +a x-2,下面用定义法判断函数g (x )在区间(1,+∞)上的单调性.设1<x 1<x 2,则g (x 1)-g (x 2)=⎝ ⎛⎭⎪⎫x 1+a x 1-2-⎝ ⎛⎭⎪⎫x 2+a x 2-2 =(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 1-a x 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2=(x 1-x 2)x 1x 2-a x 1x 2, ∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1>0.又∵a <1,∴x 1x 2>a .∴x 1x 2-a >0.∴g (x 1)-g (x 2)<0.∴g (x 1)<g (x 2).∴函数g (x )在区间(1,+∞)上是增函数,函数g (x )在区间(1,+∞)上没有最值.故选D.答案:D点评:定义法判断函数f (x )的单调性步骤是:①在所给区间上任取两个变量x 1、x 2;②比较f(x1)与f(x2)的大小,通常利用作差比较它们的大小,先作差,后将差变形,变形的手段是通分、分解因式,变形的结果常是完全平方加上一个常数或因式的积(商)等;③由②中差的符号确定函数的单调性.注意:函数f(x)在开区间D上是单调函数,则f(x)在开区间D 上没有最大值,也没有最小值.例3 求函数f(x)=x2-1的单调区间.分析:函数f(x)是复合函数,利用口诀“同增异减”来求单调区间.解:函数的定义域是(-∞,-1]∪[1,+∞).设y=u,u=x2-1,当x≥0时,u=x2-1是增函数,y=u也是增函数,又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=x2-1在[1,+∞)上是增函数.当x≤0时,u=x2-1是减函数,y=u也是增函数,又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=x2-1在(-∞,-1]上是减函数.即函数f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,-1].点评:复合函数是指由若干个函数复合而成的函数,它的单调性与构成它的函数的单调性有密切联系,其单调性的规律为:“同增异减”,即复合函数y=f[g(x)],如果y=f(u),u=g(x)有相同的单调性时,函数y=f[g(x)]为增函数,如果具有相异(即相反)的单调性,则函数y=f这[g(x)]为减函数.讨论复合函数单调性的步骤是:①求复合函数的定义域;②把复合函数分解成若干个常见的基本初等函数并分别判断其单调性;③依据复合函数的单调性规律口诀:“同增异减”,判断出复合函数的单调性或写出其单调区间.注意:本题如果忽视函数的定义域,会错误地得到单调递增区间是[0,+∞),单调递减区间是(-∞,0].其避免方法是讨论函数的性质要遵守定义域优先的原则.思路2例1 某商场以100元/件的价格购进一批衬衣,以高于进价的价格出售,销售有淡季与旺季之分,通过市场调查发现:①销售量r(x)(件)与衬衣标价x(元/件)在销售旺季近似地符合函数关系:r(x)=kx+b1;在销售淡季近似地符合函数关系:r(x)=kx+b2,其中k<0,b1>0,b2>0且k、b1、b2为常数;②在销售旺季,商场以140元/件的价格销售能获得最大销售利润;③若称①中r(x)=0时的标价x为衬衣的“临界价格”,则销售旺季的“临界价格”是销售淡季的“临界价格”的1.5倍.请根据上述信息,完成下面问题:(1)填写表格中空格的内容:(2)在销售淡季,该商场要获得最大销售利润,衬衣标价应定为多少元才合适?分析:(1)销售总利润y=销售量r(x)³每件利润,每件利润=标价-进价;(2)转化为求二次函数y=f(x)的最大值,由条件②③求出b2与k的关系,应用二次函数的知识求解.解:(1)在销售旺季,y=(kx+b1)(x-100)=kx2-(100k-b1)x-100b1;在销售淡季,y=(kx+b2)(x-100)=kx2-(100k-b2)x-100b2,故表格为:如下表所示.(2)∵k<0,b1>0,b2>0,∴-b 12k >0,-b 22k>0. ∴50-b 12k >0,50-b 22k>0. 则在销售旺季,y =kx 2-(100k -b 1)x -100b 1,∴当x =100k -b 12k =50-b 12k时,利润y 取最大值;在销售淡季,y =kx 2-(100k -b 2)x -100b 2,∴当x =100k -b 22k =50-b 22k时,利润y 取最大值.由②知,在销售旺季,商场以140元/件价格出售时,能获得最大利润.因此在销售旺季,当标价x =50-b 12k=140时,利润y 取最大值.∴b 1=180k . ∴此时销售量为r (x )=kx -180k .令kx -180k =0,得x =180,即在销售旺季,衬衣的“临界价格”为180元/件.∴由③知,在销售淡季,衬衣的“临界价格”为180³23=120元/件. 可见在销售淡季,当标价x =120元/件时,销售量为r (x )=kx +b 2=0.∴120k +b 2=0.∴b 2k =-120.∴在销售淡季,当标价x =50-b 22k=50+60=110元/件时,利润y 取得最大值. 即在销售淡季,商场要获得最大利润,应将衬衣的标价定为110元/件合适.点评:在应用问题中,需解决利润最大、成本最少、费用最少等问题时,常常通过建立数学模型,转化为求函数最值的问题.其步骤是:①阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景,在此基础上,分析出已知什么,求什么,从中提炼出相应的数学问题;②引进数学符号,建立数学模型.如果条件中没有设未知数,那么要设自变量为x ,函数为y ,必要时引入其他相关辅助变量,并用x 、y 和辅助变量表示各相关量,然后根据问题已知条件,运用已掌握的数学知识及其他相关知识建立关系式,在此基础上将实际问题转化为求函数最值问题,即所谓建立数学模型;③利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果;④将所得结果再转译成具体问题的答案.例2 求函数y =|x +2|-|x -2|的最小值.分析:思路1:画出函数的图像,利用函数最小值的几何意义,写出函数的最小值;思路2:利用绝对值的几何意义,转化为数轴上的几何问题:数轴上到±2两点的距离和的最小值.解:方法1(图像法):y =|x +2|-|x -2|=⎩⎪⎨⎪⎧ -4,2x ,4,x ≤-2,-2<x <2,x ≥2.其图像如图2所示.图2由图像得,函数的最小值是-4,最大值是4.方法2(数形结合):函数的解析式y =|x +2|-|x -2|的几何意义是:y 是数轴上任意一点P 到±2的对应点A 、B 的距离的差,即y =|PA |-|PB |,如图3所示,图3观察数轴可得-|AB |≤|PA |-|PB |≤|AB |,即函数y =|x +2|-|x -2|有最小值-4,最大值4.点评:求函数最值的方法:图像法:如果能够画出函数的图像,那么可以依据函数最值的几何意义,借助图像写出最值.其步骤是:①画函数的图像;②观察函数的图像,找出图像的最高点和最低点,并确定它们的纵坐标;③由最高点和最低点的纵坐标写出函数的最值.数形结合:如果函数的解析式含有绝对值或根号,那么能将函数的解析式赋予几何意义,结合图形利用其几何意义求最值.其步骤是:①对函数的解析式赋予几何意义;②将函数的最值转化为几何问题;③应用几何知识求最值.例3 定义在(-1,1)上的函数f (x )满足:对任意x ,y ∈(-1,1),都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy . (1)求证:函数f (x )是奇函数;(2)若当x ∈(-1,0)时,有f (x )>0,求证:f (x )在(-1,1)上是减函数.分析:(1)定义法证明,利用赋值法获得f (0)的值进而取x =-y 是解题关键;(2)定义法证明,其中判定x 2-x 11-x 1x 2的范围是关键. 证明:(1)函数f (x )定义域是(-1,1),由f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,令x =y =0,得f (0)+f (0)=f ⎝ ⎛⎭⎪⎫0+01+0, ∴f (0)=0.令y =-x ,得f (x )+f (-x )=f ⎝ ⎛⎭⎪⎫x -x1-x 2=f (0)=0, ∴f (-x )=-f (x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减,令0<x 1<x 2<1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f ⎝ ⎛⎭⎪⎫x 1-x 21-x 1x 2=f ⎝ ⎛⎭⎪⎫-x 2-x 11-x 1x 2, ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0.∴x 2-x 11-x 1x 2>0. 又(x 2-x 1)-(1-x 1x 2)=(x 2-1)(x 1+1)<0,∴0<x 2-x 1<1-x 1x 2.∴-1<-x 2-x 11-x 1x 2<0,由题意知f ⎝ ⎛⎭⎪⎫-x 2-x 11-x 1x 2>0, ∴f (x 1)>f (x 2).∴f (x )在(0,1)上为减函数.又f (x )为奇函数,∴f (x )在(-1,1)上也是减函数.点评:对于抽象函数的单调性和奇偶性问题,必用单调性和奇偶性的定义来解决,即定义法是解决抽象函数单调性和奇偶性问题的通法;判断抽象函数的奇偶性与单调性时,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性.知能训练1.已知二次函数f (x )满足条件f (0)=1和f (x +1)-f (x )=2x .(1)求f (x );(2)求f (x )在区间[-1,1]上的最大值和最小值.分析:(1)由于已知f (x )是二次函数,用待定系数法求f (x );(2)结合二次函数的图像,写出最值.解:(1)设f (x )=ax 2+bx +c ,由f (0)=1,可知c =1.而f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b .由f (x +1)-f (x )=2x ,可得2a =2,a +b =0.因而a =1,b =-1.故f (x )=x 2-x +1.(2)∵f (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34, ∴当x ∈[-1,1]时,f (x )的最小值是f ⎝ ⎛⎭⎪⎫12=34,f (x )的最大值是f (-1)=3. 2.已知函数f (x )对任意x 、y ∈R 都有f (x +y )=f (x )+f (y ),且x >0时,f (x )<0,f (1)=-2.(1)判断函数f (x )的奇偶性.(2)当x ∈[-3,3]时,函数f (x )是否有最值?如果有,求出最值;如果没有,请说明理由.分析:本题中的函数f (x )是抽象函数,则用定义法判断f (x )的奇偶性和单调性.(1)首先利用赋值法求得f (0),再利用定义法判断f (x )的奇偶性;(2)利用定义法判断函数f (x )在[-3,3]内的单调性,利用单调法求出最值.解:(1)∵f (x +y )=f (x )+f (y ),∴f (0)=f (0)+f (0).∴f (0)=0.而0=x -x ,因此0=f (0)=f (x -x )=f (x )+f (-x ),即f (x )+f (-x )=0⇒f (-x )=-f (x ).所以函数f (x )为奇函数.(2)设x 1<x 2,由f (x +y )=f (x )+f (y ),知f (x 2-x 1)=f (x 2)+f (-x 1)=f (x 2)-f (x 1),∵x 1<x 2,∴x 2-x 1>0.又当x >0时,f (x )<0,∴f (x 2-x 1)=f (x 2)-f (x 1)<0.∴f (x 2)<f (x 1).∴f (x 1)>f (x 2).函数f (x )是定义域上的减函数,当x ∈[-3,3]时,函数f (x )有最值.当x =-3时,函数有最大值f (-3);当x =3时,函数有最小值f (3).f (3)=f (1+2)=f (1)+f (2)=f (1)+f (1+1)=f (1)+f (1)+f (1)=3f (1)=-6, f (-3)=-f (3)=6.∴当x =-3时,函数有最大值6;当x =3时,函数有最小值-6.拓展提升问题:某人定制了一批地砖.每块地砖(如图4所示)是边长为0.4米的正方形ABCD ,点E ,F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3∶2∶1.若将此种地砖按图5所示的形式铺设,能使中间的深色阴影部分成四边形EFGH .(1)求证:四边形EFGH 是正方形;(2)E ,F 在什么位置时,定制这批地砖所需的材料费用最省?图4 图5分析:(1)由于四块地砖拼出了四边形EFGH ,只需证明△CFE ,△CFG ,△CGH ,△CEH 为等腰直角三角形即可;(2)建立数学模型,转化为数学问题.设CE =x ,每块地砖的费用为W ,求出函数W =f (x )的解析式,转化为讨论求函数的最小值问题.解:(1)图5可以看成是由四块图4所示地砖绕点C 按顺时针旋转90°后得到,则有CE =CF ,∠ECF =90°,∴△CFE 为等腰直角三角形.同理可得△CFG 、△CGH 、△CEH 为等腰直角三角形,∴四边形EFGH 是正方形.(2)设CE =x ,则BE =0.4-x ,每块地砖的费用为W ,设制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a,2a ,a (元),W =12x 2²3a +12³0.4³(0.4-x )³2a +[0.16-12x 2-12³0.4³(0.4-x )]a =a (x 2-0.2x +0.24)=a [(x -0.1)2+0.23](0<x <0.4).由于a >0,则当x =0.1时,W 有最小值,即总费用为最省,即当CE =CF =0.1米时,总费用最省.课堂小结本节课总结了第二章的基本知识并形成知识网络,归纳了常见的解题方法.作业已知函数y =f (x )的定义域是R ,且对任意a 、b ∈R ,都有f (a +b )=f (a )+f (b ),并且当x >0时,f (x )<0恒成立,f (1)=-1.(1)证明函数y =f (x )是R 上的减函数;(2)证明函数y =f (x )是奇函数;(3)求函数y =f (x )在[m ,n ](m ,n ∈Z ,m <n )的值域.分析:(1)利用定义法证明函数的单调性;(2)定义法证明函数的奇偶性,只需证明f (-x )=-f (x );(3)利用单调法求函数的的值域.解:(1)设x 1,x 2∈R ,且x 1<x 2,由题意得f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1).∴f (x 1)-f (x 2)=-f (x 2-x 1).∵x 1<x 2,∴x 2-x 1>0.又∵当x >0时,f (x )<0恒成立,∴f (x 2-x 1)<0.∴f (x 1)-f (x 2)>0.∴函数y =f (x )是R 上的减函数.(2)令a =x ,b =-x ,得f (x -x )=f (x )+f (-x ),即f (x )+f (-x )=f (0).令a =b =0,得f (0)=f (0)+f (0),∴f (0)=0.∴f (x )+f (-x )=0.∴函数y =f (x )是奇函数.(3)由(1)得函数y =f (x )在[m ,n ]上是减函数,则有f (n )≤f (x )≤f (m ).∵对任意a ,b ∈R ,都有f (a +b )=f (a )+f (b ),∴f (m )=f [(m -1)+1]=f (m -1)+f (1)=f (m -2)+2f (1)=…=mf (1)=-m ,同理有f (n )=-n .∴函数y =f (x )在[m ,n ](m ,n ∈Z ,m <n )上的值域是[-n ,-m ].设计感想本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是为了满足高考的要求,对教材内容适当拓展,例如关于函数值域的求法,教材中没有专题学习,本节课对此进行了归纳和总结.备课资料知识点总结——函数概念及性质1.函数的概念:设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫作自变量,x的取值范围A叫作函数的定义域;与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:分式的分母不等于零;偶次方根的被开方数不小于零;对数式的真数必须大于零;如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;实际问题中的函数的定义域还要保证实际问题有意义.求出不等式组的解集即为函数的定义域.2.构成函数的三要素:定义域、对应关系和值域构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备).函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域;应熟练掌握一次函数、二次函数,它是求解复杂函数值域的基础;求函数值域的常用方法有:直接法、换元法、配方法、判别式法、单调性法等.3.函数图像知识归纳定义:在平面直角坐标系中,以函数y=f(x)(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫作函数y=f(x)(x∈A)的图像.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x,y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}.图像C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行于y轴的直线最多只有一个交点的若干条曲线或离散点组成.画法:①描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.②图像变换法:常用变换方法有三种,即平移变换、伸缩变换和对称变换作用:直观地看出函数的性质;利用数形结合的方法分析解题的思路;提高解题的速度;发现解题中的错误.4.区间的概念区间的分类:开区间、闭区间、半开半闭区间;无穷区间;区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,记作“f:A→B”.给定一个集合A到B的映射,如果a∈A,b∈B,且元素a和元素b对应,那么,我们把元素b叫作元素a的像,元素a叫作元素b的原像.说明:函数是一种特殊的映射,映射是一种特殊的对应,(1)集合A、B及对应法则f是确定的;(2)对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;(3)对于映射f:A→B来说,则应满足:①集合A中的每一个元素,在集合B中都有像,并且像是唯一的;②集合A中不同的元素,在集合B中对应的像可以是同一个;③不要求集合B中的每一个元素在集合A中都有原像.6.函数表示法函数图像既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图像的依据;解析法:必须注明函数的定义域;图像法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.解析法便于算出函数值;列表法便于查出函数值;图像法便于量出函数值.分段函数:在定义域的不同部分上有不同的解析表达式的函数,在不同的范围里求函数值时必须把自变量代入相应的表达式.分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集.复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f,g的复合函数.7.函数单调性增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2).图像的特点:如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图像从左到右是上升的,减函数的图像从左到右是下降的.函数单调区间与单调性的判定方法:定义法,任取x1,x2∈D,且x1<x2;作差f(x1)-f(x2);变形(通常是因式分解和配方);定号〔即判断差f(x1)-f(x2)的正负〕;下结论〔指出函数f(x)在给定的区间D上的单调性〕.图像法(从图像上看升降);复合函数的单调性,复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:成其并集.8.函数的奇偶性偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫作偶函数.奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)就叫作奇函数.注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).具有奇偶性的函数的图像的特征:偶函数的图像关于y轴对称;奇函数的图像关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称再根据定义判定;有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f xf-x=±1来判定,利用定理,或借助函数的图像判定.9.函数的解析表达式函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x).10.函数最大(小)值方法利用二次函数的性质(配方法);利用图像;利用函数单调性;如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减,则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增,则函数y=f(x)在x =b处有最小值f(b).(设计者:张新军)。