江苏高考数学附加题卷例题及答案
江苏省数学高考附加题强化练习10套带答案
江苏省数学高考附加题强化试题1班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .选修4—2:矩阵与变换若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.C.选修4 - 4:坐标系与参数方程在极坐标系中,直线的极坐标方程为()3πθρ=∈R ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为2cos ,1cos 2αα=⎧⎨=+⎩x y (α为参数),求直线与曲线C 的交点P 的直角坐标.[必做题] 第22、23题,每小题10分,计20分.22、如图,正四棱锥P ABCD -中,2,AB PA ==AC 、BD 相交于点O ,求:(1)直线BD 与直线PC 所成的角;(2)平面PAC 与平面PBC 所成的角23、某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为P 2,在射击比武活动中每人射击发两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”; (1)若,求该小组在一次检测中荣获“先进和谐组”的概率;(2)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数ξ,如果Eξ≥5,求P 2的取值范围.江苏省数学高考附加题强化试题2班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .选修4—2:矩阵与变换二阶矩阵M 对应的变换将点(1,1)-与(2,1)-分别变换成点(1,1)--与(0,2)-.求矩阵M ;C .选修4—4:坐标系与参数方程若两条曲线的极坐标方程分别为ρ =l 与ρ =2cos(θ+π3),它们相交于A ,B 两点,求线段AB 的长.22.(本小题10分)口袋中有)(*N ∈n n 个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若307)2(==X P ,求(1)n 的值;(2)X 的概率分布与数学期望.23.已知抛物线和抛物线在交点处的两条切线互相垂直,求实数a 的值.江苏省数学高考附加题强化试题3班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .(选修4—2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A ,并写出A 的逆矩阵.C .(选修4—4:坐标系与参数方程)已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(为参数),求直线被曲线C 截得的线段长度.[必做题] 第22、23题,每小题10分,计20分. 22.(本小题满分10分)某中学选派40名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示. (Ⅰ)从“青志队”中任意选3名学生,求这3名同学中至少有2名同学参加活动次数恰好相等的概率; (Ⅱ)从“青志队”中任选两名学生,用ξ表示这两人参加活动次数之差的绝 对值,求随机变量ξ的分布列及数学期望ξE .23.如图,已知抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,T 为抛物线的准线与x 轴的交点. (1)若,求直线l 的斜率;(2)求∠ATF 的最大值.江苏省数学高考附加题强化试题4班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .(选修4—2:矩阵与变换)已知在二阶矩阵M 对应变换的作用下,四边形ABCD 变成四边形''''A B C D ,其中(1,1)A ,(1,1)B -,(1,1)C --,'(3,3)A -,'(1,1)B ,'(1,1)D --.(1)求出矩阵M ;(2)确定点D 及点'C 的坐标.C .(选修4—4:坐标系与参数方程){(,),,A x y x y m ααα===+为参数,{(,)3,3,B x y x t y t t ==+=-为参数,且A B ≠∅ ,求实数m 的取值范围.[必做题] 第22、23题,每小题10分,计20分.22.(本小题满分10分)如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.23.(本小题满分10分) 已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB .⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由.江苏省数学高考附加题强化试题5班级 姓名 得分AP B CD M第22题图21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计20分. B .(选修4—2:矩阵与变换) 求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.C .(选修4—4:坐标系与参数方程)求圆心为36C π⎛⎫⎪⎝⎭,,半径为3的圆的极坐标方程.【必做题】第22题,23题,每题10分,共20分;解答时应写出文字说明,证明过程或演算步骤.22.如图,平面ABDE ⊥平面ABC ,ABC ∆是等腰直角三角形,AC =BC = 4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,122BD AE ==,O M CE AB 、分别为、的中点,求直线CD 和平面ODM 所成角的正弦值.23,已知数列{a n }满足,且a 1=3.(1)计算a 2,a 3,a 4的值,由此猜想数列{a n }的通项公式,并给出证明;A MBCO DE(2)求证:当n≥2时,.江苏省数学高考附加题强化试题6班级 姓名 得分21.[选做题]在B 、C 、D 三小题中只能选做2题,每小题10分,计20分. B .选修4—2:矩阵与变换求关于直线y=3x 的对称的反射变换对应的矩阵A .C .选修4—4:坐标系与参数方程在极坐标系中,过曲线)0(cos 2sin :2>=a a L θθρ外的一点),52(θπ+A (其中,2tan =θθ为锐角)作平行于)(4R ∈=ρπθ的直线与曲线分别交于C B ,.(1)写出曲线L 和直线的普通方程(以极点为原点,极轴为x 轴的正半轴建直角坐标系); (2)若|||,||,|AC BC AB 成等比数列,求a 的值.[必做题] 第22、23题,每小题10分,计20分.22.(本小题10分)如图,已知四棱柱ABCD —A 1B 1C 1D 1中,A 1D ⊥底面ABCD ,底面ABCD 是边长为1的正方形,侧棱AA 1=2。
江苏高考数学试题和答案(含理科附加)
2013年普通高等学校招生全国统一考试(江苏卷)参考公式:位置上。
运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲7、现有某类病毒记作为 X m Y n ,其中正整数 m, n (m 7, n 9)可以任意选 取,则m,n 都取到奇数的概率为▲。
&如图,在三棱柱 A 1B 1C 1 -ABC 中,D E 、F 分别为 AB 、AC A A 1的中点, 设三棱锥F-ADE 的体积为 V ,三棱柱A 1B 1C 1 -ABC 的体积为V 2,则V : V 2 = 9、 抛物线y x 2在x 1处的切线与坐标轴围成三角形区域为 D(包含三角形内部与边界)。
若点P(x , y)是区域D 内的任意一点,贝U x 2y 的取值范围是▲。
棱锥的体积公式:1V Sh ,其中S 是锥体的底面积,h 为高。
3 棱柱的体积公式: V Sh,其中S 是柱体的底面积,h 为咼。
n i i、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应n-(x i X)2,其中 X n i i样本数据X 「X 2,L ,X n 的方差S 2 1、 函数y 3sin (2 X 一)的最小正周期为▲ 。
42、 设z (2 i )2 (i 为虚数单位),则复数z 的模为 ▲2 23、 双曲线——1的两条渐近线的方程为▲ 。
16 94、 集合{-1 , 0, 1}共有 ▲ 个子集。
5、 右图是一个算法的流程图,则输出的 n 的值是 ▲ 。
6、 抽样统计甲、乙两位射击运动员的 5次训练成绩(单位:环),结 果如下:1n <-^2+1t F1 210、设D、E分别是△ ABC的边AB、BC上的点,且AD AB, BE BC。
若2 3uur uuu uuuDE 1 AB 2 AC ( 1、2均为实数),则i+ 2的值为▲。
江苏高考数学附加题卷例题及答案
B .附加题部分三、附加题部分(本大题共6小题,其中第21~24题为选做题,请考生在第21~24题中任选2个小题作答,如果多做,则按所选做的前两题记分。
第25和第26题为必做题.解答应写出文字说明,证明过程或演算步骤.)21.(本小题为选做题,满分10分) 如图,AB 是O 的直径,M 为圆上一点,ME AB ⊥,垂足为E ,点C 为O 上任一点,,AC EM 交于点D ,BC 交DE 于点F . 求证:(1)AE ED FE EB =::;(2)2EM ED EF =⋅.22.(本小题为选做题,满分10分)已知点(,)P x y 是圆222x y y +=上的动点. (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.23.(本小题为选做题,满分10分)求使等式 2 4 2 0 1 03 50 10 -1M ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦成立的矩阵M .24.(本小题为选做题,满分10分)已知(0,)2x π∈,求函数2sin y x =+的最小值以及取最小值时所对应的x 值.25.(本小题为必做题,满分10分) 如图,直三棱柱111A B C ABC -中,12C C CB CA ===,AC CB ⊥. D E 、分别为棱111C C B C 、的中点.(1)求点E 到平面ADB 的距离; (2)求二面角1E A D B --的平面角的余弦值;(3)在线段AC 上是否存在一点F ,使得EF ⊥平面1A DB ?若存在,确定其位置;若不存在,说明理由.26.(本小题为必做题,满分10分)1,2,3,,9这9个自然数中,任取3个不同的在数.(1)求这3个数中至少有1个是偶数的概率; (2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望E ξ.B .附加题部分 三、附加题部分:21.(选做题)(本小题满分10分) 证明:(1)∵MN AB ⊥,∴90B BFE D ∠=-∠=∠, ∴AED ∆∽FEB ∆,∴EB FE ED AE ::=;(5分)(2)延长ME 与⊙O 交于点N ,由相交弦定理,得EM EN EA EB ⋅=⋅,且EM EN =, ∴2EM EA EB =⋅,由(1) ∴2EM ED EF =⋅。
2020年高考(江苏卷)数学附加题训练七(含答案)
2020年高考(江苏卷)数学附加题训练七21.已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦的一个特征值为2,其对应的一个特征向量为21α⎡⎤=⎢⎥⎣⎦.若x a A y b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求x ,y 的值.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.直线sin()()4l m m R πθ-=∈,圆C 的参数方程为13cos 23sin x t y t =+⎧⎨=-+⎩(t 为参数).当圆心C 到直线l 的距离为时,求m 的值。
1111ABCD -A B C D 中,P 是侧棱1CC 上23.如图,在底面边长为1,侧棱长为2的正四棱柱的一点,CP =m .(1)若m =1,求异面直线AP 与BD 1所成角的余弦;11所成角的正弦值是13?若存在,请求出m (2)是否存在实数m ,使直线AP 与平面AB D 的值;若不存在,请说明理由.24.已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点,点A 关于y 轴的对称点为A ',连接A 'B .(1)求抛物线C 标准方程;(2)问直线A 'B 是否过定点?若是,求出定点坐标;若不是,请说明理由.数学附加题训练七答案21.【答案】x ,y 的值分别为0 ,1.【解析】试题分析:利用矩阵的乘法法则列出方程,解方程可得x ,y 的值分别为0 , 1.试题解析:由条件知,2A αα=,即][1222111a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,即][2422a b +⎡⎤=⎢⎥-+⎣⎦,所以24,{22,a b +=-+=解得2,{ 4.a b ==所以1214A ⎡⎤=⎢⎥-⎣⎦.则][][][12221444x x x y A y y x y +⎡⎤⎡⎤===⎢⎥⎢⎥--+⎣⎦⎣⎦,所以22,{44,x y x y +=-+=解得0,{ 1.x y ==所以x ,y 的值分别为0 ,1.22.【答案】m − =1或m − =5 .【解析】根据曲线的极坐标方程、参数方程与普通方程的互化求出曲线的普通方程,利用点到直线的距离公式进行求解,即可得到答案.【详解】直线l 的直角坐标方程为x −y +m =0 ,圆C 的普通方程为(x −1)2 +(y +2)2 =9 ,圆心C 到直线l =1m =-或5m =-.【点睛】本题主要考查了主要考查了参数方程、极坐标方程和普通方程的互化,其中解答中结合点到直线的距离公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.23.【答案】(1)3(2)存在,74m =【解析】(1)采用建系法进行求解;(2)假设存在实数m ,使得直线AP 与平面11AB D 所成角的正弦值是13,则用向量法表示出(1,1,)AP m =- ,再求得平面11AB D 的法向量为(2,2,1)n =- ,结合夹角公式即可求得;【详解】解:(1)建立空间直角坐标系,则(1,0,0)A ,(1,1,0)B ,(0,1,)P m ,(0,1,0)C ,(0,0,0)D ,1(1,1,2)B ,1(0,0,2)D .所以1(1,1,2)BD =-- ,(1,1,1)AP =-.111cos ,3||BD AP BD AP BD AP ⋅==⨯ ,即异面直线AP 与1BD所成角的余弦是3.(2)假设存在实数m ,使直线AP 与平面11AB D 所成的角的正弦值等于13,则11(1,1,0)D B = ,1(1,0,2)AD =- ,(1,1,)AP m =- .设平面11AB D 的法向量为(),,n x y z =r ,则由111n D B n AD ⎧⊥⎨⊥⎩ ,得020x y x z +=⎧⎨-+=⎩,取2x =,得平面11AB D 的法向量为(2,2,1)n =- .由直线AP 与平面11AB D 所成的角的正弦值等于13,得13=,解得74m =,因为02m ≤≤,所以74m =满足条件,所以当74m =时,直线AP 与平面11AB D 所成的角的正弦值等于13.【点睛】本题考查建系法在立体几何中的应用,异面直线所成的夹角,由线面角的正弦值反求参数的问题,能正确表示出各向量和平面的法向量是解题的关键,属于中档题24.【答案】(1)x 2 =4y ;(2)(0,1)【解析】试题分析:(1)将点(2,1 )代入抛物线 C 的方程解得 p 即可得到抛物线C 标准方程;(2)设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,利用点斜式写出直线A B '的方程()2221244x x x y x x --=-,再将直线AB 方程与抛物线方程联立方程组,利用韦达定理化简直线A B '的方程得2114x x y x -=+,即证得直线A B '是否过定点()0,1.试题解析:(1)将点()2,1代入抛物线C 的方程得,2p =,所以,抛物线C 的标准方程为24x y =.(2)设直线l 的方程为1y kx =-,又设()()1122,,,A x y B x y ,则()11,A x y '-,由21,41,y x y kx ⎧=⎪⎨⎪=-⎩得2440x kx -+=,则2121216160,4,4k x x x x k ∆=->⋅=+=,所以()222121212112444A Bx x y y x x k x x x x '---===--+,于是直线A B '的方程为()2221244x x x y x x --=-,所以,()22122121444x x x x x y x x x --=-+=+,当0x =时,1y =,所以直线A B '过定点()0,1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.。
江苏高三数学20套数学附加题
实战演练·高三数学附加分20套江苏省普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 、CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP =12,求PD 的长.B. (选修4-2:矩阵与变换)已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22-222222对应的变换将曲线C 变为曲线C′,求曲线C′的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.D. (选修4-5:不等式选讲)已知x 1、x 2、x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知点A(1,2)在抛物线Γ:y 2=2px 上.(1) 若△ABC 的三个顶点都在抛物线Γ上,记三边AB 、BC 、CA 所在直线的斜率分别为k 1、k 2、k 3,求1k 1-1k 2+1k 3的值; (2) 若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB 、BC 、CD 、DA 所在直线的斜率分别为k 1、k 2、k 3、k 4,求1k 1-1k 2+1k 3-1k 4的值.23. 设m 是给定的正整数,有序数组(a 1,a 2,a 3,…,a 2m )中a i =2或-2(1≤i ≤2m).(1) 求满足“对任意的k(k ∈N *,1≤k ≤m),都有a 2k -1a 2k=-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数A ;(2) 若对任意的k 、l(k 、l ∈N *,1≤k ≤l ≤m),都有| i =2k -12la i |≤4成立,求满足“存在k(k ∈N *,1≤k ≤m),使得a 2k -1a 2k≠-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数B.江苏省普通高等学校招生考试高三模拟测试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM.求证:AB =2AC.B. (选修4-2:矩阵与变换)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.D. (选修4-5:不等式选讲)已知x、y、z均为正数,求证:xyz+yzx+zxy≥1x+1y+1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1) 求S=32的概率;(2) 求S的分布列及数学期望E(S).23.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1) 求f(3);(2) 求f(n).江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A 、B 、C 、D 、E ,求证:AB·CD =BC·DE.B. (选修4-2:矩阵与变换)已知a 、b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.C. (选修4-4:坐标系与参数方程)在极坐标系中,求点M ⎝⎛⎭⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.D. (选修4-5:不等式选讲)已知x 、y 、z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Oxyz 中,正四棱锥PABCD 的侧棱长与底边长都为32,点M 、N 分别在PA 、BD 上,且PM PA =BN BD =13. (1) 求证:MN ⊥AD ;(2) 求MN 与平面PAD 所成角的正弦值.23.设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1) 求概率P(ξ=0);(2) 求ξ的分布列,并求其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A、B、C、D四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=34AD·AE,求∠BAC的大小.B. (选修4-2:矩阵与变换)求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1002M⎣⎢⎡⎦⎥⎤100-1成立的矩阵M.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O、B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M轨迹的长度.D. (选修4-5:不等式选讲)已知a、b、c均为正数,且a+2b+4c=3.求1a+1+1b+1+1c+1的最小值,并指出取得最小值时a、b、c的值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.(1) 分别求出凸四边形、凸五边形、凸六边形的对角线的条数;(2) 猜想凸n边形的对角线条数f(n),并用数学归纳法证明.23.从集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}.(1) 求a、b、c中任意两数之差的绝对值均不小于2的概率;(2) 记a、b、c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,4和5相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,等腰梯形ABCD 内接于圆O ,AB ∥CD.过点A 作圆O 的切线交CD 的延长线于点E.求证:∠DAE =∠BAC.B. (选修4-2:矩阵与变换)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点P ⎝⎛⎭⎫23,π6,直线l :ρcos ⎝⎛⎭⎫θ+π4=22,求点P 到直线l 的距离.D. (选修4-5:不等式选讲)已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O、D分别是AB、PB的中点,PO⊥AB,连结CD.(1) 若PA=2a,求异面直线PA与CD所成角的余弦值的大小;(2) 若二面角APBC的余弦值的大小为55,求PA.23. 设集合A、B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1) 若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2) 若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.江苏省普通高等学校招生考试高三模拟测试卷(六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 是圆O 的直径,圆O 交BC 于点D ,过点D 作圆O 的切线DE 交AC 于点E ,且DE ⊥AC.求证:AC =2OD.B. (选修4-2:矩阵与变换)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.C. (选修4-4:坐标系与参数方程)求经过极坐标为O(0,0)、A ⎝⎛⎭⎫6,π2、B ⎝⎛⎭⎫62,π4三点的圆的直角坐标方程.D. (选修4-5:不等式选讲)已知正数a 、b 、c 满足abc =1,求(a +2)(b +2)(c +2)的最小值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知曲线C :y 2=2x -4.(1) 求曲线C 在点A(3,2)处的切线方程; (2) 过原点O 作直线l 与曲线C 交于A 、B 两不同点,求线段AB 的中点M 的轨迹方程.23已知数列{a n }满足a 1=23,a n +1·(1+a n )=1.(1) 试计算a 2,a 3,a 4,a 5的值;(2) 猜想|a n +1-a n |与115⎝⎛⎭⎫25n -1(其中n ∈N *)的大小关系,并证明你的猜想.江苏省普通高等学校招生考试高三模拟测试卷(七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的一条直径,C 、D 是圆O 上不同于A 、B 的两点,过B 作圆O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN =BM.求证:(1) ∠NBD =∠DBM ;(2) AM 是∠BAC 的角平分线.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m 1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.C. (选修4-4:坐标系与参数方程)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎨⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝⎛⎭⎫3,π3为圆心,且过点⎝⎛⎭⎫2,π2的圆.(1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D. (选修4-5:不等式选讲)已知:a +b +c =1,a 、b 、c>0.求证: (1) abc ≤127;(2) a 2+b 2+c 2≥3abc.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知直线l :y =2x -4与抛物线C :y 2=4x 相交于A 、B 两点,T(t ,0)(t>0且t ≠2)为x 轴上任意一点,连结AT 、BT 并延长与抛物线C 分别相交于A 1、B 1.(1) 设A 1B 1斜率为k ,求证:k·t 为定值;(2) 设直线AB 、A 1B 1与x 轴分别交于M 、N ,令S △ATM =S 1,S △BTM =S 2,S △B 1TN =S 3,S △A 1TN =S 4,若S 1、S 2、S 3、S 4构成等比数列,求t 的值.23如图,在三棱柱ABCA 1B 1C 1中,底面△ABC 为直角三角形,∠ACB =π2,顶点C 1在底面△ABC 内的射影是点B ,且AC =BC =BC 1=3,点T 是平面ABC 1内一点.(1) 若T 是△ABC 1的重心,求直线A 1T 与平面ABC 1所成的角;(2) 是否存在点T ,使TB 1=TC 且平面TA 1C 1⊥平面ACC 1A 1?若存在,求出线段TC 的长度;若不存在,说明理由.江苏省普通高等学校招生考试高三模拟测试卷(八)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .22. (本小题满分10分)已知直线l 的极坐标方程是ρcos ⎝⎛⎭⎫θ+π4=42,圆M 的参数方程是⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ是参数).(1) 将直线的极坐标方程化为普通方程; (2) 求圆上的点到直线l 上点距离的最小值.23. (本小题满分10分)如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m.(1) 若m =1,求异面直线AP 与BD 1所成角的余弦;(2) 是否存在实数m ,使直线AP 与平面AB 1D 1所成角的正弦值是13若存在,请求出m的值;若不存在,请说明理由.24. (本小题满分10分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率为p ,在B 处的命中率为q.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为X 0 2 3 4 5 Pp 1p 2p 3p 4p 5(1) 若p =0.25,p 1=0.03,求该同学用上述方式投篮得分是5分的概率;(2) 若该同学在B 处连续投篮3次,投中一次得2分,用Y 表示该同学投篮结束后所得的总分.若p<23q ,试比较E(X)与E(Y)的大小.江苏省普通高等学校招生考试高三模拟测试卷(九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角△ABC 的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若∠C =50°,求∠DEF 的度数.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.D. (选修4-5:不等式选讲)已知a 、b 、c 均为正数,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某品牌汽车4S 店经销A 、B 、C 三种排量的汽车,其中A 、B 、C 三种排量的汽车依次有5、4、3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B 种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.23. 已知点A(-1,0),F(1,0),动点P 满足AP →·AF →=2|FP →|.(1) 求动点P 的轨迹C 的方程;(2) 在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M 、N ,问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由.江苏省普通高等学校招生考试高三模拟测试卷(十)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2 32 1,求矩阵M 的特征值,并任选择一个特征值,求其对应的特征向量.22.(本小题满分10分)在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =2,试判断圆C 是否通过极点,并求圆C 的极坐标方程.23. (本小题满分10分)如图,已知四棱锥SABCD的底面是边长为4的正方形,顶点S在底面上的射影O落在正方形ABCD内,且O到AB、AD的距离分别是2、1.又P是SC的中点,E是BC上一点,CE=1,SO=3,过O在底面内分别作AB、BC垂线Ox、Oy,分别以Ox、Oy、OS为x、y、z轴建立空间直角坐标系.(1) 求平面PDE的一个法向量;(2) 问在棱SA上是否存在一点Q,使直线BQ∥平面PDE?若存在,请给出点Q在棱SA上的位置;若不存在,请说明理由.24.(本小题满分10分)已知抛物线C:x2=4y,在直线y=-1上任取一点M,过M作抛物线C的两条切线MA、MB.(1) 求证:直线AB过一个定点,并求出这个定点;(2) 当弦AB中点的纵坐标为2时,求△ABM的外接圆的方程.江苏省普通高等学校招生考试高三模拟测试卷(十一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1) 求证:四边形ACBE 为平行四边形; (2) 若AE =6,BD =5,求线段CF 的长.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D. (选修4-5:不等式选讲)已知x、y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某中学有4位学生申请A、B、C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1) 求恰有2人申请A大学的概率;(2) 求被申请大学的个数X的概率分布列与数学期望E(X).23.设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,有f(n)∈Z;②任意m、n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1) 求f(1),f(2),f(3)的值;(2) 求f(n)的表达式.江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CD AB =ABBE.B. (选修4-2:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.D. (选修4-5:不等式选讲)已知函数f(x)=|x +1|+|x -2|-|a 2-2a|.若函数f(x)的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率;(2) 求乙同学投篮次数ξ的分布列和数学期望.23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m ,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n2;当n 为奇数时,m =n -12. (1) 证明:当n ∈N *,n ≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.江苏省普通高等学校招生考试高三模拟测试卷(十三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 内接于圆O ,D 为弦BC 上的一点,过D 作直线DP ∥CA ,交AB 于点E ,交圆O 在A 点处的切线于点P.求证:△PAE ∽△BDE.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤ 1-1且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.D. (选修4-5:不等式选讲)已知:a ≥2,x ∈R .求证:|x -1+a|+|x -a|≥3.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点且AEEB =λ.(1) 证明:D 1E ⊥A 1D ;(2) 若二面角D 1ECD 的大小为π4,求λ的值.23. 设数列{a n }共有n(n ≥3,n ∈N )项,且a 1=a n =1,对每个i(1≤i ≤n -1,i ∈N ),均有a i +1a i ∈⎩⎨⎧⎭⎬⎫12,1,2. (1) 当n =3时,写出满足条件的所有数列{a n }(不必写出过程);(2) 当n =8时,求满足条件的数列{a n }的个数.江苏省普通高等学校招生考试高三模拟测试卷(十四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1(k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a 、k 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A(2,0)、B(0,23)是椭圆两个顶点,求四边形OAMB 面积的最大值.D. (选修4-5:不等式选讲)已知a 、b 、c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱锥PABCD 中,PA =AB =2,点M 、N 分别在线段PA 和BD 上,BN =13BD.(1) 若PM =13PA ,求证:MN ⊥AD ;(2) 若二面角MBDA 的大小为π4,求线段MN 的长度.23. 已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,…,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,…,数组T 中所有数的平均值记为m(T).(1) 若S ={1,2},求m(T);(2) 若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m(T).江苏省普通高等学校招生考试高三模拟测试卷(十五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 中,∠ACB =90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB 、AC 分别交于点E 、F ,EC 与圆O 交于点D ,连结AD 并延长交BC 于P ,已知AE =EB =4,AD =5,求AP 的长.B. (选修4-2:矩阵与变换)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.C. (选修4-4:坐标系与参数方程)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C为OP 的中点,求点Q 的极坐标.D. (选修4-5:不等式选讲)已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x、y、z都成立,求实数a的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Axyz中,已知斜四棱柱ABCDA1B1C1D1的底面是边长为3的正方形,点B、D、B1分别在x、y、z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1) 写出点C1、P、D1的坐标;(2) 设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.23.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1) 写出a2,a3,a4的值;(2) 写出a n的表达式,并用数学归纳法证明.江苏省普通高等学校招生考试高三模拟测试卷(十六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F.求证:△DEF ∽△EAF.B. (选修4-2:矩阵与变换)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试求实数a 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.D. (选修4-5:不等式选讲)已知x >0,y >0,a ∈R ,b ∈R .求证:⎝ ⎛⎭⎪⎫ax +by x +y 2≤a 2x +b 2y x +y .【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在平面直角坐标系xOy 中,已知定点F(1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足PM →·PF →=0,PM →+PN →=0.(1) 求动点N 的轨迹C 的方程;(2) 设点Q 是直线l :x =-1上任意一点,过点Q 作轨迹C 的两条切线QS 、QT ,切点分别为S 、T ,设切线QS 、QT 的斜率分别为k 1、k 2,直线QF 的斜率为k 0,求证:k 1+k 2=2k 0.23.各项均为正数的数列{x n }对一切n ∈N *均满足x n +1x n +1<2.证明:(1) x n <x n +1; (2) 1-1n<x n <1.江苏省普通高等学校招生考试高三模拟测试卷(十七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =10,ED =3,求BC 的长.B. (选修42:矩阵与变换) 已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2301对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.C. (选修44:坐标系与参数方程)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数),曲线C 在点(1,3)处的切线为l.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.D. (选修45:不等式选讲)设x 、y 、z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求证:x +y +z =3147.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验,否则不能通过检验,也不再抽检;若少于2件是合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.(1) 求这批产品通过检验的概率;(2) 已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ξ元,求ξ的概率分布及数学期望.23.已知数列{a n }和{b n }的通项公式分别为a n =3n -19,b n =2n .将{a n }与{b n }中的公共项按照从小到大的顺序排列构成一个新数列记为{c n }.(1) 试写出c 1,c 2,c 3,c 4的值,并由此归纳数列{c n }的通项公式; (2) 证明你在(1)所猜想的结论.江苏省普通高等学校招生考试高三模拟测试卷(十八)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为圆O 上一点,AE =AC ,DE 交AB 于点F.求证:△PDF ∽△POC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.C. (选修4-4:坐标系与参数方程) 在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.D. (选修4-5:不等式选讲)已知x、y、z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1) 求异面直线BA1与CB1夹角的余弦值;(2) 求二面角BAB1C平面角的余弦值.23.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1) 当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2) 求出所有的正整数n,使得5a n+1a n+1为完全平方数.江苏省普通高等学校招生考试高三模拟测试卷(十九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,设AB 、CD 是圆O 的两条弦,直线AB 是线段CD 的垂直平分线.已知AB =6,CD =25,求线段AC 的长度.B. (选修4-2:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32,求ad -bc 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.设点A 、B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求线段AB 的最小值.。
江苏省高考数学附加题强化试题(4) 理
江苏省数学高考附加题强化试题4班级 姓名 得分21.[选做题]在B 、C 、D 四小题中只能选做2题,每小题10分,计 B .(选修4—2:矩阵与变换)已知在二阶矩阵M 对应变换的作用下,四边形ABCD 变成四边形''''A B C D ,其中(1,1)A ,(1,1)B -, (1,1)C --,'(3,3)A -,'(1,1)B ,'(1,1)D --.(1)求出矩阵M ;(2)确定点D 及点'C 的坐标. C .(选修4—4:坐标系与参数方程){(,),,A x y x y m ααα===+为参数},{(,)3,3,B x y x t y t t ==+=-为参数},且A B ≠∅,求实数m 的取值范围.D .(选修4-5:不等式选讲)已知,,a b c R ∈,证明不等式: (1)66622218227a b c a b c ++≥; (2)22249236a b c ab ac bc ++≥++.[必做题] 第22、23题,每小题10分,计 22.(本小题满分10分)如图所示,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且垂直于底面ABCD ,底面ABCD 是边长为2的菱形,︒=∠60BAD ,M 为PC 上一点,且PA ∥平面BDM . ⑴求证:M 为PC 中点;⑵求平面ABCD 与平面PBC 所成的锐二面角的大小.23.(本小题满分10分) 已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB . ⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由.AP B C D M 第22题图江苏省数学高考附加题强化试题4参考答案21.(B) 解:(1)设⎥⎦⎤⎢⎣⎡=d c b a M ,则有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡1111,3311d c b a d c b a , 故⎪⎪⎩⎪⎪⎨⎧=+-=+--=+=+1133d c b a d c b a 解得1,2,2,1-=-===d c b a ,1221M ⎡⎤∴=⎢⎥--⎣⎦. (5分)(2)由⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--33111221知,)3,3('-C , 由⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131323231知,)1,1(-D . (10分)21.(C)解:22{(,)()2}A x y x y m =+-=,{(,)6}B x y x y =+=,(5分)[4,8]m ≤∈.(10分)21.(D)证明:(1)由均值不等式可得6662221822733a b ca b c ++≥=, 即66622218227a b c a b c ++≥,故所证成立.(5分)(2)因为 2244a b ab +≥ ①,224912b c bc +≥ ②,2296a c ac +≥ ③ ①②③式两边相加,得 22228184612a b c ab ac bc ++≥++ 即22249236a b c ab ac bc ++≥++,故所证成立.(10分)22.证明 ⑴连接AC 与BD 交于G ,则平面PAC ∩平面BDM=MG , 由PA ∥平面BDM ,可得PA ∥MG ,∵底面ABCD 是菱形,∴G 为AC 中点, ∴MG 为△PAC 中位线,∴M 为PC 中点. (4)⑵取AD 中点O ,连接PO ,BO , ∵△PAD 是正三角形,∴PO ⊥AD ,又∵平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD ,∵底面ABCD 是边长为2的菱形,︒=∠60BAD ,△ABD 是正三角形, ∴AD ⊥OB ,∴OA ,OP ,OB 两两垂直,以O 为原点OA ,OB ,OP 分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,如右图所示,则()0,0,1A ,()0,3,1B ,()0,0,1-D ,()3,0,0P , ∴()3,0,1=DP ,()0,3,1-=AB ,∴()()⎪⎪⎭⎫ ⎝⎛=+=+=23,23,02121()3,3,0--=BP ,()0,0,2==DA CB ,∴023230=+-=⋅,0000=++=⋅CB DM ∴DM ⊥BP ,DM ⊥CB ,∴DM ⊥平面PBC , ∴22,cos >=< 平面ABCD 与平面PBC 所成的锐二面角的大小为4π…………………………………10 23. 解:⑴由⎩⎨⎧==pyx x y 22解得)2,2(),0,0(p p B A∴p p p AB 22442422=+==,∴2=p ………………………………………4 ⑵由⑴得)4,4(),0,0(,42B A y x =假设抛物线L 上存在异于点A 、B 的点C )4,0()4,(2≠≠t t t t ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线令圆的圆心为),(b a N ,则由⎩⎨⎧==NC NA NB NA 得⎪⎩⎪⎨⎧-+-=+-+-=+222222222)4()()4()4(t b t a b a b a b a 得⎪⎪⎩⎪⎪⎨⎧++=+-=⇒⎪⎩⎪⎨⎧+=+=+83248481244222t t b tt a t t tb a b a …………………………………………6 ∵抛物线L 在点C 处的切线斜率)0(2|≠='==t ty k t x又该切线与NC 垂直, ∴0412212432=--+⇒-=⋅--t t bt a t t a t b ∴08204128324)84(223322=--⇒=--++⋅++-⋅t t t t t t t t t t (8)∵4,0≠≠t t ,∴2-=t故存在点C 且坐标为(-2,1) (10)。
2020年江苏省高考数学附加题专项7套含答案
专题一请同学从下面所给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换设矩阵A =⎣⎡⎦⎤m 00 n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎡⎦⎤10,属于特征值2的一个特征向量为⎣⎡⎦⎤01,求矩阵A .【题目2】 选修4-4:坐标系与参数方程已知直线l :⎩⎨⎧x =1+t ,y =-t (t 为参数)与圆C :⎩⎨⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;【题目1】 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E (ξ).解 (1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况:甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球.所以比赛结束后甲的进球数比乙的进球数多1个的概率为【题目2】 在(1+x +x 2)n =D 0n +D 1n x +D 2n x 2+…+D r n x r +…+D 2n -1n x 2n -1+D 2n n x 2n 的展开式中,把D 0n ,D 1n ,D 2n,…,D 2n n 叫做三项式系数. (1)当n =2时,写出三项式系数D 02,D 12,D 22,D 32,D 42的值;(2)类比二项式系数性质C m n +1=C m -1n +C m n (1≤m ≤n ,m ∈N ,n ∈N ),给出一个关于三项式系数 .专题二请同学从下面所给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换已知曲线C :y 2=12x ,在矩阵M =⎣⎡⎦⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎡⎦⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程.【题目2】 选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的普通方程;(2)圆的极坐标方程.必做部分【题目1】如图,在多面体ABCDEF中,ABCD为正方形,ED⊥平面ABCD,FB∥ED,且AD=DE=2BF=2.(1)求证:AC⊥EF;(2)求二面角C-EF-D的大小.【题目2】已知k,m∈N*,若存在互不相等的正整数a1,a2,…,a m,使得a1a2,a2a3,…,a m-1a m,a m a1同时小于k,则记f(k)为满足条件的m的最大值.(1)求f(6)的值;(2)对于给定的正整数n (n >1),(ⅰ)当n (n +2)<k ≤(n +1)(n +2)时,求f (k )的解析式;(ⅱ)当n (n +1)<k ≤n (n +2)时,求f (k )的解析式.专题三请同学从下面所给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换设二阶矩阵A ,B 满足A -1=⎣⎡⎦⎤1 23 4,(BA )-1=⎣⎡⎦⎤1 00 1,求B -1.【题目2】 选修4-4:坐标系与参数方程在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.必做部分【题目1】某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,4 7.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.【题目2】 已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ′,连接A ′B .(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 专题4请同学从下面给的三题中选定两题作答【题目1】 选修4-2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 2c d (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎡⎦⎤21,⎣⎡⎦⎤11,求矩阵A 的逆矩阵A -1.【题目2】 选修4-4:坐标系与参数方程已知直线l 的极坐标方程为ρsin ()θ-π3=3,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.必做部分【题目1】 如图,在直三棱柱ABC -A 1B 1C 1中,已知CA =CB =1,AA 1=2,∠BCA =90°.(1)求异面直线BA 1与CB 1夹角的余弦值;(2)求二面角B-AB1-C平面角的余弦值.【题目2】在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1)当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2)求出所有的正整数n,使得5a n+1a n+1为完全平方数.专题五2.(2018·江苏省盐城中学调研)已知矩阵M =⎣⎡⎦⎤0 ab 0满足:Ma i =λi a i ,其中λi (i =1,2)是互不相等的实常数,a i (i =1,2)是非零的平面列向量,λ1=1,a 2=⎣⎡⎦⎤11,求矩阵M .3.(2018·苏州、南通等六市模拟)在极坐标系中,求以点P ()2,π3为圆心且与直线l: ρsin ()θ-π3=2相切的圆的极坐标方程.5.已知点A(1,2)在抛物线F:y2=2px上.(1)若△ABC的三个顶点都在抛物线F上,记三边AB,BC,CA所在直线的斜率分别为k1,k2,k3, 求1k1-1k2+1k3的值;(2)若四边形ABCD的四个顶点都在抛物线F上,记四边AB,BC,CD,DA所在直线的斜率分别为k1,k2,k3,k4,求1k1-1k2+1k3-1k4的值.6.已知f n (x )=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k )n +…+(-1)n C n n (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论. .专题六2.(2018·苏州、南通等六市模拟)在平面直角坐标系xOy 中,已知A ()0,0,B ()3,0,C ()2,2.设变换T 1, T 2对应的矩阵分别为M =⎣⎡⎦⎤1 02, N =⎣⎡⎦⎤2 00 1,求对△ABC 依次实施变换T 1, T 2后所得图形的面积.3.已知两个动点P ,Q 分别在两条直线l 1:y =x 和l 2:y =-x 上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π],记OM →=OP →+OQ →,求动点M 的轨迹的普通方程.5.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X的概率分布与数学期望.6.设n 个正数a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n (n ∈N *且n ≥3). (1)当n =3时,证明:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3;(2)当n =4时,不等式a 1a 2a 3+a 2a 3a 4+a 3a 4a 1+a 4a 1a 2≥a 1+a 2+a 3+a 4也成立,请你将其推广到n (n ∈N *且n ≥3)个正数a 1,a 2,…,a n 的情形,归纳出一般性的结论并用数学归纳法证明.专题七2.若二阶矩阵M 满足⎣⎢⎡⎦⎥⎤-2122-1M =⎣⎡⎦⎤-3 0 4-1,求曲线4x 2+4xy +y 2-12x +12y =0在矩阵M 所对应的变换作用下得到的曲线的方程.3.已知直线的极坐标方程为ρsin ()θ+π4=22,圆M 的参数方程为⎩⎨⎧x =2cos θ,y =-2+2sin θ(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值.5.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =2,AB ⊥AC ,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段A 1B 的中点,求直线MP 与直线AC 所成角的大小;(2)若N 是CC 1的中点,直线A 1B 与平面PMN 所成角的正弦值为77,求线段BP 的长度.6.已知()1+12xn展开式的各项依次记为a 1(x ),a 2(x ),a 3(x ),…,a n(x ),an +1(x ).设F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)·a n +1(x ).(1)若a 1(x ),a 2(x ),a 3(x )的系数依次成等差数列,求n 的值; (2)求证:对任意x 1,x 2∈[0,2],恒有|F (x 1)-F (x 2)|≤2n -1(n +2)-1专题一请同学从下面所给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换设矩阵A =⎣⎡⎦⎤m 0n ,若矩阵A 的属于特征值1的一个特征向量为⎣⎡⎦⎤10,属于特征值2的一个特征向量为⎣⎡⎦⎤01,求矩阵A .解 由题意得⎣⎡⎦⎤m 00 n ⎣⎡⎦⎤10=1⎣⎡⎦⎤10,⎣⎡⎦⎤m 00 n ⎣⎡⎦⎤01=2⎣⎡⎦⎤01,所以⎩⎨⎧m =1,n =2,故A =⎣⎡⎦⎤1 00 2. 【题目2】 选修4-4:坐标系与参数方程已知直线l :⎩⎨⎧x =1+t ,y =-t (t 为参数)与圆C :⎩⎨⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数.(1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4,圆心到直线的距离d =12,故AB =2r 2-d 2=14. (2)圆C 的直角坐标方程为x 2+(y -m )2=4,直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2. 必做部分【题目1】 甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的分布列和数学期望E (ξ). 解 (1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个的概率为P =C 13×23×()132×()123+C 23×()232×()13×C 13×()123+C 33×()233×C 23×()123=1136.(2)ξ的取值为0,1,2,3,则P(ξ=0)=()133×()123+C13×23×()132×C13×()123+C23×()232×13×C23×()123+()233×()123=724,P(ξ=1)=()133×C13×()123+C13×23×()132×()123+C13×23×()132×C23×()123+C23×()232×13×C13×()123+C23×()232×13×()123+()233×C23×()123=1124,P(ξ=2)=()133×C23×()123+C23×()232×13×()123+C13×23×()132×()123+()233×C13×()123=524,P(ξ=3)=()133×()123+()233×()123=124,所以ξ的分布列为所以数学期望E(ξ)=0×724+1×1124+2×524+3×124=1.【题目2】在(1+x+x2)n=D0n+D1n x+D2n x2+…+D r n x r+…+D2n-1n x2n-1+D2n n x2n的展开式中,把D0n,D1n,D2n,…,D2n n叫做三项式系数.(1)当n=2时,写出三项式系数D02,D12,D22,D32,D42的值;(2)类比二项式系数性质C m n+1=C m-1n+C m n(1≤m≤n,m∈N,n∈N),给出一个关于三项式系数D m+1n+1(1≤m≤2n-1,m∈N,n∈N)的相似性质,并予以证明.解(1)因为(1+x+x2)2=1+2x+3x2+2x3+x4,所以D02=1,D12=2,D22=3,D32=2,D42=1.(2)类比二项式系数性质C m n+1=C m-1n+C m n(1≤m≤n,m∈N,n∈N),三项式系数有如下性质:D m+1n+1=D m-1n+D m n+D m+1n(1≤m≤2n-1).证明如下:因为(1+x+x2)n+1=(1+x+x2)·(1+x+x2)n,所以(1+x +x 2)n +1=(1+x +x 2)·(D 0n +D 1n x +D 2n x 2+…+D 2n -1n x 2n -1+D 2n nx 2n ). 上式左边x m+1的系数为D m +1n +1,上式右边xm+1的系数为D m +1n +D m n +D m -1n ,于是D m +1n +1=D m -1n +D m n +D m +1n (1≤m ≤2n -1).专题二请同学从下面所给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换已知曲线C :y 2=12x ,在矩阵M =⎣⎡⎦⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎡⎦⎤0 11 0对应的变换作用下得到曲线C 2,求曲线C 2的方程. 解 设A =NM ,则A =⎣⎡⎦⎤0 110⎣⎡⎦⎤1-2=⎣⎡⎦⎤0 -210,设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ),则⎣⎡⎦⎤xy =⎣⎡⎦⎤0 -21 0⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤-2y ′ x ′,即⎩⎨⎧x =-2y ′,y =x ′,∴⎩⎨⎧x ′=y ,y ′=-12x . 又点P (x ′,y ′)在曲线C :y 2=12x 上,∴()-12x2=12y ,即x 2=2y . 【题目2】 选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,圆的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.求: (1)圆的普通方程; (2)圆的极坐标方程.解 (1)根据sin 2α+cos 2α=1,得(x -2)2+y 2=4cos 2α+4sin 2α, 所以圆的普通方程为(x -2)2+y 2=4.(2)把⎩⎨⎧x =ρcos θ,y =ρsin θ代入圆的普通方程得圆的极坐标方程为ρ=4cos θ.必做部分【题目1】 如图,在多面体ABCDEF 中,ABCD 为正方形,ED ⊥平面ABCD ,FB ∥ED ,且AD =DE =2BF =2.(1)求证:AC ⊥EF ;(2)求二面角C -EF -D 的大小.(1)证明 连接BD ,∵FB ∥ED ,∴F ,B ,E ,D 共面,∵ED ⊥平面ABCD ,AC 平面ABCD ,∴ED ⊥AC ,又ABCD 为正方形, ∴BD ⊥AC ,而ED ∩DB =D ,ED ,DB 平面DBFE ,∴AC ⊥平面DBFE ,而EF平面DBFE ,∴AC ⊥EF .(2)解 如图建立空间直角坐标系.则A (2,0,0),B (2,2,0),C (0,2,0),F (2,2,1),E (0,0,2), 由(1)知AC →为平面DBFE 的法向量,即AC →=(-2,2,0),又CE →=(0,-2,2),CF →=(2,0,1),设平面CEF 的法向量为n =(x ,y ,z ), 则有⎩⎪⎨⎪⎧CE →·n =0,CF →·n =0,即⎩⎨⎧-2y +2z =0,2x +z =0,取z =1,则x =-12,y =1,∴n =()-12,1,1.设二面角C -EF -D 的大小为θ,则cos 〈n ,AC →〉=n ·AC →|n ||AC →|=1+232×22=22,又二面角C -EF -D 为锐角,所以θ=π4.【题目2】 已知k ,m ∈N *,若存在互不相等的正整数a 1,a 2,…,a m ,使得a 1a 2,a 2a 3,…,a m -1a m ,a m a 1同时小于k ,则记f (k )为满足条件的m 的最大值. (1)求f (6)的值;(2)对于给定的正整数n (n >1),(ⅰ)当n (n +2)<k ≤(n +1)(n +2)时,求f (k )的解析式; (ⅱ)当n (n +1)<k ≤n (n +2)时,求f (k )的解析式. 解 (1)由题意,取a 1=1,a 2=2,a 1a 2<6,满足题意, 若a 3≥3,则必有a 2a 3≥6,不满足题意,综上所述,m 的最大值为2,即f (6)=2. (2)由题意,当n (n +1)<k ≤(n +1)(n +2)时,设A 1={1,2,…,n },A 2={n +1,n +2,n +3,…}, 显然,a i ,a i +1∈A 1时,满足a i a i +1≤n (n -1)<n (n +1)<k ,所以从集合A 1中选出的a i 至多有n 个,a j ,a j +1∈A 2时,a j a j +1≥(n +1)(n +2)≥k ,不符合题意, 所以从集合A 2中选出的a j 必不相邻, 又因为从集合A 1中选出的a i 至多有n 个,所以从集合A 2中选出的a j 至多有n 个,放置于从集合A 1中选出的a i 之间, 所以f (k )≤2n .(ⅰ)当n (n +2)<k ≤(n +1)(n +2)时,取一串数a i 为:1,2n ,2,2n -1,3,2n -2,…,n -1,n +2,n ,n +1,或写成a i =⎩⎪⎨⎪⎧i +12,i 为奇数,2n +1-i2,i 为偶数(1≤i ≤2n ),此时a i a i +1≤n (n +2)<k (1≤i ≤2n -1),a 2n a 1=n +1<k ,满足题意,所以f (k )=2n . (ⅱ)当n (n +1)<k ≤n (n +2)时,从A 1中选出的n 个a i :1,2,…,n ,考虑数n 的两侧的空位,填入集合A 2的两个数a p ,a q ,不妨设na p >na q ,则na p ≥n (n +2)≥k ,与题意不符, 所以f (k )≤2n -1,取一串数a i 为1,2n -1,2,2n -2,3,2n -3,…,n -2,n +2,n -1,n +1,n 或写成a i =⎩⎪⎨⎪⎧i +12,i 为奇数,2n -i 2,i 为偶数(1≤i ≤2n-1),此时a i a i +1≤n (n +1)<k (1≤i ≤2n -2),a 2n -1a 1=n <k ,满足题意, 所以f (k )=2n -1.专题三请同学从下面所给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换 设二阶矩阵A ,B 满足A -1=⎣⎡⎦⎤1 234,(BA )-1=⎣⎡⎦⎤1 01,求B -1.解 设B -1=⎣⎡⎦⎤a bcd ,因为(BA )-1=A -1B -1,所以⎣⎡⎦⎤1 01=⎣⎡⎦⎤1 23 4⎣⎡⎦⎤a b c d , 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B-1=⎣⎢⎡⎦⎥⎤-2 132 -12.【题目2】 选修4-4:坐标系与参数方程在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A ,B 两点,且AB =3,求直线l 的方程.解 设直线l 的方程为θ=θ0(ρ∈R ),A (0,0),B (ρ1,θ0),则AB =|ρ1-0|=|2sin θ0|.又AB =3,故sin θ0=±32. 解得θ0=π3+2k π或θ0=-π3+2k π,k ∈Z .所以直线l 的方程为θ=π3或θ=2π3(ρ∈R ).【题目3】 选修4-5:不等式选讲 已知a ≥0,b ≥0,求证:a 6+b 6≥ab (a 4+b 4).证明 ∵a 6+b 6-ab (a 4+b 4)=a 5(a -b )-(a -b )b 5=(a -b )(a 5-b 5). 又a ≥0,b ≥0,当a -b ≥0时,a 5-b 5≥0; 当a -b <0时,a 5-b 5<0,即(a -b )(a 5-b 5)≥0, 所以a 6+b 6-ab (a 4+b 4)≥0,即a 6+b 6≥ab (a 4+b 4).必做部分【题目1】 某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.解 (1)先安排参加单打的队员有A 23种方法,再安排参加双打的队员有C 12种方法,所以,高一年级代表队出场共有A 23C 12=12种不同的阵容.(2)ξ的取值可能是0,2,3,4,5,7. P (ξ=0)=()1-373=64343,P (ξ=2)=C 12×37×()1-372=96343, P (ξ=3)=()1-372×37=48343,P (ξ=4)=()372×()1-37=36343,P (ξ=5)=C 12×37×()1-37×37=72343,P (ξ=7)=()373=27343, ξ的概率分布列为所以E (ξ)=0×64343+2×96343+3×48343+4×36343+5×72343+7×27343=3.【题目2】 已知抛物线C :x 2=2py (p >0)过点(2,1),直线l 过点P (0,-1)与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ′,连接A ′B .(1)求抛物线C 的标准方程;(2)问直线A ′B 是否过定点?若是,求出定点坐标;若不是,请说明理由. 解 (1)将点(2,1)代入抛物线C 的方程得p =2, 所以抛物线C 的标准方程为x 2=4y .(2)设直线l 的方程为y =kx -1,又设A (x 1,y 1),B (x 2,y 2),则A ′(-x 1,y 1),由⎩⎨⎧y =14x 2,y =kx -1得x 2-4kx +4=0,则Δ=16k 2-16>0, x 1=2k -2k 2-1,x 2=2k +2k 2-1, 所以k A ′B =y 2-y 1x 2-(-x 1)=x 224-x 214x 1+x 2=x 2-x 14,于是直线A ′B 的方程为y -x 224=x 2-x 14(x -x 2),所以y =x 2-x 14(x -x 2)+x 224=k 2-1x +1,当x =0时,y =1,所以直线A ′B 过定点(0,1).专题4请同学从下面给的三题中选定两题作答 【题目1】 选修4-2:矩阵与变换 已知矩阵A =⎣⎡⎦⎤1 2cd (c ,d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎡⎦⎤21,⎣⎡⎦⎤11,求矩阵A 的逆矩阵A -1.解 由题意知⎣⎡⎦⎤1 2cd ⎣⎡⎦⎤21=⎣⎡⎦⎤ 42c +d =2⎣⎡⎦⎤21,⎣⎡⎦⎤1 2c d ⎣⎡⎦⎤11=⎣⎡⎦⎤ 3c +d =3⎣⎡⎦⎤11,所以⎩⎨⎧2c +d =2,c +d =3,解得⎩⎨⎧c =-1,d =4.所以A =⎣⎡⎦⎤1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23-131616.【题目2】 选修4-4:坐标系与参数方程已知直线l 的极坐标方程为ρsin ()θ-π3=3,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),设点P 是曲线C 上的任意一点,求P 到直线l 的距离的最大值.解 由ρsin ()θ-π3=3,可得ρ⎝⎛⎭⎫12sin θ-32cos θ=3.所以y -3x =6,即3x -y +6=0,由⎩⎨⎧x =2cos θ,y =2sin θ得x 2+y 2=4,圆的半径为r =2,所以圆心到直线l 的距离d =62=3,所以P 到直线l 的距离的最大值为d +r =5.【题目3】 选修4-5:不等式选讲已知x ,y ,z ∈R ,且x +2y +3z +8=0.求证:(x -1)2+(y +2)2+(z -3)2≥14. 证明 因为[(x -1)2+(y +2)2+(z -3)2](12+22+32)≥[(x -1)+2(y +2)+3(z -3)]2 =(x +2y +3z -6)2=142,当且仅当x -11=y +22=z -33,即x =z =0,y =-4时,取等号, 所以(x -1)2+(y +2)2+(z -3)2≥14.必做部分【题目1】 如图,在直三棱柱ABC -A 1B 1C 1中,已知CA =CB =1,AA 1=2,∠BCA =90°.(1)求异面直线BA 1与CB 1夹角的余弦值; (2)求二面角B -AB 1-C 平面角的余弦值.解 如图,以{CA →,CB →,CC 1→}为正交基底,建立空间直角坐标系C -xyz ,则A (1,0,0),B (0,1,0),A 1(1,0,2),B 1(0,1,2),所以CB 1→=(0,1,2),AB →=(-1,1,0),AB 1→=(-1,1,2),BA 1→=(1,-1,2). (1)因为cos 〈CB 1→,BA 1→〉=CB 1→·BA 1→|CB 1→||BA 1→|=35×6=3010,所以异面直线BA 1与CB 1夹角的余弦值为3010. (2)设平面CAB 1的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AB 1→=0,m ·CB 1→=0,即⎩⎨⎧-x +y +2z =0,y +2z =0,取平面CAB 1的一个法向量为m =(0,2,-1);设平面BAB 1的法向量为n =(r ,s ,t ),则⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AB →=0,即⎩⎨⎧-r +s +2t =0,-r +s =0,取平面BAB 1的一个法向量为n =(1,1,0),则cos 〈m ,n 〉=m·n|m ||n |=25×2=105,易知二面角B -AB 1-C 为锐角,所以二面角B -AB 1-C 平面角的余弦值为105. 【题目2】 在数列{a n }中,已知a 1=20,a 2=30,a n +1=3a n -a n -1(n ∈N *,n ≥2).(1)当n =2,3时,分别求a 2n -a n -1a n +1的值,并判断a 2n -a n -1a n +1(n ≥2)是否为定值,然后给出证明;(2)求出所有的正整数n ,使得5a n +1a n +1为完全平方数.解 (1)由已知得a 3=70,a 4=180.所以当n =2时,a 2n -a n -1a n +1=-500;当n =3时,a 2n -a n -1a n +1=-500.猜想:a 2n-a n -1a n +1=-500(n ≥2). 下面用数学归纳法证明: ①当n =2时,结论成立.②假设当n =k (k ≥2,k ∈N *)时,结论成立,即a 2k -a k -1a k +1=-500. 将a k +1=3a k -a k -1代入上式,可得a 2k -3a k a k +1+a 2k +1=-500.则当n =k +1时,a 2k +1-a k a k +2=a 2k +1-a k (3a k +1-a k )=a 2k +1-3a k a k +1+a 2k =-500.故当n =k +1结论成立,根据①②可得a 2n -a n -1a n +1=-500(n ≥2)成立. (2)将a n -1=3a n -a n +1代入a 2n -a n -1a n +1=-500,得a 2n +1-3a n a n +1+a 2n =-500,则5a n +1a n =(a n +1+a n )2+500,5a n a n +1+1=(a n +1+a n )2+501, 设5a n +1a n +1=t 2(t ∈N *),则t 2-(a n +1+a n )2=501,即[t -(a n +1+a n )](t +a n +1+a n )=501, 又a n +1+a n ∈N ,且501=1×501=3×167, 故⎩⎨⎧a n +1+a n -t =-1,a n +1+a n +t =501或⎩⎨⎧a n +1+a n -t =-3,a n +1+a n +t =167, 所以⎩⎨⎧t =251,a n +1+a n =250或⎩⎨⎧t =85,a n +1+a n =82,由a n +1+a n =250解得n =3;由a n +1+a n =82得n 无整数解,所以当n =3时,满足条件.专题五2.(2018·江苏省盐城中学调研)已知矩阵M =⎣⎡⎦⎤0 ab 0满足:Ma i =λi a i ,其中λi (i =1,2)是互不相等的实常数,a i (i =1,2)是非零的平面列向量,λ1=1,a 2=⎣⎡⎦⎤11,求矩阵M .解由题意,λ1,λ2是方程f (λ)=⎪⎪⎪⎪⎪⎪ λ-a -bλ=λ2-ab =0的两根. 因为λ1=1,所以ab =1.又因为Ma 2=λ2a 2,所以⎣⎡⎦⎤0 a b 0 ⎣⎡⎦⎤11=λ2⎣⎡⎦⎤11,从而⎩⎨⎧a =λ2,b =λ2,所以λ22=ab =1.因为λ1≠λ2,所以λ2=-1,从而a =b =-1,故矩阵M =⎣⎢⎡⎦⎥⎤ 0 -1-10. 3.(2018·苏州、南通等六市模拟)在极坐标系中,求以点P ()2,π3为圆心且与直线l: ρsin ()θ-π3=2相切的圆的极坐标方程.解 以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy .则点P 的直角坐标为()1,3.将直线l: ρsin ()θ-π3=2的方程变形为: ρsin θcos π3-ρcos θsin π3=2,化为普通方程得3x -y +4=0.∴P ()1,3到直线l: 3x -y +4=0的距离为4()32+()-12=2.∴所求圆的普通方程为()x -12+()y -32=4,化为极坐标方程得ρ=4sin ()θ+π6.4.已知实数x >0,y >0,z >0,证明:()1x +2y +3z ()x 2+y 4+z 6≥92. 证明 因为x >0,y >0,z >0, 所以1x +2y +3z 3≥36xyz ,x 2+y 4+z 63≥ 3xyz 48, 所以()1x +2y +3z()x 2+y 4+z 6≥92. 当且仅当x ∶y ∶z =1∶2∶3时,等号成立. 5.已知点A (1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值. 解 (1)由点A (1,2)在抛物线F 上,得p =2, ∴抛物线F :y 2=4x , 设B ()y 214,y 1,C ()y 224,y 2, ∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1. (2)另设D ()y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.6.已知f n (x )=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k )n +…+(-1)n C n n (x -n )n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.解 (1)f 1(x )=C 01x -C 11(x -1)=1,f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6.(2)猜测f n (x )=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x )=1,等式成立.②假设当n =m (m ≥1,m ∈N *)时,等式成立,即f m (x )=∑k =0m(-1)k C k m(x -k )m =m !. 当n =m +1时,则f m +1(x )=∑k =0m +1(-1)k C k m +1·(x -k )m +1. 因为C k m +1=C k m +C k -1m ,k C k m +1=(m +1)·C k -1m,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C m m , 所以f m +1(x )=∑k =0m +1(-1)k C k m +1(x -k )m +1=x ∑k =0m +1(-1)k C k m +1(x -k )m-∑k =0m +1(-1)k k C km +1(x -k )m=x ∑k =0m(-1)k C k m(x -k )m +x ∑k =1m +1(-1)k C k -1m(x -k )m -(m +1)∑k =1m +1(-1)k C k-1m (x -k )m =x ·m !+(-x +m +1)∑k =0m(-1)k C k m ·[(x -1)-k ]m =x ·m !+(-x +m +1)·m!=(m +1)·m !=(m +1)!. 即当n =m +1时,等式也成立. 由①②可知,对n ∈N *,均有f n (x )=n !.专题六2.(2018·苏州、南通等六市模拟)在平面直角坐标系xOy 中,已知A ()0,0,B ()3,0,C ()2,2.设变换T 1, T 2对应的矩阵分别为M =⎣⎡⎦⎤1 02, N =⎣⎡⎦⎤2 00 1,求对△ABC 依次实施变换T 1, T 2后所得图形的面积.解 依题意,依次实施变换T 1, T 2所对应的矩阵NM = ⎣⎡⎦⎤2 01 ⎣⎡⎦⎤1 00 2=⎣⎡⎦⎤2 00 2.则⎣⎡⎦⎤2 02 ⎣⎡⎦⎤00=⎣⎡⎦⎤00, ⎣⎡⎦⎤2 00 2 ⎣⎡⎦⎤30=⎣⎡⎦⎤60,⎣⎡⎦⎤2 00 2 ⎣⎡⎦⎤22=⎣⎡⎦⎤44.∴A ()0,0,B ()3,0,C ()2,2分别变为点A ′()0,0,B ′()6,0,C ′()4,4. ∴所得图形的面积为12×6×4=12.3.已知两个动点P ,Q 分别在两条直线l 1:y =x 和l 2:y =-x 上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π],记OM →=OP →+OQ →,求动点M 的轨迹的普通方程.解设M (x ,y ),则⎩⎨⎧x =sin θ+cos θ,y =sin θ-cos θ,两式平方相加得x 2+y 2=2.又x =2sin ()θ+π4,y =2sin ()θ-π4, θ∈[0,π], 所以x ∈[-1,2],y ∈[-1,2].所以动点M 轨迹的普通方程为x 2+y 2=2(x ,y ∈[-1,2]).4.(2018·江苏省盐城中学质检)已知a >0,b >0,证明:(a 2+b 2+ab )(ab 2+a 2b +1)≥9a 2b 2.证明 因为a >0,b >0,所以a 2+b 2+ab ≥33a 2·b 2·ab =3ab >0,ab 2+a 2b +1≥33ab 2·a 2b ·1=3ab >0, 所以(a 2+b 2+ab )(ab 2+a 2b +1)≥9a 2b 2.5.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投.(1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3. P (A 1)=25,P (A 2)=35×13×25=225,P (A 3)=()352×()132×25=2125. 所以P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P (X =1)=25+35×23=45,P (X =2)=225+35×13×35×23=425,P (X =3)=()352×()132×1=125. 即X 的概率分布为所以数学期望E (X )=1×45+2×425+3×125=3125.6.设n 个正数a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n (n ∈N *且n ≥3). (1)当n =3时,证明:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3;(2)当n =4时,不等式a 1a 2a 3+a 2a 3a 4+a 3a 4a 1+a 4a 1a 2≥a 1+a 2+a 3+a 4也成立,请你将其推广到n (n ∈N *且n ≥3)个正数a 1,a 2,…,a n 的情形,归纳出一般性的结论并用数学归纳法证明. 证明 (1)因为a n (n ∈N *且n ≥3)均为正实数,左—右=12()a 1a 3a 2+a 1a 2a 3-2a 1+12()a 2a 3a 1+a 1a 2a 3-2a 2+12()a 2a 3a 1+a 1a 3a 2-2a 3≥12⎝⎛⎭⎫2a 1a 3a 2×a 1a 2a 3-2a 1+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 2a 3-2a 2+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 3a 2-2a 3=0, 所以原不等式a 2a 3a 1+a 1a 3a 2+a 1a 2a 3≥a 1+a 2+a 3成立. (2)归纳的不等式为:a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n ≥3). 记F n =a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2-(a 1+a 2+…+a n ), 当n =3(n ∈N *)时,由(1)知,不等式成立; 假设当n =k (k ∈N *且k ≥3)时,不等式成立,即F k =a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a 1+a k a 1a 2-(a 1+a 2+…+a k )≥0. 则当n =k +1时,F k +1=a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-(a 1+a 2+…+a k +a k +1) =F k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-a k -1a k a 1-a k a 1a 2-a k +1=F k +a k -1a k ⎝⎛⎭⎫1ak +1-1a 1+a k +1()a k a 1-1+a 1a 2(a k +1-a k )≥0+a 2k ⎝⎛⎭⎫1a k +1-1a 1+a k +1()a k a 1-1+a 1a k (a k +1-a k )=(a k +1-a k )⎝ ⎛⎭⎪⎫a k a 1+a 1a k -a k +1+a k a k +1, 因为a k +1≥a k ,a k a 1+a 1a k ≥2,a k +1+a k a k +1≤a k +1+a k +1a k +1=2,所以F k +1≥0,所以当n =k +1时,不等式成立.综上所述,不等式a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n ≥3)成立.专题七2.若二阶矩阵M 满足⎣⎢⎡⎦⎥⎤-2122-1M =⎣⎡⎦⎤-3 0 4-1,求曲线4x 2+4xy +y 2-12x +12y =0在矩阵M 所对应的变换作用下得到的曲线的方程.解记矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-2122 -1,det(A )=(-2)×(-1)-2×12=1≠0,故A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 -12-2 -2,所以M =A -1⎣⎢⎡⎦⎥⎤-30 4 -1=⎣⎢⎢⎡⎦⎥⎥⎤-1-12-2-2 ⎣⎢⎡⎦⎥⎤-30 4-1=⎣⎢⎢⎡⎦⎥⎥⎤ 112-22,即矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ 112-2 2.设曲线4x 2+4xy +y 2-12x +12y =0上任意一点P (x ,y )在矩阵M 对应的变换作用下得到点P ′(x ′,y ′).所以⎣⎡⎦⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤ 112-22 ⎣⎡⎦⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x +12y -2x +2y , 所以⎩⎪⎨⎪⎧x ′=x +12y ,y ′=-2x +2y ,所以⎩⎨⎧x =4x ′-y ′6,y =2x ′+y ′3,又点P (x ,y )在曲线4x 2+4xy +y 2-12x +12y =0上,代入整理得2x ′2+3y ′=0, 由点P (x ,y )的任意性可知,所求曲线的方程为2x 2+3y =0.3.已知直线的极坐标方程为ρsin ()θ+π4=22,圆M 的参数方程为⎩⎨⎧x =2cos θ,y =-2+2sin θ(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O ,ρsin ()θ+π4=ρ⎝⎛⎭⎫22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M (0,-2),∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.已知函数f (x )=|x +m |+|x -2|(m >0)的最小值为4,正实数a ,b 满足1a +1b = 3.求证:1a 2+2b2≥m .证明 易知|x +m |+|x -2|≥|(x +m )-(x -2)|=|m +2|, 故由f (x )的最小值为4得|m +2|=4,又m >0,所以m =2. 又()1a 2+2b 2⎣⎡⎦⎤12+⎝⎛⎭⎫122≥⎝⎛⎭⎫1a ×1+2b ×122=3,当且仅当a =32,b =3时等号成立,故1a 2+2b2≥2=m ,即结论成立. 5.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =2,AB ⊥AC ,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段A 1B 的中点,求直线MP 与直线AC 所成角的大小;(2)若N 是CC 1的中点,直线A 1B 与平面PMN 所成角的正弦值为77,求线段BP 的长度. 解 分别以AB ,AC ,AA 1所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,2),M (1,1,0).(1)若P 是线段A 1B 的中点,则P (1,0,1),MP →=(0,-1,1),AC →=(0,2,0). 所以cos 〈MP →,AC →〉=MP →·AC →||MP →·||AC→=-22.又〈MP →,AC →〉∈[0,π],所以〈MP →,AC →〉=3π4.所以直线MP 与直线AC 所成的角的大小为π4.(2)由N (0,2,1),得MN →=(-1,1,1). 设P (x ,y ,z ),BP →=λBA 1,0≤λ≤1,则(x -2,y ,z )=λ(-2,0,2),所以⎩⎨⎧x =2-2λ,y =0,z =2λ,所以P (2-2λ,0,2λ),所以MP →=(1-2λ,-1,2λ). 设平面PMN 的法向量n =(x 1,y 1,z 1), 则n ⊥MN →,n ⊥MP →,所以⎩⎨⎧-x 1+y 1+z 1=0,(1-2λ)x 1-y 1+2λz 1=0,取n =()1+12λ,12λ,1.因为BA 1=(-2,0,2),设直线A 1B 与平面PMN 所成的角为θ.由sin θ=||cos 〈n ,BA 1〉=|n ·BA 1|||n ·||BA 1=⎪⎪⎪⎪(-2)×()1+12λ+2()1+12λ2+()12λ2+1·22=77,得λ=14(舍负). 所以BP →=14BA 1,所以BP =14BA 1=22.6.已知()1+12xn展开式的各项依次记为a 1(x ),a 2(x ),a 3(x ),…,a n(x ),an +1(x ).设F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)·a n +1(x ).(1)若a 1(x ),a 2(x ),a 3(x )的系数依次成等差数列,求n 的值; (2)求证:对任意x 1,x 2∈[0,2],恒有|F (x 1)-F (x 2)|≤2n -1(n +2)-1. (1)解 依题意a k (x )=C k -1n ()12x k -1,k =1,2,3,…,n +1,a 1(x ),a 2(x ),a 3(x )的系数依次为C 0n ·()12=1,C 1n ·12=n 2,C 2n ·()122=n (n -1)8, 所以2×n2=1+n (n -1)8,解得n =8或n =1(舍去).(2)证明 F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)a n +1(x )=C 0n +2C 1n ()12x +3C 2n()12x 2+…+n C n -1n()12x n -1+(n +1)C n n ()12x n,F (2)=C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C nn ,设S n =C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C n n ,则S n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n +C 0n ,考虑到C k n =C n -k n ,将以上两式相加得2S n =(n +2)(C 0n +C 1n +C 2n +…+C n -1n +C n n ),所以S n =2n -1(n +2),又当x ∈[0,2]时,F ′(x )>0恒成立,从而F (x )是[0,2]上的单调递增函数, 所以对任意x 1,x 2∈[0,2],|F (x 1)-F (x 2)|≤F (2)-F (0)=2n -1(n +2)-1。
2020年高考(江苏卷)数学附加题训练一 (含答案)
2020年高考(江苏卷)数学附加题训练一21、(本小题满分10分)已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=yy y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22、(本小题满分10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标..23、(本小题满分10分)在四棱锥P-ABCD中,CD⊥平面PAD,∆PAD是正三角形,DC∥AB,DA=DC=2AB=2.(1)求平面PAB与平面PCD所成的锐二面角的大小;(2)点E为线段CD上的一动点,设异面直线BE与直线PA所成角的大小为θ,当cosθ=5时,试5确定点E的位置.24、(本小题满分10分)在直角坐标系xOy中,已知抛物线C:y2=2px(p>0)上一点P(4,m)到焦点F的距离为6,点Q为其准线l上的任意-一点,过点Q作抛物线C的两条切线,切点分别为A,B.(1)求抛物线C的方程;(2)当点Q在x轴上时,证明:∆QAB为等腰直角三角形.(3)证明:∆QAB为直角三角形.数学附加题训练一参考答案21.已知线性变换1T 是顺时针方向选择90°的旋转变换,其对应的矩阵为M ,线性变换⎩⎨⎧=+=y y y x x T '2'2:对应的矩阵为N ,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)写出矩阵M ,N ;(2)已知⎥⎦⎤⎢⎣⎡=--2411X M N ,试求b a ,的值.22在平面直角坐标系xOy 中,曲线1C 的参数方程为,3x t y ⎧=⎪⎨=+⎪⎩(t 为参数),曲线2C 的参数方程为cos 1sin x y ϕϕ=⎧⎨=-+⎩,(ϕ为参数).(1)求曲线1C 的直角坐标方程和2C 的标准方程;(2)点,P Q 分别为曲线1C ,2C 上的动点,当PQ 长度最小时,试求点Q 的坐标.23、(本小题满分10分)在四棱锥ABCD P -中,⊥CD 平面PAD ,PAD ∆是正三角形,AB DC ∥,22===AB DC DA .(1)求平面PAB 与平面PCD 所成的锐二面角的大小;(2)点E 为线段CD 上的一动点,设异面直线BE 与直线PA 所成角的大小为θ,当55cos =θ时,试确定点E 的位置.24、(本小题满分10分)在直角坐标系xOy 中,已知抛物线px y C 2:2=)0(>p 上一点),4(m P 到焦点F 的距离为6,点Q 为其准线l 上的任意-一点,过点Q 作抛物线C 的两条切线,切点分别为B A ,.(1)求抛物线C 的方程;(2)当点Q 在x 轴上时,证明:QAB ∆为等腰直角三角形.(3)证明:QAB ∆为直角三角形.。
江苏高考数学附加题专项训练(极坐标与参数方程)(含答案详析)
附加题专项训练(极坐标与参数方程)1. 已知在直角坐标系xOy 内,直线l 的参数方程为22,14,x t yt (t 为参数).以Ox 为极轴建立极坐标系,圆C 的极坐标方程为22sin()4. (1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)判断直线l 和圆C 的位置关系.2. 已知圆的极坐标方程为:242cos 604.(1)将极坐标方程化为普通方程;(12)若点P(x ,y)在该圆上,求x +y 的最大值和最小值.3.已知曲线C 的极坐标方程为4sin ,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l 的参数方程为12312xt yt (t 为参数),求直线l 被曲线C 截得的线段长度。
4. 以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为(1,–5),点M 的极坐标为)2,4(.若直线l 过点P ,且倾斜角为3,圆C 以M 为圆心、4为半径. (1)求直线l 的参数方程和圆C 的极坐标方程;(2)试判定直线l 和圆C 的位置关系。
5.若两条曲线的极坐标方程分别为=l 与=2)3cos(,它们相交于A ,B 两点,求线段AB 的长.6. 圆222)1(r y x 与椭圆sin cos 2y x 有公共点,求圆的半径r 的取值范围。
7. 在极坐标系中,已知圆C 的圆心坐标为 C (2,3π),半径R=5,求圆C 的极坐标方程. 8. 已知圆锥曲线C 的参数方程为2212(1x t t t y t t为参数)(1)试将圆锥曲线C 的参数方程化为直角坐标方程;(2)以圆锥曲线C 的焦点为极点,以它的对称轴为极轴建立极坐标系,试求它的极坐标方程。
江苏省数学高考附加题强化试卷(doc 8页)
江苏省数学高考附加题强化试卷(doc 8页)更多资料请访问.(.....)此资料来自:.(....)联系电话:020-.值班手机:提供50万份管理资料下载3万集企业管理资料下载1300GB高清管理讲座硬盘拷贝更多企业学院:...../Shop/《中小企业管理全能版》183套讲座+89700份资料...../Shop/40.shtml 《总经理、高层管理》49套讲座+16388份资料...../Shop/38.shtml 《中层管理学院》46套讲座+6020份资料...../Shop/39.shtml 《国学智慧、易经》46套讲座...../Shop/41.shtml 《人力资源学院》56套讲座+27123份资料...../Shop/44.shtml 《各阶段员工培训学院》77套讲座+ 324份资料...../Shop/49.shtml 《员工管理企业学院》67套讲座+ 8720份资料...../Shop/42.shtml 《工厂生产管理学院》52套讲座+ 13920份资料...../Shop/43.shtml 《财务管理学院》53套讲座+ 17945份资料...../Shop/45.shtml 《销售经理学院》56套讲座+ 14350份资料...../Shop/46.shtml江苏省数学高考附加题强化试题1班级姓名得分21.[选做题]在B、C、D四小题中只能选做2题,每小题10分,计20分.[来源:学科网]B.选修4—2:矩阵与变换若点A(2,2)在矩阵对应变换的作用下得到的点为B(-2,2),求矩阵的逆矩阵.C.选修4 - 4:坐标系与参数方程在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点P的直角坐标.D.选修4-5:不等式选讲已知函数(为实数)的最小值为,若,求的最小值.[来源:学,科,网Z,X,X,K] [来源:学|科|网][必做题] 第22、23题,每小题10分,计20分.22、如图,正四棱锥中,,、相交于点,求:(1)直线与直线所成的角;(2)平面与平面所成的角23、设数列满足,.(1)当时,求证:M;(2)当时,求证:;(3)当时,判断元素与集合的关系,并证明你的结论.江苏省数学高考附加题强化试题1参考答案21.B、解:,即,……………………………4分所以解得…………………………………6分所以.由,得. (10)分C、解:因为直线的极坐标方程为所以直线的普通方程为,……………………………………………3分又因为曲线的参数方程为(为参数)所以曲线的直角坐标方程为,………………………6分联立解方程组得或,…………………………………………8分根据的范围应舍去,故点的直角坐标为.……………10分D、解:因为,………………………………2分所以时,取最小值,即,………………………………………………………………5分因为,由柯西不等式得,……………………8分[来源:学科网]所以,当且仅当,即时等号成立,所以的最小值为.…………………………………………………………10分22、23、证明:(1)如果,则,.………………………………………2分(2)当时,().事实上,〔1〕当时,.设时成立(为某整数),则〔2〕对,.由归纳假设,对任意n∈N*,|a|≤<2,所以a∈nM.…………………………6分(3)当时,.证明如下:对于任意,,且.[来源:]对于任意,,则.所以,.当时,,即,因此.…………………10分。
2022年江苏省高考数学试卷(新高考I)(含答案)
2022年江苏省高考数学试卷(新高考I)(含答案)一、选择题(每小题5分,共60分)1. 若函数f(x) = x² 4x + 3的图像开口向上,则f(x)的对称轴为( )A. x = 2B. x = 2C. x = 1D. x = 12. 已知等差数列{an}的前n项和为Sn,若S4 = 20,则a3的值为( )A. 5B. 6C. 7D. 83. 若点A(2, 3)关于直线y = x的对称点为B,则点B的坐标为( )A. (2, 3)B. (3, 2)C. (3, 2)D. (2, 3)4. 已知函数f(x) = log₂(x 1),则f(2)的值为( )A. 0B. 1C. 2D. 35. 若三角形ABC的边长分别为a, b, c,且满足a² + b² = c²,则三角形ABC是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 钝角三角形6. 已知复数z = 2 + 3i,则|z|的值为( )A. 1B. 2C. 3D. 47. 若函数f(x) = ax² + bx + c在x = 1时取得最小值,则a的值为( )A. 正数B. 负数C. 零D. 无法确定8. 已知集合A = {x | x > 2},B = {x | x < 5},则A∩B表示( )A. x > 2 且 x < 5B. x > 2 或 x < 5C. x ≤ 2 且x ≥ 5D. x ≤ 2 或x ≥ 59. 若直线y = mx + b与x轴的交点为(1, 0),则m的值为( )A. 1B. 1C. 0D. 无法确定10. 已知等比数列{an}的首项为1,公比为2,则a5的值为( )A. 16B. 8C. 4D. 2二、填空题(每空5分,共20分)1. 若函数f(x) = x³ 3x² + 2x 1的图像在x = 1时取得极值,则f(1)的值为______。
人教版江苏高考数学理科附加题考前指导复习(含答案)及参考答案
人教版江苏高考数学理科附加题考前指导复习(含答案)及参考答案(附参考答案)一、附加题的两点共识1.数学附加题的40分与I卷的160分对理科同学同等重要.2.数学附加题得很高的分数不容易,但要得到基本分还是不困难的.原因:(1)考试说明要求附加题部分易、中、难题的占分比例控制在5:4:1左右,即中低档题占总分的90%左右.(2)考试时间仅有30分钟,因此运算量与思维量都会控制.(3)准确定位,合理取舍.二、各模块归类分析及应对策略(一)矩阵与变换考点一:二阶矩阵与平面列向量的乘法、二阶矩阵的乘法.例1(2010年江苏高考)在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.(2011年江苏高考)已知矩阵A=,向量=,求向量,使得A2=.βααβ考点二:二阶矩阵与平面变换例2如果曲线x2+4xy+3y2=1在矩阵的作用下变换得到曲线x2-y2=1,求a+b 的值.考点三:逆矩阵例3(2009年江苏高考)求矩阵A=的逆矩阵.说明:方法一,根据A A-1=E,利用待定系数法求解;方法二:直接利用公式计算.应对策略:待定系数法,运算量比较大,直接利用公式计算简便,但公式不能出错,另外为了防止缺少解题过程之嫌,最好将公式书写一遍.已知矩阵A=,B=,求满足AX=B的二阶矩阵X.考点四:特征值与特征向量例4已知矩阵A=,向量=.α(1)求A的特征值1、2和特征向量1、2;(2)计算A5的值.λλααα以下内容最好能记忆:1.旋转变换矩阵.记忆三部分特征:第一列平方和是1,且类似单位圆的参数方程;主对角线上两数相等,副对角线上两数互为相反数.2.二阶矩阵M=的逆矩阵为M-1=,))=.其中是矩阵M主对角线上两数交换,副对角线上两数变为相反数得到.3.矩阵特征多项式f()=.λ(二)坐标系与参数方程考点1:极坐标化为与直角坐标例1(2010年高考题)在极坐标系中,已知圆ρ=2cosθ与直线3ρcosθ+4ρsin θ+a=0相切,求实数a的值.应对策略:1.熟练掌握极坐标方程化为与直角坐标方程的公式不能出现类似于ρcosθ=y的错误,应注意一些不能套用公式转化的特殊情形.2.应了解点的极坐标的形式和意义.例2:在极坐标系中,O为极点,已知两点M、N的极坐标分别为(4,π),(,π).求△OMN的面积.3.极坐标转化为直角坐标后,往往就是研究直线与圆以及圆与圆的问题,我们应熟悉相关的位置关系的判别,以及一些距离或长度的计算.例3:(2012·江苏高考)在极坐标中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.考点2:参数方程转化普通方程例4(2009年高考题)已知曲线C的参数方程为-),,y=3(t+)))(t为参数,t >0).求曲线C的普通方程.应对策略:掌握一些消元的常见方法,一般有以下几种①代入消元法;②加减消元法;③利用代数恒等式或三角恒等式.消元后要注意字母的取值范围是否发生变化.考点3:参数方程的应用例5(2008年江苏高考)在平面直角坐标系xOy中,点P(x,y)是椭圆+y2=1上的一个动点,求S=x+y的最大值.在直角坐标系xOy中,直线l的参数方程为(t为参数),若以直角坐标系xOy的O 点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos.(1)求直线l的倾斜角;(2)若直线l与曲线C交于A,B两点,求AB.(三)概率基本题型:附加题概率考查两个方面问题:(1)随机事件的概率的计算,考查互斥事件、对立事件、相互独立事件的概率;(2)离散型随机变量分布列及其数学期望、方差计算.基本策略:1.解好概率问题的关键是理解题意,审题务必仔细.把复杂事件说明确是解题第一步;例1(2010年江苏高考)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.2.复杂问题简单化的方法有两种:一是将复杂事件分拆为几个简单的互斥事件,二是转化为其对立事件.分拆事件时一定要做到“不重不漏”.特别应注意“至多”、“至少”、“恰有”等词语.例2将甲、乙两所大学共6名大学生志愿者随机平均分配到某地从事A,B,C三个岗位服务,且A岗位至少有一名甲大学志愿者的概率是.(1)求6名志愿者中来自甲大学的是几人;(2)求A岗位恰好甲、乙两所大学各一人的概率;(3)设随机变量ζ为在B岗位服务的甲大学志愿者的人数,求ζ分布列及期望.3.概率中常犯的错误不仅表现为复杂事件分拆过程中“重”或“漏”(表现为基本事件的不互斥或不对立),独立事件与独立重复事件混同(表现为漏乘相应的组合数),也表现为对古典概型模型本质理解不透彻.例3盒子中装着有标数字1,2,3,4,5的上卡片各2张,从盒子中任取3张卡片,按3张卡片上最大数字的8倍计分,每张卡片被取出的可能性都相等,用表示取出的3张卡片上的最大数字,求:ξ(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量的概率分布和数学期望;ξ(3)计分不小于20分的概率.说明:解答(1)时的一种典型错误是认为“取得两张1和一张2”及“取得一张1一张2一张3”是等可能的基本事件.解答(2)中P (=2)时的一种典型错误是认为事件“取出的3张卡片中最大数字为2”仅含两个基本事件:“取得两张1和一张2”和“取得两张2和一张1”.ξ 4.特别要注意的:(1)答题的基本规范:①交待一些基本事件;②写出基本事件发生的概率;③求其它事件发生的概率、写出概率分布列等;④答.(2)养成利用))Pi =1检验计算是否正确的习惯. (四)空间向量与立体几何考点1:空间向量的坐标运算例1(2008年江苏高考)如图,设动点P 在棱长为1的正方体ABCD -A1B1C1D1的对角线BD1上,记=λ,当∠APC 为钝角时,求λ的取值范围.考点2:空间向量的应用1.判别线面位置关系;2.计算异面直线所成角,直线与平面所成角,二面角.例2(2011年江苏高考)如图,在正四棱柱ABCD -A1B1C1D1中,AA1=2,AB =1,点N 是BC 的中点,点M 在CC1上,设二面角A1-DN -M 的大小为.θ (1)当=90°时,求AM 的长;θ (2)当cos =,6)时,求CM 的长.θ例3在棱长为2的正方体ABCD —A1B1C1D1中,E 为棱AB 的中点,点P 在平面A1B1C1D1中,D1P ⊥平面PCE. (1)试求:线段D1P 的长;(2)直线DE 与平面PCE 所成角的正弦值.2.要掌握以下关系:异面直线所成角的余弦等于两条异面直线方向向量夹角余弦的绝对值;线面所成角的正弦等于平面的法向量与直线方向向量夹角余弦的绝对值;二面角平面角余弦与二面角两平面法向量夹角的余弦绝对值相等,其正负可以通过观察二面角是锐角还是钝角进行确定. (五)圆锥曲线与方程 考点1:曲线方程.考点2:直线与抛物线.例1(2009年江苏高考)在平面直接坐标系xOy 中,抛物线C 的顶点在原点,经过点A(2,2),其焦点F 在x 轴上. (1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线方程;(3)设过点M(m ,0)(m >0)的直线交抛物线C 于D ,E 两点,ME =2DM ,记D 和E 两点间的距离为f (m),求f (m)关于m 的表达式.例2:在平面直角坐标系xOy 中,已知焦点为F 的抛物线x2=4y 上有两个动点A ,B ,且满足=λ, 过A ,B 两点分别作抛物线的切线,设两切线的交点为M.AF FB (1)求:·的值;OA OB(2)证明:·为定值.FM ABA B CD A 1 B 1C1D 1P(六)数学归纳法例1:已知△ABC 的三边长为有理数. (1)求证:cos A 是有理数;(2)求证:对任意正整数n ,cos nA 是有理数. 例2.如图,,,…,()是曲线:()上的个点,点()在轴的正半轴上,且是正三角形(是坐标原点).111()P x y ,222()P x y ,()n n n P x y ,120n y y y <<<<…C 23y x =0y ≥n (0)i i A a ,123i n =,,,…,x 1i i i A A P -∆0A (1)写出,,;1a 2a 3a(2)求出点()的横坐标关于的表达式.(0)n n A a ,n *∈N n a n例3:已知数列:,}{且满足的各项都是正数n a 0111,(4),.2n n n a a a a n N +==⋅-∈(1) 求; (2)试用数学归纳法证明.12,a a 12,n n a a n N +<<∈说明数学归纳法主要是用来解决与自然数有关的命题。
2020年高考(江苏卷)数学附加题训练八(含答案)
2020年高考(江苏卷)数学附加题训练八21.已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦,A 的一个特征值2λ=,其对应的一个特征向量是121α⎡⎤=⎢⎥⎣⎦(1)求矩阵A ;(2)设直线l 在矩阵1A -对应的变换作用下得到了直线:4m x y -=,求直线l 的方程.22、在极坐标系中,直线l 的极坐标方程为()4R πθρ=∈,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线C 的参数方程为4cos ,(1cos 2x y ααα=⎧⎨=+⎩为参数),求直线l 与曲线C 的交点P 的直角坐标.分析:化直线l 的极坐标方程为直角坐标方程,化曲线C 的参数方程为普通方程,联立求解得答案.23、如图,在直四棱柱1111ABCD -A B C D 中,底面四边形A B C D 为菱形,A 1A =AB =2,3ABC ∠=π,E ,F 分别是B C ,1A C 的中点.(1)求异面直线E F ,A D 所成角的余弦值;(2)点M 在线段A 1D 上,1A 1M A D =λ.若C M //平面AEF ,求实数λ的值.24.已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定;每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第n 局得n 分(n ∈N *)的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.(1)求在一局游戏中得3分的概率;(2)求游戏结束时局数X 的分布列和数学期望E (X ).分析:(1)根据相互独立事件的概率公式求出对应的概率值;(2)由题意知随机变量X 的可能取值,计算在一局游戏中得2分的概率值,求出对应的概率值,写出分布列,计算数学期望.数学附加题训练八答案21.分析:(1)由111211a A b αλα⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦即可求出a ,b ;(2)设直线:4m x y -=上的任意一点(,)x y 在矩阵A 对应的变换作用下得到点(,)x y '',根据122144x x x y y y x y '+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'--+⎣⎦⎣⎦⎣⎦⎣⎦,可得2,3.6x y x x y y '-'⎧=⎪⎪⎨'+'⎪=⎪⎩进而得到l 的方程;.解:(1)1122112a a A b b α+⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦,124212λα⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,∴24,22,a b +=⎧⎨-+=⎩解得2,4,a b =⎧⎨=⎩故1214A ⎡⎤=⎢⎥-⎣⎦;(2)1214A ⎡⎤=⎢⎥-⎣⎦ ,121331166A -⎡⎤-⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦,设直线:4m x y -=上的任意一点(,)x y 在矩阵1A -对应的变换作用下得到点(,)x y '',则2121333311116666x y x x y y x y ⎡⎤⎡⎤--⎢⎥⎢⎥'⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎢⎥⎢⎥⎣⎦⎣⎦+⎢⎥⎢⎥⎣⎦⎣⎦∴21,3311,66x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩∴2,4.x x y y x y ''=+⎧⎨''=-⎩4x y -= ,23y ∴'=,∴直线l 的方程为23y =.22解:直线l 的直角坐标方程为y x =.由方程4cos ,1cos 2x y αα=⎧⎨=+⎩,可得22212cos 2(48x y x α===,又1cos 1α- ,44x ∴- .∴曲线C 的普通方程为21(44)8y x x =- .将直线l 的方程代入曲线方程中,得218x x =,解得0x =,或8x =(舍去).∴直线l 与曲线C 的交点P 的直角坐标为(0,0).23分析:(1)建立坐标系,求出直线的向量坐标,利用夹角公式求异面直线E F ,A D 所成角的余弦值;(2)点M 在线段1A D 上,11A M A D λ=.求出平面AEF 的法向量,利用//C M 平面AEF ,即可求实数λ的值.解:因为四棱柱1111ABCD A B C D -为直四棱柱,所以1A A ⊥平面A B C D .又AE ⊂平面A B C D ,A D ⊂平面A B C D ,所以1A A AE ⊥,1A A AD ⊥.在菱形A B C D 中3ABC π∠=,则A B C ∆是等边三角形.因为E 是B C 中点,所以B C A E ⊥.因为//B C A D ,所以AE AD ⊥.建立空间直角坐标系.则(0A ,0,0),C 1,0),(0D ,2,0),1(0A ,0,2),E 0,0),3(2F ,12,1).(1)(0AD = ,2,0),3(2EF =,12,1),所以异面直线E F ,A D 4=.(2)设(M x ,y ,)z ,由于点M 在线段1A D 上,且11A M A D λ=,则(x ,y ,2)(0z λ-=,2,2)-.则(0M ,2λ,22)λ-,(CM = ,21λ-,22)λ-.设平面AEF 的法向量为0(n x = ,0y,0)z .因为AE = ,0,0),AF = 12,1),由000001022x y z =++=⎩,得00x =,00102y z +=.取02y =,则01z =-,则平面AEF 的一个法向量为(0n =,2,1)-.由于//C M 平面AEF ,则0n CM = ,即2(21)(22)0λλ---=,解得23λ=.24分析:(1)根据相互独立事件的概率公式求出对应的概率值;(2)由题意知随机变量X的可能取值,计算在一局游戏中得2分的概率值,求出对应的概率值,写出分布列,计算数学期望.解:(1)设在一局游戏中得3分为事件A,则P(A)1112213525C C CC==;(2)由题意随机变量X的可能取值为1,2,3,4;且在一局游戏中得2分的概率为1221222135310C C C CC+=;则2122351 (1)5C CP XC===,436(2)51025P X==⨯=,43228(3)(15105125P X==⨯-⨯=,43342(4)(15105125P X==⨯-⨯=,X∴的分布列为:X1234P156252812542125162842337 ()1234525125125125E X=⨯+⨯+⨯+⨯=.。
江苏省苏州市(新版)2024高考数学苏教版考试(拓展卷)完整试卷
江苏省苏州市(新版)2024高考数学苏教版考试(拓展卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知全集,集合,则()A.B.C.D.第(2)题已知,是双曲线C的左右焦点,P为双曲线C上一点,,实轴长为2,若,则双曲线的离心率为()A.B.2C.D.第(3)题极坐标方程所表示的曲线是()A.两条相交直线B.圆C.椭圆D.双曲线第(4)题古希腊亚历山大时期的数学家帕普斯在《数学汇编》第3卷中记载着一个确定重心的定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以该闭合图形的重心旋转所得周长的积”,即(表示平面图形绕旋转轴旋转的体积,表示平面图形的面积,表示重心绕旋转轴旋转一周的周长).如图直角梯形,已知,则重心到的距离为()A.B.C.3D.2第(5)题已知数列为等差数列,且,则的值为()A.1B.C.2D.第(6)题若定义在区间内的函数满足,则a的取值范围是()A.B.C.D.第(7)题已知随机变量服从正态分布,若,则()A.B.C.D.第(8)题从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有().A.20种B.16种C.12种D.8种二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知是等比数列,是其前n项和,满足,则下列说法正确的有()A.若是正项数列,则是单调递增数列B.一定是等比数列C.若存在,使对都成立,则是等差数列D .若,且,,则时取最小值第(2)题若对任意的,,且,都有,则m的值可能是()A.B.C.D.1第(3)题若,x,,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设内角A,B,C所对应的边分别为a,b,c.已知,则______.第(2)题若函数满足当时,,当时,,则___________.第(3)题函数的反函数为________________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱台中,底面四边形为菱形,,,平面.(1)证明:;(2)若是棱上一动点(含端点),平面与平面所成锐二面角的余弦值为,求的值.第(2)题已知点为抛物线:的焦点,点,点为抛物线上的动点,直线:截以为直径的圆所得的弦长为定值.(1)求的值;(2)如图,直线交轴于点,抛物线上的点满足的中垂线过点且直线不与轴平行,求的面积的最大值.第(3)题已知函数.(1)证明:曲线在点处的切线恒过定点;(2)若有两个零点,,且,证明:.第(4)题在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.第(5)题已知函数,其中.(1)当时,求曲线在点处的切线方程;(2)若对任意,有恒成立,求实数k的取值范围.。
2020年高考(江苏卷)数学附加题训练十一(含答案)
2020年高考(江苏卷)数学附加题训练十一21.已知矩阵1012⎡⎤=⎢⎥⎣⎦A ,若直线+1y kx =在矩阵A 对应的变换作用下得到的直线过点(2,6)P ,求实数k 的值.22、在极坐标系中,圆C 的方程为2cos (0)a a ρθ=>,以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,设直线l 的参数方程为51121x t y t =+⎧⎨=-⎩(t 为参数),若直线l 与圆C 恒有公共点,求实数a 的取值范围.23、小明设置的手机开机密码若连续3次输入错误,则手机被锁定,5分钟后,方可重新输入.某日,小明忘记了开机密码,但可以确定正确的密码是他常用的4个密码之一,于是,他决定逐个(不重复)进行尝试.(1)求手机被锁定的概率;(2)设第X次输入后能成功开机,求X的分布列和数学期望E(X).24.(本小题满分10分)设n≥3,n∈N*,在集合{1,2,⋅⋅⋅,n}的所有元素个数为2的子集中,把每个子集的较大元素相加,和记为a,较小元素之和记为b.(1)当n=3时,求a,b的值;(2)求证:对任意的n≥3,n∈N*,ba为定值.数学附加题训练十一答案21矩阵1012⎡⎤=⎢⎥⎣⎦A ,得-1101122⎡⎤⎢⎥=-⎢⎥⎣⎦A ,·························································5分所以-1102221166222⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A ,将点(2,2)代入直线+1y kx =得12k =.··························10分22、由51121x t y t =+⎧⎨=-⎩(t 为参数),可得直线l 的普通方程为125170x y --=,由2cos (0)a a ρθ=>得22cos a ρρθ=所以,圆C 的标准方程为222()x a y a -+=,·························································5分因为直线l 与圆C||a ,又因为0a >a ,解之得1725a ,所以,实数a 的取值范围为1725a .··································································10分23.解:(1)设事件A :“手机被锁定”,则3211()4324P A =⨯⨯=.答:手机被锁定的概率为14.……3分(2)依题意,X 的所有可能值为1,2,3,4.则1(1)4P X ==,311(2)434P X ==⨯=,3211(3)4324P X ==⨯⨯=,11(4)144P X ==⨯=,所以X 的分布表为:……8分所以()()15123442E X =+++⨯=(次).……10分24.解:(1)当3n =时,集合{}123,,的所有元素个数为2的子集为:{}12,,{}13,,{}23,,所以2338a =++=,1124B =++=.……2分(2)当*3n n ∈N ≥,时,依题意,X1234P 1414141411111123(2)(1)1C 2C 3C (2)C (1)C n n n n n n n b n n -------=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯,11111123212C 3C 4C (1)C C n n a n n --=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯……6分213243(1)(2)(1)n n n n =⨯+⨯+⨯+⋅⋅⋅+-⨯-+⨯-.则2222234C +C C C 2n a =++⋅⋅⋅+3222334C +C C C n =++⋅⋅⋅+32244C +C C n =+⋅⋅⋅+31C n +=⋅⋅⋅=所以312C n a +=.……8分又1311(1)(123)C (1)3C 2n n n n a b n n -+++=+++⋅⋅⋅+⨯=⨯-=,所以31C n b +=.从而12b a =.……10分。
江苏省启东中学2022高考数学附加题专练习6 Word版含答案
附加题61. 设A=1212⎤⎥⎢⎢⎢⎣,求6A 的逆矩阵是。
答案要点:6A = 1 00 -1-⎡⎤⎢⎥⎣⎦,相当于关于直线y x 对称,其逆变换自然还是关于直线y x 对称。
其逆矩阵为自身 1 00 -1-⎡⎤⎢⎥⎣⎦。
2.在椭圆2211612x y +=上找一点,使这一点到直线2120x y --=的距离的最小值.答案要点:设椭圆的参数方程为4cos x y θθ=⎧⎪⎨=⎪⎩,d =3)33πθθθ=-=+- 当cos()13πθ+=,即53πθ=时,min d =,此时所求点为(2,3)- 3. 如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.求APB ∆的重心G 的轨迹方程.答案要点:设切点A 、B 坐标分别为22001110(,)(,)(()x x x x x x ≠和,∴切线PA 的方程为:;02200=--x y x x切线PB 的方程为:;02211=--x y x x 答案要点得P 点的坐标为: 1010,2x x y x x x P P =+= 所以APB ∆的重心G 的坐标为 P P G x x x x x =++=310, 222201*********(),3333P p P G x y y y y x x x x x x x x y -+++++-==== 所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为: 221(34)20,(42)3x y x y x x --+-==-+即.4. 已知2()1f x x x =+-,()ln g x =若对任意12x >,都有()()f x g x ≤,试求a 的取值范围. 答案要点:设21()()()1ln ln(21)2x f x g x x x a x ϕ=-=+----,则对任意12x >,都有()()f x g x ≤,即max ()0x ϕ≤,由于14(1)()212121x x x x x x ϕ-'=-++=--, 当112x <<时,()0x ϕ'>;当1x >时,()0x ϕ'<;所以()x ϕ在1(,1)2上时增函数, ()x ϕ在1(,1)2上时减函数,所以max ()(1)1ln x a ϕϕ==-,所以1ln 0a -≤,即a e ≥时, max ()0x ϕ≤,故a 的取值范围是[,)e +∞.。
历届高考数学附加题(江苏卷)及答案解析
历届高考数学附加题(江苏卷)(2018.江苏)21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。
A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过点P 作圆O 的切线,切点为C ,若PC =,求BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分) 已知矩阵2312A ⎡⎤=⎢⎥⎦⎣(I)求A 的逆矩阵1A -;(Ⅱ)若点P 在矩阵A 对应的变换作用下得到点'31P (,),求点P 的坐标。
C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l 的方程为26psin πθ-=(),曲线C 的方程为4p cos θ=,求直线被曲线C 截得的弦长.D .[选修4-5:不等式选讲](本小题满分10分)若x y z ,,为实数,且226x y z ++=,求222x y z ++的最小值.(2018.江苏)【必做题】第22题、第23题,每题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P Q ,分别为11,A B BC 的中点.(I)求异面直线BP 与1AC 所成角的余弦值; (Ⅱ)求直线1CC ,与平面1AQC 所成角的正弦值.(2018.江苏)23.(本小题满分10分) 设*N n ∈,对1,2,…,n 的一个排列12n i i i ,如果当s t <时,有s t i i >,则称s t i i (,)是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序()()2,13,1,,则排列231的逆序数为2.记n f k ()为1,2,n ,的所有排列中逆序数为k 的全部排列的个数。
江苏省启东中学2022高考数学附加题专练习3 Word版含答案
附加题31.已知矩阵⎥⎦⎤⎢⎣⎡-=111a A ,其中R a ∈,若点P (1,1)在矩阵A 的变换下得到点P’(0,-3), (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量. 【解析】(1)由⎥⎦⎤⎢⎣⎡-111a ⎥⎦⎤⎢⎣⎡11=⎥⎦⎤⎢⎣⎡-30得431-=⇒-=+a a (2)由(1)知 ⎥⎦⎤⎢⎣⎡--=1411A 则矩阵A 的特征多项式为324)1(1411)(22--=--=--=λλλλλx f令0)(=λf ,得矩阵A 的特征值为-1或3 当1-=λ时 二元一次方程x y y x y x 20)1(40)1(=⇒⎩⎨⎧=-+=+-λλ∴矩阵A 的属于特征值-1的一个特征向量为⎥⎦⎤⎢⎣⎡21当3=λ时,二元一次方程020)1(40)1(=+⇒⎩⎨⎧=-+=+-y x y x y x λλ∴矩阵A 的属于特征值3的一个特征向量为⎥⎦⎤⎢⎣⎡-21.2.已知曲线C :1=xy .(1)将曲线C 绕坐标原点逆时针旋转045后,求得到的曲线'C 的方程; (2)求曲线C 的焦点坐标和渐近线方程.解析:直线的参数方程为3,()12x s y s ⎧=-⎪⎪⎨⎪=⎪⎩为参数, 曲线1,()1x t t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数可以化为224x y -=.将直线的参数方程代入上式,得2100s -+=.设A 、B 对应的参数分别为12s s ,,∴121210s s s s +==.AB 12s s =-=3.用数学归纳法证明不等式2)1(21)1(3221+<+++⋅+⋅n n n ,n N *∈.【解析】(1)当n=1时,左=2,右=2,不等式成立.(2)假设当n=k 时不等式成立,即2)1(21)1(3221+<+++⋅+⋅k k k则)2)(1()1(21)2)(1()1(32212++++<++++++⋅+⋅k k k k k k k02)2()1()2)(1(2)2()2)(1()1(2122<+++-++=+-++++k k k k k k k k 2]1)1[(21)2)(1()1(3221++<++++++⋅+⋅∴k k k k k∴当n=k+1时, 不等式也成立.综合(1)(2),不等式对全部正整数都成立.4.用n 2()n N *∈个相同的元件(例如整流二极管)组成一个系统,有两种不同的联结方式,第Ⅰ种是先串联后并联,如图一;第Ⅱ种是先并联后串联,如图二.假如每个元件能否正常工作是相互独立的,且每个元件能正常工作的概率为r (0<r <1),元件或系统能正常工作的概率通常称为牢靠度.⑴分别求出图一和图二系统能正常工作的概率1P 和2P ;⑵请你比较一下两个系统哪一个更牢靠一些(即牢靠度更大一些)?并加以证明.解析:(1)211(1)(2)n n n P r r r =--=-,22[1(1)](2)n n n P r r r =--=-,(2)猜得结论:当1n =时,21P P =,当n ≥2时,12P P <,(方法1)证明:①当2=n 时,不等式成立.②假设)2(≥=k k n 时,kr )2(->kr -2成立,则当1+=k n 时,图一图二∵0<r <1,∴r -2>r >0,从而20,10,10kr r r ->->->,111111(2)(2)(2)(2)(2)4222(2222)22(1)(1)2k k k k k k k k k k k r r r r r r r r r r r r r r r r ++++++∴-=-->--=--+=-+--+=-+-->- 这就是说,当1+=k n 时,不等式也成立.由①、②知,当,2n N n ∈≥时,有2(2)nnr r -<-.(方法2)令()(2)2nnf n r r =-+-,01,02,10,(2),(1)[(2)]0n n n n r r r r r r r r r <<∴<<-∴-><-∴--->11(1)()[(2)2][(2)2](1)[(2)]0n n n n n n f n f n r r r r r r r ++∴+-=-+---+-=--->从而(1)()f n f n +>,所以数列{()}f n 是递增数列,所以当1n >时,()(1)0f n f >=.(方法3)由于(2)[1(1)],[1(1)]nnnnr r r r -=+-=--,所以设1a r =-, 由01r <<知0a >,从而12233122332244(1)(1)(1)(1(1))222(1(1))2n nn n n n nn n n n n n n n nnnnnna a C a C a C a C a C a C a C a C a C a C a C a++-=++++++-+-++-=+++++-≥当且仅当1n =时取“=”.故(2)2n n r r -+≥,即2(2)n nr r -≤-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
x
∴当
6时
ymin
5 4 。 (10 分)
25. (必做题) (本小题满分 10 分) 解: (1)如图所示,以 CB 为 x 轴, CA 为 y 轴,
CC1 为 z 轴建立空间直角坐标系,由 C1C CB CA 2 可得 C (0,0,0) ,
A(0, 2, 0) , B(2, 0, 0) , D(0, 0,1) , E (1, 0, 2) .
1 1 1 1 1 4 4 4 4 sin 2 x y sin 2 x 2sin x 2sin x 2sin x 2sin x 2sin x
1 5 1 2 4 55 sin x 1 4 4 2sin x sin x 2 2 sin x 2 时取等号, 当且仅当 = sin x 即
0 (1)∵ MN AB ,∴ B 90 BFE D ,
∴ AED ∽ FEB , ∴ AE :ED FE :EB ; (5 分) (2)延长 ME 与⊙O 交于点 N,由相交弦定理, 得 EM EN EA EB ,且 EM EN , ∴ EM EA EB ,由(1)
1 x 2 y 1 0 2 2 x 2 y 2 0 y 1 A BD 的法向量为 n2 ( x, y,1) 2, 设平面 1 n1 n2 6 cos n1 , n2 6 n1 n2 n (1, 1,2)
B1
23.如图,直三棱柱 ABC-A1B1C1 中,底面是等腰直角三角形, AB=BC= 2 ,BB1=3,D 为 A1C1 的中点,F 在线段 AA1 上. (1)AF 为何值时,CF⊥平面 B1DF? (2)设 AF=1,求平面 B1CF 与平面 ABC 所成的锐二面角的余弦值.
C1 D
A1 F B A
2 1。
恒成立,而
x y sin cos 1 2 1
= (10 分)
,
∴a
23. (选做题) (本小题满分 10 分)
m n 2 4 2 0 1 0 M 3 5 0 1 M 0 -1 p q 解:设 ,则由 2m 2n 1 0 2m 2n p q 0 1 p q
2
C A A A
O A
D A M A FA A E A N A
B A
∴ EM ED EF 。 (10 分)
2
22. (选做题) (本小题满分 10 分)
2 2 x 2 y 1 1 解: (1)由 x y 2 y 可得
2
设 x cos , y 1 sin , R ,则 2 x y = 2 cos 1 sin
P( B)
所以
7 1 3 C9 12 ;
(7 分)
(3)随机变量 的取值为 0,1, 2, 的分布列为
P
0
1
2
5 12 E 0
1 2
1 12
∴ 的数学期望为
5 1 1 2 1 2 12 2 12 3 。 (10 分)
附加题部分
21. 【选做题】在 A,B,C,D 四小题中只能选做 2 题,每小题 10 分,共计 20 分.解答应写出文字说明、 证明过程或演算步骤. A.选修 4—1 几何证明选讲
∴ F (0,1, 0) F 即为 AC 中点. (10 分)
26. (必做题) (本小题满分 10 分) 解: (1)记“这 3 个数至少有一个是偶数”为事件 A ,
1 2 2 1 3 0 C4 C5 C4 C5 C4 C5 37 P( A) 3 C9 42 ;. (3 分) 则
(2)记“这 3 个数之和为 18”为事件 B ,考虑三数由大到小排列后的中间数只有可能为 5、 6、7、8,分别为 459,567,468,369,279,378,189 七种情况,
AC , EM 交于点 D , BC 交 DE 于点 F .
求证: (1) AE:ED FE:EB ; (2) EM ED EF .
2
C A A A
22. (本小题为选做题,满分 10 分) 已知点 P( x, y) 是圆 x y 2 y 上的动点.
2 2
O A
D A M A FA A E A
F A
D D
C
如图, AB 是⊙O 的直径, C、 F 为⊙O 上的点, 且 CA 平分∠BAF, 过点 C 作 CD⊥AF 交 AF 的延长线于点 D. 求证:DC 是⊙O 的切线.
O
B
B.选修 4—2
矩阵与变换
变换 T 是绕坐标原点逆时针旋转 下所得的曲线方程.
π 的旋转变换,求曲线 2 x2 2 xy y 2 1 在变换 T 作用 2
B.附加题部分 三、附加题部分(本大题共 6 小题,其中第 21~24 题为选做题,请考生在第 21~24 题中任 选 2 个小题作答,如果多做,则按所选做的前两题记分;第 25 和第 26 题为必做题.解答应 写出文字说 明,证明过程或演算步骤. ) 21. (本小题为选做题,满分 10 分) 如图, AB 是 O 的直径, M 为圆上一点, ME AB ,垂足为 E ,点 C 为 O 上任一点,
C1C、B1C1 的中点.
(1)求点 E 到平面 ADB 的距离; (2)求二面角
E A1D B 的平面角的余弦值;
A DB ?若存在,确定其位置;若不 (3)在线段 AC 上是否存在一点 F ,使得 EF 平面 1
存在,说明理由.
A1 C1
E
B1
D
在 数.
C
F
A
26. (本小题为必做题,满分 10 分)
DE n 6 d 2 n
则点 E 到平面 ADB 的距离
.
(3 分)
A (0, 2, 2) A E (1, 2,0) A D (0, 2, 1) , E (1, 0, 2) D (0, 0,1) (2) 1 , , 可得 1 , 1
B A
(1)求 2 x y 的取值范围; (2)若 x y a 0 恒成立,求实数 a 的取值范围. 23. (本小题为选做题,满分 10 分)
2 4 2 0 1 0 3 5 0 1 M 0 -1 成立的矩阵 M . 求使等式
(5 分)
2m 2 m 1 2n 4 n 2 1 2 p 3 p 3 M q 5 3 5 . q 5 ,即 则
(1 10 分)
x (0, ) 2 知: 解:由
B
1, 2, 3, , 9 这 9 个自然数中,任取 3 个不同的
(1)求这 3 个数中至少有 1 个是偶数的概率; (2)求这 3 个数和为 18 的概率; (3) 设 为这 3 个数中两数相邻的组数 (例如: 若取出的数为 1, 2,3 , 则有两组相邻的数 1, 2 和 2, 3 ,此时 的值是 2 ) .求随机变量 的分布列及其数学期望 E . B.附加题部分 三、附加题部分: 21. (选做题) (本小题满分 10 分) 证明:
即 x 2 xy 2 y 1 ,
2 2
所以变换后的曲线方程为 x 2 xy 2 y 1 .
2 2
………………… 10 分
C.选修 4—4
参数方程与极坐标(本题满分 10 分)
【解】 (1) 2 4 ,所以 x y 4 ;因为 2 2 cos
x 1 x 2 y 0 1 2 y 1 0 y A ED n ( x , y ,1) 2, 设平面 1 的法向量为 1
n (2,1, 2) , A1 (0, 2, 2) , D(0, 0,1) , B(2, 0, 0) , 故可令 1 A D (0, 2, 1) A B (2, 2, 2) , 可得 1 , 1
1 5,1 5 = 5 sin( ) 1
2 2 x 2 y 1 1 (2)由 x y 2 y 可得
2
(5 分)
设 x cos , y 1 sin , R , x y a 0 恒成立 即
a x y
z
C1
A1
E
B1
AB (2, 2,0) AD (0, 2,1) , 则 ,
D y F A B
DE (1,0,1) 设平面 ADB 的法向量为 n ( x, y,1) 得
C
x
1 x 2 x 2 y 0 2 2 y 1 0 y 1 n ( 1 , 1 ,1) 2即 2 2 则取法向量为 n (1,1, 2) ,
C
(第 23 题图)
附加题答案
A.选修 4—1 几何证明选讲
【证明】连结 OC,所以∠OAC=∠OCA. 又因为 CA 平分∠BAF,所以∠OAC=∠FAC, 于是∠FAC=∠OCA,所以 OC//AD. 又因为 CD⊥AF,所以 CD⊥OC, 故 DC 是⊙O 的切线. B.选修 4—2 矩阵与变换 ………………… 10 分
24. (本小题为选做题,满分 10 分)
1 y sin 2 x x (0, ) 2sin x 2 ,求函数 已知 的最小值以及取最小值时所对应的 x 值.
25. (本小题为必做题,满分 10 分) 如图,直三棱柱
A1B1C1 ABC 中, C1C CB CA 2 , AC CB . D、E 分别为棱
F A
D D
C