柱下独立基础受冲切计算

合集下载

独立基础抗冲切验算例题

独立基础抗冲切验算例题

独立基础抗冲切验算例题独立基础抗冲切验算例题一、问题描述在进行土木工程设计时,需要对独立基础的抗冲切能力进行验算。

本文将通过一个具体的例题,介绍独立基础抗冲切验算的方法和步骤。

二、问题分析独立基础是一种常用的土木工程基础形式,其承载结构荷载并将荷载传递到地基中。

在实际应用中,独立基础可能会受到外部力的作用,如地震、风荷载等,这时就需要对其抗冲切能力进行验算。

为了对独立基础抗冲切能力进行验算,需要先了解以下几个参数:1. 基底土壤强度参数:包括黏聚力和内摩擦角。

2. 独立基础尺寸参数:包括宽度、长度和深度。

3. 荷载参数:包括垂直荷载和水平荷载。

4. 土层厚度和性质参数:包括土层厚度、密度、孔隙比等。

5. 基底土壤类型参数:包括岩性、颗粒大小等。

三、实例分析假设一个独立基础的尺寸为2m×3m×1.5m,基底土壤类型为砂土,黏聚力为0,内摩擦角为30度。

该基础承受的垂直荷载为1000kN,水平荷载为200kN。

地下土层厚度为10m,密度为1.8g/cm³,孔隙比为0.4。

根据以上参数,可以通过以下步骤进行独立基础抗冲切验算:步骤一:计算基底土壤的承载力根据摩尔-库仑理论,可以得出基底土壤的极限承载力公式:qult = c + σn tan(φ)其中,qult表示极限承载力;c表示黏聚力;σn表示有效应力;φ表示内摩擦角。

在本例中,由于黏聚力c=0,则可得出:qult = σn tan(φ) = 10 × 1.8 × tan(30°) ≈ 93.53kPa 步骤二:计算水平和垂直荷载的有效应力根据有效应力公式:σn = σ - u其中,σ表示总应力;u表示孔隙水压。

在本例中,由于孔隙比e=0.4,则可得出:u = e × γ × H = 0.4 × 1.8 × 10 ≈ 7.2kPaσn垂直= (1000 ÷ (2 × 3)) + 7.2 ≈ 183.3kPaσn水平= (200 ÷ (2 × 3)) + 7.2 ≈ 40.8kPa步骤三:计算基础的抗冲切力根据基础抗冲切力公式:R = qult × Bp + σn水平× Lp - σn垂直× Wp其中,Bp表示基础宽度;Lp表示基础长度;Wp表示基础深度。

独立基础抗冲切验算

独立基础抗冲切验算

独立基础抗冲切验算
独立基础抗冲切验算是指在工程施工中,针对土壤所能承受的冲
击和剪切力,对独立基础的承载能力进行验证计算的过程。

下面我们
来介绍独立基础抗冲切验算的具体步骤。

步骤一:确定基础的材料、尺寸和荷载情况,包括基础的长、宽、厚度、深度和荷载类型等。

步骤二:根据土壤的承载能力、地下水位等条件,选定适当的地
基基础系数,如极限承载力、侧阻力等。

步骤三:根据基础的几何形状和应力分布情况,计算出基础的抗
冲切能力和抗剪切能力。

步骤四:对基础的计算值进行验算,验证其是否符合规范要求,
如地基基础工程设计规范等。

步骤五:如计算值不符合规范要求,则需要进行基础加固或者重
新设计的调整。

总之,独立基础抗冲切验算是保证基础施工质量和耐久性的关键
一步,在进行施工前一定要认真进行验算和设计,以免造成基础沉降、开裂等施工质量问题。

四层框架综合楼基础计算书

四层框架综合楼基础计算书

一、概述1,概况综合楼主体采用四层混凝土框架结构,基础除地下室以外均采用柱下独立基础,地下室底板按筏基设计,地基承载力标准值为500KPa。

该工程场区的抗震设防烈度为7度,设计基本地震加速度值为0.15g,设计地震分组为第一组,建筑场地类型为Ⅱ类场地。

本工程安全等级为二级,设计使用年限为50年。

本工程计算采用中国建筑科学研究院的PKPM(2006年新规范版)程序中的SATWE模块进行结构计算。

二、计算依据的标准规程规范1,《建筑结构可靠度设计统一标准》(GB50068-2001)2,《建筑结构荷载规范》(GB50009-2006年版)3,《混凝土结构设计规范》(GB50010-2002)4,《建筑抗震设计规范》(GB50011-2001)5,《建筑地基基础设计规范》(GB50007-2002)6,《北京地区建筑地基基础勘察设计规范》(DBJ01-501-92)三、设计基本资料1,北京国电水利电力工程有限公司提供的《岩土工程勘察报告》2,北京合纵科技公司综合楼建筑图3,地面粗糙度B类,风荷载:0.45 k N/m²4,地震设防烈度7度,设计地震分组:第一组0.15g5,材料强度等级混凝土:现浇梁板柱:C30;基础:C30;基础垫层:C10钢筋:HRB400级钢筋四、计算本工程结构计算采用中国建筑科学研究院开发的PKPM软件——SATWE、JCCAD(2006版)结构计算软件计算。

独立基础在实际配筋时,在保证基础安全的前提下,对基础进行了归并。

五、计算成果可靠性验证经过对部分构件与同类工程进行对比,计算成果是可靠的。

附件1:独基计算文件+------------------------------------------------------------++ JCCAD 计算结果文件++ ++ 工程名称: 1 ++ 计算日期: 2009-10- 9 ++ 计算时间: 14:16:59.32 ++ 计算内容: ++------------------------------------------------------------+荷载代码Load 荷载组合公式368 SA TWE标准组合:1.00*恒+1.00*活369 SA TWE标准组合:1.00*恒+1.00*风x370 SA TWE标准组合:1.00*恒+1.00*风y371 SA TWE标准组合:1.00*恒-1.00*风x372 SA TWE标准组合:1.00*恒-1.00*风y377 SA TWE标准组合:1.00*恒+1.00*活+0.60*1.00*风x378 SA TWE标准组合:1.00*恒+1.00*活-0.60*1.00*风x379 SA TWE标准组合:1.00*恒+1.00*活+0.60*1.00*风y380 SA TWE标准组合:1.00*恒+1.00*活-0.60*1.00*风y381 SA TWE标准组合:1.00*恒+1.00*风x+0.70*1.00*活382 SA TWE标准组合:1.00*恒-1.00*风x+0.70*1.00*活383 SA TWE标准组合:1.00*恒+1.00*风y+0.70*1.00*活384 SA TWE标准组合:1.00*恒-1.00*风y+0.70*1.00*活441 SA TWE标准组合:1.00*(恒+0.50*活)+1.00*地x+0.38*竖地442 SA TWE标准组合:1.00*(恒+0.50*活)-1.00*地x+0.38*竖地443 SA TWE标准组合:1.00*(恒+0.50*活)+1.00*地y+0.38*竖地444 SA TWE标准组合:1.00*(恒+0.50*活)-1.00*地y+0.38*竖地445 SA TWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风x+1.00*地x+0.38*竖地446 SA TWE标准组合:1.00*(恒+0.50*活)+0.20*1.00*风y+1.00*地y+0.38*竖地447 SA TWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风x-1.00*地x+0.38*竖地448 SA TWE标准组合:1.00*(恒+0.50*活)-0.20*1.00*风y-1.00*地y+0.38*竖地481 SA TWE准永久组合:1.00*恒+0.50*活482 SA TWE基本组合:1.20*恒+1.40*活483 SA TWE基本组合:1.35*恒+0.70*1.40*活484 SA TWE基本组合:1.20*恒+1.40*风x485 SA TWE基本组合:1.20*恒+1.40*风y486 SA TWE基本组合:1.20*恒-1.40*风x487 SA TWE基本组合:1.20*恒-1.40*风y492 SA TWE基本组合:1.20*恒+1.40*活+0.60*1.40*风x493 SA TWE基本组合:1.20*恒+1.40*活-0.60*1.40*风x494 SA TWE基本组合:1.20*恒+1.40*活+0.60*1.40*风y495 SA TWE基本组合:1.20*恒+1.40*活-0.60*1.40*风y496 SA TWE基本组合:1.20*恒+1.40*风x+0.70*1.40*活497 SA TWE基本组合:1.20*恒-1.40*风x+0.70*1.40*活498 SA TWE基本组合:1.20*恒+1.40*风y+0.70*1.40*活499 SA TWE基本组合:1.20*恒-1.40*风y+0.70*1.40*活556 SA TWE基本组合:1.20*(恒+0.50*活)+1.30*地x+0.50*竖地557 SA TWE基本组合:1.20*(恒+0.50*活)-1.30*地x+0.50*竖地558 SA TWE基本组合:1.20*(恒+0.50*活)+1.30*地y+0.50*竖地559 SA TWE基本组合:1.20*(恒+0.50*活)-1.30*地y+0.50*竖地560 SA TWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风x+1.30*地x+0.50*竖地561 SA TWE基本组合:1.20*(恒+0.50*活)+0.20*1.40*风y+1.30*地y+0.50*竖地562 SA TWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风x-1.30*地x+0.50*竖地563 SA TWE基本组合:1.20*(恒+0.50*活)-0.20*1.40*风y-1.30*地y+0.50*竖地计算独基时[不考虑]独基范围内的线荷载独基底板最小配筋率:0.150%北京地区建筑地基基础勘察设计规范DBJ01-501-92 --综合法符号说明:fak:地基承载力特征值fa:修正后的承载力特征值(地震荷载组合:faE)q :用于地基承载力特征值修正的基础埋深Pt :平均覆土压强(包括基础自重)fy :计算底板钢筋时采用的抗拉设计强度Load:荷载代码Mx':相对于基础底面形心的绕x轴弯矩标准组合值My':相对于基础底面形心的绕y轴弯矩标准组合值N':相对于基础底面形心的轴力标准组合值Pmax:该组合下最大基底反力Pmin:该组合下最小基底反力S:基础底面长B:基础底面宽M1:底板x向配筋计算用弯矩设计值M2:底板y向配筋计算用弯矩设计值AGx:底板x向全截面配筋面积AGy:底板y向全截面配筋面积节点号= 1 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 -31.22 -60.74 111.31 89.48 0.17 600.00 2311 2311柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 557 X+ 97. 118.8 122.1 270.500. 482 X- 36. 46.0 75.2 200.500. 482 Y- 36. 46.4 75.2 200.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 70.040 686.264 563 66.790 654.422x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 4 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 446 87.63 18.96 170.38 117.25 0.02 600.00 2217 2217柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 557 X+ 109. 130.5 136.9 290.500. 556 X- 66. 83.3 87.8 220.500. 559 Y+ 101. 122.7 129.4 280.500. 558 Y- 82. 101.3 107.9 250.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 78.705 771.169 563 74.896 733.845x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 5 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 172.91 2470.02 1241.70 117.73 0.08 600.00 7965 4465柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)4000. 557 X- 66. 303.3 308.3 480.4000. 558 Y+ 93. 995.2 1030.0 360.4000. 559 Y- 58. 648.5 681.5 260.基础各阶尺寸:No: S B H1 8000 4500 4002 4100 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 828.875 5847.439 561 965.667 6904.524x实配:Φ16@200(0.16%) y实配:Φ16@180(0.16%)节点号= 6 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 446 92.25 0.72 398.60 534.36 1.04 600.00 1278 1278柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 483 X+ 260. 81.7 87.8 220.500. 556 X- 300. 91.6 94.4 230.500. 482 Y+ 173. 57.0 75.2 200.500. 561 Y- 499. 124.8 136.9 290.600. 482 X+ 249. 71.5 86.7 200.600. 560 X- 302. 84.0 93.7 210.600. 482 Y+ 163. 46.9 86.7 200.600. 558 Y- 492. 118.0 123.3 250.基础各阶尺寸:No: S B H1 1400 1400 3002 600 600 2003 600 600 100柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 26.586 319.700 561 41.412 497.985x实配:Φ12@150(0.16%) y实配:Φ12@150(0.16%)节点号= 9 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 380 -69.20 1.19 527.36 479.28 141.37 400.00 1357 1357柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 483 X+ 345. 99.3 107.9 250.500. 560 X- 376. 104.6 114.9 260.500. 559 Y+ 625. 143.7 152.3 310.500. 558 Y- 271. 85.1 87.8 220.600. 483 X+ 345. 92.9 100.9 220.600. 560 X- 376. 97.5 108.2 230.600. 563 Y+ 635. 132.8 147.2 280.600. 482 Y- 222. 63.8 86.7 200.基础各阶尺寸:No: S B H1 1400 1400 3002 600 600 2003 600 600 100柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 33.329 400.777 563 52.900 636.123x实配:Φ12@150(0.16%) y实配:Φ12@150(0.16%)节点号= 17 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 -25.87 -98.66 201.90 125.35 0.02 600.00 2284 2284柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 557 X+ 111. 133.1 136.9 290.500. 556 X- 96. 116.5 122.1 270.500. 559 Y+ 96. 116.6 122.1 270.500. 561 Y- 107. 128.8 136.9 290.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 81.763 801.124 561 78.474 768.896x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 19 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 446 96.14 -10.57 366.73 365.19 0.38 600.00 1519 1519柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 562 X+ 146. 167.7 176.6 340.500. 556 X- 127. 149.5 152.3 310.500. 563 Y+ 156. 177.0 185.0 350.500. 561 Y- 130. 151.5 160.3 320.基础各阶尺寸:No: S B H1 2400 2400 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 109.216 1070.120 563 115.207 1128.814x实配:Φ12@150(0.15%) y实配:Φ12@150(0.15%)节点号= 21 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 32.04 376.56 766.01 269.04 0.11 600.00 2631 2631柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 176. 356.7 362.6 530.500. 557 X- 214. 416.9 420.8 580.500. 558 Y+ 217. 420.6 432.9 590.500. 559 Y- 162. 332.1 340.4 510.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 414.366 4060.023 561 426.314 4177.095x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 22 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 50.74 -341.38 527.40 156.87 0.27 600.00 3108 3108柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 176. 356.2 362.6 530.500. 562 X- 142. 298.0 308.3 480.500. 561 Y+ 133. 282.6 287.6 460.500. 563 Y- 175. 355.4 362.6 530.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 331.744 3250.483 563 328.279 3216.525x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 24 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 28.30 373.15 1057.76 539.10 0.11 600.00 2075 2075柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 596. 348.0 351.5 520.500. 557 X- 638. 354.0 374.0 540.500. 558 Y+ 586. 342.2 351.5 520.500. 563 Y- 639. 354.5 374.0 540.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 288.748 2829.199 563 287.314 2815.152x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 26 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 445 -4.53 358.78 472.05 145.99 0.07 600.00 3102 3102柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 138. 291.9 297.9 470.500. 557 X- 176. 357.4 362.6 530.500. 561 Y+ 176. 356.5 362.6 530.500. 563 Y- 127. 271.0 277.5 450.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 329.945 3232.857 561 328.521 3218.904x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 27 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 21.17 -210.62 729.76 532.43 0.22 600.00 1735 1735柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 404. 274.8 277.5 450.500. 557 X- 370. 256.6 267.6 440.500. 558 Y+ 330. 237.3 248.2 420.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 188.013 1842.181 563 199.480 1954.541x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 29 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 377 20.25 23.83 1507.19 430.75 365.35 400.00 2007 2007柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 560 X+ 719. 377.5 397.1 560.500. 557 X- 584. 341.3 351.5 520.500. 558 Y+ 570. 332.9 351.5 520.500. 563 Y- 725. 380.7 397.1 560.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 330.155 3234.907 563 332.199 3254.936x实配:Φ16@180(0.23%) y实配:Φ16@180(0.23%)节点号= 30 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 -29.12 -324.15 528.46 173.48 0.02 600.00 2902 2902柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 560 X+ 195. 385.6 397.1 560.500. 561 Y+ 201. 395.6 408.9 570.500. 563 Y- 137. 288.7 297.9 470.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 370.543 3630.636 561 381.341 3736.442x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 35 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 380 64.19 3.02 1167.69 472.44 325.64 400.00 1764 1764柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 438. 286.3 297.9 470.500. 557 X- 459. 293.9 308.3 480.500. 561 Y+ 416. 277.3 287.6 460.500. 559 Y- 483. 302.8 318.8 490.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 215.025 2106.844 563 227.670 2230.743x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 37 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 368 -24.57 1.50 1841.72 412.72 384.06 400.00 2217 2217柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 235. 447.2 457.6 610.500. 557 X- 243. 458.0 470.2 620.500. 558 Y+ 244. 461.3 470.2 620.500. 559 Y- 244. 461.1 470.2 620.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 350柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 489.737 4391.866 563 496.590 4453.323x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 38 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 379 -34.43 0.68 932.81 452.49 345.16 400.00 1577 1577柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 403. 274.3 277.5 450.500. 557 X- 358. 252.6 257.8 430.500. 558 Y+ 418. 279.0 287.6 460.500. 563 Y- 371. 257.0 267.6 440.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 187.677 1838.891 561 197.236 1932.548x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 43 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 384 106.00 -39.28 1323.48 479.13 251.05 400.00 1969 1969柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 539. 322.5 340.4 510.500. 557 X- 650. 360.6 374.0 540.500. 558 Y+ 550. 328.9 340.4 510.500. 559 Y- 648. 359.7 374.0 540.基础各阶尺寸:No: S B H1 2100 2100 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 298.027 2920.115 563 301.955 2958.602x实配:Φ16@200(0.20%) y实配:Φ16@200(0.20%)节点号= 45 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 380 32.87 -59.04 2184.94 439.17 360.49 400.00 2411 2411柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 279. 508.8 522.0 660.500. 557 X- 321. 561.6 576.2 700.500. 558 Y+ 310. 548.7 562.4 690.500. 559 Y- 321. 561.6 576.2 700.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 636.845 5264.924 563 643.302 5318.307x实配:Φ14@130(0.22%) y实配:Φ14@130(0.22%)节点号= 46 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 448 324.42 -29.31 841.21 389.52 0.48 600.00 2217 2217柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 160. 329.6 340.4 510.500. 557 X- 209. 408.4 420.8 580.500. 561 Y+ 220. 426.0 432.9 590.500. 563 Y- 175. 353.9 362.6 530.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 405.601 3974.146 561 422.726 4141.939x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)节点号= 51 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 247.46 -2443.45 1522.39 144.14 0.12 600.00 7639 4139柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)4000. 556 X+ 83. 323.5 329.6 500.4000. 557 X- 130. 481.4 495.8 640.4000. 558 Y+ 73. 722.4 750.0 280.4000. 559 Y- 115. 1079.9 1101.5 380.基础各阶尺寸:No: S B H1 7700 4200 4002 4100 600 350柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 841.037 6357.042 563 978.274 7501.522x实配:Φ16@180(0.19%) y实配:Φ16@200(0.15%)节点号= 53 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 378 -31.65 40.26 1912.48 437.58 362.37 400.00 2255 2255柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 271. 498.6 508.8 650.500. 557 X- 299. 534.5 548.8 680.500. 558 Y+ 272. 499.6 508.8 650.500. 563 Y- 309. 545.5 562.4 690.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 597.122 4936.523 563 607.455 5021.952x实配:Φ16@180(0.21%) y实配:Φ16@180(0.21%)节点号= 55 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 167.20 -2331.04 1282.11 127.12 0.12 600.00 7701 4201柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)4000. 560 X+ 77. 320.2 329.6 500.4000. 557 X- 113. 447.4 457.6 610.4000. 561 Y+ 105. 1036.0 1065.7 370.4000. 559 Y- 64. 658.2 681.5 260.基础各阶尺寸:No: S B H1 7800 4300 4002 4100 600 400柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)562 777.571 5485.510 561 938.717 6711.835x实配:Φ16@200(0.16%) y实配:Φ16@180(0.16%)节点号= 58 C20.0 fak(kPa)= 400.0 q(m)= 1.20 Pt= 24.0 kPa fy=210 mPaLoad Mx'(kN-m) My'(kN-m) N(kN) Pmax(kPa) Pmin(kPa) fa(kPa) S(mm) B(mm) 447 97.42 -309.52 631.25 194.91 0.36 600.00 2927 2927柱下独立基础冲切计算:at(mm) load 方向p_(kPa) 冲切力(kN) 抗力(kN) H(mm)500. 556 X+ 218. 422.2 432.9 590.500. 557 X- 145. 303.2 308.3 480.500. 556 Y+ 168. 342.8 351.5 520.500. 559 Y- 218. 421.3 432.9 590.基础各阶尺寸:No: S B H1 3200 3200 3002 600 600 300柱下独立基础底板配筋计算:load M1(kNm) AGx(mm*mm) load M2(kNm) AGy(mm*mm)560 423.088 4145.483 563 425.127 4165.464x实配:Φ16@200(0.21%) y实配:Φ16@200(0.21%)* END *附件2:筏基计算结果采用JCCAD中的桩筏筏板有限元计算模块对地下室底板进行计算,计算结果见下图。

柱下独立基础受冲切计算

柱下独立基础受冲切计算

板受冲切承载力应满足F l≤0.7βℎf tηu mℎ0计算取冲切上表面为100mm×100mm的面;取ℎ0=235mm。

则βℎ=1f t=1.43N/mm2η=1u m=100+235×4=13400.7βℎf tηu mℎ0=0.7×1×1.43×1×1340×235=315.2k N即能够承受31.5t的力。

《根据钢结构设计规范》GB50017-2003钢结构轴心受压构件应满足:σ=N A n≤f即σ=NA n =60000N4656mm2=12.89N mm2≤f=215 N mm2实腹式轴心受压构件稳定性验算应满足:σ=NφA≤f构件高L=8m,一端固接一端自由;计算长度l0=16m;λx=λy=l0i=1600cm÷62.78cm=25.48对双轴对称十字形截面构件,λ不得小于5.07b t=169; 取λ=169查表得:φ=0.249,计算得σ=51.77N mm2,满足要求。

柱下独立基础受冲切承载力公式为:F l≤0.7βℎp f t a mℎ0a m=(a t+a b)/2βℎp——受冲切承载力截面高度影响系数,当h不大于800mm时,取1.0;当h大于或等于2000mm时,取0.9;其间按线性内插法取用;f t——混凝土轴心抗拉强度设计值;ℎ0——基础冲切破坏锥体的有效高度;a m——冲切破坏锥体最不利一侧计算长度;a t——冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交接处的受冲切承载力时,取柱宽;当计算基础变阶处的受冲切承载力时,取上阶宽;a b——冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,当冲切破坏锥体的底面落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效高度;当计算基础变阶处的受冲切承载力时,取上阶宽加两倍该处的基础有效高度。

计算取冲切上表面为100mm×100mm的面;取ℎ0=235mm;混凝土强度达到80%。

独立基础计算(带公式)

独立基础计算(带公式)

L=
A=b*L=
偏心荷载作用:
Pk=(Fk+Gk)/A= 抵抗矩W=Lb2/6=
3.30 m 10.89 38.77 kPa
5.9895
<fa, OK
标准荷载
Mk=
5.98 kN*m
偏心距e=Mk/(Fk+Gk)= 0.014162 m
a=b/2-e= 1.635838
[e]=b/6=
0.550
Pkmax=
γm=
20.00
d=
1.25 m
基础底面积试 算A:
轴心荷载作用
A0=Fk/(fa-γm*d)= 1.842105 m2
标准荷载
Fk=
Gk=A*γ m*d=
150.00 kN 272.25 kN
试取基础长宽为b,L
沿弯矩作用方向高度
(用迭代法自动重新计算地基承载力)
b=
3.30 m
垂直弯矩作用方向宽度
独立基础计算
基础编号:
单位:
#8-3
m,kN,kPa
(绿色为需输入数据,红色为计算结果)
1. 地基承载力, 基础底面积计算:
地基承载力特征值fa: fa=fak+ηbγ(b-3)+ηdγm(d-0.5)=
95 kPa
fak=
80.00 kPa
ηห้องสมุดไป่ตู้=
0.00
γ=
10.00
b=
3.30 m
ηd=
1.00
柱轴力设计 值N:
N=1.25*Fk=
187.5 kN
柱底土反力 设计值N1:
N1= 18.26618 kN
冲切荷载设 计值FL:

浅谈柱下独立基础抗冲切与抗剪计算

浅谈柱下独立基础抗冲切与抗剪计算

b o d 6 。 d
+2 )
~ e : 0 . 3 3 0 f c b o d
其 中 系大致为 为规定的混凝 土抗压 强度 , 与规 范 =0 . 8 的换 算关 ; 卢为柱长边 与短边 的 比值 ; 为4 0
( 一般 情况柱 位于基础底板中心 ) ; b n , d如 图 3所示 ; 经 推导 , d 为 以下三式 的最 大值 : d=( 一日+ 一 4 G K) / 2 G, 其中:
代人 8 . 2 . 8—1式 , 得 出关 于 h 。的一元二 次方程 , 并求出
h 0:
1 公 式 推导
设计 中, 地 基反力及基础 大小 可 以通 过软件计 算得 出 , 基 础厚度通过 冲切与剪切 计算得 出, 现从设 计角度 , 以基础厚 度 h 。 为未知参 数 , 对规范公式进 行推导 。为简化计 算篇 幅 , 以单 阶单柱独立基础为例计算 : 1 . 1 规 范 … 冲 切 计 算 按规范第 8 . 2 . 8条 , 假定 b , o , b , l , p , 为 已知参数 , 并且
下 :
图 4 基础 底板 l O 0 0 t u t r u  ̄ l O O O m m时变化情况
图 3 美 国规 范 剪 切 计 算 简 图
依 1 1 . 1 . 1 条: 咖 = ( + ) ≥ , 其中: =0 . 7 5抗 剪
承 载 力 折 减 系数 ; 为混 凝 土抗 剪 承 载 力 , 为 构 件 中钢 筋 抗
a , ) ( z — a ) / 2— 2 b h o一 E x c e l 表格 进行 了计 算 分析 , 提 出 了设计柱下独立基础抗应 注意的问题 , 并探讨 了按 现行规范进
行 基 础 抚 冲切 及 抗 剪 设 计 的 思 路 。

柱下独立基础计算书

柱下独立基础计算书

J-1、一、基础设计(f ak=180kPa)1.基础上荷载N k=3116kN.m N=3852kN.mM xk=-6kN.m M x=-8kN.mM yk=-41kN.m M y=-51kN.mQ xk=-82kN Q x=-101kNQ yk=49kN Q y=61kN轴向力最大标准组合轴向力最大基本组合基础埋深为2.5m,地下水位为未知,不考虑。

2.确定基础底面尺寸及地基承载力验算查规范,粉质黏土的承载力修正系数为:ηb=0,ηd=1.6 (只进行深度修正)f a=f ak+ηbγ(b-3)+ηdγm(d-0.5)=180+1.6×18×(2.5-0.5)=237.6kPa(1)基础底面尺寸的确定在轴力荷载F作用下,基础底面积A´为:A´=N k/(f a-γm d)=3116/(237.6-18×2.5)=16.17m2选取基础尺寸为:A=4.1×4.1=16.81m²,取基础高度为700mm。

(2)地基承载力验算W=bl2/6=4.13/6=13.25m3基础底面的压力为:p k=(F k+G k)/A±M xk/W x=(3116+16.81×2.5×18)/ 16.81±(6+82×0.7)/11.49=230.37±5.52p kmax=235.89kPa<1.2f a=1.2×237.6=285.12kPaP kmin=224.85kPa>0,均满足要求。

(3)受冲切承载力验算进行冲切计算式,按由柱边起成45°的冲切角椎体的斜面进行验算。

p=(F+G)/A±M x/W x=(3852+1.35×16.81×2.5×18)/ 16.81±(8+101×0.7)/13.25=289.90±5.94p max=295.84kPaP min=283.96kPa。

柱下独立基础计算

柱下独立基础计算

1、基本参数(1)独立基础的选择矩形截面,假定矩形边长关系:b=na,n≥1;(2)地基土承载力特征值f ak=180KN/m2,根据实际情况确定;(3)混凝土容重r=26KN/m3;(4)计算高度H;2、承载力修正《建筑地基基础设计规范》GB50007-2011中5.2.4规定:当基础宽度若大于3m或者埋置深度大于0.5m,需要从载荷试验或者原其他位测试、经验值等方法确定的地基承载力特征值,尚应按照下式修正:f a=f ak+ηbγ(b−3)+ηdγm(d−0.5)式中:f a—修正后的地基承载力特征值(Kpa)f ak—地基承载力特征值(KPa),根据现场实际情况确定;ηb、ηd—基础宽度和埋置深度的地基承载力修正系数,按基底土的类别查找取值,查《建筑地基基础设计规范》GB50007-2011表5.2.4确定取值;γ—基础底面以下土的重度(KN/m2),通过查询工程地质手册,一般选择20KN/m2;b—基础底面宽度(m),当基础底面宽度小于3m时按照3m取值,大于6m时按照6m取值;,位于地下水位以下的土层取有效重度;γm—基础底面以上土加权平均重度(KN/m3)d—基础埋置深度(m)宜自室外地面标高算起。

在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,应从天然地面标高算起,对于地下室,当采用箱形基础和筏基时,基础埋置深度自室外地面标高算起;当采用独立基础和条形基础时,应从室内地面标高算起。

3、基础底面尺寸《建筑地基基础设计规范》GB50007-2011中5.2承载力计算公式可知:P kmax=F k+G k A +M xk W x +M yk W yP kmin =F k+G k A −M xk W x −M ykW y式中:M k —作用于基础地面的力矩(KN ·m ); W —基础底面的抵抗矩,矩形:W =ab 26(a 为一边边长),圆形:W =πna 332;F k —作用在基础上的竖向力;G k —基础自重和基础土重;A —基础底面面积,矩形A=ab ,圆形:A=πa 2/4; P kmax —基础底面处的最大压力值; 根据规范要求:P kmax <1.2f a P k <f a通过计算可粗略估算出a 和n 的值; 偏心距:e 0=M ̅xk F k当基础受到单向偏心矩时:M̅xk =M k ;当基础受到双向偏心矩时:M ̅xk =M xk +nM yk ;n =ba ,取值范围1到2为宜;系数:∆=γ̅H f a应力比值容许值:ξ=P kmax P kmin>[ξ]系数:Ω=100e a 2f a nF k基础底面积A:A≥F k0.6(1+ξ)f a−γ̅Hξ可查询《地基基础设计简明手册》第四版表9-3(197页);P nmax=F klb(1+6e0l)底板厚度计算:V≤0.7βhp f t A式中V—地基净反力在冲击面上产生的剪力设计值;βhp—截面高度影响系数,当h≤800mm时,βhp=1.0;当h≥2000时,βhp=0.9,其间按照线性内插值法取用;f t—混凝土抗拉强度设计值;C15混凝土取值f t=0.96N/mm2,参考GB50010-2010混凝土结构设计规范取值;A—底板冲切破坏的面积;引起冲切破坏合力VV=P nmax A abcdef底板冲击面计算:A abcdef=(l2−a c2−h0)b−(b2−b c2−h0)2底板冲击剪切面:A cijd=b c+(b c+2ℎ0)2h0=(b c+ℎ0)h0解上述不等式,就等到基础高度:h0=−b c2+12√b c2+c式中:h0—基础底板有效高度b c—柱截面的短边c—系数,按照下式计算系数C计算公式:C=2b(l−a c)−(b−b c)2 1+0.7f tP nmaxβhp当台阶的宽高比小于或等于2.5和偏心矩小于或等于1/6的基础宽度时,任意截面的弯矩可按照下式计算:I-I截面:P n=12(P nmax+Pn边I)M I=148(P nmax+Pn边I)(l−a c)2(2b+b c)配筋总面积:A sI=M I 0.9ℎ0f y式中:h0为截面的有效高度;fy为钢筋的抗拉强度设计值;II-II截面:P n=12(P nmax+Pn边II)M II=148(P nmax+Pn边II)(b−b c)2(2l+a c)对于阶梯其他两个变阶处的弯矩M III=148(P nmax+Pn边III)(l−a1)2(2b+b1)。

独立基础计算

独立基础计算

以下是程序生成的计算结果,未作任何改动。

柱下扩展基础:J-11、地基承载力设计值:计算公式:《建筑地基基础设计规范》(GBJ7-89)f=fk + ηb*γ*(b-3) + ηd*γo*(d-0.5) (式5.1.3)式中:fk=100.0(kPa)ηb=0.00,ηd=1.00γ=18.0(kN/m3),γo=18.0(kN/m3)b=3.600(m), d=1.500(m)f=100+0.00*18*(3.600-3)+1.00*18*(1.500-0.5)=118.0(kPa)地基承载力设计值f=118.0(kPa)2、地基承载力验算:(1)、基本资料:竖向力设计值F=1450.0(kN)基础自重设计值和基础上的土重标准值G=100.0(kN)作用于基础底面的力矩设计值Mx=35.00(kN·M)My=56.00(kN·M)基础底面长度a=3650(mm),(X方向)基础底面宽度b=3600(mm),(Y方向)基础根部高度H=600(mm)柱子高度hc=400(mm),(X方向)柱子宽度bc=400(mm),(Y方向)as=35(mm)混凝土强度等级为C20。

fc=10.0(N/mm2);fcm=11.0(N/mm2); ft=1.10(N/mm2)钢筋强度设计值fy=210(N/mm2)(2)、当轴心荷载作用时:p=(F+G)/A (式5.1.5-1)其中:A=a*b=3.650*3.600=13.14(m2)p=(1450.0 + 100.0)/13.14=118.0(kPa)≤118.0(kPa),满足要求。

(3)、当偏心荷载作用时:pmax=(F+G)/A+M/W (式5.1.5-2)pmin=(F+G)/A-M/W (式5.1.5-3)My=56.00(kN·M)偏心矩ex=My/(F+G)=56.00/(1450.0+100.0)=0.036(m)≤a/6=3.650/6=0.608(m)基础底面抵抗矩Wx=b*a*a/6=3.600*3.650*3.650/6=7.9935(m3)pmaxX=(1450.0+100.0)/13.14+56.00/7.9935=125.0(kPa)≤1.2*118.0=141.6(kPa),满足要求。

11.柱下扩展基础高度冲切计算

11.柱下扩展基础高度冲切计算

11.柱下扩展基础高度冲切计算11. 柱下扩展基础高度冲切计算(一)据7:8.2.7.2条,对矩形截面柱的矩形基础,应验算柱与基础交接处以及基础变阶处的受冲切承载力。

这是确定基础高度的条件。

(在该计算中,并无受剪承载力计算的要求)而确定基础高度时,往往先假定尺寸再验算,如高度偏大致使按抗弯计算配筋偏小,反之,配筋偏大.为此,笔者提出一个按受冲承载力确定基础高度的简捷计算方法。

l F ≤0.7βhp f t a m h 0 (7:8.2.7-1)∵l F =j l P A ? (7:8.2.7-3) βhp =1 (h ≤800)令:t A =a m h 0 ∴j l P A ?≤0.7f t A t (式11-1)j P —扣除基础自重及其上土重后,相应于荷载效应基本组合时的地基土单位面积净反力,对偏心受压基础,可取基础边缘处最大地基土单位面积净反力。

l A —冲切验算时取用的部分基底面积。

t A —冲切破坏锥体最不利一侧,斜截面积的水平段投影面积。

a m (冲切梯形cdef 的中位线长度)00222t t a h a h +=+=当计算结果h>0.8m 时,γ值乘以12.812h-后再计算, 当h ≥2m 时,γ值乘以0.9.(二)当b t +2h 0≤(式11-2)时:冲切破坏锥体的底面落在基础底面以内.200()()22t tl b b l a A h l h --=--- t A =a m h 0=(a t +h 0)h 0 ∴由(式2-1): 200()()0.722t t j t t b b l a P h l h f A --??---≤即:2000.7()()22t t t t j b b l a f h l h A P -----≤ 令0.7tjf P γ= (式11-3)∴ 20000()()()22t tt b b l a h l h h a h γ-----≤+ 即:22002()()4(1)4(1)t t t l b b l a h h a γγ---=+++→222012()()(2)1t t t t a l b b l a h a γ+---=+??+ ∴22011(2()())21t t t t h a b b l l a a γ≥+---??+ (式11-4)20022t t l b b l a A h l h --=--- ? ?()000t m t A a h a h h =?=+例2: b =3m,=2m,a t =0.4m,b t =0.6m, j P =200KN/m 2,,基础混凝土强度等级C25, f t =1.27N/mm 2=1.27×103KN/m 2解: γ=0.7f t /p j =0.7×103/200=4.45 (式11-3)220110.42(30.6)220.40.40.40221 4.45h m =+-?---= ??? ?+??()(式11-4) a t +2h 0=0.4+2×0.402=1.024m< (式11-2)可见:符合假定条件,冲切破坏锥体的底面落在基础底面以内。

独立基础偏心荷载下地基冲切力的精确计算

独立基础偏心荷载下地基冲切力的精确计算

独立基础偏心荷载下地基冲切力的精确计算
地基冲切力是地基受力分析中的一个重要概念,它是指地基受到的横
向冲切力。

地基冲切力的大小取决于地基的结构特性、地基的受力状
态以及地基上的荷载。

在独立基础偏心荷载下,地基冲切力的精确计
算尤为重要。

首先,要确定地基的结构特性,包括地基的形状、尺寸、材料等。

其次,要确定地基的受力状态,包括地基的支撑状态、支撑点的位置、
支撑点的数量等。

最后,要确定地基上的荷载,包括荷载的大小、荷
载的位置、荷载的方向等。

在确定了上述参数之后,就可以开始计算地基冲切力了。

首先,要计
算地基的支撑状态,即地基的支撑点的位置、支撑点的数量等。

其次,要计算地基上的荷载,即荷载的大小、荷载的位置、荷载的方向等。

最后,要计算地基受到的横向冲切力,即地基冲切力。

地基冲切力的计算是一个复杂的过程,需要考虑到地基的结构特性、
地基的受力状态以及地基上的荷载等多种因素。

在独立基础偏心荷载下,地基冲切力的精确计算尤为重要,因为这种情况下,地基冲切力
的大小会受到荷载的位置和方向的影响,因此,必须精确计算地基冲
切力,以确保地基的安全性。

浅谈柱下独立基础抗冲切与抗剪计算

浅谈柱下独立基础抗冲切与抗剪计算

浅谈柱下独立基础抗冲切与抗剪计算
柱下独立基础抗冲切和抗剪计算是基础工程建设中很重要的组成部分。

一、柱下独立基础抗冲切:
1、冲切力是指建筑物受到外力作用而产生的水平作用力,它可以通过基础混凝土和钢筋组合来抗御。

2、对于柱下独立基础的抗冲切计算,结构应满足其自重、水平抗力等要求,可采用二维有限元法或挠度发展法等方法,进行结构抗冲切分析,以验证独立基础的抗冲切性能。

3、如果结构抗冲切性能不达标,需通过加强抗冲切措施来增大抗冲力。

二、柱下独立基础抗剪计算:
1、剪力是指基础受到水平力或垂直力作用时产生的垂直力,可以通过运用抗剪性能、截面尺寸以及钢筋的分布等来抵消。

2、柱下独立基础的抗剪结构应满足抗剪极限状态,为此,需要根据荷载、地基状况以及柱下独立基础截面尺寸和钢筋配等信息来设计和分析独立基础抗剪结构。

3、如果发现抗剪结构抗力不满足要求,应采取改变基础形状,增加钢筋配等抗剪增强措施,以提高基础抗剪力能力。

总结:柱下独立基础抗冲切和抗剪计算在建筑物和结构的安全稳定性方面至关重要,为保证建筑物的健康以及安全稳定,必须采取正确的分析方法来检验建筑物的抗冲切和抗剪能力,并根据需要采取相应的增强抗力措施,以保证柱下独立基础的安全稳定。

柱下独立基础的冲切和剪切

柱下独立基础的冲切和剪切

柱下独立基础的冲切与剪切柱下独立基础高度的确定,应以满足冲切或剪切为准绳,2002版的地基基础规范(老规范)只是讲到了冲切,2011版的地基基础规范(新规范)增补了剪切的条文,可见规范在这个问题上也是日臻成熟的。

鉴于这个问题的重要性,本文结合老规范、新规范、广东地规等计算规定及构造手册,给出自己的理解,仅供批评指正。

一、冲切1、老规范8.2.7-2条:对矩形截面柱的矩形基础,应验算柱与基础交接处以及基础变阶处的受冲切承载力。

计算参数中,b a 为冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,其定义包括锥体底面落在基底以内、以外两种情况。

本条的研究对象:未提及分类,故为全部独基。

2、新规范8.2.7-1条:对柱下独立基础,当冲切破坏锥体落在基础底面以内时,应验算柱与基础交接处及基础变阶处的受冲切承载力。

计算参数中,b a 为冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,其定义只包括锥体底面落在基底以内一种情况。

本条的研究对象:8.2.8~9条的条文说明中,柱下独立基础底面两个方向的边长比值大于2,此时基础的受力状态接近于单向受力,柱与基础交接处不存在受冲切的问题。

结合新规范增补的剪切计算条文,推测本条的研究对象是长宽比不大于2的双向受力状态的基础。

3、广东地规9.2.7-2条:对矩形截面柱的矩形基础应验算柱与基础交接处及基础变阶处的受冲切承载力。

计算参数中,b a 定义及计算同老规范。

本条的研究对象:冲切计算需满足不等式9.2.7-4,而不满足该不等式的,应进行剪切计算。

而9.2.7条条文说明中,柱下独立基础长边与短边之比大于2,基础底板近乎单向受力,应验算基础的受剪切承载力。

可见,不满足不等式的基础,可近似认为就是长宽比大于2的基础,因此本条的研究对象就是长宽比不大于2的基础,同新规范。

4、对比新规范将研究对象宏观分类,是合乎力学原理的,不同之处在于,对于长宽比小于2,锥体落在基底外部的情况,老规范规定可算冲切,但是新规范明确取消了这条,就证明老规范这里是不合理的(笔者猜测是锥体落在基底外部,无法形成冲切破坏面,再按冲切计算牵强),但由于老规范这里的按冲切计算实际操作起来基本和剪切计算的数据相当,因此笔者大胆揣测,新规范这里之所以改,是觉得老规范这里表达不合理,但不是计算不合理,即老规范的精神还是可以延续的,基于这一点,我认为长宽比小于2,锥体落在基底外部时,还是可按8.2.9条进行剪切验算的。

9-1 柱下独立基础抗冲切验算与截面高度确定

9-1 柱下独立基础抗冲切验算与截面高度确定

第四节柱下单独基础一、柱下单独基础的设计计算柱下单独基础的设计,一般先由地基承载能力确定基础底面尺寸,然后再进行基础截面的设计验算。

基础截面设计验算主要内容:包括基础截面的抗冲切验算或抗剪验算→确定基础高度纵、横方向的抗弯验算→底板纵、横方向的配筋量。

1.基础截面高度的确定基础高度由柱边受冲切或受剪切承载力的要求确定。

m t hp 7.0h a f F l β≤2)(b t m a a a +=ll A p F j =(1)当冲切破坏锥体落在基础底面以内时(),按下式验算柱与基础交接处以及基础变阶处的受冲切承载力:(a )柱与基础交接处;(b )基础变阶处c 02a h l +<冲切破坏锥体斜面冲切破坏锥体底面02c 022 22c l b b A h l a l h ⎛⎫=-- ⎪⎝⎭⎛⎫--- ⎪⎝⎭冲切截面水平投影面积计算2c 002222c l b b l a A h l h ⎛⎫⎛⎫=----- ⎪ ⎪⎝⎭⎝⎭c 02a h l +<情况冲切破坏锥体底面hp β—受冲切承载力截面高度影响系数,当800h ≤mm 时,hp β取1.0;当2000h ≥mm 时,hp β取0.9,中间值线性内插;f t —混凝土抗拉强度设计值(kPa );h 0—基础冲切破坏锥体的有效高度(m );a m —基础冲切破坏锥体最不利一侧的计算长度(m );a t —基础冲切破坏锥体最不利一侧斜截面的上边长,在验算柱与基础交接处的抗冲切能力时,取柱宽a c ;在验算柱与基础变阶处的抗冲切能力时,取上阶宽; a b —基础冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长: p j —相应于荷载效应基本组合时的基底土单位面积净反力,偏心受压时可取基础边缘最大地基土单位面积净反力(kPa );A l —冲切截面的水平投影面积(m 2),图中ABCDEF 阴影面积; F l —相应于荷载效应基本组合时在A l 上的地基土净反力设计值(kN )。

柱下独立基础设计计算书

柱下独立基础设计计算书

1、选择基础材料基础采用C25混凝土,HRB335级钢筋,预估基础高度0.8m。

2、选择基础埋置深度根据柱下独立基础课程设计任务书要求和工程地质资料选取。

①号土层:杂填土,层厚约0.5m,含部分建筑垃圾。

f=130kPa。

②号土层:粉质黏土,层厚1.2m,软塑,潮湿,承载力特征值akf=180kPa。

③号土层:黏土,层厚1.5m,可塑,稍湿,承载力特征值akf=240kPa。

④号土层:细砂,层厚2.7m,中密,承载力特征值akf=340kPa。

⑤号土层:强风化砂质泥岩,厚度未揭露,承载力特征值ak拟建场区地下水对混凝土结构无腐蚀性,地下水位于地表下1.5m。

取基础底面高时最好取至持力层下0.5m,本设计取③号土层为持力层,所以考虑取室外地坪到基础底面为0.5+1.2+0.5=2.2m.由此得基础剖面示意图,如图一所示。

3、求地基承载力特征值a f根据黏土e=0.58,L I =0.78,查表得b η=0.3,d η=1.6。

基底以上土的加权平均重度为:m γ=[18×0.5+20×1+(20—10)×0.2+(19.4—10)×0.5] / 2.2=16.23kN /m ³ 持力层承载力特征值a f (先不考虑对基础宽度修正)为:a f =ak f +d ηm γ(d —0.5)=180+1.6×16.23×(2.2—0.5)=224.15kPa上式d 按室外地面算起。

4、初步选择基地尺寸取柱底荷载标准值:k F =2205kN ,k M =309kN ·m ,k V =117kN 。

计算基础和回填土重k G 时的基础埋置深度为:d=1/2×(2.2+2.65)=2.425m基础底面积为:0A =k F /(a f —G γd )=2205/(224.15—0.7×10—1.725×20)=12.07㎡由于偏心不大,基础底面积按20%增大,即A=1.20A =1.2×12.07=14.48㎡初步选定基础底面面积A=l b=4×4=16㎡因基底宽度超过3m ,地基承载力特征值还需重新进行宽深修正。

柱下独立基础计算内容

柱下独立基础计算内容

三、柱下独基计算书剖面:J2-21. 已知条件及计算内容:⑴已知条件:a. 控制信息:柱数:单柱柱尺寸:450mmX450 mm输入荷载类型:设计值转换系数:1.00柱竖向力:517 kN/m 柱弯矩:0.00 kN.m/mb. 设计信息:基础类型:锥型一阶混凝土等级:C30受力筋级别:HPB300 保护层厚度:45第一阶尺寸:总宽度:2100 mm 高度:500 mm轴线左边宽度:1050 mm轴线右边宽度: 1050 mm 垫层挑出宽度: 100 mm 垫层厚度:100 mmc. 地基信息:基础埋置深度:1.500 m地坪高差:0.600 m修正后的地基承载力特征值:140 kPa⑵计算内容:1. 地基承载力验算。

2. 基础冲切承载力验算。

3. 基础抗剪承载力验算。

4. 基础抗弯承载力计算。

2. 反力计算:(1) 荷载标准值时基底全反力-用于验算地基承载力pk=(Fk+Gk)/A=125.4 kPa(2) 荷载设计值时基底全反力p=(F+G)/A=136.4 kPa(3) 荷载设计值时基底净反力-用于验算基础剪切和冲切承载力pj=F/A=117.9 kPa3. 地基承载力验算:轴心受压:pk=125.4kPa <= fa=140kPa 满足! 地基承载力验算满足要求!4. 基础抗冲切承载力验算:FI=69.3kN <= 0.7 3 hpftbmhO=186.3kN 满足!5. 基础抗剪承载力验算:Vsx=41.6kN <= 0.7 3 hftAc=108.91kN 满足!Vsy=43.0kN <= 0.7 3 hftAc=108.91kN 满足!6. 抗弯计算结果:X 方向弯矩计算结果:Mx = 63.8kN.m( 柱根部)计算面积:742 mm2/m实配面积:754 mm2/m选筋方案:$ 12@150配筋率:0.22%。

对柱下独立基础抗冲切与抗剪承载力计算的分析与建议

对柱下独立基础抗冲切与抗剪承载力计算的分析与建议

calculatedin thisstudyfollowedbyan aly sisan dresearchoftheratioofthepun chingshearcapacitytotheshearcapacity.Theresults
showedthatforindependentcolumnfounda tion,nomatterthepunchingfailureconefallsinoroutsidethebase,thepunchingshear
对柱 下独立基础 抗 冲切 与抗剪承 载 力计算 的分析 与建议
Analysis and Suggestion on the Calculation of Punching Shear Capacity and Shear
Capacit y of Independent Column Foundation
【文 章 编 号 】1007.9467(2018)10.0084.04
1 引言
GB 50010--2010((混凝土结构 设计规 范》[1]第 6.5.5条 :“矩 形截面柱的阶形基础 ,在 柱与基础交接处 以及基 础变阶处的 受冲切承载力应符合 (本文式(1))规定 ”,文献 1对柱下独立基 础的受剪承载力计算并未 作专门规定 ;GB 50007-2002(建筑 地基基 础设计规 范》[21第 8.2.7条 :“2.对矩形截 面柱 的矩形基 础 ,应 验算 柱与 基 础交接 处 以及基 础变 阶 处的受 冲切 承载 力 ”;GB 50O7—2Oll《建筑地基 基础设计 规范 》[3】第 8.2.7条 : “1对 柱下独立基础 ,当冲切 破坏 锥体 落在 基础 底面 以内时 ,应
张靖静 。,张 日。

柱下独立基础设计计算

柱下独立基础设计计算

1.1、设计资料1.1.1、地形拟建建筑场地平整。

1.1.2、工程地质条件自上而下土层依次如下:①号土层,杂填土,层厚0.6m ,含部分建筑垃圾。

②号土层,粉质黏土,层厚1.5m ,软塑,潮湿,承载力特征值kPa f ak 150=。

③号土层,黏土,层厚1.8m ,可塑,稍湿,承载力特征值kPa f ak 190=。

④号土层,细砂,层厚2.0m ,中密,承载力特征值kPa f ak 240=。

⑤号土层,强风化砂质泥岩,厚度未揭露,承载力特征值kPa f ak 310=。

1.1.3、岩土设计参数地基岩土物理力学参数如表1.1所示。

表1.1 地基岩土物理力学参数土层编号 土的名称重度γ)/(3m kN孔隙比e液性指数L I 粘聚力c )(kPa 内摩擦角ϕ)(︒压缩 模量S E)(MPa标准贯入锤击数N 承载力 特征值ak f )(kPa① 杂填土 17.8 ② 粉质黏土 19.5 0.65 0.84 35 14 7.5 6 150 ③ 黏土 18.9 0.58 0.78 25 25 8.2 11 190 ④ 细砂 20.5 0.62 30 11.6 16 240 ⑤强风化 砂质泥岩2218223101.1.4水文地质条件(1)拟建场区地下水对混凝土结构无腐蚀性。

(2)地下水位深度:位于地表下1.5m。

1.1.5上部结构资料拟建筑物为多层全现浇框架结构,框架柱截面尺寸为mmmm400400⨯。

室外地坪标高同自然地面,室内外高差mm350。

柱网布置如图1.1所示。

上部结构作用在柱底的荷载标准组合值如表1.2所示表1.2 柱底荷载效应标准组合值题号kF)(kNkM)(mkN⋅)(kNVkA轴B轴C轴D轴A轴B轴C轴D轴A轴B轴C轴D轴1 920 1432 1082 1042 108 94 178 104 41 43 40 422 975 1548 1187 1200 140 100 198 130 46 48 44 473 1032 1615 1252 1362 164 125 221 160 55 60 52 56近似取荷载效应基本组合值为标准组合值的1.35倍,荷载效应准永久组合值为标准组合值的0.8倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板受冲切承载力应满足
计算取冲切上表面为100mm100mm的面;。


即能够承受31.5t的力。

《根据钢结构设计规范》GB50017-2003钢结构轴心受压构件应满足:

实腹式轴心受压构件稳定性验算应满足:
构件高L=8m,一端固接一端自由;计算长度=16m;
=1600cm62.78cm=25.48
对双轴对称十字形截面构件,不得小于; 取
,计算得,满足要求。

柱下独立基础受冲切承载力公式为:
——受冲切承载力截面高度影响系数,当h不大于800mm时,取1.0;当h大于或等于2000mm时,取0.9;其间按线性内插法取用;
——混凝土轴心抗拉强度设计值;
——基础冲切破坏锥体的有效高度;
——冲切破坏锥体最不利一侧计算长度;
——冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交接处的受冲切承载力时,取柱宽;当计算基础变阶处的受冲切承载力时,取上阶宽;
——冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,当冲切破坏锥体的底面落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效高度;当计算基础变阶处的受冲切承载力时,取上阶宽加两倍该处的基础有效高度。

计算取冲切上表面为100mm100mm的面;;混凝土强度达到80%。

则,;。

相关文档
最新文档