人教版数学九年级上册 第24章 24.1圆的有关性质同步测试试题(一)[005]

合集下载

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案

人教版九年级数学上册《24.1 圆的有关性质》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1 圆的有关概念(1)圆:平面上到的距离等于的所有点组成的图形.如图所示的圆记做⊙O。

(2)弦与直径:连接任意两点的叫做弦过圆心的叫做直径直径是圆内最长的。

(3)弧:圆上任意两点间的部分叫做小于半圆的弧叫做大于半圆的弧叫做。

(4)圆心角:顶点在的角叫做圆心角。

(5)圆周角:顶点在并且两边都与圆还有一个交点的角叫做圆周角。

(6)弦心距:到弦的距离叫做弦心距。

(7)等圆:能够的两个圆叫做等圆。

(8)等弧:在同圆或等圆中能的弧叫等弧。

考点2垂径定理(1)定理:垂直于弦的直径这条弦并且弦所对的两条弧。

(2)推论:①平分弦(不是直径)的直径于弦并且弦所对的两条弧②弦的垂直平分线经过并且弦所对的两条弧。

(3)延伸:根据圆的对称性如图所示在以下五条结论中:①AC AD=③CE=DE④AB⊥CD⑤AB是直径。

=②BC BD只要满足其中两个另外三个结论一定成立即推二知三。

考点3 弧弦圆心角之间的关系(1)定理:在同圆或等圆中相等的圆心角所对的相等所对的相等。

(2)推论:在同圆或等圆中如果两个圆心角两条弧两条弦中有一组量相等那么它们所对应的其余各组量都分别相等。

考点4圆周角定理及其推论。

(1)定理:一条弧所对的圆周角等于它所对的的一半.如图a=12图a图b图c( 2 )推论:①在同圆或等圆中同弧或等弧所对的圆周角相等.如图b ①A=。

①直径所对的圆周角是直角.如图c=90°。

①圆内接四边形的对角互补.如图a ①A+=180° ①ABC+=180°。

关键点:垂径定理及其运用(1)垂径定理及推论一条直线在下列5条中只要具备其中任意两条作为条件就可以推出其他三条结论.称为知二得三(知二推三)。

①平分弦所对的优弧②平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)③平分弦④垂直于弦⑤过圆心(或是直径)(2)常用的辅助线作垂直于弦的直径或只画弦心距。

人教版九年级数学上册《24.1.1圆》同步测试题带答案

人教版九年级数学上册《24.1.1圆》同步测试题带答案

人教版九年级数学上册《24.1.1圆》同步测试题带答案一、单选题1.下列命题中正确的有( ) A .长度相等的弧是等弧 B .相等的圆心角所对的弦相等 C .等边三角形的外心与内心重合D .任意三点可以确定一个圆2.如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形3.如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ⊥,OCD ∠的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动4.下列命题中,⊙直径是圆中最长的弦;⊙长度相等的两条弧是等弧;⊙半径相等的两个圆是等圆;⊙半径不是弧,半圆包括它所对的直径,其中正确的个数是( ) A .1B .2C .3D .45.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积之和为( )A .πB .2πC .3πD .4π6.如图,在Rt ⊙ABC 中,⊙ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A .32B .3C . 6D .9二、填空题7.到点O 的距离等于7cm 的点的集合是 .8.下图中,点O 是( ),线段OA 是圆的( ),线段BC 是圆的( ).9.已知,如图AB ,AD 是O 的弦 30B ∠=︒,点C 在弦AB 上,连结CO 并延长交O 于点D ,35D ∠=︒则BAD ∠的度数是 .10.如图,半径为r 的O 沿着边长为a 的正方形ABCD 的边作无滑动地滚动一周回到原来的位置,O 自身转动的圈数是 .(用含a r ,的代数式表示)11.下列说法:⊙直径是弦;⊙弦是直径;⊙大于半圆的弧是优弧;⊙长度相等的弧是等弧,其中正确的是 .12.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 .三、解答题13.如图,O 的弦,AB CD 的延长线交于点P ,连接OP ,且OP 平分APC ∠.求证:PA PC =.14.如图,点O 是同心圆的圆心,大圆半径OA ,OB 分别交小圆于点C ,D ,求证:AB CD ∥.15.如图所示,AB 为O 的直径,CD 是O 的弦,AB CD ,的延长线交于点E ,已知220AB DE AEC =∠=︒,.求AOC ∠的度数.16.如图,O 的半径5cm OA =,AB 是弦,C 是AB 上一点,且OC OA ⊥,OC BC =求A ∠的度数.17.如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于C,交弦AB 于D .(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.18.如图,在O 中,AB 是直径,CD 是弦,延长AB ,CD 相交于点P ,且2AB DP = 18P ∠=︒ 求AOC ∠的度数.题号 1 2 3 4 5 6 答案CBBCD C7.以点O 为圆心,7cm 为半径的圆 8. 圆心 半径 直径 9.65︒ 10.21a r π+/21arπ+ 11.①③/③①12.两条弧度数差值的绝对值的一半 15.60AOC ∠=︒ 16.30︒17.(2) 圆的半径为5cm. 18.54。

人教版数学九年级上册 24.1 圆的有关性质 同步训练习题(含答案)

人教版数学九年级上册 24.1 圆的有关性质 同步训练习题(含答案)

人教版九年级上册24.1 圆的有关性质同步训练一、选择题1. 下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为 ()A.1B.2C.3D.42. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°3. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°4. 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 115. 如图,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,则图中的弦有()A .2条B .3条C .4条D .5条6. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°7. 2019·梧州如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE =1,则CD 的长是( )A .2 6B .2 10C .2 11D .4 38. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米9. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°10. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题11. 如图所示,AB是☉O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则☉O 的半径是.12. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.13. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.14. 如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=________.15. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.16. 如图所示,动点C 在⊙O 的弦AB 上运动,AB =23,连接OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为________.17. 2018·曲靖如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =________°.18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题19. 如图,在⊙O中,AB=DE,BC=EF.求证:AC=DF.20. 如图,两个正方形彼此相邻且内接于半圆.若小正方形的面积为16 cm2,求该半圆的半径.21. 如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D 为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E.射线AO与射线EB交于点F,与⊙O交于点G.设∠GAB=α,∠ACB=β,∠EAG+∠EBA=γ.(1)点点同学通过画图和测量得到以下近似数据α30°40°50°60°β120°130°140°150°γ150°140°130°120°猜想:β关于α(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.22. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.人教版九年级上册24.1 圆的有关性质同步训练-答案一、选择题1. 【答案】C2. 【答案】A∵=,∴∠CAB=∠DAB=35°.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=55°,故选A.3. 【答案】B4. 【答案】A5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】D9. 【答案】C10. 【答案】C二、填空题11. 【答案】2∴∠A=∠ACO=30°,∴∠COH=60°.∵OB⊥CD,CD=2,∴CH=,∴OH=1,∴OC=2.12. 【答案】50°13. 【答案】10或70由垂径定理得:BC=AB=30 cm.在Rt△OBC中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm时,圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm时,水面上升的高度为:40+30=70(cm).综上可得,水面上升的高度为10 cm或70 cm.故答案为10或70.14. 【答案】 4-715. 【答案】816. 【答案】317. 【答案】n18. 【答案】⎝ ⎛⎭⎪⎫360n m ° 三、解答题19. 【答案】证明:∵AB =DE ,BC =EF , ∴AB ︵=DE ︵,BC ︵=EF ︵, ∴AB ︵+BC ︵=DE ︵+EF ︵, ∴AC ︵=DF ︵,∴AC =DF .20. 【答案】解:如图,连接OA ,OB .根据正方形的面积公式可得小正方形的边长为4 cm. 设大正方形的边长为x cm ,则OD =12x cm.根据勾股定理,得OA 2=OD 2+AD 2,OB 2=OC 2+BC 2. 又∵OA =OB ,∴(12x )2+x 2=(12x +4)2+42,解得x 1=8,x 2=-4(不符合题意,舍去), ∴大正方形的边长为8 cm ,OD =4 cm , ∴OA 2=OD 2+AD 2=42+82=80, ∴OA =80=4 5(cm).故该半圆的半径为4 5 cm.21. 【答案】【思维教练】(1)观察表格可猜想β=90°+α,γ=180°-α.连接BG,由直径所对的圆周角为90°和圆内接四边形的对角和为180°即可得出β=90°+α;由题干条件易知△EBD≌△EGD,∠EBC=∠ECB,再由三角形的外角和定理和β=90°+α,利用角度之间的转化即可得出结论;(2)由(1)的结论可以得出α=∠BAG=45°,β=∠ACB=135°,∴∠ECB=45°,∠CEB=90°,△ECD、△BEC、△ABG 都是等腰直角三角形,由CD的长,可得出BE和CE的长,再由题干条件△ABE 的面积是△ABC的面积的4倍可得出AC的长,利用勾股定理在△ABE中求出AB的长,再利用勾股定理在△ABG求出AG的长,即可求出半径长.①(1)①β=90°+α,γ=180°-α证明:如解图①,连接BG,∵AG是⊙O的直径,∴∠ABG=90°,∴α+∠BGA=90°,(1分)又∵四边形ACBG内接于⊙O,∴β+∠BGA=180°,∴β-α=90°,即β=90°+α;(3分)②∵D是BC的中点,且DE⊥BC,∴△EBD≌△ECD,∴∠EBC=∠ECB,∵∠EAG+∠EBA=γ,∴∠EAB+α+∠EBC+∠CBA=γ,∵∠EAB+∠CBA=∠ECB,∴2∠ECB+α=γ,(4分)∴2(180°-β )+α=γ,由①β=90°+α代入后化简得,γ=180°-α;(6分)(2)如解图②,连接BG,②∵γ=135°,γ=180°-α,∴α=45°,β=135°,∴∠AGB=∠ECB=45°,(8分)∴△ECD和△ABG都是等腰直角三角形,又∵△ABE的面积是△ABC的面积的4倍,∴AE=4AC,∴EC=3AC,(9分)∵CD=3,∴CE=32,AC=2,∴AE=42,(10分)∵∠BEA=90°,∴由勾股定理得,AB=BE2+AE2=(32)2+(42)2=50=52,(11分)∴AG=2AB=2×52=10,∴r=5.(12分)22. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC.又∵∠BAD+∠BCD=180°,∠BAD=12∠BOD,∴12∠BOD+∠BOD=180°,解得∠BOD=120°,∴∠BAD=12∠BOD=12×120°=60°,∠OBC=∠ODC=180°-∠BOD=180°-120°=60°.又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=∠ABC+∠ADC-(∠OBC+∠ODC)=180°-(60°+60°)=60°.word 版 初中数学11 /11②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB =∠OAD +∠BAD , ∴∠OBA =∠ODA +∠BAD =∠ODA +60°.如图(c),同理可得∠ODA =∠OBA +60°.。

九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

九年级数学: 24.1 圆的有关性质(同步练习题)( 含答案)

24.1圆的有关性质24.1.1圆1.在一个平面内,线段OA绕它固定的一个端点O__旋转一周___,__另一个端点A___所形成的图形叫做圆.这个固定的端点O叫做__圆心___,线段OA叫做__半径___.2.连接圆上任意两点间的线段叫做__弦___.圆上任意两点间的部分叫做__弧___.直径是经过圆心的弦,是圆中最长的弦.3.在同圆或等圆中,能够__互相重合___的弧叫等弧.4.确定一个圆有两个要素,一是__圆心___,二是__半径___,圆心确定__位置___,半径确定__大小___.知识点1:圆的有关概念1.以已知点O为圆心,已知长为a的线段为半径作圆,可以作( A)A.1个B.2个C.3个D.无数个2.下列命题中正确的有( A)①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个3.如图,图中弦的条数为( B)A.1条B.2条C.3条D.4条4.过圆上一点可以作出圆的最长弦的条数为( A)A.1条B.2条C.3条D.无数条5.如图,在四边形ABCD中,∠DAB=∠DCB=90°,则A,B,C,D四个点是否在同一个圆上?若在,说出圆心的位置,并画出这个圆.解:在,圆心是线段BD的中点.图略知识点2:圆中的半径相等6.如图,MN为⊙O的弦,∠N=52°,则∠MON的度数为( C)A.38°B.52°C.76°D.104°,第6题图),第7题图) 7.如图,AB,CD是⊙O的两条直径,∠ABC=30°,那么∠BAD=( D)A.45°B.60°C.90°D.30°8.如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C.求证:CE=BF.解:由ASA证△BEO≌△CFO,∴OE=OF,又∵OC=OB,∴OC+OE=OB+OF,即CE=BF9.如图,点A,B和点C,D分别在两个同心圆上,且∠AOB=∠COD.求证:∠C=∠D.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠AOD=∠BOC,又OA=OB,OC=OD,∴△AOD≌△BOC,∴∠C=∠D10.M,N是⊙O上的两点,已知OM=3 cm,那么一定有( D)A.MN>6 cm B.MN=6 cmC.MN<6 cm D.MN≤6 cm11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形.设BC=a,EF=b,NH=c,则下列各式中正确的是( B)A.a>b>c B.a=b=cC.c>a>b D.b>c>a12.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为( C)A.50°B.60°C.70°D.80°,第12题图),第13题图) 13.如图是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( D)14.在同一平面内,点P到圆上的点的最大距离为7,最小距离为1,则此圆的半径为__3或4___.15.如图,AB,CD为圆O的两条直径,E,F分别为OA,OB的中点.求证:四边形CEDF为平行四边形.解:∵AO=BO,E,F分别是AO和BO的中点,∴EO=FO,又CO=DO,∴四边形CEDF为平行四边形16.如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:连接OA,OB.∵OA,OB是⊙O的半径,∴OA=OB,∴∠OBA =∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS),∴OE=OF17.如图,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB =2DE,∠E=18°,求∠AOC的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE,∴∠DOE=∠E,∠OCE=∠ODC.又∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E =18°,∴∠OCE=36°,∴∠AOC=∠OCE+∠E=36°+18°=54°18.如图,AB是半圆O的直径,四边形CDEF是内接正方形.(1)求证:OC=OF;(2)在正方形CDEF的右侧有一正方形FGHK,点G在AB上,H在半圆上,K在EF上.若正方形CDEF的边长为2,求正方形FGHK的面积.解:(1)连接OD,OE,则OD=OE,又∠OCD=∠OFE=90°,CD=EF,∴Rt△ODC ≌Rt△OEF(HL),∴OC=OF(2)连接OH,∵CF=EF=2,∴OF=1,∴OH2=OE2=12+22=5.设FG=GH=x,则(x+1)2+x2=5,∴x2+x-2=0,解得x1=1,x2=-2(舍去),∴S =12=1正方形FGHK24.1.2 垂直于弦的直径1.圆是__轴对称___图形,任何一条__直径___所在的直线都是它的对称轴.2.(1)垂径定理:垂直于弦的直径__平分___弦,并且__平分___弦所对的两条弧; (2)推论:平分弦(非直径)的直径__垂直___于弦并且__平分___弦所对的两条弧.3.在圆中,弦长a ,半径R ,弦心距d ,它们之间的关系是__(12a)2+d 2=R 2___.知识点1:认识垂径定理 1.(2014·毕节)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( B ) A .6 B .5 C .4 D .3,第1题图),第3题图),第4题图)2.CD 是⊙O 的一条弦,作直径AB ,使AB ⊥CD ,垂足为E ,若AB =10,CD =8,则BE 的长是( C )A .8B .2C .2或8D .3或73.(2014·北京)如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,则CD 的长为( C )A .2 2B .4C .4 2D .8 4.如图,在⊙O 中,直径AB ⊥弦CD 于点M ,AM =18,BM =8,则CD 的长为__24___. 知识点2:垂径定理的推论5.如图,一条公路弯道处是一段圆弧(图中的弧AB),点O 是这条弧所在圆的圆心,点C 是AB ︵的中点,半径OC 与AB 相交于点D ,AB =120 m ,CD =20 m ,则这段弯道的半径是( C )A .200 mB .200 3 mC .100 mD .100 3 m,第5题图) ,第6题图)6.如图,在⊙O 中,弦AB ,AC 互相垂直,D ,E 分别为AB ,AC 的中点,则四边形OEAD 为( C )A .正方形B .菱形C .矩形D .梯形 知识点3:垂径定理的应用7.如图是一个圆柱形输水管的横截面,阴影部分为有水部分,若水面AB 宽为8 cm ,水的最大深度为2 cm ,则输水管的半径为( C )A .3 cmB .4 cmC .5 cmD .6 cm,第7题图) ,第8题图)8.古题今解:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”这是《九章算术》中的问题,用数学语言可表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,则直径AB 的长为__26___寸.9.如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?解:连接OA.∵CD ⊥AB ,且CD 过圆心O ,∴AD =12AB =1米,∠CDA =90°.在Rt△OAD 中,设⊙O 的半径为R ,则OA =OC =R ,OD =5-R.由勾股定理,得OA 2=AD 2+OD 2,即R 2=(5-R)2+12,解得R =2.6,故圆拱形门所在圆的半径为2.6米10.如图,已知⊙O 的半径为5,弦AB =6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.5,第10题图) ,第11题图)11.(2014·黄冈)如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD =30°,且BE =2,则CD =.12.已知点P 是半径为5的⊙O 内一点,OP =3,则过点P 的所有弦中,最长的弦长为__10___;最短的弦长为__8___.13.如图,以点P 为圆心的圆弧与x 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为__(6,0)___.,第13题图) ,第14题图)14.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为__4___.15.如图,某窗户是由矩形和弓形组成,已知弓形的跨度AB =3 m ,弓形的高EF =1 m ,现计划安装玻璃,请帮工人师傅求出AB ︵所在⊙O 的半径r.解:由题意知OA =OE =r ,∵EF =1,∴OF =r -1.∵OE ⊥AB ,∴AF =12AB =12×3=1.5.在Rt △OAF 中,OF 2+AF 2=OA 2,即(r -1)2+1.52=r 2,解得r =138,即圆O 的半径为138米16.如图,要把破残的圆片复制完整,已知弧上的三点A ,B ,C.(1)用尺规作图法找出BAC ︵所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC 是等腰三角形,底边BC =8 cm ,腰AB =5 cm ,求圆片的半径R.解:(1)分别作AB ,AC 的垂直平分线,其交点O 为所求圆的圆心,图略 (2)连接AO交BC 于E.∵AB =AC ,∴AE ⊥BC ,BE =12BC =4.在Rt △ABE 中,AE =AB 2-BE 2=52-42=3.连接OB ,在Rt △BEO 中,OB 2=BE 2+OE 2,即R 2=42+(R -3)2,解得R =256,即所求圆片的半径为256cm17.已知⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24 cm ,CD =10 cm ,则AB ,CD 之间的距离为( D )A .17 cmB .7 cmC .12 cmD .17 cm 或7 cm18.如图,CD 为⊙O 的直径,CD ⊥AB ,垂足为点F ,AO ⊥BC ,垂足为E ,BC =2 3. (1)求AB 的长; (2)求⊙O 的半径.解:(1)连接AC ,∵CD 为⊙O 的直径,CD ⊥AB ,∴AF =BF ,∴AC =BC.延长AO 交⊙O 于G ,则AG 为⊙O 的直径,又AO ⊥BC ,∴BE =CE ,∴AC =AB ,∴AB =BC =23 (2)由(1)知AB =BC =AC ,∴△ABC 为等边三角形,∴∠OAF =30°,在Rt △OAF 中,AF =3,可求OA =2,即⊙O 的半径为224.1.3 弧、弦、圆心角1.圆既是轴对称图形,又是__中心___对称图形,__圆心___就是它的对称中心. 2.顶点在__圆心___的角叫圆心角.3.在同圆和等圆中,相等的圆心角所对的__弧___相等,且所对的弦也__相等___. 4.在同圆或等圆中,若两个圆心角、两条弧、两条弦中,有一组量是相等的,则它们所对应的其余各组量也分别__相等___.知识点1:认识圆心角1.如图,不是⊙O 的圆心角的是( D ) A .∠AOB B .∠AOD C .∠BOD D .∠ACD,第1题图) ,第3题图)2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB =__60°___.3.(2014·菏泽)如图,在△ABC 中,∠C =90°,∠A =25°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E ,则BD ︵的度数为__50°___.知识点2:弧、弦、圆心角之间的关系4.如图,已知AB 是⊙O 的直径,C ,D 是BE ︵上的三等分点,∠AOE =60°,则∠COE 是( C )A .40°B .60°C .80°D .120°,第4题图) ,第5题图)5.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( D ) ①AB ︵=CD ︵; ②BD ︵=AC ︵;③AC =BD ; ④∠BOD =∠AOC. A .1个 B .2个 C .3个 D .4个6.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( C )A .100°B .110°C .120°D .135°,第6题图) ,第7题图)7.如图,在同圆中,若∠AOB =2∠COD ,则AB ︵与2CD ︵的大小关系为( C ) A .AB ︵>2CD ︵ B .AB ︵<2CD ︵ C .AB ︵=2CD ︵D .不能确定8.如图,已知D ,E 分别为半径OA ,OB 的中点,C 为AB ︵的中点.试问CD 与CE 是否相等?说明你的理由.解:相等.理由:连接OC.∵D ,E 分别为⊙O 半径OA ,OB 的中点,∴OD =12AO ,OE =12BO.∵OA =OB ,∴OD =OE.∵C 是AB ︵的中点,∴AC ︵=BC ︵,∴∠AOC =∠BOC.又∵OC=OC ,∴△DCO ≌△ECO(SAS ),∴CD =CE9.如图,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =__40°___.,第9题图) ,第10题图)10.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME ⊥AB 于点E ,NF ⊥AB 于点F.在下列结论中:①AM ︵=MN ︵=BN ︵;②ME =NF ;③AE =BF ;④ME =2AE.正确的有__①②③___.11.如图,A ,B ,C ,D 在⊙O 上,且AB ︵=2CD ︵,那么( C )A .AB >2CD B .AB =2CDC .AB <2CDD .AB 与2CD 大小不能确定12.如图,在⊙O 中,弦AB ,CD 相交于点P ,且AC =BD ,求证:AB =CD.解:∵AC =BD ,∴AC ︵=BD ︵,∴AB ︵=CD ︵,∴AB =CD13.如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.解:连接AF ,∵四边形ABCD 为平行四边形,∴AD ∥BC ,∴∠GAE =∠B ,∠EAF=∠AFB.又∵AB =AF ,∴∠B =∠AFB ,∴∠GAE =∠EAF ,∴GE ︵=EF ︵14.如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°. (1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD.解:(1)△AOC 是等边三角形.理由:∵AC ︵=CD ︵,∴∠AOC =∠COD =60°.又∵OA =OC ,∴△AOC 是等边三角形(2)∵AC ︵=CD ︵,∴∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD)=60°.∵OD =OB ,∴△ODB 为等边三角形,∴∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD15.如图,在△AOB 中,AO =AB ,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD =BO.试说明BD ︵=DE ︵,并求∠A 的度数.解:设∠A =x °.∵AD =BO ,又OB =OD ,∴OD =AD ,∴∠AOD =∠A =x °,∴∠ABO =∠ODB =∠AOD +∠A =2x °.∵AO =AB ,∴∠AOB =∠ABO =2x °,从而∠BOD=2x °-x °=x °,即∠BOD =∠AOD ,∴BD ︵=DE ︵.由三角形的内角和为180°,得2x +2x +x =180,∴x =36,则∠A =36°16.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,AN ︵的度数为60°,点B 为AN ︵的中点,P 是直径MN 上的一个动点,求PA +PB 的最小值.解:作点B 关于MN 的对称点B′.因为圆是轴对称图形,所以点B′在圆上.连接AB′,与MN 的交点为P 点,此时PA +PB 最短,ABB ′⌒所对的圆心角为90°,连接OB′,则∠AOB′=90°,∴AB ′=AO 2+OB′2=2,∴PA +PB =AB ′=2,即PA +PB 的最小值为224.1.4 圆周角1.顶点在__圆___上,并且两边和圆__相交___的角叫圆周角.2.在同圆或等圆中,__同弧___或__等弧___所对的圆周角相等,都等于这条弧所对的__圆心角___的一半.在同圆或等圆中,相等的圆周角所对的弧__相等___.3.半圆或直径所对的圆周角是__直角___,90°的圆周角所对的弦是__直径___. 4.圆内接四边形对角__互补___,外角等于__内对角___.知识点1:认识圆周角1.下列图形中的角是圆周角的是( B )2.在⊙O 中,A ,B 是圆上任意两点,则AB ︵所对的圆心角有__1___个,AB ︵所对的圆周角有__无数___个,弦AB 所对的圆心角有__1___个,弦AB 所对的圆周角有__无数___个.知识点2:圆周角定理3.如图,已知点A ,B ,C 在⊙O 上,ACB ︵为优弧,下列选项中与∠AOB 相等的是( A ) A .2∠C B .4∠B C .4∠A D .∠B +∠C,第3题图) ,第4题图)4.(2014·重庆)如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( C )A .30°B .45°C .60°D .70°知识点3:圆周角定理推论5.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是( C ) A .35° B .45° C .55° D .65°,第5题图),第6题图),第7题图)6.如图,CD ⊥AB 于E ,若∠B =60°,则∠A =__30°___.7.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__24°___.8.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.解:∵AB =BC ,∴AB ︵=BC ︵,∴∠BDC =∠ADB ,∴DB 平分∠ADC知识点4:圆内接四边形的对角互补9.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( B )A .115°B .105°C .100°D .95°,第9题图) ,第10题图)10.如图,A ,B ,C ,D 是⊙O 上顺次四点,若∠AOC =160°,则∠D =__80°___,∠B =__100°___.11.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( B )A .44°B .54°C .72°D .53°,第11题图) ,第12题图)12.(2014·丽水)如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD.已知DE =6,∠BAC +∠EAD =180°,则弦BC 的弦心距等于( D )A .412B .342C .4D .3 13.如图,AB 是⊙O 的直径,点C 是圆上一点,∠BAC =70°,则∠OCB =__20°___.,第13题图),第14题图),第15题图)14.如图,△ABC 内接于⊙O ,点P 是AC ︵上任意一点(不与A ,C 重合),∠ABC =55°,则∠POC 的取值范围是__0°<∠POC <110°___.15.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为.16.如图,在△ABC 中,AB =为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线,∴AB =AC.又∵AB =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形 (2)连接BE ,∵AB 是直径,∴∠AEB =90°,∴BE ⊥AC.∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点.又∵D 是BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AB =12×2=117.(2014·武汉)如图,AB 是⊙O 的直径,C ,P 是AB ︵上两点,AB =13,AC =5.(1)如图①,若点P 是AB ︵的中点,求PA 的长;(2)如图②,若点P 是BC ︵的中点,求PA 的长.解:(1)连接PB.∵AB 是⊙O 的直径,P 是AB ︵的中点,∴PA =PB ,∠APB =90°,可求PA =22AB =1322(2)连接BC ,OP 交于点D ,连接PB.∵P 是BC ︵的中点,∴OP ⊥BC ,BD=CD.∵OA =OB ,∴OD =12AC =52.∵OP =12AB =132,∴PD =OP -OD =132-52=4.∵AB 是⊙O 的直径,∴∠ACB =90°,由勾股定理可求BC =12,∴BD =12BC =6,∴PB =PD 2+BD 2=42+62=213.∵AB 是⊙O 的直径,∴∠APB =90°,∴PA =AB 2-PB 2=132-(213)2=31318.已知⊙O 的直径为10,点A ,B ,C 在⊙O 上,∠CAB 的平分线交⊙O 于点D. (1)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长; (2)如图②,若∠CAB =60°,求BD 的长.解:(1)∵BC 为⊙O 的直径,∴∠CAB =∠BDC =90°.在Rt △CAB 中,AC =BC 2-AB 2=102-62=8.∵AD 平分∠CAB ,∴CD ︵=BD ︵,∴CD =BD.在Rt △BDC 中,CD 2+BD 2=BC 2=100,∴BD 2=CD 2=50,∴BD =CD =52 (2)连接OB ,OD.∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =12∠CAB =30°,∴∠DOB =2∠DAB =60°.又∵⊙O 中OB =OD ,∴△OBD 是等边三角形,∵⊙O 的直径为10,∴OB =5,∴BD =5。

人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

人教版九年级数学上册 24.1圆的有关性质同步训练(含答案)

E ,满足 AEC 65 ,连接 AD ,则 BAD
度.
答案: 一、选择题
1.(2020•青岛)如图,BD 是⊙O 的直径,点 A,C 在⊙O 上, = ,AC 交 BD 于点 G.若∠COD=126°,则 ∠AGB 的度数为( )
A.99°
B.108°
解:∵BD 是⊙O 的直径,
∴∠BAD=90°,
度数是( )
A.130°
B.140°
C.150°
解:由题意得到 OA=OB=OC=OD,作出圆 O,如图所示,
∴四边形 ABCD 为圆 O 的内接四边形,
∴∠ABC+∠ADC=180°,
∵∠ABC=40°,
∴∠ADC=140°,
故选:B.
D.160°
6.(2020•眉山)如图,四边形 ABCD 的外接圆为 O , BC CD , DAC 35 , ACD 45 ,则 ADB 的度数 为( )
∴∠OEC=∠OCE=40°+ x,
∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,
∴∠OED<20°+ x,
∴∠CED=∠OEC﹣∠OED>(40°+ x)﹣(20°+ x)=20°,
∵∠CED<∠ABC=40°, ∴20°<∠CED<40° 故选:C. 二、填空题
16.(2020•襄阳)在 O 中,若弦 BC 垂直平分半径 OA ,则弦 BC 所对的圆周角等于 60 或 120 . 解:如图,
上任意一点.则
A.10°
B.20°
C.30°
D.40°
解:连接 OD、OE, ∵OC=OA, ∴△OAC 是等腰三角形, ∵点 D 为弦 AC 的中点, ∴∠DOC=40°,∠BOC=100°, 设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°, ∵OC=OE,∠COE=100°﹣x,

人教版九年级数学上册 24.1圆的有关 性质 同步检测题【含答案】

人教版九年级数学上册  24.1圆的有关 性质 同步检测题【含答案】

圆24.1 圆的有关性质同步检测题一.选择题(共13 小题)1.已知⊙O 的半径为2,A 为圆内一定点,AO=1.P 为圆上一动点,以A P 为边作等腰△APG,AP=PG,∠APG=120°,OG 的最大值为()A.1+B.1+2C.2+D. 12.如图,AB,BC 是⊙O 的弦,∠B=60°,点 O 在∠B 内,点 D 为AC上的动点,点 M,N,P分别是A D,D C,C B 的中点.若⊙O 的半径为2,则P N+MN 的长度的最大值是()A.1+B.1+2C.2+2D.3.如图,AB 是⊙O 的直径,AB=10,P 是半径O A 上的一动点,PC⊥AB 交⊙O 于点C,在半径O B 上取点Q,使得O Q=CP,DQ⊥AB 交⊙O 于点D,点C,D 位于A B 两侧,连接C D 交A B 于点F,点P从点A出发沿A O 向终点O运动,在整个运动过程中,△CFP 与△DFQ 的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大4.如图,在⊙O 中,弦A B=6,点C是A B 所对优弧上一点,∠ABC=120°,BC=8,点P 为 AB 上方一点,记△PAB 的面积为 S1,△AOB 的面积为 S2,且 S1=12S2,则 OP+PC的最小值为()A .BCD .105.如图,AB 是⊙O 的直径,点 D ,C 在⊙O 上,∠DOC =90°,AD ,BC =1,则⊙O的半径为()A B .2 C .2D .26.如图,在⊙O 中,AB =2CD ,那么()A . 2CD AB >B .2CD AB <C .=2CD ABD .AB 与2CD 的大小关系无法比较 7.如图,BC 是⊙O 的直径,A ,D 是⊙O 上的两点,连接 A B ,AD ,BD ,若∠ADB =70°, 则∠ABC 的度数是( )A.20°B.70°C.30°D.90°8.如图,点A、B、C 是⊙O 上的点,OA=AB,则∠C 的度数为()A.30°B.45°C.60°D.30°或60°9.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC上的点.若∠BOC =500,则∠D 的度数()A.105°B.115°C.125°D.85°10.如图,四边形A BCD 内接于⊙O,连结O A、OC.若∠AOC=∠ABC,则∠D 的大小为()A.50°B.60°C.80°D.120°11.如图,在⊙O 中∠O=50°,则∠A 的度数为()A.50°B.20°C.30°D.25°12.如图,AB 为⊙O 的直径,弦CD⊥OB 于E,且点E为半径O B 的中点,连结A C,则∠A 的度数为()A.20°B.30°C.45°D.60°13.如图,点A、B、C、D 在⊙O 上,OB∥CD.若∠A=28°,则∠BOD 的大小为()A.152°B.134°C.124°D.114°二.填空题(共9小题)14.如图,在⊙O 中,弦B C,DE 交于点P,延长B D,EC 交于点A,BC=10,BP=2CP,若BDAD=23,则D P 的长为.15.如图,△ABC 内接于半径为AB 为直径,点 M 是弧AC的中点,连结 BM交AC 于点E,AD 平分∠CAB 交B M 于点D.(1)∠ADB=°;(2)当点D恰好为B M 的中点时,BC 的长为.16.如图,四边形A BCD 内接于⊙O,∠BOD=120°,则∠DCE=.17.如图,点A,B,C,D 是⊙O 上的四个点,已知∠BCD=110°,格据推断出∠BAD 的度数为70°,则她判断的依据是点.18.如图,⊙O 的半径为2,点A为⊙O 上一点,如果∠BAC=60°,OD⊥弦B C 于点D,那么O D 的长是.19.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是弧AC上的中点,AC=8,OA=5,连接AD、BD,则△ABD 的面积是.20.已知:如图,在△ABC 中,AB=AC,以A B 为直径作圆交B C 于D,交A C 于E.若∠A=84°,则弧AE的度数为.21.如图,点A,B,C,D 是⊙O 上的四个点,点B是弧A C 的中点,如果∠ABC=70°,那∠ADB=.22.如图,MN 为⊙O 的直径,MN=10,AB 为⊙O 的弦,已知M N⊥AB 于点P,AB=8,现要作⊙O 的另一条弦C D,使得C D=6 且C D∥AB,则P C 的长度为.三.解答题(共3小题)23.如图,AB 是⊙O 的直径,点C、D 是⊙O 上的点,且O D∥BC,AC 分别与B D、OD 相交于点E、F.(1)求证:点D为弧AC的中点;(2)若C B=6,AB=10,求D F 的长;(3)若⊙O 的半径为5,∠DOA=80°,点P是线段A B 上任意一点,试求出P C+PD 的最小值.24.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC,BC 的交点分别为D,E,且弧DE=弧BE(1)试判断△ABC 的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求B D 的长.25.如图,AB 为半圆O的直径,CD 是半圆上两点,AC=2BC,F 在B D 上且C F⊥CD,求证:AD=2BF.。

人教版九年级数学上册《24.1圆的有关性质》同步测试题及答案

人教版九年级数学上册《24.1圆的有关性质》同步测试题及答案

人教版九年级数学上册《24.1圆的有关性质》同步测试题及答案一、选择题1.已知⊙O的半径是2cm,则⊙O中最长的弦长是()A.1cm B.2cm C.3cm D.4cm2.如图,AB是⊙O的直径,弦CD⊥AB交于点E.若AE=2,则⊙O的半径为()A.3 B.4 C.5 D.6⌢=CD⌢,∠COB=40°,则∠A的度数是()3.如图,AB是⊙O的直径ADA.50°B.55°C.60°D.65°4.如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC=()A.140°B.40°C.80°D.60°5.明朝科学家徐光启在《农政全书》中用图画描绘了“筒车”(一种水利灌溉工具)的工作原理.如图2,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心O在水面上方,且⊙O被水面截得弦AB长为8米,⊙O半径长为6米,若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.2米B.4米C.(6−2√5)米D.(6+2√5)米6.如图,⊙O的直径AB⊥弦CD于点E,连接BD.若CD=8,OE=3,则BD的长为()A.√10B.2√3C.√17D.2√57.如图,AB是⊙O的弦,C是⊙O上一点OC⊥AB,垂足为D,若∠A=20°,则∠ABC=()A.20°B.30°C.35°D.55°8.如图,A,B,C,D是⊙O上的四个点,已知∠ADC=60°,∠BDC=40°,则∠ACB=()A.60°B.70°C.79°D.80°二、填空题9.如图,在⊙O中,弧AB=弧AC,∠AOB=40°,点D在⊙O上,连接CD,AD,则∠ADC=.10.往直径为52cm的圆柱形容器内装入一些水以后,截面如图,若水面宽AB=48cm,则水的最大深度为cm.11.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=29°,则∠D=.12.如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为.13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=.三、解答题14.如图,AB是⊙O的直径,点C,D均在⊙O上∠ACD=30°,弦AD=4cm,求⊙O的直径.⌢=BC⌢,求∠ABC的度数.15.如图,四边形ABCD是⊙O的内接四边形,△OAB是等边三角形AB16.石拱桥是我国古代人民勤劳和智慧的结晶(如图①),赵州桥是我国古代石拱桥的代表,图②是根据⌢,桥的跨度(弧所对的弦长)AB=30m,设AB⌢该石拱桥画出的几何图形,桥的主桥拱是圆弧形,表示为AB所在圆的圆心为O,OB,OC为半径,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.(1)直接写出AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径.̂的中点,连结CF交OB于点G,连结BC.17.如图,⊙O的直径AB垂直弦CD于点E,F是圆上一点,D是BF(1)求证:GE=BE;(2)若AG=6,BG=4,求CD的长.参考答案1.D2.C3.B4.C5.C6.D7.C8.D9.20°10.1611.61°12.414.解:∵AB是⊙O的直径∴∠ADB=90°.∵同弧所对的圆周角相等∴∠ABD=∠ACD=30°.∵AD=4∴AB=8.∴⊙O的直径为8cm15.解:∵△OAB是等边三角形∴∠AOB=60°∴∠ADB=12∠AOB=30°∵AB⌢=BC⌢∴∠CDB=∠ADB=30°,∠ADC=60°∵四边形ABCD是⊙O的内接四边形∴∠ABC=180°−∠ADC=120°.16.(1)AD=BD(2)解:设主桥拱半径为R∵AB=30,CD=5,OC⊥AB∴BD=12AB=12×30=15,OD=OC−CD=R−5在Rt△OBD中,由勾股定理,得OB2=BD2+OD2即R2=152+(R−5)2解得R=25因此,这座石拱桥主桥拱半径约为25m.17.(1)证明:∵D是BF̂的中点∴∠ECG=∠ECB∵CD⊥AB∴∠CEG=∠CEB=90°∴∠CGE=∠CBE∴CG=CB∵CE⊥BG(2)解:∵AG=6,BG=4 ∴AB=6+4=10AB=5∴OC=OB=12∴OG=OB﹣BG=5﹣4=1BG=2 由(1)知GE=BE=12∴OE=OG+GE=1+2=3∴CE=√OC2−OE2=4∵直径AB⊥CD∴CD=2CE=2×4=8.。

2023—2024学年人教版数学九年级上册 24.1圆的有关性质同步练习 含答案

2023—2024学年人教版数学九年级上册  24.1圆的有关性质同步练习 含答案

2023—2024学年人教版数学九年级上册24.1圆的有关性质同步练习(含答案)初中数学同步练习九年级上册24.1 圆的有关性质一、单选题1.如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A.4 B.5 C.6 D.72.如图,在⊙O中,弦AB、CD相交于点M,连接BC、AD,⊙AMD=100°,⊙A=30°,则⊙B=()A.40° B.45° C.50° D.60°3.如图,O是线段BC的中点,A、D、C到O点的距离相等.若⊙ABC =30°,则⊙ADC的度数是()A.30° B.60° C.120° D.150°4.如图,点A.B.C在⊙D上,⊙ABC=70°,则⊙ADC的度数为()A.110° B.140° C.35° D.130°5.下列命题中,不正确的是()A.垂直平分弦的直线经过圆心B.平分弦的直径一定垂直于弦C.平行弦所夹的两条弧相等D.垂直于弦的直径必平分弦所对的弧6.如图,⊙O的直径CD⊙AB,⊙AOC=60°,则⊙CDB=()A.20° B.30° C.40° D.50°7.如图,在⊙O中,弦AC⊙半径OB,⊙BOC=48°,则⊙OAB的度数为() A.24° B.30° C.60° D.90°8.如图,⊙O的半径OD⊙弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=4,CD=1,则EC的长为()A.B.C.D.4二、填空题9.如图,AB,CD是⊙O的弦,且AB⊙CD,连接AD,BC,若⊙C=25°,则⊙D的度数为.10.如图,A、B、C是⊙O的圆周上三点,⊙ACB=40°,则⊙ABO等于度.11.如图,四边形ABCD为⊙O的内接四边形,⊙A=100°,则⊙DCE的度数为;12.如图,AB是半圆的直径,点C、D是半圆上两点,⊙ADC = 144°,则⊙ABC =13.如图,⊙ABC内接于⊙O,AC是⊙O的直径,⊙ACB=50°,点D是上一点,则⊙D=度.14.如图,在⊙O的内接五边形ABCDE中,⊙CAD=35°,则⊙B+⊙E=.15.如图,⊙O是⊙ABC的外接圆,AD是⊙O的直径,连接CD,⊙B=70°,则⊙DAC=.16.如图,在中,A,B,C是O上三点,如果,弦,那么的半径长为.三、解答题17.如图,弦AB和CD相交于⊙O内一点E,AE=CE,求证:BE=DE.18.如图,已知OA、OB、OC是⊙O的三条半径,点C是弧AB的中点,M、N分别是OA、OB的中点.求证:MC=NC.19.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为多少?20.如图,在中,AB是的直径,与AC交于点D,,求的度数.答案解析部分1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】B6.【答案】B7.【答案】A8.【答案】B9.【答案】65°10.【答案】5011.【答案】100°12.【答案】3613.【答案】4014.【答案】215°15.【答案】20°16.【答案】517.【答案】证明:⊙⊙A=⊙C,⊙D=⊙B ,AE=CE,⊙ ⊙AED⊙⊙CEB,⊙ BE=DE.18.【答案】解:⊙弧AC和弧BC相等,⊙⊙AOC=⊙BOC,又⊙OA="OB" M、N分别是OA、OB的中点⊙OM=ON,在⊙MOC和⊙NOC中,⊙⊙MOC⊙⊙NOC(SAS),⊙MC=NC.19.【答案】解:如图,连接AQ,由题意可知:⊙BPQ=45°,⊙AB是半圆O的直径,⊙⊙AQB=90°,又⊙⊙BAQ=⊙BPQ=45°,⊙⊙ABQ是等腰直角三角形,⊙BQ=AQ= .即,答案为.20.【答案】解:在⊙ABC中,⊙⊙B=60°,⊙C=75°,⊙⊙A=45°.⊙AB是⊙O的直径,⊙O与AC交于点D,⊙⊙BOD=2⊙A=90°。

九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆同步检测(含解析)(新版)新人教版

九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆同步检测(含解析)(新版)新人教版

24.1.1 圆测试时间:25分钟一、选择题1.(2018贵州黔东南州期中)如图,在☉O中,弦的条数是( )A.2B.3C.4D.以上均不正确2.如图所示,点M是☉O上的任意一点,下列结论:①以M为端点的弦只有一条;②以M为端点的半径只有一条;③以M为端点的直径只有一条;④以M为端点的弧只有一条.其中,正确的有( )A.1个B.2个C.3个D.4个3.如图,矩形PAOB在扇形OMN内,顶点P在弧MN上,且不与M,N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )A.变大B.变小C.不变D.不能确定二、填空题4.如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A=.5.如图,在平面直角坐标系中,动点P在以O为圆心,10为半径的圆上运动,整数点P有个.三、解答题6.如图,已知AB是☉O的直径,C为AB延长线上的一点,CE交☉O于点D,且CD=OA.求证:∠C=∠AOE.7.已知:如图,AB是☉O的直径,AC是☉O的弦,AB=2,∠BAC=30°.在图中作弦AD,使AD=1,并求∠DAC的度数.24.1.1 圆一、选择题1.答案 C 在☉O中,有弦AB、弦DB、弦CB、弦CD,共4条弦.故选C.2.答案 B 以M为端点的弦有无数条,所以①错误;②正确;③正确;以M为端点的弧有无数条,所以④错误.故选B.3.答案 C 连接OP.在Rt△PAB中,AB2=PA2+PB2,又∵矩形PAOB中,OP=AB,∴PA2+PB2=AB2=OP2.故选C.二、填空题4.答案20°解析∵CB=CD,∴∠B=∠CDB.∵∠B+∠CDB+∠BCD=180°,∠BCD=40°,∴∠B=×(180°-∠BCD)=×(180°-40°)=70°.∵∠ACB=90°,∴∠A=90°-∠B=20°.5.答案12解析设点P(x,y),由题意知x2+y2=100,则方程的整数解是x=6,y=8;x=8,y=6;x=10,y=0;x=6,y=-8;x=8,y=-6;x=0,y=-10;x=-6,y=-8;x=-8,y=-6;x=-10, y=0;x=-6,y=8;x=-8,y=6;x=0,y=10.所以整数点P的坐标可以是(6,8),(8,6),(10,0),(6,-8),(8,-6),(0,-10),(-6,-8),(-8,-6),(-10,0),(-6,8),(-8,6), (0,10).所以,这样的整数点有12个.三、解答题6.证明如图,连接OD,∵OD=OA,CD=OA,∴OD=CD,∴∠COD=∠C.∵∠ODE是△OCD的外角,∴∠ODE=∠COD+∠C=2∠C.∵OD=OE,∴∠CEO=∠ODE=2∠C.∵∠AOE是△OCE的外角,∴∠AOE=∠C+∠CEO=3∠C.∴∠C=∠AOE.7.解析以A为圆心,1为半径画弧,与☉O的交点即为点D,再连接AD.本题有两种情况,图中点D与点D'均符合题意.连接OD,OD'.∵AB是☉O的直径,AB=2,∴OA=OD=1.∵AD=1,∴OA=OD=AD,∴△AOD是等边三角形,∴∠OAD=60°.当AD与AC在直径AB的同侧时,∠DAC=60°-30°=30°;当AD与AC在直径AB的异侧时,∠D'AC=60°+30°=90°.综上所述:∠DAC的度数为30°或90°.。

人教版九年级数学上册--24.1圆的有关性质-同步训练【含答案】

人教版九年级数学上册--24.1圆的有关性质-同步训练【含答案】

人教版九年级数学上册24.1圆的有关性质同步训练一、选择题1.(2020•镇江)如图,AB是半圆的直径,C、D是半圆上的两点,106∠等于ADC∠=︒,则CAB ()A.10︒B.14︒C.16︒D.26︒2.(2018•苏州)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC上的点,若∠的度数为()∠=︒,则DBOC40A.100︒B.110︒C.120︒D.130︒3.(2018•盐城)如图,AB为O的直径,CD是O的弦,35∠=︒,则CAB∠的度数为(ADC)A.35︒B.45︒C.55︒D.65︒4.(2019•梧州)如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE =1,则CD的长是()A.2B.2C.2D.45.(2019•柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D6.(2019•贵港)如图,AD是⊙O的直径,,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°7.(2018•河池)如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°8.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°9.(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(2020•十堰)如图,点A,B,C,D在O上,OA BCAE=,∠=︒,1⊥,垂足为E.若30ADC BC=)则(A.2 B.4 C.3D.2311.(2020•黄石)如图,点A、B、C在O上,CD OA⊥,CE OB⊥,垂足分别为D、E,若∠的度数为()∠=︒,则ACBDCE40A.140︒B.70︒C.110︒D.80︒12.(2020•宜昌)如图,E,F,G为圆上的三点,50∠=︒,P点可能是圆心的是()FEGA.B.C.D.13.(2020•荆门)如图,O 中,OC AB ⊥,28APC ∠=︒,则BOC ∠的度数为( )A .14︒B .28︒C .42︒D .56︒ 14.(2020•武汉)如图,在半径为3的O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )A .532B .33C .32D .42 15.(2019•十堰)如图,四边形ABCD 内接于O ,AE CB ⊥交CB 的延长线于点E ,若BA 平分DBE ∠,5AD =,13CE =,则(AE = )A .3B .32C .43D .23二、填空题16.(2020•河池)如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.17.(2018•梧州)如图,已知在⊙O 中,半径OA,弦AB =2,∠BAD =18°,OD 与AB 交于点C ,则∠ACO = 度.18.(2019•辽阳)如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,100AOC ∠=︒,35OCD ∠=︒,那么OED ∠= .19.(2020•攀枝花)如图,已知锐角三角形ABC 内接于半径为2的O ,OD BC ⊥于点D ,60BAC ∠=︒,则OD = .20.(2020•甘孜州)如图,AB 为O 的直径,弦CD AB ⊥于点H ,若10AB =,8CD =,则OH 的长度为 .21.(2019•阿坝州)如图,在半径为5的O 中,M 为弦AB 的中点,若4OM =,则AB 的长为 .22.(2019•盘锦)如图,ABC ∆内接于O ,BC 是O 的直径,OD AC ⊥于点D ,连接BD ,半径OE BC ⊥,连接EA ,EA BD ⊥于点F .若2OD =,则BC = .答案:一、选择题1.(2020•镇江)如图,AB是半圆的直径,C、D是半圆上的两点,106∠等于ADC∠=︒,则CAB ()A.10︒B.14︒C.16︒D.26︒解:连接BD,如图,AB是半圆的直径,ADB∴∠=︒,90∴∠=∠-∠=︒-︒=︒,BDC ADC ADB1069016∴∠=∠=︒.16CAB BDC故选:C.2.(2018•苏州)如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC上的点,若∠的度数为()BOC40∠=︒,则DA.100︒B.110︒C.120︒D.130︒解:40BOC∠=︒,∴∠=︒-︒=︒,18040140AOC1(360140)1102D ∴∠=⨯︒-︒=︒, 故选:B .3.(2018•盐城)如图,AB 为O 的直径,CD 是O 的弦,35ADC ∠=︒,则CAB ∠的度数为()A .35︒B .45︒C .55︒D .65︒ 解:由圆周角定理得,35ABC ADC ∠=∠=︒,AB 为O 的直径,90ACB ∴∠=︒, 9055CAB ABC ∴∠=︒-∠=︒,故选:C .4.(2019•梧州)如图,在半径为的⊙O 中,弦AB 与CD 交于点E ,∠DEB =75°,AB =6,AE=1,则CD 的长是( )A .2B .2C .2D .4解:过点O 作OF ⊥CD 于点F ,OG ⊥AB 于G ,连接OB 、OD 、OE ,如图所示:则DF =CF ,AG =BGAB =3,∴EG =AG ﹣AE =2, 在Rt △BOG 中,OG 2, ∴EG =OG ,∴△EOG 是等腰直角三角形,∴∠OEG =45°,OEOG =2,∵∠DEB =75°,∴∠OEF =30°,∴OF OE , 在Rt △ODF 中,DF ,∴CD =2DF =2;故选:C .5.(2019•柳州)如图,A ,B ,C ,D 是⊙O 上的点,则图中与∠A 相等的角是( )A .∠B B .∠C C .∠DEBD .∠D解:∵∠A 与∠D 都是所对的圆周角,∴∠D=∠A.故选:D.6.(2019•贵港)如图,AD是⊙O的直径,,若∠AOB=40°,则圆周角∠BPC的度数是()A.40°B.50°C.60°D.70°解:∵,∠AOB=40°,∴∠COD=∠AOB=40°,∵∠AOB+∠BOC+∠COD=180°,∴∠BOC=100°,∴∠BPC∠BOC=50°,故选:B.7.(2018•河池)如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°解:如图,连接OC,∵OA⊥BC,∴,∴∠AOC=∠AOB=50°,∴∠ADC∠AOC=25°,故选:B.8.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°解:∵∠B 与∠C 所对的弧都是,∴∠C =∠B =24°,故选:D .9.(2018•贵港)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是( )A .24°B .28°C .33°D .48°解:∵∠A =66°,∴∠COB =132°,∵CO =BO , ∴∠OCB =∠OBC (180°﹣132°)=24°,故选:A .10.(2020•十堰)如图,点A ,B ,C ,D 在O 上,OA BC ⊥,垂足为E .若30ADC ∠=︒,1AE =,则(BC = )A .2B .4C .3D .23解:连接OC ,如图,30ADC ∠=︒,60AOC ∴∠=︒,OA BC ⊥,CE BE ∴=,在Rt COE ∆中,12OE OC =,3CE OE =, 1OE OA AE OC =-=-,112OC OC ∴-=, 2OC ∴=,1OE ∴=, 3CE ∴=,223BC CE ∴==.故选:D .11.(2020•黄石)如图,点A 、B 、C 在O 上,CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒ 解:如图,在优弧AB 上取一点P ,连接AP ,BP ,CD OA ⊥,CE OB ⊥,90ODC OEC ∴∠=∠=︒,40DCE ∠=︒,360909040140AOB ∴∠=︒-︒-︒-︒=︒,1702P AOB ∴∠=∠=︒,A 、C 、B 、P 四点共圆,180P ACB ∴∠+∠=︒,18070110ACB ∴∠=︒-︒=︒,故选:C .12.(2020•宜昌)如图,E ,F ,G 为圆上的三点,50FEG ∠=︒,P 点可能是圆心的是() A . B .C .D . 解:50FEG ∠=︒,若P 点圆心,2100FPG FEG ∴∠=∠=︒.故选:C .13.(2020•荆门)如图,O 中,OC AB ⊥,28APC ∠=︒,则BOC ∠的度数为( )A .14︒B .28︒C .42︒D .56︒解:在O中,OC AB⊥,∴AC BC=,28APC∠=︒,256BOC APC∴∠=∠=︒,故选:D.14.(2020•武汉)如图,在半径为3的O中,AB是直径,AC是弦,D是AC的中点,AC与BD 交于点E.若E是BD的中点,则AC的长是()A.532B.33C.32D.42解:连接OD,交AC于F,D是AC的中点,OD AC∴⊥,AF CF=,90DFE∴∠=︒,OA OB=,AF CF=,12OF BC∴=,AB是直径,90ACB∴∠=︒,在EFD∆和ECB∆中90DFE BCEDEF BECDE BE∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()EFD ECB AAS∴∆≅∆,DF BC∴=,12OF DF∴=,3OD=,1OF∴=,2BC∴=,在Rt ABC∆中,222AC AB BC=-,22226242AC AB BC∴=-=-=,故选:D.15.(2019•十堰)如图,四边形ABCD内接于O,AE CB⊥交CB的延长线于点E,若BA平分DBE∠,5AD=,13CE(AE=)A.3 B.32C.43D.23解:连接AC,如图,∠,BA平分DBE12∴∠=∠,∠=∠,∠=∠,231CDA∴∠=∠,3CDA∴==,AC AD5⊥,AE CBAEC∴∠=︒,902222AE AC CE∴=-=-=.5(13)23故选:D.二、填空题16.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=35°.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.17.(2018•梧州)如图,已知在⊙O中,半径OA,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=81度.解:∵OA ,OB ,AB =2,∴OA 2+OB 2=AB 2,OA =OB ,∴△AOB 是等腰直角三角形,∠AOB =90°,∴∠OBA =45°,∵∠BAD =18°,∴∠BOD =36°,∴∠ACO =∠OBA +∠BOD =45°+36°=81°,故答案为:81.18.(2019•辽阳)如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,100AOC ∠=︒,35OCD ∠=︒,那么OED ∠= 60︒ .解:连接OB .AB BC =,50AOB BOC ∴∠=∠=︒,1252BDC BOC ∴∠=∠=︒, OED ECD CDB ∠=∠+∠,35ECD ∠=︒,60OED ∴∠=︒,故答案为60︒.19.(2020•攀枝花)如图,已知锐角三角形ABC 内接于半径为2的O ,OD BC ⊥于点D ,60BAC ∠=︒,则OD = 1 .解:连接OB 和OC ,ABC ∆内接于半径为2的O ,60BAC ∠=︒,120BOC ∴∠=︒,2OB OC ==,OD BC ⊥,OB OC =,60BOD COD ∴∠=∠=︒,30OBD ∴∠=︒,112OD OB ∴==, 故答案为:1.20.(2020•甘孜州)如图,AB 为O 的直径,弦CD AB ⊥于点H ,若10AB =,8CD =,则OH 的长度为 3 .解:连接OC ,CD AB ⊥,118422CH DH CD ∴===⨯=, 直径10AB =,5OC ∴=,在Rt OCH ∆中,223OH OC CH =-=,故答案为:3.21.(2019•阿坝州)如图,在半径为5的O 中,M 为弦AB 的中点,若4OM =,则AB 的长为 6 .解:连接OA ,M 为弦AB 的中点,OM AB ∴⊥, 2222543AM OA OM ∴=-=-,26AB AM ∴==,故答案为:6.22.(2019•盘锦)如图,ABC ∆内接于O ,BC 是O 的直径,OD AC ⊥于点D ,连接BD ,半径OE BC ⊥,连接EA ,EA BD ⊥于点F .若2OD =,则BC = 45 .解:OD AC ⊥, AD DC ∴=,BO CO =,2224AB OD ∴==⨯=,BC 是O 的直径,90BAC ∴∠=︒,OE BC ⊥,90BOE COE ∴∠=∠=︒, ∴BE EC =,11904522BAE CAE BAC ∴∠=∠=∠=⨯︒=︒,EA BD ⊥, 45ABD ADB ∴∠=∠=︒,4AD AB ∴==,4DC AD ∴==,8AC ∴=,22224845BC AB AC ∴=+=+=故答案为:45。

人教版数学九年级上册 第24章 24.1---24.4随堂检测含答案

人教版数学九年级上册 第24章 24.1---24.4随堂检测含答案

人教版数学九年级上册第24章24.1---24.4随堂检测含答案24.1圆的有关性质一.选择题1.如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OB=3:5,连接DO,则DE的长为()A.3B.4C.6D.82.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD =8cm,AE=2cm,则△OFC的面积是()A.40cm2B.20cm2C.10cm2D.5cm23.如图,在⊙O中,点B是的中点,点D在上,连接OA、OB、BD、CD.若∠AOB =50°,则∠BDC的大小为()A.50°B.35°C.25°D.15°4.如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为()A.50m B.45m C.40m D.60m5.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=6,CD=4,则AE的长为()A.B.C.D.6.如图,E在⊙O上,B、C分别是弧AD的三等分点,∠AOB=40°,则∠AED度数是()A.80°B.60°C.50°D.40°7.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,连接OA.若AB=4,CD =1,则⊙O的半径为()A.5B.C.3D.8.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.69.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,则球的半径为()A.10cm B.10cm C.10cm D.8cm10.如图,AB是圆O的直径,C、D、E都是圆上的点,则∠C+∠D等于()A.60°B.75°C.80°D.90°二.填空题11.如图,在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径长.12.如图,A是⊙O上一点,BC是直径,AC=2,BC=4,点D在⊙O上且平分,则∠ACD的度数为.13.如图,以G(0,2)为圆心,半径为4的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F,当点E在⊙O的运动过程中,线段FG的长度的最小值为.14.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于.15.如图,在⊙O中,AB为直径,弦CD⊥AB,垂足为E,CD=8,BE=2,则⊙O的半径为.三.解答题16.已知,如图,四边形ABCD的顶点都在同一个圆上,且∠A:∠B:∠C=2:3:4.(1)求∠A、∠B的度数;(2)若D为的中点,AB=4,BC=3,求四边形ABCD的面积.17.如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD.(1)求弦AB的长;(2)当∠D=20°时,求∠BOD的度数.18.已知:⊙O的半径为25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求这两条平行弦AB,CD之间的距离.19.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x 轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.参考答案与试题解析一.选择题1.【解答】解:∵AB=10,OC:OB=3:5,∴OC=3,在Rt△OCD中,CD===4,∵DE⊥AB,∴DE=2CD=8,故选:D.2.【解答】解:连接OB,如图所示:设⊙O的半径为rcm,则OE=(r﹣2)cm,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,∴BE=DE=4(cm),在Rt△OBE中,∵OE2+BE2=OB2 ,∴(r﹣2)2+42=r2解得:r=5,∴AC=10(cm),EC=AC﹣AE=8(cm),∴BC===4(cm),∵OF⊥BC,∴CF=BF=BC=2(cm),∴OF===(cm),∴△OFC的面积=CF×OF=×2×=5(cm2),故选:D.3.【解答】解:连接OC,如图,∵点B是的中点,∴=,∴∠AOB=∠BOC=50°,∵∠BDC=∠BOC=25°.故选:C.4.【解答】解:设圆弧的圆心为O,过O作OC⊥AB于C,交于D,连接OA,如图所示:则OA=OD=250,AC=BC=AB=150,∴OC===200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m,故选:A.5.【解答】解:连接OC,如图,∵CD⊥AB,∴CE=DE=CD=2,在Rt△OCE中,∵OC=3,CE=2,∴OE==,∴AE=OA+OE=3+.故选:B.6.【解答】解:∵B、C分别是弧AD的三等分点,∴==,∴∠COD=∠BOC=∠AOB=40°,∴∠AOD=3×40°=120°,∴∠AED=∠AOD=60°,故选:B.7.【解答】解:设⊙O的半径为r,则OA=r,OC=r﹣1,∵OD⊥AB,AB=4,∴AC=AB=2,在Rt△ACO中,OA2=AC2+OC2,∴r2=22+(r﹣1)2,r=,故选:D.8.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.9.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2,即:(16﹣x)2+82=x2,解得:x=10.故选:B.10.【解答】解:连接OE,根据圆周角定理可知:∠C=∠AOE,∠D=∠BOE,则∠C+∠D=(∠AOE+∠BOE)=90°,故选:D.二.填空题(共5小题)11.【解答】解:连接OA,如图所示:由题意得:OC⊥AB,OC=4,∴AC=BC=AB=3,在Rt△OAC中,∵OC=4,AC=3,∴OA===5,即⊙O的半径为5.故答案为:5.12.【解答】解:∵BC是⊙O的直径,∴∠BAC=∠D=90°,∵AC=2,AB=4,∴cos∠ACB==,∴∠ACB=60°,又∵点D在⊙O上且平分,∴,∴BD=CD,∴△BCD是等腰直角三角形,∴∠DCB=∠DBC=45°,∴∠ACD=∠ACB+∠DCB=105°,故答案为:105°.13.【解答】解:过G作GM⊥AC于M,连接AG,如图所示:∵GO⊥AB,∴OA=OB,∵G(0,2),∴OG=2,在Rt△AGO中,∵AG=4,OG=2,∴AG=2OG,OA==2,∴∠GAO=30°,AB=2AO=4,∴∠AGO=60°,∵GC=GA=4,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=4,MG=CG=2,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣MG=2﹣2,故答案为:2﹣2.14.【解答】解:连接BD,如图,所示:∵AB是半圆的直径,∴∠ADB=90°,∴∠BDC=∠ADC﹣∠ADB=106°﹣90°=16°,∴∠CAB=∠BDC=16°.故答案为:16°.15.【解答】解:连接OC,如图所示:∵CD⊥AB,∴CE=DE=CD=4,设⊙O的半径为r,则OE=r﹣2,OC=r,在Rt△OCE中,由勾股定理得:42+(r﹣2)2=r2,解得:r=5,即⊙O的半径为5.故答案为:5.三.解答题(共4小题)16.【解答】解:(1)设∠A、∠B、∠C分别为2x、3x、4x,∵四边形ABCD为圆内接四边形,∴∠A+∠C=180°,即2x+4x=180°,解得,x=30°,∴∠A、∠B分别为60°、90°;(2)连接AC,∵∠B=90°,∴AC为圆的直径,AC==5,△ABC的面积=×3×4=6,∠D=90°,∵点D为的中点,∴AD=CD=AC=,∴△ADC的面积=××=,∴四边形ABCD的面积=6+=.17.【解答】解:(1)过点O作OE⊥AB于E,如图:则AE=BE=AB,∠OEB=90°,∵OB=2,∠B=30°,∴OE=OB=1,BE=OE=,∴AB=2BE=2;(2)连接OA,如图:∵OA=OB,OA=OD,∴∠BAO=∠B,∠DAO=∠D,∴∠DAB=∠BAO+∠DAO=∠B+∠D,又∵∠B=30°,∠D=20°,∴∠DAB=50°,∴∠BOD=2∠DAB=100°.18.【解答】解:(1)如图1,连接OB,OD,做OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM﹣ON,∴MN=8cm,(2)如图2,连接OB,OD,做直线OM⊥AB交CD于点N,∵AB∥CD,∴ON⊥CD,∵AB=40cm,CD=48cm,∴BM=20cm,DN=24cm,∵⊙O的半径为25cm,∴OB=OD=25cm,∴OM=15cm,ON=7cm,∵MN=OM+ON,∴MN=22cm.∴平行弦AB,CD之间的距离为8cm或22cm.24.2点和圆、直线和圆的位置关系一.选择题1.已知⊙O的半径r,圆心O到直线的距离为d,当d<r时,直线与⊙O的位置关系是()A.相交B.相切C.相离D.以上都不对2.关于下列四种说法中,你认为正确的有()①垂直于弦的直线一定经过圆心;②经过直径外端的直线是圆的切线;③对角互补的四边形四个顶点共圆;④圆外一点引圆的两条切线,两切点的连线被该点与圆心连线垂直平分.A.1个B.2个C.3个D.4个3.如图,BM为⊙O的切线,点B为切点,点A、C在⊙O上,连接AB、AC、BC,若∠MBA=130°,则∠ACB的度数为()A.40°B.50°C.60°D.70°4.已知⊙O的半径为3cm,且点P在⊙O外,则线段PO的长度为()A.等于6cm B.大于3cm C.小于3cm D.等于3cm5.若直线l与半径为10的⊙O相交,则圆心O与直线l的距离d为()A.d<10B.d>10C.d=10D.d≤106.已知⊙O的半径OA长为1,OB=,则正确图形可能是()A.B.C.D.7.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为()A.1B.C.D.28.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A.C.9.如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.4+4B.4C.4+8D.610.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,点D在⊙O上.若∠BCD=36°,则∠ACD的度数为()A.36°B.44°C.54°D.64°二.填空题11.边长为3cm的等边三角形的外接圆半径是.12.Rt△ABC中,∠C=90°,AB=9,点G是△ABC的外心,则CG的长为.13.如图,P A,PB是⊙O的两条切线,切点分别为A,B,连接OA,OB,OP,AB.若OA =1,∠APB=60°,则△P AB的周长为.14.《九章算术》是我国数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“直角三角形短直角边长为8步,长直角边长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”如图,请写出内切圆直径是步.15.如图,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0),那么△ABC的外接圆的圆心坐标为.三.解答题16.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=BD,AE为⊙O直径,⊙O的半径为2,连接BE.(1)求AC的长;(2)求证:BE=DC.17.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=﹣2x+与⊙O的位置关系怎样?18.如图,在△ABC中,∠C=90°,AB=10cm,BC=6cm,点M从C点开始以1cm/s的速度沿CB向B点运动,点N从A点开始以2cm/s的速度沿AC向C点运动,点M、N 同时出发,当一个点到达终点时,另一个点也停止运动.(1)2秒时,△MCN的面积是;(2)求经过几秒,△MCN的面积是3cm2;(3)试说明△MCN外接圆的半径能否是cm.19.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2).(1)经过A、B、C三点的圆弧所在圆的圆心M的坐标为;(2)这个圆的半径为;(3)直接判断点D(5,﹣2)与⊙M的位置关系.点D(5,﹣2)在⊙M(填内、外、上).参考答案与试题解析一.选择题1.【解答】解:已知⊙O的半径r,圆心O到直线的距离为d,当d<r时,直线与⊙O的位置关系是相交,故选:A.2.【解答】解:①垂直平分弦的直线经过圆心,故①不符合题意;②经过直径外端切垂直于这条直径的直线是圆的切线,故②不符合题意;③对角互补的四边形四个顶点共圆;故③符合题意;④圆外一点引圆的两条切线,两切点的连线被该点与圆心连线垂直平分,故④符合题意;故选:B.3.【解答】解:如图,连接OA,OB,∵BM为⊙O的切线,∴∠OBM=90°,∵∠MBA=130°,∴∠ABO=40°,∵OA=OB,∴∠BAO=∠ABO=40°,∴∠AOB=180°﹣40°﹣40°=100°,∴∠ACB=∠AOB=50°,故选:B.4.【解答】解:点P在⊙O外且⊙O的半径为3cm,可知点P到圆心的距离大于r,即PO大于3,故选:B.5.【解答】解:∵⊙O的半径为10,直线l与⊙O相交,∴圆心到直线的距离小于圆的半径,即d<10.故选:A.6.【解答】解:∵⊙O的半径OA长为1,若OB=,∴OA<OB,∴点B在圆外,故选:B.7.【解答】解:连接OB,∵BD是⊙O的切线,∴∠OBD=90°,∵四边形OABC为菱形,∴OA=AB,∵OA=OB,∴OA=OB=AB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠ODB=30°,∴OD=2OB=2,由勾股定理得,BD==,故选:C.8.【解答】解:根据垂径定理的推论,如图,作弦AB、AC的垂直平分线,交点O′即为三角形外接圆的圆心,且O′坐标是(3,2).故选:A.9.【解答】解:以BC为边作等边△BCM,连接DM.∵∠DCA=∠MCB=60°,∴∠DCM=∠ACB,∵DC=AC,MC=BC∴△DCM≌△CAB(SAS),∴DM=AB=2为定值,即点D在以M为圆心,半径为2的圆上运动,当点D运动至BC的中垂线与圆的交点时,CB边上的高取最大值为2+2,此时面积为4+4.故选:A.10.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=36°,∴∠ACD=90°﹣∠BCD=54°.故选:C.二.填空题(共5小题)11.【解答】解:如图,∵等边三角形的边长为3cm,∴AD=(cm),∵∠DAO=∠BAC=60°×=30°,∴AO==(cm).故答案为:cm.12.【解答】解:因为Rt△ABC中,∠C=90°,AB=9,点G是△ABC的外心,所以CG是直角三角形ABC斜边的中线,则CG的长为.故答案为:.13.【解答】解:∵P A,PB是⊙O的两条切线,∴P A=PB,OA⊥P A,OP平分∠APB,∵∠APB=60°,∴∠APO=∠APB=30°,△P AB为等边三角形,在Rt△OAP中,∵∠APO=30°,∴P A=OA=,∴△P AB的周长=3P A=3.故答案为3.14.【解答】解:根据题意,直角三角形的斜边为=17,所以直角三角形的内切圆的半径==3,所以直角三角形的内切圆的直径为6.故答案为6.15.【解答】解:如图,P点为△ABC的外接圆的圆心,其坐标为(5,5).故答案为(5,5).三.解答题(共4小题)16.【解答】解:(1)如图,连接EC,∵AD⊥BC于点D,AD=BD,∴∠ABD=∠BAD=45°,∴∠AEC=∠ABD=45°,∵AE是⊙O的直径,∴∠ACE=90°,∵AE=4,∴AC=AE sin45°=4×=2;(2)证明:∵AE是⊙O的直径,∴∠ABE=90°,∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,∵∠AEB=∠ACB,∴△ABE∽△ADC,∴BE:DC=AE:AC=4:2=,∴BE=DC.17.【解答】解:如图所示,过O作OC⊥直线AB,垂足为C,在直线y=﹣2x+中,令x=0,解得:y=;令y=0,解得:x=,∴A(,0),B(0,),即OA=,OB=,在Rt△AOB中,根据勾股定理得:AB===,=ABOC=OAOB,又S△AOB∴OC===1,又圆O的半径为1,则直线y=﹣2x+与圆O的位置关系是相切.18.【解答】解:(1)∵∠C=90°,AB=10cm,BC=6cm,∴AC==8,根据题意得,AN=4,CM=2,∴CN=4,=×4×2=4(cm2);∴S△CMN故答案为4cm2;(2)设经过x秒,根据题意得,(8﹣2x)x=3,解得x1=1,x2=3;即经过1秒或3秒,△MCN的面积是3cm2;(3)∵△MNC为直角三角形,∠C=90°,∴MN为△MCN外接圆的直径,假设△MCN外接圆的半径为cm,则MN=2cm,设M点运动的时间为t秒,则NC=8﹣2t,CM=t,根据题意得,(8﹣2t)2+t2=(2)2,整理得5t2﹣32t+52=0,∵△=(﹣32)2﹣4×5×52=﹣16<0,∴原方程没有实数解,∴△MCN外接圆的半径不能是cm.19.【解答】解:(1)如图,圆心M的坐标为(2,0);(2)∵A(0,4),M(2,0),∴MA==2,即⊙M的半径为2;(3)∵D(5,﹣2),M(2,0),∴DM==19.【解答】(1)解:连接PB,∵P A是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)(2分)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形(2分)又∵AP为圆M的直径得∠ACP=9024.3 正多边形和圆一.选择题1.边长为2的正六边形的面积为()A.6B.6C.6D.2.如图,四边形ABCD是⊙O的内接正方形,点P是上不同于点C的任意一点,则∠BPC的大小是()A.22.5°B.45°C.30°D.50°3.如图,△ABD是⊙O的内接正三角形,四边形ACEF是⊙O的内接正四边形,若线段BC 恰是⊙O的一个内接正n边形的一条边,则n=()A.16B.12C.10D.84.如图,把边长相等的正六边形ABCDEF和正五边形ABGHI的AB边重合叠放在一起,连接EB,交HI于点K,则∠BKI的大小为()A.90°B.85°C.84°D.80°5.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:26.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是()A.18°B.36°C.54°D.72°7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.B.2C.D.8.如图,AB、AC分别为⊙O的内接正方形、内接正三边形的边,BC是圆内接正n边形的一边,则n等于()A.8B.10C.12D.169.如图,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=()A.75°B.54°C.72°D.60°10.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.15二.填空题11.正方形的边长为6,则该正方形的边心距是.12.如图,在正六边形ABCDEF中,连接BD、BE、DF,则的值为.13.已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.14.如图,正六边形ABCDEF内接于⊙O且半径为3,则AB的长为.15.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为2,则△ADE的周长是.16.如图,AB是⊙O的内接正方形一边,点C在弧AB上,且AC是⊙O的内接正六边形的一边,若将BC看作是⊙O的内接正n边形的一边,则n的值是.17.如图,⊙O半径为,正方形ABCD内接于⊙O,点E在上运动,连接BE,作AF ⊥BE,垂足为F,连接CF.则CF长的最小值为.18.已知:圆内接正方形ABCD,∠DAC的平分线交圆于E,交CD于P,若EP=1,AP =3,则圆的半径r=.三.解答题19.如图,正方形ABCD内接于⊙O,M为的中点,连接AM,BM.(1)求证:;(2)求的度数.20.如图,正方形ABCD内接于⊙O,P为上一点,连接DE,AE.(1)∠CPD=°;(2)若DC=4,CP=,求DP的长.21.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.22.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为劣弧BC上一动点.求证:P A=PB+PC;(2)已知:如图2,四边形ABCD是⊙O的内接正方形,点P为劣弧BC上一动点.求证:P A=PC+PB.23.如图正方形ABCD内接于⊙O,E为CD任意一点,连接DE、AE.(1)求∠AED的度数.(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.24.如图1,△ABC为等边三角形,图2为正方形,图3为正五边形,图4为正多边形.(1)如图1当BP=CQ时,请求出∠AOQ的度数,并说明理由(2)如图2,在正方形中,当BP=CQ时∠AOQ=;如图3,在正五边形中,当BP=CQ时,∠AOQ=;(3)如图4,在正n边形中,当BP=CQ时,∠AOQ是否有什么规律?如果有请用含有n的式子直接表示;如果没有规律,请说明理由.参考答案一.选择题1.A.2.B.3.B.4.C.5.B.6.C.7.C.8.C.9.C.10.C.二.填空题11.3.12..13.72°.14.3.15.6+2.16.12;17.﹣1.18..三.解答题19.(1)证明:∵四边形ABCD是正方形,∴AD=BC,∴=,∵M为的中点,∴=,∴+=+,∴;(2)解:连接OM,OA,OB,∵正方形ABCD内接于⊙O,∴∠AOB=90°,∴∠AOM=∠BOM=(360°﹣90°)=135°,∴的度数时135°.20.(1)如图,连接BD,∵正方形ABCD内接于⊙O,P为上一点,∴∠DBC=45°,∵∠CPD=∠DBC,∴∠CPD=45°.故答案为:45;(2)如图,作CH⊥DP于H,∵CP=2,∠CPD=45°,∴CH=PH=2,∵DC=4,∴DH===2,∴DP=PH+DH=2+2.21.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.22.证明:(1)延长BP至E,使PE=PC,连接CE,如图1,∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,在△BEC和△APC中,,∴△BEC≌△APC(SAS),∴P A=BE=PB+PC;(2)过点B作BE⊥PB交P A于E,连接OA,OB.如图2,∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∵∠APB=∠AOB=45°,∴BP=BE,∴PE=PB,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴PC=AE,∴P A=AE+PE=PC+PB;23.(1)如图1中,连接OA、OD.∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=∠AOD=45°.(2)如图2中,连接CF,CE,CA,BD,作DH⊥AE于H.∵BF∥DE,AB∥CD,∴∠BDE=∠DBF,∠BDC=∠ABD,∴∠ABF=∠CDE,∵∠CF A=∠AEC=90°,∴∠DEC=∠AFB=135°,∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC==,∴AD=AC=,∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=HE,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴=(4﹣x)2+x2,解得x=或(舍弃),∴DE=DH=24.(1)∠AOQ=60°.在△ABP和△BCQ中,.∴△ABP≌△BCQ(SAS).∴∠BAP=∠CBQ.∴∠AOQ=∠ABO+∠BAP=∠ABO+∠CBQ=∠ABC=60°;(2)理由同(1):正方形∠AOQ=90°,正五边形∠AOQ=108°,(3)正n边形∠AOQ=.故答案为:90°,108°.24.4 弧长和扇形面积一、选择题(本大题共8道小题)1. 如图,AB,CD是⊙O的两条互相垂直的直径,O1,O2,O3,O4分别是OA,OB,OC,OD的中点.若⊙O的半径是2,则阴影部分的面积为()A.8 B.4C.4π+4 D.4π-42. 一个圆锥的侧面积是底面积的2倍,则该圆锥侧面展开图的圆心角的度数是() A.120° B.180° C.240° D.300°3. 如图,△ABC内接于⊙O,若∠A=45°,⊙O的半径r=4,则阴影部分的面积为()A .4π-8B .2πC .4πD .8π-84. (2020·乐山)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′,则图中阴影部分面积为( )A .π4B .π-32C .π-34D .32π 5. 如图,△ABC 是等腰直角三角形,且∠ACB=90°.曲线CDEF…叫做“等腰直角三角形的渐开线”,其中CD ︵,DE ︵,EF ︵,…的圆心依次按A ,B ,C ,…循环.如果AC =1,那么曲线CDEF 和线段CF 围成图的面积为( )图A .(12+72)4πB .(9+52)4π C .(12+72)π+24 D .(9+52)π+24 6. 2019·宁波 如图所示,在矩形纸片ABCD 中,AD =6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形BAF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5 cmB .4 cmC .4.5 cmD .5 cm7. 如图所示,矩形纸片ABCD 中,AD =6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形BAF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为( )A .3.5 cmB .4 cmC .4.5 cmD .5 cm8. 2017·衢州 运用图变化的方法研究下列问题:如图AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图阴影部分的面积是( )图A.252πB.10π C.24+4π D.24+5π二、填空题(本大题共8道小题)9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________.11. (2020·吉林)如图,在四边形ABCD 中,AB CB =,AD CD =,我们把这种两组邻边分别相等的四边形叫做“筝形”,筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BO 长为半径画弧,分别交AB ,BC 于点E ,F ,若30ABD ACD ∠=∠=︒,1AD =,则EF 的长为_______(结果保留π).12. 如图,已知扇形OAB 的圆心角为60°,扇形的面积为6π,则该扇形的弧长为________.13. (2020·新疆)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°,若将扇形BAC 剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.14. 一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为________.15. 如图所示,在Rt△ABC 中,∠ACB =90°,AC =BC =2 2.若把Rt△ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为________.(结果保留π)16. (2020·潍坊)如图,四边形ABCD 是正方形,曲线11112DA B C D A 是由一段段90度的弧组成的.其中:1DA 的圆心为点A ,半径为AD ;11A B 的圆心为点B ,半径为1BA ;11B C 的圆心为点C ,半径为1CB ;11C D 的圆心为点D ,半径为1DC ;…1111111,,,,DA A B B C C D 的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则20202020A B 的长是_________.A 2D C 2B 2A 1B 1C 1D 1C B A 三、解答题(本大题共4道小题)17. 如图,AB 是半圆O的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. 如图,蒙古包可以近似地看作由圆锥和圆柱组成,现想用毛毡搭建底面积为9π m2,高为6 m,外围高为2 m的蒙古包,求至少需要多少平方米的毛毡.(结果保留π)19. 如图,△ABC是正三角形,曲线CDEFG…叫做“正三角形的渐开线”,曲线的各部分为圆弧.(1)图已经有4段圆弧,请接着画出第5段圆弧GH.(2)设△ABC的边长为a,则第1段弧的长是________,第5段弧的长是________,前5段弧长的和(即曲线CDEFGH的长)是________.(3)类似地,有“正方形的渐开线”“正五边形的渐开线”……边长为a的正方形的渐开线的前5段弧长的和是________.(4)猜想:①边长为a的正n边形的前5段弧长的和是________;②边长为a的正n边形的前m段弧长的和是________.20. 如图,PB切⊙O于点B,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为D,交⊙O于点A,连接AO并延长交⊙O于点C,连接BC,AF,BF.(1)若∠AOF=120°,⊙O的半径为3,求:①∠CBF的度数;②AB ︵的长;③阴影部分的面积.(2)若AB =8,DE =2,求⊙O 的半径.(3)求证:直线PA 为⊙O 的切线.(4)若BC =6,AD ∶FD =1∶2,求⊙O 的半径.人教版 九年级数学 24.4 弧长和扇形面积 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】B [解析] 设母线长为R ,底面圆的半径为r ,则底面圆的周长=2πr ,底面积=πr2,侧面积=πrR.∵侧面积是底面积的2倍,∴2πr2=πrR ,∴R =2r.设该圆锥侧面展开图的圆心角为n°,则nπR 180=2πr ,∴nπR 180=πR ,∴n =180.故选B.3. 【答案】A [解析] 由题意可知∠BOC =2∠A =45°×2=90°.∵S 阴影=S 扇形OBC -S △OBC ,S 扇形OBC =14S 圆=14π×42=4π,S △OBC =12×42=8,所以阴影部分的面积为4π-8.故选A.4. 【答案】B【解析】先求出AC 、AB ,再根据S 阴影=S 扇形CAC ′-S △AB ′C ′- S 扇形DAB ′求解即可.在Rt △ABC 中,∵∠BAC =30°,∴AC =2BC =2,∴AB =AC 2-BC 2=3;由旋转得,∴AB =A ′B ′=3,BC =B ′C ′=1,∠CAC ′=90°,∴∠CAB ′=60°,∴S 阴影=S 扇形CAC ′-S △AB ′C ′- S 扇形DAB ′=90⋅π⋅22360-12×3×1-90⋅π⋅(3)2360=π-32.5. 【答案】C [解析] 曲线CDEF 和线段CF 围成的图是由三个圆心不同,半径不同的扇形以及△ABC 组成的,所以根据面积公式可得135π×1+135π×(2+1)2+90π×(2+2)2360+12×1×1=(12+7 2)π+24.6. 【答案】B7. 【答案】B [解析] AF ︵的长=14·2π·AB ,右侧圆的周长为π·DE. ∵裁出的扇形和圆恰好能作为一个圆锥的侧面和底面,∴14·2π·AB =π·DE ,∴AB =2DE , 即AE =2DE.∵AE +DE =AD =6,∴AB =4.故选B.8. 【答案】A [解析] 如图作直径CG ,连接OD ,OE ,OF ,DG .∵CG 是⊙O 的直径,∴∠CDG =90°,则DG =CG 2-CD 2=8.又∵EF =8,∴DG =EF ,∴DG ︵=EF ︵,∴S 扇形ODG =S 扇形OEF .∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.二、填空题(本大题共8道小题)9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式. 阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】3π【解析】∵△ABC是⊙O的内接正三角形,∴∠AOB=2∠C=2×60°=120° ,∵⊙O的半径为3,∴阴影部分的面积S 扇形OAB =120×π×32360=3π.11. 【答案】2π【解析】由题意知:AB CB =,AD CD =, ∴ABC 和ADC 是等腰三角形,AC ⊥BD .∵30ABD ACD ∠=∠=︒,1AD =∴OD=12,OA=2∴OB=32.∵∠ABD=30,32r =∴∠EBF=60︒,EF =602360r 13322.故答案为2π.12. 【答案】2π [解析] 设扇形的半径是R ,则60·π·R2360=6π,解得R =6(负值已舍去). 设扇形的弧长是l ,则12lR =6π,即3l =6π, 解得l =2π.故答案为2π.13. 【答案】3【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB=∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 3因为OD ⊥AC ,所以AC =2AD =3.所以BC l =60180×π×2323设此圆锥的底面圆的半径为r ,则23r 33.14. 【答案】12π15. 【答案】8 2π [解析] 过点C 作CD ⊥AB 于点D .在Rt△ABC 中,∠ACB =90°,AC =BC =22, ∴AB =2AC =4,∴CD =2.以CD 为半径的圆的周长是4π.故Rt△ABC 绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π.16. 【答案】4039π【解析】本题主要考查了弧长的计算,弧长的计算公式:180n r l π=,找到每段弧的半径变化规律是解题关键.由图可知,曲线11112DA B C D A 是由一段段90度的弧组成的,半径每次比前一段弧半径+1, 11AD AA ==,112BA BB ==,……,()1411n n AD AA n -==-+,()412n n BA BB n =-+=,故20202020A B 的半径为()2020202042020128078BA BB =-+==,20202020A B 的弧长=9080784039180ππ⨯=. 三、解答题(本大题共4道小题)17. 【答案】解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为半圆O 的半径,∴CD 与半圆O 相切.(2)连接OE.∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE ,∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形,∴∠ECO =60°,CE =OC =1.由(1)得OC ⊥CD ,∴∠OCD =90°,∴∠DCE =30°,∴DE =12,DC =32,∴S 阴影=S △DEC =12×12×32=38.18. 【答案】解:∵蒙古包的底面积为9π m 2,高为6 m ,外围(圆柱)高为2 m ,∴底面圆的半径为3 m ,圆锥的高为6-2=4(m),∴圆锥的母线长为5 m ,∴圆锥的侧面积为π×3×5=15π(m 2),圆锥的底面周长为2π×3=6π(m),圆柱的侧面积为6π×2=12π(m 2).故至少需要毛毡15π+12π=27π(m 2).19. 【答案】 13π4解:(1)如图(2)23πa 103πa 10πa (3)15πa 2(4)①30n πa ②m (m +1)nπa 20. 【答案】解:(1)①∵∠AOF =120°,∴∠ABF =60°.∵AC 是⊙O 的直径,∴∠ABC =90°,∴∠CBF =30°.②连接OB .∵∠AOF =120°,∴∠AOE =60°.∵EF ⊥AB 于点D ,∴AE ︵=BE ︵,∴∠AOE =∠BOE =60°,∴∠AOB =120°,∴AB ︵=120π×3180=2π. ③∵∠AOE =60°,EF ⊥AB 于点D ,∴∠OAB =30°.∵AC =6,∴BC =3,∴AB =33.∵OA =3,∴OD =32, ∴S △AOB =12AB ·OD =12×3 3×32=94 3. ∵S 扇形OAB =120360π×32=3π, ∴阴影部分的面积=S 扇形OAB -S △AOB =3π-94 3.(2)∵EF ⊥AB 于点D ,∴AD =BD =4.设OA =x ,则OD =OE -DE =x -2.在Rt△OAD 中,由勾股定理,得OA 2=OD 2+AD 2,即x 2=(x -2)2+42,解得x =5, ∴⊙O 的半径为5.(3)证明:连接OB .∵PB 是⊙O 的切线,∴∠PBO =90°.∵EF ⊥AB 于点D ,∴AE ︵=BE ︵,∴∠AOP =∠BOP .又∵OA =OB ,PO =PO ,∴△PAO ≌△PBO ,∴∠PAO =∠PBO =90°,∴直线PA 为⊙O 的切线.(4)∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3. 设AD =y .∵AD ∶FD =1∶2,∴FD =2y ,∴OA =OF =FD -OD =2y -3.在Rt△AOD 中,由勾股定理,得OA 2=AD 2+OD 2,即(2y -3)2=y 2+32.解得y 1=4,y 2=0(不合题意,舍去).∴OA =2y -3=5,即⊙O 的半径为5.。

人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案【精】

人教版九年级数学上册24.1.1《圆》圆的有关性质同步测试及答案【精】

圆 24.1__圆的有关性质__24.1.1 圆 [见B 本P36]1.下列命题正确的有( C )(1)半圆是弧;(2)弦是圆上两点之间的部分;(3)半径是弦;(4)直径是最长的弦;(5)在同一平面内,到定点的距离等于定长的点都在同一个圆上.A .1个B .2个C .3个D .4个【解析】 (1)弧是圆上任意两点间的部分;任意一条直径的两个端点在圆上把圆分成两条弧,每一条弧叫做半圆,因此(1)是正确的命题.(2)弦是连接圆上任意两点的线段,不是圆上两点之间的部分,因此(2)是错误的命题.(3)半径是连接圆心与圆上任意一点的线段,不是弦.因此(3)是假命题.(4)直径是过圆心的弦,也是最长的弦.如图所示,AB 是⊙O 的直径,CD 是任意一条不过圆心的弦,连接OC ,OD ,在△OCD 中,OC +OD >CD ,而AB =OC +OD ,则AB >CD ,因此直径是最长的弦.(5)圆心为O ,半径为r 的圆可以看成由所有到定点O 的距离等于定长r 的点组成的图形,因此(5)正确.所以(1),(4),(5)正确,选C.2.如图24-1-1所示,⊙O 中点A ,O ,D 以及点B ,O ,C 分别在同一直线上,图中弦的条数为( A )A .2B .3C .4D .5图24-1-1图24-1-2图24-1-33.如图24-1-2,P 是⊙O 内的一点,P 到⊙O 的最小距离为4 cm ,最大距离为9 cm ,则该⊙O 的直径为( C )A .6.5 cmB .2.5 cmC .13 cmD .不可求【解析】 过O ,P 作直径AB ,则AB =P A +PB =4+9=13(cm),故选C.4.图24-1-3中,__AC __是⊙O 的直径;弦有__AB ,BC ,AC __;劣弧有__AB ︵,BC ︵__;优弧有__BAC ︵,BCA ︵__.5.如图24-1-4所示,已知∠AOB =60°,则△AOB 是__等边__三角形.图24-1-4图24-1-56.如图24-1-5,AB 是⊙O 的直径,AC 是弦,若∠ACO =22°, 则∠COB 的度数等于__44°__.【解析】 ∵OA =OC ,∴∠A =∠C =22°,∴∠BOC =∠A +∠C =22°×2=44°.7.如图24-1-6,以O 为圆心的两个同心圆⊙O ,大圆O 的半径OC ,OD 分别交小圆O 于A ,B 两点,求证:AB ∥CD .证明:∵OA =OB ,OC =OD ,∴∠OAB =12(180°-∠O )=∠C ,∴AB ∥CD .图24-1-6图24-1-78.如图24-1-7,在⊙O 中,D ,E 分别为半径OA ,OB 上的点,且AD =BE ,点C 为弧AB 上一点,连接CD ,CE ,CO ,∠AOC =∠BOC .求证:CD =CE .证明:∵OA =OB ,AD =BE ,∴OA -AD =OB -BE ,即OD =OE .在△ODC 和△OEC 中,⎩⎪⎨⎪⎧OD =OE ,∠DOC =∠EOC ,OC =OC ,∴△ODC ≌△OEC ,∴CD =CE .9.如图24-1-8所示,已知⊙O 中,直径MN =10ABCD 的四个顶点分别在半径OM ,OP 以及⊙O 上,并且∠POM =45°,则AB 的长为__5__.【解析】 连接OA ,构造Rt △OAB ,利用勾股定理,求出AB 的长.设正方形ABCD 的边长为x ,则AB =BC =CD =x ,又∠POM =45°,∠DCO =90°,∴∠ODC =∠POM =45°,∴DC =OC =x ,∴OB =2x .在Rt △OAB 中,AB 2+OB 2=OA 2,OA =12MN =5,即x 2+(2x )2=52,∴x = 5.图24-1-810.如图24-1-9,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长分别交弦AB ,AC 于点E ,F ,∠B =∠C .求证:CE =BF .证明:∵OB ,OC 是⊙O 的半径,∴OB =OC .又∵∠B =∠C ,∠BOE =∠COF ,∴△EOB ≌△FOC ,∴OE =OF ,∴CE =BF .11.如图24-1-10,半圆O 的直径AB =8,半径OC ⊥AB ,D 为弧AC 上一点,DE ⊥OC ,DF ⊥OA ,垂足分别为E ,F ,求EF 的长.图24-1-10解:连接OD .∵OC ⊥AB ,DE ⊥OC ,DF ⊥OA ,∴∠AOC =∠DEO =∠DFO =90°, ∴四边形DEOF 是矩形,∴EF =OD .∵OD =OA ,∴EF =OA =4.12.如图24-1-11,AB ,CD 是⊙O 的直径,DF ,BE 是⊙O 的弦,且弦DF =BE .求证:∠B =∠D .图24-1-11【解析】 连接OF ,OE ,证明△DOF ≌△BOE .证明:如图,连接OE ,OF .在△DOF 和△BOE 中,⎩⎪⎨⎪⎧OF =OE ,OD =OB ,DF =BE ,∴△DOF ≌△BOE (SSS).∴∠B =∠D .13.如图24-1-12所示,已知CD 是⊙O 的直径,∠EOD =51°,AE 交⊙O 于点B ,且AB =OC ,求∠A 的度数.图24-1-12【解析】已知∠EOD=51°,与未知∠A构成了内、外角关系,而∠E也未知,且AB=OC这一条件不能直接使用,因此想到同圆的半径相等,需连接半径OB,从而得到OB=AB.解:如图所示,连接OB.∵AB=OC,OB=OC,∴AB=OB,∴∠A=∠1.又∵OB=OE,∴∠E=∠2=∠1+∠A=2∠A,∴∠DOE=∠E+∠A=3∠A.而∠DOE=51°,∴3∠A=51°,∴∠A=17°.。

人教版九年级数学上册第二十四章圆24.1圆的有关性质同步练习(附答案)

人教版九年级数学上册第二十四章圆24.1圆的有关性质同步练习(附答案)

24.1 圆的有关性质一.选择题(共20小题)1.(•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm2.(•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.4.(•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.(•济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°6.(•聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5°C.30° D.35°7.(•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°8.(•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55° B.110°C.120°D.125°9.(•菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°10.(•张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC 的度数是()A.30° B.45° C.55° D.60°11.(•哈尔滨)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°12.(•潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或213.(•黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.114.(•乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米15.(•金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm16.(•泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2C.6 D.817.(•黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A. cm B.3cm C.3cm D.6cm18.(•牡丹江)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.519.(•赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.πC.πD.2π20.(•巴彦淖尔)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD 分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°二.填空题(共10小题)21.(•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.22.(•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °.23.(•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.24.(•梧州)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO= 度.25.(•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.26.(•雅安)⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.27.(•湘西州)如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=28.(•常州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC= .29.(•湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .30.(•安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .三.解答题(共5小题)31.(•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.32.(•牡丹江)如图,在⊙O中, =,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.33.(•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.34.(•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.35.(•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.参考答案一.选择题(共20小题)1.C.2.A.3.A.4.C.5.D.6.D.7.A.8.D.9.D.10.D.11.B.12.D.13.C.14.B.15.C.16.B.17.A.18.C.19.B.20.B.二.填空题(共10小题)21.2或14.22.n23.30,10﹣10,24.81.25.(﹣1,﹣2),26.4≤OP≤5.27.10.28.70°.29.60°30.4﹣.三.解答题(共5小题)31.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.32.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.33.解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.34.(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵===,∴=+=,∴的长=××4π=×4π=π.35.(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.。

人教版九年级数学上册《24-1-1 圆》作业同步练习题及参考答案

人教版九年级数学上册《24-1-1 圆》作业同步练习题及参考答案

24.1圆的有关性质24.1.1圆1.有下列结论:①弦比直径短;②过圆心的线段是直径;③半圆是弧;④长度相等的两条弧是等弧. 其中正确的有( )A.0 个B.1 个C.2 个D.3 个2.在平面直角坐标系中,以坐标原点O 为圆心,5 为半径作圆,下列各点一定在该圆上的是( )A.(2,3)B.(4,3)C.(1,4)D.(2,-4)3.如图,AB 是☉O 的直径,点C,D 在☉O 上,∠BOC=110°,AD∥OC,则∠AOD 的度数为( )A.70°B.60°C.50°D.40°4.已知圆的半径为3,则弦AB 长度的取值范围是.5.如图,半圆的直径AB 等于.6.若平面上的一点和☉O 的最近距离为4 cm,最远距离为10 cm,则圆O 的半径是cm.7.如图,一根2 m 长的绳子,一端拴在墙边,另一端拴着一只羊,画出羊的活动区域.8.如图,AB,AC 为☉O 的弦,连接CO,BO 并延长,分别交弦AB,AC 于点E,F,∠B=∠C,求证:CE=BF.9.如图,王大爷家屋后有一块长为12 m,宽为8 m 的矩形空地,他在以BC 为直径的半圆内种菜,他家养的一只羊平时拴在A 处,为了不让羊吃到菜,拴羊的绳子可以选用( )A.3 mB.5 mC.7 mD.9 mˆ�→BO的路径运动一周.设OP为s,运动时间10.如图,AB是半圆O的直径,点P从点O出发,沿OA→�为t,则下列图象能大致地刻画s 与t 之间关系的是( )11.如图,O2 是☉O1 上的一点,以O2 为圆心,O1O2 为半径作☉O2,与☉O1 交于点A,B,则∠AO1B 的度数为.★12. 如图,△ABC1,△ABC2,△ABC3,…,△ABC n是n 个以AB 为斜边的直角三角形,试判断点C1,C2,C3,…, C n是否在同一个圆上,并说明理由.13.如图,两个圆的圆心都为点O,大圆的半径OC,OD 交小圆于A,B 两点,试证明:AB∥CD.★14.如图,点A,D,G,M 在半圆O 上,四边形ABOC,DEOF,HMNO 均为矩形.设BC=a,EF=b,NH=c,则a,b,c 之间有什么关系?参考答案夯基达标1.B2.B3.D4.0<AB≤65.4 26.3 或7 本题没有明确告知点的位置,应分点在圆内与圆外两种情况讨论.如图①,当点P 在☉O 内时,PA=4 cm,PB=10 cm,AB=14 cm,因此半径为7 cm;如图②,当点P 在☉O 外时,PA=4 cm,PB=10 cm,直线PB 过圆心O,直径AB=PB-PA=6 cm,因此半径为3 cm.2 7. 分析 根据题意,羊的活动区域应是以 O 为圆心,以 2 m 为半径的半圆及其内部.解 如图,羊的活动区域是图中的阴影部分(包括半圆周).8. 证明 ∵OB ,OC 是☉O 的半径,∴OB=OC.又∠B=∠C ,∠BOE=∠COF ,∴△EOB ≌△FOC (ASA).∴OE=OF.∴CE=BF.培优促能9.A 由勾股定理,得 OA= 82 + 62=10(m),所以 AP=OA-OP=10-6=4(m),结合选项知选用 3 m 合适,故选 A .10.C 当点 P 从点 O 向点 A 运动时,OP 逐渐增大,当点 P 从点 A 向点 B 运动时,OP 不变,当点 P 从点B 向点 O 运动时,OP 逐渐减小,故能大致地刻画 s 与 t 之间关系的是选项C 中的图象.11.120° 连接 AO 2,BO 2,由题意知☉O 1 与☉O 2 是等圆,所以△AO 1O 2 与△BO 1O 2 都为等边三角形. 所以∠AO 1O 2=∠BO 1O 2=60°,即∠AO 1B=120°.12. 解 点 C 1,C 2,C 3,…,C n 在以 AB 为直径的同一个圆上.理由如下:取 AB 的中点 D ,分别连接 C 1D ,C 2D ,C 3D ,…,C n D ,则 C 1D ,C 2D ,C 3D ,…,C n D 分别表示对应的直角三角形斜边上的中线.根据直角三角形斜边上的中线等于斜边的一半,可知C 1D=C 2D=C 3D=…=C n D=1AB.所以点 C 1,C 2,C 3,…,C n 在同一个圆上,并且在以 AB 为直径的圆上.13. 证明 ∵在小圆中,OA=OB ,∴∠OAB=∠OBA.又在大圆中,OC=OD ,∴∠OCD=∠ODC.2 2 ∴在△OAB 中,∠OAB=1×(180°-∠O ),在△OCD 中,∠OCD=1×(180°-∠O ).∴∠OAB=∠OCD.∴AB ∥CD.创新应用14. 解 连接 OM ,OD ,OA ,根据矩形的对角线相等,得 BC=OA ,EF=OD ,NH=OM.再根据同圆的半径相等,得 a=b=c.。

人教版九年级数学上24.1圆的有关性质同步检测试卷含答案.doc

人教版九年级数学上24.1圆的有关性质同步检测试卷含答案.doc

圆的有关性质一、选择题(共16小题)1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,若∠ADB=28°,则∠AOC的度数为()A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,则∠EOD等于()A.10°B.20°C.40°D.80°4.如图,已知点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.则下列结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是()A.1 B.2 C.3 D.45.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,则∠AOC的度数是()A.35°B.140°C.70°D.70°或140°9.下列四个图中,∠x是圆周角的是()A.B.C.D.10.(2013•龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.B.2 C.2D.411.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°12.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数是()A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°二、填空题(共13小题)17.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=______度.18.如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=______.20.(2013•盘锦)如图,⊙O直径AB=8,∠CBD=30°,则CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,则这个圆的半径是______.22.如图,已知⊙O是△ABC的外接圆,若∠BOC=100°,则∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,则α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N 两点,则∠APB的范围是______.25.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为______.26.已知点O是△ABC外接圆的圆心,若∠BOC=110°,则∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=______ 度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是______.三、解答题(共1小题)30.(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:求甲市郊县所有人口的人均耕地面积(精确到0.01公顷);(2)先化简下式,再求值:,其中,;(3)如图,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,若BC=BE.求证:△ADE是等腰三角形.答案一、选择题(共16小题)1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题(共13小题)17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题(共1小题)30.。

24.1圆的有关性质练习卷人教版数学九年级上册

24.1圆的有关性质练习卷人教版数学九年级上册

人教版九年级上册《24.1圆的有关性质》同步练习卷 一、选择题 1. 下列说法中错误的是( )A .半圆是弧B .半径相等的圆是等圆C .过圆心的线段是直径D .弓形是弦及弦所对的弧组成的图形2. 在以AB=8cm 为直径的圆上,到AB 的距离为4cm 的点有( )A .无数个B .1个C .2个D .4个3. 下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦;⑥半圆所对的弦是直径.A .3个B .4个C .5个D .6个4. 如图,BC 是半圆O 的直径,D ,E 是BC ―上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠DOE=40°,那么∠A 的度数为( )A .35°B .40°C .60°D .70°5.若⊙O所在平面内一点P到⊙O上的点的最大距离为7,最小距离为3,则此圆的半径为()A.5 B.2 C.10或4 D.5或2 二、填空题6.若四边形的四个顶点在同一个圆上,则这个四边形可能是______ .7.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 ______ .8.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD的度数是 ______ 度.9.如图,OB、OC是⊙O的半径,A是⊙O上一点,若∠B=20°,∠C=30°,则∠BOC= ______ .10.如图,在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ,OP⊥AB,则PQ的长是 ______ .三、解答题11.如图,AC是⊙O的直径,点B在圆上(不与点A,C重合),点D在AC的延长线上,连接BD交⊙O于点E,∠AOB=3∠ADB.求证:DE= 1AC.212.如图,A、B、C为⊙O上三点,∠ACB=20〇,求∠BAO的度数.13.如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C.问:线段CE和线段BF相等吗?请说明理由.14.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.15.如图a,直线l经过⊙O的圆心O,且与⊙O交于A,B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q.(1)如图b,当点P在半径OA上时,若QP=QO,求∠OCP的度数.(2)当点P在直线l上其他位置时,是否还存在∠OCP使得QP=QO?若存在,请求出∠OCP的度数;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的有关性质同步测试试题(一)一.选择题1.如图,AB是半圆的直径,O是圆心,C是半圆上的点,D是上的点,若∠BOC=52°,则∠D的大小为()A.104°B.114°C.116°D.128°2.如图,小明将一块直角三角板放在⊙O上,三角板的一直角边经过圆心O,测得AC=8cm,AB=4cm,则⊙O的半径长为()A.10cm B.5cm C.4cm D.4cm3.如图,⊙M过点O(0,0),A(﹣,0),B(0,1),点C是x轴上方弧AB上的一点,连接BC,CO,则∠BCO的度数是()A.15°B.30°C.45°D.60°4.如图,△ABC内接于⊙O,若∠A=45°,OC=2,则BC的长为()A.B.2C.2D.45.如图,⊙O的直径AB=2,弦BC=,点D在优弧上,则∠CDB的度数是()A.30°B.45°C.60°D.75°6.如图,点A、B、C在⊙O上,且∠ACB=100°,则∠α度数为()A.160°B.120°C.100°D.80°7.如图,⊙O的半径为5,OC垂直弦AB于点C,OC=3,则弦AB的长为()A.4B.5C.6D.88.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°9.如图,已知A、B、C、D四点都在⊙O上,OB⊥AC,BC=CD,在下列四个说法中,①=2;②AC=2CD;③OC⊥BD;④∠AOD=3∠BOC,正确的个数是()A.1个B.2个C.3个D.4个10.如图,点A,B,C均在⊙O上,且∠BOC=90°,若∠ACO的度数为m°,∠ABO的度数为n°,则m﹣n的值是()A.30B.45C.50D.60二.填空题11.如图,已知AB是⊙O的直径,点C,D在⊙O上,BC=2,∠CDB=30°,则⊙O的半径为.12.如图,在每个小正方形的边长为1的网格中,画出了一个过格点A,B的圆,则该圆的周长是.13.如图,AB是⊙O的直径,AB=20cm,弦BC=12cm,F是弦BC的中点,若动点E以2cm/s的速度从A点出发沿着AB方向运动,设运动时间为t(s)(0≤t≤10),连接EF,当△BEF是直角三角形时,t(s)的值为.14.如图,⊙O的直径为10,A、B、C、D是⊙O上四个动点,且AB=6,CD=8,若点E、F分别是弦AB、CD的中点,则线段EF的长度的取值范围是.15.如图,E是⊙O的直径AB上一点,AB=10,BE=2,过点E作弦CD⊥AB,P是上一动点,连接DP,过点A作AQ⊥PD,垂足为Q,则OQ的最小值为.三.解答题16.如图,已知⊙O的直径AB⊥弦CD于点E,且E是OB的中点,连接CO并延长交AD 于点F.(1)求证:CF⊥AD;(2)若AB=12,求CD的长.17.已知:△ABC中,以AB为直径的⊙O交边AC,BC于点D,E,且点E为BC边的中点.(1)求证:AC=AB;(2)若BE=2,AD=6,求⊙O半径长.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠DBA=60°,求∠DCB的度数.19.半圆O的直径AB=8,C为半圆上一点.(1)若AC=6,则BC的长是;(2)①如图①,若D是的中点,且AD=2,求BC的长;②如图②,若D、E是的三等分点,且AD=2,直接写出BC的长.参考答案与试题解析一.选择题1.【解答】解:∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=(180°﹣52°)=64°,∵∠D+∠ABC=180°,∴∠D=180°﹣64°=116°.故选:C.2.【解答】解:延长CA交⊙O于D,连接CB、DB,如图,∵CD为直径,∴∠CBD=90°,∴∠BAC=90°,∴∠D=∠CBA,∴△ABD∽△ACB,∴AD:AB=AB:AC,即AD:4=4:8,∴AD=2,∴CD=10,∴⊙O的半径长为5cm.故选:B.3.【解答】解:连接AB,如图,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO===,∴∠BAO=30°,∴∠BCO=30°.故选:B.4.【解答】解:由圆周角定理得,∠BOC=2∠A=90°,∴BC=OC=2,故选:B.5.【解答】解:如图,∵AB是直径,∴∠ACB=90°.∵AB=2,弦BC=,∴sin∠A==.∴∠A=60°.∴∠CDB=∠A=60°.故选:C.6.【解答】解:优弧AB上任取一点D,连接AD,BD,.∵四边形ACBD内接与⊙O,∠C=100°,∴∠ADB=180°﹣∠C=180°﹣100°=80°,∴∠AOB=2∠ADB=2×80°=160°.故选:A.7.【解答】解:如图,连接OA,∵OC⊥AB于点C,∴AC=BC,∵⊙O的半径是5,∴OA=5,又OC=3,所以在Rt△AOC中,AC===4,所以AB=2AC=8.故选:D.8.【解答】解:∵四边形ABCD是平行四边形,∠D=70°,∴∠B=∠D=70°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=70°,∴∠BAE=180°﹣70°﹣70°=40°,故选:C.9.【解答】解:∵OB⊥AC,BC=CD,∴,,∴=2,故①正确;AC<AB+BC=BC+CD=2CD,故②错误;OC⊥BD,故③正确;∠AOD=3∠BOC,故④正确;故选:C.10.【解答】解:连接OA,AC.∵OB=OA,∴∠B=∠OAB=n°,∵OA=OC,∴∠C=∠OAC=m°,∵∠CAB=∠BOC=45°,∴m=45+n,∴m﹣n=45,故选:B.二.填空题11.【解答】解:∵=,∴∠A=∠CDB,∵∠CDB=30°,∴∠A=30°,∵AB为⊙O的直径,∴∠ACB=90°,∵BC=2,∴AB=2BC=4,∴⊙O的半径是=2,故答案为:2.12.【解答】解:由垂径定理的推论可知,点O是过格点A,B的圆的圆心,连接OA,由勾股定理得,OA==,∴该圆的周长=2×π×=2π,故答案为:2π.13.【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=BC=6cm,AO=10cm,有两种情况:①当∠EFB=90°时,如图∵AB是⊙O的直径,∴∠C=90°,∵∠EFB=90°,∴AC∥EF,∵F为BC的中点,∴E为AB的中点,即E和O重合,∵AB=20cm,∴AE=AO=10cm,∴t==5;②当∠FEB=90°时,如图∵∠B=∠B,∠FEB=∠C=90°,∴△FEB∽△ACB,∴=,∴=,解得:BE=3.6(cm),∵AB=20cm,∴AE=AB﹣BE=16.4cm,∴t==8.2,故答案为:5或8.2.14.【解答】解:连接OE、OF、OA、OC,如图所示:∵⊙O的直径为10,∴OA=OC=5,∵点E、F分别是弦AB、CD的中点,AB=6,CD=8,∴OE⊥AB,OF⊥CD,AE=AB=3,CF=CD=4,∴OE===4,OF===3,当AB∥CD时,E、O、F三点共线,当AB、CD位于O的同侧时,线段EF的长度最短=OE﹣OF=1,当AB、CD位于O的两侧时,线段EF的长度最长=OE+OF=7,∴线段EF的长度的取值范围是1≤EF≤7,故答案为:1≤EF≤7.15.【解答】解:∵AQ⊥PD,垂足为Q,∴∠AQD=90°,∴点Q在以AD为直径的圆上,连接AD,以AD为直径作⊙M,如图,连接MO并延长交⊙M于Q′,当Q点运动到Q′时,OQ的值最小,连接OD,在Rt△ODE中,∵OD=5,OE=5﹣2=3,∴DE==4,在Rt△ADE中,AD==4,∴MA=MQ′=2,在Rt△AOM中,OM==,∴OQ′=MQ′﹣OM=2﹣=,∴OQ的最小值为.故答案为.三.解答题(共4小题)16.【解答】(1)证明:连接BC,∵AB⊥CD,E为OB的中点,∴∠BCD=∠OCE=BCO,∵OC=OB,∴OC=BC=OB,∴△OBC是等边三角形,∴∠BOC=∠BCO=60°,∴∠AOF=∠BOC=60°,∠BCD=∠BAD=30°,∴∠AFO=180°﹣∠AOF﹣∠BAD=180°﹣60°﹣30°=90°,∴CF⊥AD;(2)解:∵AB=12,∴OB=6,∵E为OB的中点,∴OE=OB=3,在Rt△OCE中,CE===3,∵AB⊥CD,∴CD=2CE=6.17.【解答】(1)证明:连接AE,如图,∵AB为直径,∴∠AEB=90°,∵BE=CE,∴AE垂直平分BC,∴AC=AB;(2)解:∵∠CDE=∠B,∠DCE=∠BCA,∴△CDE∽△CBA,∴CD:BC=CE:CA,即CD:4=2:(CD+6),∴CD=4,∴AC=AD+AC=6+4=10,∴AB=10,∴⊙O半径为5.18.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠DBA=60°,∴∠DAB=180°﹣∠ADB﹣∠DBA=30°,∵=,∴∠DCB=∠DAB=30°.19.【解答】解:(1)如图1中,连接AC.∵AB是直径,∴∠ACB=90°,∴BC===2.故答案为2.(2)如图1中,连接OD交AC于H,连接OC,则OA=OC=OD=4.∵D是的中点,∴=,∴CD=AD=2,OD垂直平分线段AC,设DH=x,则OH=4﹣x,∵AC⊥OD,∴∠CHD=∠CHO=90°,∴CD2﹣DH2=CO2﹣OH2,∴22﹣x2=42﹣(4﹣x)2,解得x=,∴CH===,∵OD垂直平分AC,∴AC﹣2CH=,∵AB是直径,∴∠ACB=90°,∴BC===7.②连接AE,AC,过点A作AH⊥ED交ED的延长线于H,过的C作CI⊥DE交DE的延长线于I.∵D,E,C是的三等分点,∴==,∴EC=DE=AD=2,∠DEA=∠EAC,∴DE∥AC,∵∠H=∠I=90°,∴∠HAC=180°﹣90°=90°,∴四边形AHIC是矩形,∴AH=CI,AC=HI,∵AD=CE,∠H=∠I=90°,∴Rt△AHD≌Rt△CIE(HL),∴EI=DH,设DH=x,则HE=x+2,∵∠H=90°,∴AE2﹣EH2=AH2=AD2﹣DH2,∴()2﹣(x+2)2=22﹣x2,解得x=,∵EI=DH=,∴HI=DH+DE+EI=+2+=。

相关文档
最新文档