迈克尔逊干涉仪的调整与应用实验要点

合集下载

迈克尔逊干涉仪的调整与使用

迈克尔逊干涉仪的调整与使用
迈克尔逊干涉仪的 调整和使用
物理实验中心
目录
一. 实 验 目 的 二. 实 验 原 理
1.仪器构造及光路 2.点光源产生的非定域干涉条纹 3.面光源产生的定域干涉条纹
三. 实 验 内 容 四. 读 数 方 法 五. 注 意 事 项
实验目的
了解迈克尔逊干涉仪的结构,学习调 节和使用方法。
利用点光源产生的同心圆环干涉条纹 测量单色光的波长。
则:
2 2d2 k2
那么可得:d d2 d1
1 2
2
1
1 2
k2
k1
1 2
k
由此可见,只要测出干涉仪中M1移动的距离∆d, 并数出相应的“吞吐”环数∆k,就可求出λ.
实验现象
面光源产生的定域干涉条纹
由面光源产生的在特定区域内存在着
的干涉现象,称为定域干涉。
d
1)等倾干涉
光程差为: AC BC AD
C
θ A
θ D
M1
B
M2'
1 2
2d 2d tan sin S
c os
面光源产生的等倾干涉
2d cos
当d一定时,光程差只决定于入(出)射角θ,干涉条纹 是一系列与不同倾角θ相对应的明暗相间的同心圆环条
纹,这种相同倾角的光所产生的干涉,称为等倾干涉。
2)等厚干涉
当M1、M2‘有一个很小的角度时, M1、M2‘之间形成楔形空气 薄层,就出现等厚干涉。这时“1”和“2”的光程差仍然可
主尺
粗动手轮读数窗口
微动手轮
最后读数为:33.52246mm
注意事项
转动微动手轮时,粗动手轮随之转动;但在转动 粗动手轮时,微动手轮并不随之转动,因此在读 数前必须调整零点。

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。

正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。

本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。

1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。

它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。

2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。

检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。

(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。

具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。

调整分束镜的位置和角度,使得两束光线的光程差尽量为零。

- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。

通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。

(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。

根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。

3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。

避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。

(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。

在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。

(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。

合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。

因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。

一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。

2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。

(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。

(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。

可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。

(4)重复以上步骤,直到干涉条纹完全对称、清晰。

二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。

2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。

3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。

4、在记录实验数据时,要保证记录的准确性和完整性。

5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。

正确地调节和使用迈克尔逊干涉仪需要耐心和细心。

只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。

迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。

本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。

一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。

迈克尔逊干涉仪法利用干涉现象来测量折射率。

当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。

通过测量光程差,我们可以计算出介质的折射率。

二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。

2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告

迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。

2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。

3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。

4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。

二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。

2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。

然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。

3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。

根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。

5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。

如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。

总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。

在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。

实验十二迈克尔逊干涉仪的调整及使用

实验十二迈克尔逊干涉仪的调整及使用
长舂第一光学仪器厂
丝杆穿过螺母,当丝杆旋转时,拖板能前后移动,带动固定在其上的移动镜11(即M1) 在导轨面上滑动,实现粗动。M1是一块很精密的平面镜,表面镀有金属膜,具有较高的 反射率,垂直地固定在拖板上,它的法线严格地与丝杆平行。倾角可分别用镜背后面 的三颗滚花螺丝13来调节,各螺丝的调节范围是有限度的,如果螺丝向后顶得过松在 移动时,可能因震动而使镜面有倾角变化,如果螺丝向前顶得太紧,致使条纹不规 则,严重时,有可能将螺丝丝口打滑或 4 5 6 3 平面镜破损。 7 (4)定镜部分 8 定镜M2与M1是相同的一块平面镜,固 2 定在导轨框架右侧的支架上。通过调节 其上的水平拉簧螺钉15使M2在水平方向转 过一微小的角度,能够使干涉条纹在水 1 平方向微动;通过调节其上的垂直拉簧 图 5 — 12 — 2 螺钉16使M2在垂直方向转过一微小的角 度,能够使干涉条纹上下微动;与三颗滚花螺丝13相比,15、16改变M2的镜面方位小得 多。定镜部分还包括分光板P1和补偿板P2,前面原理部分已介绍。 (5)读数系统和传动部分 1)移动镜11(即M1)的移动距离毫米数可在机体侧面的毫米刻尺5上直接读得。 2)粗调手轮2旋转一周,拖板移动1毫米,即M2移动1毫米,同时,读数窗口3内的 -2 鼓轮也转动一周,鼓轮的一圈被等分为100格,每格为10 毫米,读数由窗口上的基准 线指示。 3)微调手轮1每转过一周,拖板移动0.01毫米,可从读数窗口3中可看到读数鼓 -4 轮移动一格,而微调鼓轮的周线被等分为100格,则每格表示为10 毫米。所以,最后 读数应为上述三者之和。 (6)附件 支架杆17是用来放置像屏18用的,由加紧螺丝12固定。 2.迈克尔逊干涉仪的调整 (1)按图5—12-3所示安装 H e-N e 激光器和迈克尔逊干涉仪。打开 H e-N e 激光器的电源开关,光强度旋扭调至中间,使激光束水平地射向干涉仪的分光板P1。 (2)调整激光光束对分光板P1的水平方向入射角为45度。 如果激光束对分光板P1在水平方向的入射角为45度,那么正好以45度的反射角向动 镜M1垂直入射,原路返回,这个像斑重新进入激光器的发射孔。调整时,先用一张纸片 将定镜M2遮住,以免M2反射回来的像干扰视线,然后调整激光器或干涉仪的位置,使激 光器发出的光束经P1折射和M1反射后,原路返回到激光出射口,这已表明激光束对分光 板P1的水平方向入射角为45度。 (3)调整定臂光路 将纸片从M2上拿下,遮住M1的镜面。发现从定镜M2反射到激光发射孔附近的光斑有

实验六--迈克尔逊干涉仪的调整和使用

实验六--迈克尔逊干涉仪的调整和使用

实验六 迈克尔逊干涉仪的调整和使用实验性质:综合性实验 教学目的和要求:1. 了解迈克尔逊干涉仪的原理并掌握调节方法;2. 观察等倾干涉条纹的特点;3. 测定He-Ne 激光的波长。

教学重点与难点:对迈克尔逊干涉仪的工作原理与等倾干涉概念的理解;本实验仪器的正确调节与使用以及正确记录有效数字。

一.检查学生的预习情况检查学生预习报告:内容是否完整,表格是否正确。

二.实验仪器和用具:迈克尔逊干涉仪,氦氖激光器、毛玻璃屏 三.讲解实验原理:(一)实验仪器介绍1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。

其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。

1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。

其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。

2G 起补偿光程作用,称其为补偿板。

1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。

2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。

迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。

1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。

这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。

同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。

而仪器水平还可通过调整底座上三个水平调节螺丝来达到。

图11 ——主尺2 ——反射镜调节螺丝3 ——移动反射镜1M4 ——分光板1G5 ——补偿板2G6 ——固定反射镜2M7 ——读数窗 8 ——水平拉簧螺钉 9 ——粗调手轮10——屏11——底座水平调节螺丝确定移动反射镜1M 的位置有三个读数装置:①主尺——在导轨的侧面,最小刻度为毫米,如图:②读数窗——可读到0.01mm,如图:③带刻度盘的微调手轮,可读到0.0001mm,估读到105 mm,如图:2.迈克尔逊干涉仪的光路迈克尔逊干涉仪的光路如图2。

迈克尔孙干涉仪的调整及使用实验报告

迈克尔孙干涉仪的调整及使用实验报告

迈克尔孙干涉仪的调整及使用实验报告一、实验目的1、了解迈克尔孙干涉仪的结构和工作原理。

2、掌握迈克尔孙干涉仪的调整方法。

3、观察等倾干涉和等厚干涉条纹,并测量激光的波长。

二、实验原理迈克尔孙干涉仪是一种分振幅干涉仪,它通过将一束光分成两束,经过不同的光程后再重新汇合发生干涉。

等倾干涉:当两臂的光程差只取决于入射光的入射角时,会产生等倾干涉条纹。

此时,干涉条纹是一组同心圆环,圆心处光程差为零。

等厚干涉:当两臂的光程差只取决于反射镜的位置时,会产生等厚干涉条纹。

此时,干涉条纹是平行于反射镜交线的直条纹。

根据光的干涉原理,光程差与干涉条纹的移动量之间存在关系,可以通过测量干涉条纹的移动量来计算光的波长。

三、实验仪器迈克尔孙干涉仪、HeNe 激光器、扩束镜、观察屏。

四、实验步骤1、仪器调节调节迈克尔孙干涉仪的底座水平,使干涉仪处于水平状态。

调节粗调手轮,使动镜大致处于导轨的中间位置。

调节微调手轮,使干涉条纹清晰可见。

2、观察等倾干涉条纹装上扩束镜,使激光束扩束后照射到迈克尔孙干涉仪上。

缓慢旋转微调手轮,观察等倾干涉条纹的形成和变化。

3、观察等厚干涉条纹调节动镜,使两臂光程差逐渐减小,观察等厚干涉条纹的出现。

4、测量激光波长记录初始位置的读数。

沿某一方向缓慢旋转微调手轮,使干涉条纹移动一定数量,记录此时的读数。

根据读数的变化和干涉条纹的移动量,计算激光的波长。

五、实验数据及处理1、测量数据初始位置读数:d₁=_____移动后位置读数:d₂=_____干涉条纹移动数量:N =_____2、数据处理光程差的改变量:Δd = d₂ d₁因为光程差的改变量与干涉条纹的移动量之间的关系为:Δd =Nλ/2所以激光的波长:λ =2Δd / N六、实验误差分析1、仪器误差迈克尔孙干涉仪的两臂长度不完全相等,会引入一定的误差。

读数装置的精度有限,可能导致读数误差。

2、环境误差实验环境中的振动和气流可能会影响干涉条纹的稳定性,从而导致测量误差。

迈克耳孙干涉仪的调节和使用

迈克耳孙干涉仪的调节和使用

迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪(Michelson Interferometer)是一种常用的精密光学仪器,用于测量光的波长、折射率、光程差等物理量,广泛应用于光学实验中。

下面将对迈克耳孙干涉仪的调节和使用进行详细介绍。

一、迈克耳孙干涉仪的结构当一个光源射向迈克耳孙干涉仪的入射光学系统中时,光线将被镜1反射并与镜2的反射光线相交,然后再次反射而出。

这种干涉现象可以通过调节镜2的位置实现,从而产生干涉图样。

二、调节迈克耳孙干涉仪1.调节两个镜面平行:首先,通过调节镜2的位置,使得干涉斑变得清晰。

然后,利用调节镜2的水平旋钮,观察干涉斑的移动情况。

若干涉斑逐渐移动,说明两个镜面不平行,需要反复调节镜2的位置,直到干涉斑的移动完全停止,达到镜面平行。

2.调节两个镜面垂直:在镜面平行的基础上,使用调节螺丝将镜2微微转动,每次转动一小步,并观察干涉斑的移动情况。

若干涉斑的移动方向逆转,则说明两个镜面不垂直,需要逐渐调整镜2的角度,直到干涉斑的移动方向不再改变。

3.调节光程差:将半透镜调节到合适位置,使得光程差为零。

此时,观察干涉斑的变化,若干涉斑发生移动,则需要适当调整半透镜,使得干涉斑保持稳定。

三、使用迈克耳孙干涉仪1.测量光的波长:通过改变光源的波长,观察干涉斑的移动情况。

利用迈克耳孙干涉仪的干涉现象特点,可以计算出光的波长。

2.测量折射率:将待测物体放入迈克耳孙干涉仪的光路中,通过观察干涉斑的变化,可以获得待测物体的折射率信息。

3.测量光程差:调节迈克耳孙干涉仪的光程差,观察干涉斑的变化情况。

通过测量干涉斑的移动距离,可以确定光程差的大小。

4.测量精度提高:在使用迈克耳孙干涉仪时,要密切注意环境的稳定性,避免振动和温度变化对干涉斑的干扰。

此外,注意避免干涉斑的模糊或重叠现象,可适当调整光源的亮度或透镜的位置。

综上所述,迈克耳孙干涉仪是一种精密的光学仪器,通过调节和使用迈克耳孙干涉仪,可以测量光的波长、折射率、光程差等重要物理量。

迈克尔逊干涉仪的调节与使用实验报告

迈克尔逊干涉仪的调节与使用实验报告

《迈克尔逊干涉仪的调节与使用》实验报告一、实验目的1.了解迈克尔逊干涉仪的结构原理并掌握调节方法。

2.观察等厚干涉、等倾干涉以及白光干涉。

3.测量氦氖激光的波长。

二、实验原理1.迈克尔逊干涉仪迈克尔逊干涉仪是一个分振幅法的双光干涉仪,其光路如下图所示,它反射镜M1、M2、分束镜P1和补偿板P2组成。

其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜P1的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。

迈克耳孙干涉仪的结构如图所示。

镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M的下端还附有两个互相垂直的微动拉簧螺丝,用以精确地调整M1的倾斜度。

M2镜所在的导轨拖板由精密丝杠带动,可沿导轨前后移动。

M2镜的位置由三个读数尺所读出的数值的和来确定:主尺、粗调手轮和微调手轮。

在迈克尔逊干涉仪上可以实现等倾和等厚两种干涉。

为了分析方便,可将反射镜M1成像到M2的光路中。

2.He-Ne激光波长的测定如图1所示,当M1’、M2相互平行,即M1和M2相互严格垂直时,在E处可以观察到等倾干涉;在等倾干涉时,如果在迈克尔逊干涉仪上反射镜M1和M2到分束镜的距离差为d时,反射镜和M1’形成一个厚度为d的空气膜,其光程差如图2所示,当光线的入射角为i时,两反射镜反射光线的光程差为:Δ=2d cos i′=2d√n2−sin2i其中,n为两臂中介质的折射率,i和i'分别为光线入射到M2和M1上的入射角,当迈克尔逊干涉仪的两臂中介质相同时,i=i’。

当两臂中介质的折射率一定,且d不变时,光程差只取决于入射角i,在E处观察时,对于相同入射角的光,形成一个以光轴为中心的圆环。

当为波长的整数倍时是亮条纹。

由此,迈克尔逊干涉仪中,等倾干涉条纹级次是中间大外边小。

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用

迈克尔逊干涉仪的调节与使用【实验内容】:1.了解迈克尔逊干涉仪的结构原理并掌握调节方法2.观察等倾干涉、等厚干涉以及白光干涉现象3.测量钠双线的平均波长及波长差【实验原理】1.迈克尔逊干涉仪的原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如图1所示,它由反射镜Ml、M2、分束镜H和补偿板P2组成。

其中Ml是一个固定反射镜,反射镜M2可以沿光轴前后移动,它们分别放置在两个相互垂直臂中;分束镜和补偿板与两个反射镜均成45°,且相互平行;分束镜Pi的一个面镀有半透半反膜,它能将入射光等强度地分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。

光源发出的光经分束镜被分成等强度的两束光1和2,光束1和2分别经反射镜M2和M2反射后,再次经分光镜P向E处传播。

由于光束2在传播过程中三次图1迈克尔逊干涉仪光路穿过分束镜,而光束1只有一次穿过分束镜。

由于玻璃存在色散,不同波长的光在干涉仪中具不同的光程差,为此,在反射镜MI和反射镜之间加入一个补偿板,这样光线1同样在相同的玻璃板中穿过三次,使所有波长的光可以同时获得零的光程差,这对于实现白光的干涉是绝对必要的前提。

在单色光入射时,补偿板可以两臂的光程达到完全对称,2.测量钠黄光的平均波长利用迈克尔逊干涉仪的等倾干涉可以测量光的波长,当光程差改变二分之一个波长时,等倾干涉条纹中心就会□冒出口或□缩进口一个条纹。

当口冒出口或□缩进口N个条纹时,光程差的改变量为δd=N-2通过干涉仪测量M和确定条纹变化的个数N,就可通过上式得到被测光的波长。

3.测量钠黄光的波长差当两个波长相差不大,且光强基本相同的光同时在迈克尔逊干涉仪上产生等倾干涉时,每个波长的各自产生一套干涉条纹。

很容易想到,这两套干涉条纹在某些光程差下一定出现明暗重叠的现象,这时视场中的干涉条纹的可见度为零。

如果确定了两次相邻可见为零时光程差的改变量那么两束光的波长差为【仪器用具】 WSM —100迈克尔逊干涉仪、钠灯、白炽灯。

实验 迈克尔逊干涉仪的调节和使用

实验 迈克尔逊干涉仪的调节和使用

实验迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是一种用于测量光波长或者光速的仪器。

它的原理是利用光的干涉现象,通过对干涉条纹的观察来确定光波长或光速。

在使用迈克尔逊干涉仪之前,需要对其进行调节和使用。

本文将介绍迈克尔逊干涉仪的调节和使用方法。

一、迈克尔逊干涉仪的构成迈克尔逊干涉仪由四个主要部分组成,包括光源、分束器、反射镜和接收屏。

其中,光源产生光线,分束器将光线分成两束,反射镜将光线反射并重新合并,接收屏上观察条纹以得到测量结果。

(一)调节分束器1、端口对准:将分束器的两个端口(输入端和输出端)对准迈克尔逊干涉仪的两个端口。

2、校正透镜:将透镜与分束器固定并利用透镜校正分束器的输出光斑。

3、调节分束比:通过微调分束器的输入端镜片的位置来调节分束比。

4、校准光路:检查光路是否正确,包括分束后光线是否平行、目标反射镜是否正对着分束器等等。

(二)调节反射镜1、调整反射镜位置:将反射镜置于正确的位置并垂直于光路。

2、确定反射面度数:通过原理图和求解器确定反射面的度数,比如60度。

3、调节反射镜倾斜度:利用半反射膜来调节反射镜的倾斜度,并通过角度计来检查反射镜是否平行于接收屏。

(三)调节光源1、选择光源:选择一款适合的光源。

2、调整灯丝位置:将灯丝调整到正确的位置,使其照亮整个系统。

3、调节灯丝亮度:通过增减电压来调节灯丝的亮度。

(四)调节接收屏1、确定焦距:通过调节接收屏的距离和位置,找出最合适的焦距。

2、校准位置:将接收屏和反射镜垂直,通过调节位置校准光路。

1、准备工作:确保所有部件都已经开始预热,光线已经稳定。

2、测量方法:打开光源,观察条纹的规律性,通过实验得到测量结果。

3、数据处理:将观察到的条纹照片拍摄下来,进行后续处理,包括调整对比度和亮度以及增加标尺等等。

四、注意事项1、留意温度:因为干涉仪精度较高,所以需要注意外部温度的影响。

2、留意光线:因为干涉仪只能使用单色光线,因此需要注意室内环境的影响。

迈克尔逊干涉仪的调整和使用实验报告

迈克尔逊干涉仪的调整和使用实验报告

迈克尔逊干涉仪的调整和使用实验报告迈克尔逊干涉仪的调整和使用实验报告引言:迈克尔逊干涉仪是一种常用的光学仪器,被广泛应用于干涉测量、光学相干等领域。

本文将介绍迈克尔逊干涉仪的调整和使用实验报告,以帮助读者更好地理解和应用该仪器。

一、实验目的本实验的目的是通过调整迈克尔逊干涉仪的各个部件,使其能够正常工作,并实现干涉现象的观察和测量。

二、实验器材1. 迈克尔逊干涉仪主体:包括光源、分束器、反射镜、反射镜支架等。

2. 干涉图样观察装置:包括目镜、测量尺等。

三、实验步骤1. 调整光源:将光源放置在适当位置,并确保其能够发出稳定的光束。

2. 调整分束器:通过调整分束器的位置和角度,使得从分束器出射的两束光能够平行地照射到反射镜上。

3. 调整反射镜:调整反射镜的位置和角度,使得反射的光能够重新汇聚到分束器上,并形成干涉现象。

4. 观察干涉图样:通过目镜观察干涉图样,调整反射镜的位置和角度,使得干涉条纹清晰可见。

5. 测量干涉现象:使用测量尺等测量工具,对干涉条纹进行测量,以得到干涉现象的具体参数。

四、实验结果与分析经过以上调整步骤,我们成功地调整了迈克尔逊干涉仪,并观察到了清晰的干涉图样。

通过测量尺测量干涉条纹的间距,我们可以得到干涉现象的具体参数,如波长、相位差等。

在实验过程中,我们注意到调整分束器的位置和角度对干涉图样的清晰度和稳定性有很大的影响。

如果分束器位置不准确,会导致干涉图样模糊或消失;如果分束器角度不准确,会导致干涉图样的条纹不清晰。

因此,在调整分束器时需要仔细操作,确保其位置和角度的准确性。

另外,调整反射镜的位置和角度也是关键步骤。

反射镜的位置调整不当会导致干涉图样错位或形成不规则的干涉条纹;反射镜的角度调整不当会导致干涉条纹的强度变化或消失。

因此,在调整反射镜时需要注意细微的调整,并通过目镜观察干涉图样的变化,以达到最佳的调整效果。

五、实验总结通过本次实验,我们成功地调整了迈克尔逊干涉仪,并观察到了清晰的干涉图样。

迈克耳孙干涉仪的调节和使用实验报告

迈克耳孙干涉仪的调节和使用实验报告

迈克耳孙干涉仪的调节和使用实验报告一、实验目的1、了解迈克耳孙干涉仪的结构和工作原理。

2、掌握迈克耳孙干涉仪的调节方法。

3、观察等倾干涉、等厚干涉条纹,并测量激光的波长。

二、实验仪器迈克耳孙干涉仪、HeNe 激光器、扩束镜、毛玻璃屏、白屏。

三、实验原理迈克耳孙干涉仪是一种利用分振幅法产生双光束干涉的精密光学仪器。

其原理基于光的干涉现象。

从光源 S 发出的一束光,在分束镜 G1 处被分成两束光,一束反射光(称为光线 1)射向平面镜 M1,另一束透射光(称为光线 2)射向平面镜 M2。

光线 1 经 M1 反射后再次通过 G1 到达观察屏 E;光线 2 经 M2 反射后也通过 G1 到达观察屏 E。

两束光在观察屏 E 处相遇发生干涉。

当 M1 和 M2 严格垂直时,形成的是等倾干涉条纹。

此时,干涉条纹是一组同心圆环。

当 M1 和 M2 不垂直时,形成的是等厚干涉条纹。

此时,干涉条纹是与 M1 和 M2 交线平行的直线条纹。

根据光的干涉原理,两束光的光程差为:\(\Delta = 2d\cos\theta\)其中,\(d\)是 M1 和 M2 之间的距离,\(\theta\)是光线在M1 或 M2 上的入射角。

当\(\Delta = k\lambda\)(\(k\)为整数)时,出现亮条纹;当\(\Delta =(k +\frac{1}{2})\lambda\)时,出现暗条纹。

通过测量干涉条纹的变化,可以计算出光的波长\(\lambda\)。

四、实验步骤1、仪器调节调节底座水平:通过调节仪器底座上的三个调节螺丝,使仪器水平。

调节激光束与仪器中心轴重合:打开激光器,使激光束大致通过干涉仪的中心,并在白屏上形成一个亮点。

调节 M1 和 M2 相互垂直:在毛玻璃屏上观察到两组相互垂直的直线条纹,微调 M1 或 M2 背后的螺丝,使条纹变为圆形的等倾干涉条纹。

2、观察等倾干涉条纹微调 M1 镜的位置,观察干涉条纹的变化,记录条纹的形状、疏密和中心的“吞吐”情况。

大学物理实验迈克尔逊干涉仪的调整与使用

大学物理实验迈克尔逊干涉仪的调整与使用

实验内容和要求
2. 测钠双线的波长差。
连续记录6次条纹视间度为零的d值,用逐差
法求 d ,计算钠双线的波长差。(已知Biblioteka 05893A)
3. 观察等厚干涉现象 移动M1使圆形条纹变粗、疏,微调M2方位, 观察等厚直线条纹。
实验注意事项
1、保护光学元件的表面。 2、测量时消除螺距差。 3、眼睛不能直视未扩束的激光
实验目的
1、了解迈克尔逊干涉仪的结构和使用方法。 2、观察等倾和等厚干涉现象。 3、学习用迈克尔逊干涉仪测激光的波长和钠
双线的波长差。
仪器结构
迈克尔逊干涉仪的光路
测激光波长
当M1⊥M2时,形成等倾同 心圆形条纹,圆心处有2d=kλ, 改变d,可见圆心条纹涌出或消 失。测出条纹在圆心处涌出或 消失的条纹数N及M1移动的距 离△d,即可求的波长
2d
N
等倾干涉条纹
测钠双线的波长差
M1⊥M2,移动M1,测出相邻两次条纹 视间度为零时M1移动的距离△d, 钠双线的 波长差
2
2d
等厚直线条纹
M1 与 M 2'有一小角度时,产生平行于两镜交棱的等
厚直线条纹
实验内容和要求
1、测He-Ne激光的波长
记录干涉圆条纹涌出或消失50条时对应的d值, 连续记录12次,用逐差法求 d ;计算He-Ne 激光的波长,与理论值比较,计算相对不确定 度。

迈克尔逊干涉仪的调整与应用实验要点_3

迈克尔逊干涉仪的调整与应用实验要点_3

要点(1)实验前请认真阅读“实验须知”、“实验内容”及本要点:测波长的同学需每冒出(或缩进)50环, 读一次镜的位置, 至少连续测8组, 将数据填入表格, 并观察其实验现象。

测线膨胀系数的同学可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量, 要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差), 测出所需升高(降低)温度的方法进行测量, 要求连续测量8组。

注:测波长或测线膨胀系数只需做其中之一, 但两个实验都需要掌握;请注意F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。

(2)将所测量数据输入相应的数据处理文件(位于F盘, 共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件)让老师检查数据是否合格。

(3)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值, 详见附录1 数据记录要求), 将原始数据与仪器使用登记本一并让老师签字, 并了解如何处理所测数据(详见附录2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);(4)在预习报告后根据实际实验加上实验内容、实验步骤;(5)重新对仪器进行调节, 熟悉调节要点, 并观察相应的实验现象, 掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用;(6)掌握迈克尔逊干涉仪仿真实验的使用, 并利用其进行复习及进行实验, 注意“迈克尔逊干涉仪(仿真实验演示).swf”文件(可以回去再做)。

(7)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案, 并利用仿真实验来验证实验方案(可以回去再做)。

(8)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等(可以回去再做)。

迈克耳孙干涉仪的调节和使用实验报告

迈克耳孙干涉仪的调节和使用实验报告

迈克耳孙干涉仪的调节和使用实验报告迈克耳孙干涉仪,这个名字听起来就很高大上,其实它是一个探索光的奇妙工具。

调节和使用这个仪器,简直就像在解锁一个神秘的宝藏。

接下来,我就来聊聊我在实验过程中遇到的点滴。

首先,调节干涉仪的步骤真的是门道多多。

1.1 光源的选择特别关键。

选对了,整个实验就像开了挂。

用氦氖激光器,光线稳定,颜色鲜艳。

调试的时候,光束的准直简直是重中之重。

你得确保光线照得准、打得正,这样才能看到美丽的干涉条纹。

哦,那条纹,真是让人心醉,像是光的舞蹈。

接下来,1.2 反射镜的调整就显得尤为重要。

它们必须平行,才能让光束顺畅地交汇。

小心翼翼地调整角度,稍微一动,干涉条纹就会改变。

那种微妙的感觉,像是捏着一个刚出生的小猫,轻轻一握,怕它受伤。

看到条纹变动,心里那个激动呀,像是发现了宝藏的开端。

然后,进入使用阶段。

2.1 进行实验时,环境的控制不可小觑。

要是外面风一吹,光线就会变得不稳定。

实验室里静得能听到针掉地的声音。

每一次记录数据的时候,都得集中精力,生怕错过任何一个细节。

2.2 数据记录时,像是在写日记一样,每个数字都承载着光的秘密。

细心观察,记录下每一次干涉条纹的变化。

这些变化不止是数字,更是光的语言。

干涉仪就像一个说故事的人,诉说着光的旅程。

每一次的实验,都是与光的对话。

2.3 最后,结果的分析简直是高潮。

那一刻,像是打开了智慧的大门。

干涉条纹的间距、数量,背后藏着光的波长信息。

这些信息让我如沐春风,仿佛穿越了时空,与伟大的科学家们心灵相通。

当然,实验也不是一帆风顺。

3.1 遇到的问题也不少。

比如,光源不稳定,或者干涉条纹模糊不清。

那时真的是抓耳挠腮,眼看实验就要泡汤。

可是,越是困难,越能激发我的斗志。

每次解决问题,都是一次成长的机会。

3.2 还记得有次调试反射镜,调整了半天,条纹依然不清晰。

心里有些焦急,但我没有放弃。

仔细观察,发现镜子上有微小的灰尘。

清理后,条纹瞬间清晰。

这一刻,我深刻体会到细节的重要性。

实验六 迈克尔逊干涉仪的调节和使用

实验六  迈克尔逊干涉仪的调节和使用

实验五迈克尔逊干涉仪的调节和使用一、实验目的1.了解迈克尔逊干涉仪的构造原理,掌握迈克尔逊干涉仪的调节方法;2.学会调节非定域干涉、等倾干涉、等厚干涉和白光干涉条纹,研究这几种干涉条纹形成的条件和条纹特点,变化规律及相互间的区别;3.学会用迈克尔逊干涉仪测定光波波长。

二、实验仪器迈克尔逊干涉仪、氦氖激光器、扩束透镜、毛玻璃等。

三、实验原理1.迈克尔逊干涉仪的原理图1是迈克尔逊干涉仪的光路示意图,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。

在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板p1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故p1又称为分光板。

p2也是平行平面玻璃板,与p1平行放置,厚度和折射率均与p1相同。

由于它补偿了光线⑴和⑵因穿越p1次数不同而产生的光程差,故称为补偿板。

从扩展光源S射来的光在p1处分成两部分,反射光⑴经p1反射后向着M2前进,透射光⑵透过p1向着p1前进,这两束光分别在p2、p1上反射后逆着各自的入射方向返回,最后都达到E处。

因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。

由M1反射回来的光波在分光板p1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反图1 迈克尔逊干涉仪光路射相当于自M 2和M 1′的反射。

由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。

当M 2和M 1′平行时(此时M 1和M 2严格互相垂直),将观察到环形的等倾干涉条纹。

一般情况下,M 1和M 2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。

2.单色光波长的测定用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M 2和M 1反射的两列相干光波的光程差为•2cos d i ∆=(1)其中i 为反射光⑴在平面镜M 2上的入射角。

实验七、迈克尔逊干涉仪的调整与使用

实验七、迈克尔逊干涉仪的调整与使用
迈克尔逊—莫雷实验图 最初的迈克尔逊干涉仪 现代的迈克尔逊干涉仪
▪ 迈克耳逊( Albert Abrham Michelson ,1852 -1931),著名
的实验物理学家,他一生研制 了不少精密仪器,进行了许多 有成效的实验。他设计了至今 仍应用广泛的迈克尔逊干涉仪, 当时用来测定地球相对于以太 的运动,迈克尔逊—莫雷实验 为相对论的建立提供了实验依 据。由于他的杰出成就,荣获 1907年度的诺贝尔物理学奖。
【实验内容】
▪ 了解迈克尔逊干涉仪的结构和工作原 理,掌握其调节方法。
▪ 调节观察等倾干涉、等厚干涉和非定 域干涉现象。
迈克耳逊干涉仪的调节(技能训练的重点)
1、光源的调节
放置好钠光灯使光源和分光板G1、补偿板 G2及反射镜M2中心大致等高,且三者连线大 致垂直于M2镜。适当调节光源及扩束透镜的 位置使得在E处视野可看到均匀的亮斑。
4) 上下晃动眼睛调节M2反射镜的垂直拉簧微调螺丝, 左右晃动眼睛调节M2反射镜的水平拉簧微调螺丝, 反复细致地调节,使圆环形等倾条纹大小不因观察 位置而变(即无吞吐现象)为止。
5) 测量前应转动微调手轮,移动M1反射镜,观察等 倾条纹的变化情况。选择合适一段区间,以利完成 测量。




条 纹
M2
M 2 M 2 与 M1'
M 1'
M1' 重 合
M 1'
M 1'
M2
M2





M2
M2
M2

M 1'
M1' M1'
M 1' M2
M 1' M2

迈克尔逊干涉仪的调节和使用_3

迈克尔逊干涉仪的调节和使用_3

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是一种典型的分振幅双光束干涉装置, 可以用来研究多种干涉现象, 并进行较精密的测量。

其在近代物理和近代计量技术中有着重要的应用, 如测量标准长度等。

从迈克尔逊干涉仪发展而成的各种干涉仪(如泰曼干涉仪), 在制造精密光学仪器的工作中应用得相当广泛。

【实验目的】1.了解迈克尔逊干涉仪的构造, 并学会该仪器的调节与使用。

2.用迈克尔逊干涉仪测定钠光的波长。

【实验仪器】迈克尔逊干涉仪、钠灯及其电源、叉丝。

【实验原理】1.仪器构造简介实验室中最常用的迈克耳逊干涉仪, 其原理图和结构图如图1和图2所示。

M1和M2是在相互垂直的图1图2两臂上放置的两个平面反射镜, 其背面各有三个调节螺旋, 用来调节镜面的方位;M2是固定的, M1由精密丝杆控制, 可沿臂轴前后移动, 其移动距离由转盘读出。

仪器前方粗动手轮分度值为10-2mm, 右侧微动手轮的分度值为10-4mm, 可估读至10-5mm, 两个读数手轮属于蜗轮蜗杆传动系统。

在两臂轴相交处, 有一与两臂轴各成45º的平行平面玻璃板P1, 且在P1的第二平面上镀以半透(半反射)膜, 以便将入射光分成振幅近乎相等的反射光1和透射光2, 故P1板又称为分光板。

P2也是一平行平面玻璃板, 与P1平行放置, 厚度和折射率均与P1相同。

由于它补偿了1与2之间附加的光程差, 故称为补偿板。

从扩展光源S 射来的光, 到达分光板P1后被分成两部分。

反射光1在P1处反射后向着M1前进;透射光2透过P1后向着M2前进。

这两列光波分别在M1.M2上反射后沿着各自的入射方向返回, 最后都到达E 处。

既然这两列光波来自光源上同一点O, 因而是相干光, 在E 处的观察者能看到干涉图样。

由于从M2返回的光线在分光板P1的第二面上反射, 使M2在M1附近形成一平行于M1的虚像M ΄2, 因而光在迈克耳逊干涉仪中自M1和M2的反射, 相当于自M1和M ΄2的反射。

迈克尔逊干涉仪的调节和使用(正式报告)

迈克尔逊干涉仪的调节和使用(正式报告)

迈克尔逊干涉仪的调节和使用(正式报告)首先,调节迈克尔逊干涉仪的光源。

一般来说,我们可以使用激光作为光源,因为激光具有单色性和相干性,这有助于获得更清晰的干涉图案。

但是在实验过程中,也可以使用其他光源,只需确保光线的单色性。

接下来,调节迈克尔逊干涉仪的反射镜。

迈克尔逊干涉仪由两个反射镜组成,一个称为固定镜,另一个称为移动镜。

首先,将干涉仪的移动镜移到极端位置,以确保光线可以正常通过反射镜。

然后,在通过逐渐调节移动镜的位置,使得光线尽量垂直反射镜并回到入射方向。

然后,调节迈克尔逊干涉仪的分束镜。

分束镜是将一束光线分为两束的关键部分。

在调节分束镜时,我们需要将光线分成两束,并使其传播的路径相等。

要做到这一点,首先将一个探测器放在一个路径上,然后调整分束镜的位置,使得两束光线能够同时到达该探测器。

在进行实验之前,我们还需要调节探测器。

探测器主要用于检测通过干涉仪的光的干涉图案。

我们需要将探测器调整到最佳位置,以获得清晰的干涉条纹。

通常,探测器会发出一个高频声音,当干涉图案最清晰时,声音会最大。

因此,我们可以通过听觉判断探测器是否被正确调节。

最后,在进行实验时,我们需要注意避免干扰因素。

迈克尔逊干涉仪对环境的稳定性要求较高,应尽量避免振动、温度变化和空气流动等干扰因素。

此外,还需要保持实验室的洁净度,以防止灰尘等杂质影响干涉图案的清晰度。

在实验过程中,还可以通过调整迈克尔逊干涉仪的参数来观察不同的干涉效果。

例如,改变移动镜的位置可以改变干涉条纹的位置和宽度。

调整反射镜的角度也可以改变干涉图案的形状。

通过不断调整这些参数,我们可以得到更多有关光的干涉现象的信息。

综上所述,迈克尔逊干涉仪的调节和使用是实验中非常重要的一步。

通过正确地调节光源、反射镜、分束镜和探测器,以及注意避免干扰因素,我们可以获得准确且清晰的干涉图案,从而得到有关光的干涉现象的有价值的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验要点实验前请认真阅读本要点:(1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。

测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。

注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。

仿真实验位于:桌面\大学物理仿真实验\大学物理仿真实验v2.0(第二部分),其中大学物理仿真实验v2.0(第二部分).exe为正式版,大学物理仿真实验示教版v2.0(第二部分).exe为示教版,同学们在使用之前可先看示教版。

(2)实验内容1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。

2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。

3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。

4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。

(3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。

根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。

(4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。

(一些问题详见附录4 疑难解答)测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。

测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。

(5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次M镜1的位置,至少连续测8组,将数据填入表格,并观察其实验现象。

测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。

注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。

(6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。

(7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录 2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);(8)在预习报告后根据实际实验加上实验内容、实验步骤;(9)重新对仪器进行调节,熟悉调节要点,并观察相应的实验现象,掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用;(10)掌握迈克尔逊干涉仪仿真实验的使用,并利用其进行复习及进行实验,注意“迈克尔逊干涉仪(仿真实验演示).swf”文件(可以回去再做)。

(11)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案(可以回去再做)。

(12)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等(可以回去再做)。

(13)完成相应实验并数据通过后,请收拾好仪器,整理好桌面,关好计算机才能离开实验室,值日生请整理好实验室仪器并打扫卫生重才能离开实验室。

附录1 数据记录要求注:要求使用空白实验报告纸记录实验数据,不能使用铅笔,不能有涂改。

实验名称:实验地点:仪器号数:课号:实验时间:姓名:学号:一、迈克尔逊干涉仪测量He-Ne激光的波长(测量固体试件的线膨胀系数)1、记录已知参数,并记录相应的实验现象2、自拟表格记录所测量数据3、记录所测量数据的相应结果(结果、准确度、精确度等),用以参考。

二、拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,要求如下:1、简洁明了的实验原理、公式与实验现象2、根据1写出实验方案,要有关键的实验要点及相应实验现象说明3、确定实验方案的数据测量量,拟定数据记录表格4、利用仿真实验来验证实验方案三、(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等附录2 数据处理要求1、处理时需重列表格,用逐差法处理数据,要求有关键公式、步骤;2、处理结果与标准(或参考值)比较并作分析,正确表示实验结果,并进行实验小结、讨论;3、(不作硬性要求,但要了解)求出结果的不确定度,逐差法的不确定度求解可参考《逐差法处理实验数据》部份。

附录3 逐差法处理实验数据当实验中、两物理量满足正比关系时,依次记录改变相同的量时的值:x1,x2…x n(或者当某一研究对象随实验条件周期性变化时,依次记录研究对象达到某一条件(如峰值、固定相位等)时的值x1,x2…x n:),的间隔周期的求解方法若由x1,x2…x n 逐项逐差再求平均:其中只利用了和,难以发挥多次测量取平均以减小随机误差的作用,此时应采用隔项逐差法(简称逐差法)处理数据。

逐差法处理数据时,先把数据分为两组,然后第二组的与第一组相应的相减,如下表:对,均含有逐差法处理数据举例:外加砝码下,弹簧伸长到的位置记录如下表,可用逐差法求得每加一个1kg的砝码时弹簧的平均伸长量(满足前提条件:弹簧在弹性范围内伸长,伸长量与外加力成正比),也可求得弹簧的倔强系数。

已知测量时,估算(见下表)。

11.9315.82 逐差法提高了实验数据的利用率,减小了随机误差的影响,另外也可减小中仪器误差分量,因此是一种常用的数据处理方法。

有时为了适当加大逐差结果为个周期,但并不需要逐差出个数据,可以连续测量 n 个数据后,空出若干数据不记录,到时,再连续记录n 个数据,对所得两组数据进行逐差可得: ,不确定度可简化由:来估算。

严格地讲以上介绍的一次逐差法理论上适用于一次多项式的系数求解,要求自变量等间隔地变化。

有时在物理实验中可能会遇到用二次逐差法、三次逐差法求解二次多项式、三次多项式的系数等,可参考有关书籍作进一步的了解。

附录4 疑难解答1. 观察点光源非定域干涉时,屏上只看到一大片光斑,看不到干涉条纹,怎么办? 移走扩束镜,调节激光管方位,配合调M1、M2后螺钉,使由M1、M2反射的最亮光点能大致回到激光管中,此时入射光与分光板成45°角。

然后重新微调M1、M2后面的螺钉,使得屏上两排光点中最亮光点完全重合,重合的标准是最亮光点中出现细条纹(其它光点也有细条纹),如图所示。

再放上扩束镜,屏上必看到干涉条纹。

2.观察点光源非定域干涉时,屏上只看到干涉圆弧,没看到干涉圆环,怎么办?调节水平拉簧螺钉和垂直拉簧螺钉,使干涉条纹往变粗变稀方向移动,必可调出干涉圆环的圆心。

3.调节微调旋钮时,没看到圆环“冒出”或“缩进”,怎么办?原因:可能是微调旋钮与移动可动镜M1的精密丝杆之间出现了“滑丝”。

办法:可调节粗调大手轮,使M1重新移到一个粗调位置,再使微调手轮多转几圈,确保微动鼓轮螺帽与螺杆间无间隙(空程误差),转动微动鼓轮,必可看到圆环“冒出”或“缩进”现象。

每次正式测量读数前,为防止空程误差,也应使微动鼓轮多转几圈,看到圆环“冒”或“缩”时才往一个方向转动读数,中途中微动鼓轮不能反转。

圆环“冒出”、“缩进”现象4.如何对M1位置进行读数?该读数由三部分组成:①标尺读数,只读出整毫米数即可,不需估读;②粗调大手轮读数,直接由窗口读出毫米的百分位,也不需估读;③微动鼓轮读数,由微动鼓轮旁刻度读出,需要估读一位,把读数(格数)乘10-4即毫米数。

M1位置读数为上三读数和。

例:5.什么是定域干涉?什么是非定域干涉?干涉条纹是定域还是非定域的,取决于光源的大小。

如果是点光源,条纹是非定域的,在平面镜M1M2反射光波重叠区域内都能看到干涉条纹。

如果在扩束镜与分光板间放一毛玻璃,则点光源发出的球面波经毛玻璃散射成为扩展面光源,条纹则是定域干涉(等倾干涉条纹)。

6. 迈克尔逊干涉仪中补偿板、分光板的作用是什么?分光板是后表面镀有半反射银膜的玻璃板,激光入射后经半反射膜能分解为两束强度近似相等光线。

补偿板是折射率和厚度与分光板完全相同的玻璃板,使分光板分解的两束光再次相遇时在玻璃板中通过相同的光程,这样两光束的光程差就和在玻璃中的光程无关了。

7.当反射镜M1和M2不严格垂直时,在屏上观察到的干涉条纹分布具有什么特点?此时M1与M2'之间形成一楔形空气薄层,用平行光照射将产生等厚干涉条纹,即空气层厚度相同的点光程差相同构成同一级干涉条纹,这些条纹是一系列等间距的直条纹。

8.为什么不能用眼睛直接观察未扩束的激光束?因为没有扩束的激光能量集中,光强较大,直接射入眼内会使视网膜形成永久性的伤害。

9.在迈克尔逊干涉仪实验中,用激光作光源的调整过程中,看到的是两排光点还是两个光点?为什么?实验中看到的是两排光点,因为光线在玻璃板与平面镜之间有多次反射。

实验中只需调节两排光点中最亮光点即可。

10.实验中为什么用逐差法处理实验数据?本实验采用分组隔项逐差法,可以充分利用所测数据,更好的估算最佳值,更合理地估算测量误差及不确定度。

相关文档
最新文档