高一数学简单几何体的表面积与体积

合集下载

8.3.1棱柱、棱锥、棱台的表面积和体积 课件(67张)2020-2021学年高一数学人教A版(20

8.3.1棱柱、棱锥、棱台的表面积和体积 课件(67张)2020-2021学年高一数学人教A版(20

1
PART ONE
核心概念掌握
知识点一 棱柱、棱锥、棱台的表面积
多面体 棱柱 棱锥 棱台
表面积
多面体的表面积就是 S 棱柱表= 02 _S__棱_柱_侧__+__2_S_底____
01 _围__成__多__面__体__各__个__面_ _的__面__积__的__和_______
S
棱锥表= 03 _S__棱_锥_侧__+__S_底__
答案
2
PART TWO
核心素养形成
题型一 棱柱、棱锥、棱台的表面积
例 1 (1)现有一个底面是菱形的直四棱柱(侧棱与底面垂直),它的体对 角线长为 9 和 15,高是 5,求该直四棱柱的侧面积和表面积.
(2)已知棱长均为 5,底面为正方形的四棱锥 S-ABCD 如图所示,求它 的侧面积、表面积.
D.6
解析 S 表=4× 43×22=4 3.故选 B.
解析 答案
2.底面为正方形的直棱柱,它的底面对角线长为 2,体对角线长为 6,
则这个棱柱的侧面积是( )
A.2
B.4
C.6
D.8
解析 由题意知,该几何体为长方体,底面正方形的边长为 1,长方体
的高为 6-2=2,故这个棱柱的侧面积为 1×2×4=8.
解析
题型二 棱柱、棱锥、棱台的体积
例 2 (1)已知高为 3 的三棱柱 ABC-A1B1C1 的底面是边长为 1 的正三 角形,如图所示,则三棱锥 B1-ABC 的体积为( )
A.14
B.12
C.
3 6
D.
3 4
答案
(2)如图,已知 ABCD-A1B1C1D1 是棱长为 a 的正方体,E 为 AA1 的中点, F 为 CC1 上一点,求三棱锥 A1-D1EF 的体积.

8.3简单几何体的表面积和体积说课稿2023-2024学年高一下学期数学人教A版(2019)必修二

8.3简单几何体的表面积和体积说课稿2023-2024学年高一下学期数学人教A版(2019)必修二

《简单几何体的表面积与体积》说课稿各位老师,大家好:今天我说课的内容是《简单几何体的表面积与体积》。

本节位于必修课程主题三几何与代数对应立体几何初步这一单元。

本节之前从形的角度认识了空间几何体,接下来将从度量的角度进一步认识空间几何体。

下面我将从教材分析、学情分析、教学目标、教学重难点、教学分析、教学评价等六方面加以分析和说明。

一、说教材分析。

1. 内容结构:2.内容分析:本节主要内容是简单几何体的表面积和体积的计算方法,是在前面学习了基本立体图形的分类、概念、结构特征、平面表示的基础上,从度量的角度进一步认识简单几何体.也是研究生产、生活中更复杂形状的物体的表面积和体积的基础。

本节内容包括棱柱、棱锥、棱台的表面积与体积;圆柱、圆锥、圆台、球的表面积与体积.3.育人价值:在实际教学过程中,在对简单几何体的表面积与体积公式的了解与使用公式解决简单的实际问题过程中,提高学生逻辑推理、数学运算、直观想象等素养和空间想象等能力,让学生体会数学来源于生活,激发学习激情。

二、说学情分析。

1.学生在小学、初中阶段已经学习了正方体、长方体、圆柱的表面积和体积以及圆锥体积的计算方法.2.通过之前的学习,学生已经熟悉一些平面图形和空间几何体的互化的思想,尤其是空间几何问题向平面问题的转化。

3.学习圆的面积公式时“分割、近似替代、求和、取极限”这种思想已有体现,现在需要学生进一步体会这种重要思想方法。

三、说教学目标。

目标:1).掌握简单几何体的表面积和体积公式,并能利用这些公式解决简单的实际问题; 简单几何体的表面积和体积 柱体、椎体、台体的表面积和体积 球的表面积和体积(第三课时) 圆柱、圆锥、圆台的表面积和体积(第二课时) 棱柱、棱锥、棱台的表面积和体积(第一课时) 球的体积球的表面积2).柱体、锥体、台体、球的体积公式的推导过程,掌握探究过程中的类比、一般化与特殊化、极限等数学思想方法,并尝试使用这些数学思想方法进行数学学习.目标分析:(1)学生能结合基本立体图形的结构特征掌握简单几何体的表面积和体积公式;能从联系的角度认识柱体、锥体、台体的体积公式的联系。

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2

8.3.2 圆柱、圆锥、圆台、球表面积和体积(课件)2022-2023学年高一下学期数学(人教A版2
解:当球内切于正方体时用料最省 此时棱长=直径=5cm
答:至少要用纸150cm2
练习
解析 设球 O 的半径为 r,则圆柱的底面半径为 r, 高为 2r,所以VV12=π43rπ2·r23r=32.
三、课堂小结:
1.圆柱、圆锥、圆台的表面积公式
1).圆柱 2).圆锥
S 2r 2 rl
S r 2 rl
如果圆台的上、下底面半径分别为r和R,母线长为l,你能计算它的
表面积吗?
r O’
RO
圆台的侧面展开图是扇环
x x
r 'O’
rO
xl r x r' l rr' x r'
xl 1 r 1 x r'
x r' l r r'
∵圆台侧面展开图是一个扇环
S侧面积
1 2
2 r( x
l)
1 2
2 r
'
x
r( x l ) r ' x rx rl r ' x
A
B
D
C
A1 D1
B1 C1
变式 球的内接长方体的长、宽、高分别为3、2、 3 ,求此球体的表面积 和体积。
分析:长方体内接于球,则由球和长方体都是中心对称图形可知,它们 中心重合,则长方体对角线与球的直径相等。
内切球问题
例题3 把直径为5cm钢球放入一个正方体的有盖纸盒中,至少要用多少纸? 分析:用料最省时,球与正方体有什么位置关系? 球内切于正方体
解:一个浮标的表面积为
2π×0.15×0.6 + 4π×0.152 =0.8478(m2) 所以给1000个这样的浮标涂防水漆约需涂料
0.8478×0.5×1000 =423.9(kg).

高中数学第八章立体几何初步之简单几何体的表面积与体积(精练)(必修第二册)(教师版含解析)

高中数学第八章立体几何初步之简单几何体的表面积与体积(精练)(必修第二册)(教师版含解析)

8.3 简单几何体的表面积与体积(精练)【题组一 多面体表面积】1.(2020·全国高一课时练习)长方体的高为2,底面积等于12,过不相邻两侧棱的截面(对角面)的面积为10,则此长方体的侧面积为( )A .12B .24C .28D .32 【答案】C【解析】设长方体底面矩形的长与宽分别为,a b ,则12ab =.又由题意知22210a b +⨯=,解得4,3a b ==或3,4a b ==.故长方体的侧面积为()243228⨯+⨯=.故选:C.2.(2021·江苏南通市)一个正四棱锥的底面边长为2,高为3,则该正四棱锥的全面积为A .8B .12C .16D .20 【答案】B【解析】由题得侧面三角形的斜高为223+1=2, 所以该四棱锥的全面积为212+422=122⋅⋅⋅. 故选B 3.(2020·全国高一课时练习)若正三棱台上、下底面边长分别是a 和2a ,棱台的高为336a ,则此正三棱台的侧面积为( )A .2aB .212aC .292aD .232a 【答案】C 【解析】如图,1,O O 分别为上、下底面的中心,1,D D 分别是AC ,11A C 的中点,过1D 作1D E OD ⊥于点E .在直角梯形11ODD O 中,1332323OD a a =⨯⨯=,11133326O D a a =⨯⨯=,1136DE OD O D a ∴=-=.在1RtDED中,1336D E a =, 则22133366D D a a ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭223333636a a a =+=. 2193(2)22S a a a a ∴=⨯+=侧.故选:C4.(2020·河北沧州市一中高一月考)正四棱锥底面正方形的边长为4,高与斜高的夹角为30,则该四棱锥的侧面积( )A .32B .48C .64D .323【答案】A【解析】如图:正四棱锥的高PO ,斜高PE ,底面边心距OE 组成直角△POE .∵OE =2cm ,∠OPE =30°,∴斜高h ′=PE =4sin 30o OE =,∴S正棱锥侧=114443222ch=⨯⨯⨯='故选:A5.(2020·全国高一课时练习)已知正四棱锥的底面边长是2,侧棱长是5,则该正四棱锥的表面积为( ) A.3B.12C.8D.43【答案】B【解析】如图所示,在正四棱锥S ABCD-中,取BC中点E,连接SE,则SBE△为直角三角形,所以22512SE SB BE=-=-=,所以表面积1422422122SBCABCDS S S=+⨯=⨯+⨯⨯⨯=正方形△.故选:B.6.(2021·内蒙古包头市·高三期末(文))已知一个正四棱锥的底面边长为4,以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则该正四棱锥的侧面积为( )A.()451+B.51-C.()451-D.()851+【答案】D【解析】正四棱锥如图,设四棱锥的高OE h =,由底面边长为4,可知2OF =,斜高24EF h =+,故221442h h =⨯⨯+,解得2=225h +, 故侧面积为()22144448858152h h ⨯⨯⨯+==+=+, 故选:D. 7.(2020·山西吕梁市)已知,AB CD 是某一棱长为2的正方体展开图中的两条线段,则原正方体中几何体ABCD 的表面积为( )A .24223++B .22223++C .22243++D .24243++【答案】A 【解析】由所给正方体的展开图得到直观图,如图:则此三棱锥的表面积为:△△△△+++=BCD ABC ADC ABD S S S S111132222222222222422322222⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯=++ 故选:A8.(2020·黑龙江哈师大青冈实验中学)长方体一个顶点上的三条棱长分别为3,4,a ,表面积为108,则a 等于( )A .2B .3C .5D .6 【答案】D【解析】长方体一个顶点上的三条棱长分别为3,4,a ,则长方体的表面积为342+2423108a a ⨯⨯⨯+⨯=,解得a =6,故选:D9.(2020·湖北省汉川市第一高级中学高一期末)一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,如果正四棱柱的底面边长为2cm ,那么该棱柱的表面积为( )A .2(242)cm +B .2(482)cm +C .2(8162)cm +D .2(16322)cm + 【答案】C【解析】∵一个正四棱柱的各个顶点都在一个半径为2cm 的球面上,正四棱柱的底面边长为2cm , ∴球的直径为正四棱柱的体对角线∴正四棱柱的体对角线为4,正四棱柱的底面对角线长为22,正四棱柱的高为224(22)22-=,∴该棱柱的表面积为2×22+4×2×22=8+162(2cm ),故选:C【题组二 多面体台体积】1.(2021·扶风县法门高中)正方体的全面积为18cm 2,则它的体积是_________ 3cm 【答案】33【解析】设该正方体的棱长为a cm ,由题意可得,2618a =,解得3a =,所以该正方体的体积为333V a ==3cm .故答案为:332.(2021·湖南长沙市)如图,在长方体1AC 中,棱锥1A ABCD -的体积与长方体的体积之比为( )A.2∶3 B.1∶3 C.1∶4 D.3∶4【答案】B【解析】设长方体过同一顶点的棱长分别为,,a b c则长方体的体积为1V abc=,四棱锥1A ABCD-的体轵为213V abc=,所以棱锥1A ABCD-的体积与长方体1AC的体积的比值为13.故选:B.3.(2020·浙江高一期末)由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21 米,底宽34米,则该金字塔的体积为( )A.38092m B.34046mC.324276m D.312138m【答案】A【解析】如图正四棱锥P ABCD -中,34AB BC ==,21PO =,所以正四棱锥P ABCD -的体积为311343421809233ABCD S PO m ⨯⨯=⨯⨯⨯=, 故选:A4.(2020·辽宁沈阳市·沈阳二中高一期末)《九章算术》问题十:今有方亭,下方五丈,上方四丈.高五丈.问积几何(今译:已知正四棱台体建筑物(方亭)如图,下底边长5a =丈,上底边长4b =丈.高5h=丈.问它的体积是多少立方丈?( )A .75B .3053C .3203D .4003 【答案】B【解析】()()222211++=33V S S S S h a a b b h ''=⋅++⋅ ()22221130555445615333=+⨯+⨯=⨯⨯=. 故选:B 5.(2021·浙江高一期末)出华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧楼长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为( )A .38092mB .34046mC .32427mD .312138m【答案】A【解析】如图正四棱锥P ABCD-中,PO⊥底面ABCD,21PO=,34AB=,底面正方形的面积为234341156S m=⨯=,则正四棱锥P ABCD-的体积为311115621809233S PO m⨯⨯=⨯⨯=,故选:A6.(2020·济南市·山东师范大学附中高一月考)如图,在棱长为2的正方体1111ABCD A B C D-中,截去三棱锥1A ABD-,求(1)截去的三棱锥1A ABD-的表面积;(2)剩余的几何体1111A B C D DBC-的体积.【答案】(1)623+;(2)203【解析】(1)由正方体的特点可知三棱锥1A ABD-中,1A BD是边长为22的等边三角形,1A AD、1A AB、ABD△都是直角边为2的等腰直角三角形,所以截去的三棱锥1A ABD-的表面积()1112312232262342A BD A AD A AB ABDS S S S S=+++=⨯+⨯⨯⨯=+(2)正方体的体积为328=,三棱锥1A ABD -的体积为111142223323ABD SAA ⨯⨯=⨯⨯⨯⨯=, 所以剩余的几何体1111A B C D DBC -的体积为420833-=. 【题组三 旋转体的表面积】1.(2021·浙江丽水市)经过圆锥的轴的截面是面积为2的等腰直角三角形,则圆锥的侧面积是( )A .42πB .4πC .22πD .2π 【答案】C【解析】设圆锥的底面半径为r ,母线长为l ,则2l r =,由题可知()21222r ⨯=, ∴2,2r l ==,侧面积为22rl ππ=,故选:C.2.(2020·全国高一课时练习)某圆台的上、下底半径和高的比为1:4:4,母线长为10,则该圆台的表面积为( )A .81πB .100πC .168πD .169π 【答案】C【解析】该圆台的轴截面如图所示.设圆台的上底面半径为r ,则下底面半径4r r '=,高4h r = 则它的母线长()2222(4)(3)510h r r l r r r '+-=+===∴2r,8r '=. ∴()(82)10100S r r l πππ'=+=+⨯=侧,22100464168S S r r ππππππ'=++=++=表侧.故选:C3.(2020·全国高一课时练习)用一个平行于圆锥底面的平面截这个圆锥,截得圆台上下底面半径的比是1:4,且该圆台的母线长为9,则截去的圆锥的母线长为( )A .94B .3C .12D .36【答案】B【解析】根据题意,设圆台的上、下底面的半径分别为r 、R ,设圆锥的母线长为L ,截得小圆锥的母线长为l ,∵圆台的上、下底面互相平行∴14l r L R ==,可得L=4l ∵圆台的母线长9,可得L ﹣l =9 ∴3L 4=9,解得L=12, ∴截去的圆锥的母线长为12-9=3故选B4.(2020·全国高一课时练习)圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .7【答案】D 【解析】设圆台较小底面圆的半径为r ,由已知有另一底面圆的半径为3r ,而圆台的侧面积公式为(3)4384,7r r l r r πππ+=⨯⨯==,选D.5.(2020·江苏淮安市·淮阴中学高一期末)圆柱底面半径为1,母线长为2,则圆柱侧面积为( )A .4πB .3πC .5πD .2π 【答案】A【解析】圆柱底面半径为1,母线长为2,圆柱侧面积为224S rl =π=π⨯1⨯2=π ,故选:A6.(2021·广西河池市·高一期末)已知圆柱的底面半径为1,若圆柱的侧面展开图的面积为8π,则圆柱的高为________.【答案】4【解析】设圆柱的高为h ,有28h ππ=,得4h =.故答案为:4.7.(2021·河南焦作市·高一期末)已知圆锥的底面半径为2,高为4,在圆锥内部有一个圆柱,则圆柱的侧面积的最大值为______.【答案】4π【解析】如图是圆锥与圆柱的轴截面,设内接圆柱的高为a,圆柱的底面半径为r()02r<<,则由224r a-=,可得42a r=-,所以圆柱的侧面积()22242484(1)4S r r r r rπππππ=⋅-=-+=--+,所以1r=时,该圆柱的侧面职取最大值4π.故答案为:4π.8.(2020·北京高一期末)将底面直径为8,高为23的圆锥体石块打磨成一个圆柱,则该圆柱侧面积的最大值为______.【答案】43π【解析】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h,底面半径为r,则23423h r-=,解得3232h r=-;所以()232223342S rh r r r rπππ⎛⎫==-=-⎪⎪⎝⎭圆柱侧;当2r时,S圆柱侧取得最大值为43π故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.9.(2021·陕西西安市·西安中学高一期末)若圆锥的侧面展开图是圆心角为90︒的扇形,则该圆锥的侧面积与底面积之比为___________.【答案】4:1【解析】设圆锥的底面半径为r ,母线长为l ,由题意得:22l r ππ=,即4l r ,所以其侧面积是214S rl r ππ==,底面积是22S r π=,所以该圆锥的侧面积与底面积之比为4:1故答案为:4:1【题组四 旋转体的体积】1.(2020·山东菏泽市·高一期末)若圆锥的底面半径为3cm ,侧面积为215cm π,则该圆锥的体积为( )A .4π3cmB .9π3cmC .12π3cmD .36π3cm【答案】C 【解析】设圆锥母线长为l ,则侧面积为123152S l r l πππ=⋅==,故5l =. 故圆锥的高224h l r =-=,圆锥体积为21123V r h ππ==3cm .故选:C. 2.(2021·黑龙江双鸭山市·双鸭山一中)现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm .【答案】128π【解析】设铁皮扇形的半径和弧长分别为R 、l ,圆锥形容器的高和底面半径分别为h 、r ,则由题意得R=10,由1802Rl π=,得16l π=, 由2l r π=得8r =.由222R r h =+可得6h =.∴()231164612833V r h cm πππ==⋅⋅=∴该容器的容积为3128cmπ.故答案为128π.3.(2020·湖南长沙市·高一期末)圆锥的母线与底面所成的角为60︒,侧面积为8π,则其体积为________. 【答案】833π【解析】如图所示,圆锥的母线与其底面所成角的大小为60︒,60SAO∴∠=︒,由题意设圆锥的底面半径为r,则母线长为2l r=,高为3h r=圆锥的侧面积为8π,2228S rl r r rππππ∴==⋅⋅==侧面积,解得2r,23h=,∴圆锥的体积为221183223333V r hπππ=⋅⋅=⨯⨯=圆锥.故答案为:833π.4.(2020·江苏南京市·高一期末)把一个棱长为2的正方体木块,切出一个最大体积的圆柱,则该圆柱的体积为( )A.23πB.πC.2πD.4π【答案】C【解析】正方体棱长为2,所以正方体底面正方形的内切圆半径为1,面积为21ππ⨯=,以此内切圆为底、高为2的圆柱是可切出的最大圆柱.且该圆柱的体积为22ππ⨯=.故选:C5.(2020·山东日照市·高一期末)《五曹算经》是我国南北朝时期数学家甄驾为各级政府的行政人员编撰的一部实用算术书,其第四卷第九题如下:“今有平地聚粟,下周三丈,高四尺,问粟几何”?其意思为场院内有圆锥形稻谷堆,底面周长3丈,高4尺,那么这堆稻谷有多少斛?已知1丈等于10尺,1斛稻谷的体积约为1.62立方尺,圆周率约为3,估算堆放的稻谷约有多少斛(保留两位小数)( )A .61.73B .61.71C .61.70D .61.69 【答案】A【解析】设圆锥的底面半径为r ,高为h ,体积为V ,则230r π=,所以=5r ,故221135410033V r h π==⨯⨯⨯=(立方尺), 因此10061.731.62V =≈(斛). 故选:A.6.(2020·江苏无锡市·高一期末)某养路处有一圆锥形仓库用于储藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12米,高4米,为存放更多的食盐,养路处拟重建仓库,将其高度增加4米,底面直径不变,则新建仓库比原仓库能多储藏食盐的体积为( )A .24π米3B .48π米3C .96π米3D .192π米3 【答案】B【解析】原仓库圆锥的底面半径为6米,高为4米,则容积为21614483V ππ=⨯⨯⨯=立方米; 仓库的高增加4米,底面直径不变,则仓库的容积为22618963V ππ=⨯⨯⨯=立方米. 所以新建仓库比原仓库能多储藏食盐的体积为2148V V π-=立方米.故选:B.【题组五 球】1.(2021·天津滨海新区)在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为43,则正方体外接球的体积为( )A .43πB .6πC .323πD .86π 【答案】B【解析】设正方体的棱长为a ,则1111112B D AC AB AD B C D C a ======,由于三棱锥11A B CD -的表面积为43,所以()12133442242AB C S S a ==⨯⨯=所以2a =所以正方体的外接球的半径为()()()222222622++=,所以正方体的外接球的体积为346632ππ⎛⎫= ⎪ ⎪⎝⎭故选:B .2.(2020·广东高二期末)在长方体1111ABCD A B C D -中,22AB BC ==,若此长方体的八个顶点都在体积为92π的球面上,则此长方体的表面积为( ) A .16B .18C .20D .22 【答案】A【解析】根据长方体的结构特征可得,长方体外接球直径等于长方体体对角线的长,因为长方体外接球的体积为92π,设外接球半径为R , 则33924R ππ=,解得32R =, 因此22212R AB BC BB =++,因为22AB BC ==, 所以21341BB =++,解得:12BB =,因此长方体的表面积为:1122248416S AB BC AB BB BC BB =⨯⨯+⨯⨯+⨯⨯=++=.故选:A.3.(2020·江苏无锡市第六高级中学高一期中)正三棱柱有一个半径为3cm 的内切球,则此棱柱的体积是( ).A .393cmB .354cmC .327cmD .3183cm【答案】B【解析】∵正三棱柱有一个半径为3cm的内切球,则正三棱柱的高为23cm,底面正三角形的内切圆的半径为3cm,设底面正三角形的边长为a cm,则31323a⨯=,解得6a=cm,∴正三棱柱的底面面积为13669322⨯⨯⨯=cm2,故此正三棱柱的体积V=932354⨯=cm3.故选:B.4.(2021·全国高一)如图所示,球内切于正方体.如果该正方体的棱长为a,那么球的体积为( ) A.343aπB.3a C.332aπD.316aπ【答案】D【解析】因为球内切于正方体,所以球的半径等于正方体棱长的12,所以球的半径为2a,所以球的体积为334326a aππ⎛⎫=⎪⎝⎭,故选:D.5.(2021·湖南邵阳市·高一期末)一个球的体积为36π,则这个球的表面积为( )A.12πB.36πC.108πD.4π【答案】B【解析】设球的半径为R ,球的体积为3436=3R ππ,解得3R =,则球的表面积244936R πππ=⨯=, 故选:B6.(2020·浙江高一期末)已知正方体外接球的体积是323π,那么该正方体的内切球的表面积为_____________.【答案】163π 【解析】设正方体棱长为a ,则34332323a ππ⎛⎫⨯= ⎪ ⎪⎝⎭,解得433a =, ∴内切球半径为2323a r ==,表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π.【题组六 组合体的体积表面积】1.(2020·全国高一课时练习)如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.【答案】20 162323- 【解析】由图形观察可知,几何体的面共有2(242)20⨯⨯+=个,该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为222432V =⨯⨯⨯=.交叉部分的体积为四棱锥S ABCD -的体积的2倍.在等腰ABS 中,22,SB SB =边上的高为2,则 6.SA =由该几何体前后,左右上下均对称,知四边形ABCD 为边长为6的菱形.设AC 的中点为H ,连接,BH SH 易证SH 即为四棱锥S ABCD -的高,在Rt ABH 中,2262 2.BH AB AH =-=-= 又22AC SB ==所以 12222422ABCD S =⨯⨯⨯= 因为BH SH =,所以11822422333ABCD S ABCD V S -=⨯=⨯⨯=四棱柱, 所以求体积为8216232232.33-⨯=- 故答案为:20;16232.3-2.(2020·新疆巴音郭楞蒙古自治州·高一期末)如图,直三棱柱,高为6,底边三角形的边长分别为3、4、5,以上下底面的内切圆为底面,挖去一个圆柱,求剩余部分几何体的体积.【答案】366π-【解析】因为222345+=,所以底面是直角三角形,所以上、下底面内切圆半径34512r +-==, 所以剩余部分几何体的体积21346163662V ππ=⨯⨯⨯⨯=-⨯-, 所以剩余部分几何体的体积为366π-.3.(2021·江西九江市)在底面半径为2,高为22的圆锥中内接一个圆柱,且圆柱的底面积与圆锥的底面积之比为1:4,求圆柱的表面积.【答案】2(21)π+【解析】由圆柱的底面积与圆锥的底面积之比为1:4,知:底面半径比为1:2,即圆柱底面半径1r =,若设圆柱的高为h ,则有221222h -=,即2h =, ∴由圆柱的表面积等于侧面积加上两底面的面积,即:2222(21)S rh r πππ=+=+.。

人教版高一年级下册数学知识点

人教版高一年级下册数学知识点

人教版高一年级下册数学知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一年级下册数学知识点本店铺为各位同学整理了《人教版高一年级下册数学知识点》,希望对你的学习有所帮助!1.人教版高一年级下册数学知识点篇一空间几何体表面积体积公式:1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、r-底半径h-高V=πr^2h/312、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)2.人教版高一年级下册数学知识点篇二指数函数指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

最新人教A版高一数学必修二课件:8.3 简单几何体的表面积与体积-第1课时

最新人教A版高一数学必修二课件:8.3 简单几何体的表面积与体积-第1课时

| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章第八平章面向立量体及几其何应初用步
方向 3 补形法 如图,一个底面半径为 2 的圆柱被一平面所截,截得的几
何体的最短和最长母线长分别为 2 和 3,则该几何体的体积为________.
素养点睛:本题考查了直观想象的核心素养.
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章第八平章面向立量体及几其何应初用步
柱体、锥体与台体的体积公式
几何体
体积
说明
柱体 锥体 台体
V 柱体=Sh
S 为柱体的_底__面__积___,h 为柱体的 _高___
V 锥体=13Sh
S 为锥体的_底__面__积___,h 为锥体的 _高___
AH=A1A·cos 60°=4(cm). 设 O1A1=r1,OA=r2,则 r2-r1=AH=4.①
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章第八平章面向立量体及几其何应初用步
设 A1B 与 AB1 的交点为 M,则 A1M=B1M. 又∵A1B⊥AB1,∴∠A1MO1=∠B1MO1=45°. ∴O1M=O1A1=r1. 同理 OM=OA=r2. ∴O1O=O1M+OM=r1+r2=4 3,② 由①②可得 r1=2( 3-1),r2=2( 3+1). ∴S 表=πr21+πr22+π(r1+r2)l=32(1+ 3)π(cm2).
【答案】6+2 2 【解析】V 台体=13(2+4+ 2×4)×3=31×3×(6+2 2)=6+2 2.

高考数学一轮复习 第八章 立体几何 第5讲 简单几何体的再认识(表面积与体积)教学案 理

高考数学一轮复习 第八章 立体几何 第5讲 简单几何体的再认识(表面积与体积)教学案 理

第5讲 简单几何体的再认识(表面积与体积)一、知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l名称几何体表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥 体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底h台 体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.正方体的外接球、内切球及与各条棱相切球的半径 (1)外接球:球心是正方体的中心;半径r =32a (a 为正方体的棱长).(2)内切球:球心是正方体的中心;半径r =a2(a 为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r =22a (a 为正方体的棱长).2.正四面体的外接球、内切球的球心和半径(1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).(2)外接球:球心是正四面体的中心;半径r =64a (a 为正四面体的棱长).(3)内切球:球心是正四面体的中心;半径r =612a (a 为正四面体的棱长).二、教材衍化1.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________.解析:S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, 所以r 2=4,所以r =2. 答案:2 cm 2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47.答案:1∶47 一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( )(3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )(5)长方体既有外接球又有内切球.( )答案:(1)√(2)×(3)×(4)√(5)×二、易错纠偏常见误区|K(1)不能把三视图正确还原为几何体而错解表面积或体积;(2)考虑不周忽视分类讨论;(3)几何体的截面性质理解有误;(4)混淆球的表面积公式和体积公式.1.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.解析:根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为 3 m.故该四棱锥的体积V=1 3×2×1×3=2(m3).答案:22.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π3.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为________.解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.答案:12π4.一个球的表面积是16π,那么这个球的体积为________. 解析:设球的半径为R ,则由4πR 2=16π,解得R =2,所以这个球的体积为43πR 3=323π.答案:323π空间几何体的表面积(师生共研)(1)(2020·河南周口模拟)如图,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB ⊥BC ,AA 1=AC =2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为( )A .4+4 2B .4+43C .12D .8+42(2)(2020·四川泸州一诊)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )A .(5+2)πB .(4+2)πC .(5+22)πD .(3+2)π【解析】 (1)连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B=30°.又AA 1=AC =2,所以A 1C =22,BC = 2.又AB ⊥BC ,则AB =2,则该三棱柱的侧面积为22×2+2×2=4+42,故选A.(2)因为在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.【答案】 (1)A (2)A空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用. 1.在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(50+80)×(π×40)=2 600π(cm2).答案:2 600π2.已知一几何体的三视图如图所示,它的主视图与左视图相同,则该几何体的表面积为________.解析:由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S=1 2×4π×22+π×22+22×2×4=12π+16.答案:12π+16空间几何体的体积(多维探究)角度一直接利用公式求体积(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A.13.25立方丈B.26.5立方丈C.53立方丈D.106立方丈【解析】 由题意知,刍童的体积为[(4×2+3)×3+(3×2+4)×2]×3÷6=26.5(立方丈),故选B.【答案】 B角度二 割补法求体积《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为( )A .4B .5C .6D .12【解析】 如图所示,由三视图可还原得到几何体ABCDEF ,过E ,F 分别作垂直于底面的截面EGH 和FMN ,可将原几何体切割成三棱柱EHG ­FNM ,四棱锥E ­ADHG 和四棱锥F ­MBCN ,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.【答案】 B角度三 等体积法求体积(2020·贵州部分重点中学联考)如图,在直四棱柱ABCD ­A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1­AEF 的体积为2,则四棱柱ABCD ­A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【解析】 设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1­AEF=V F ­A 1AE .又V F ­A 1AE =13S △A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD ­A 1B 1C 1D 1,所以V ABCD ­A 1B 1C 1D 1=6V A 1­AEF =6×2=12.所以四棱柱ABCD ­A 1B 1C 1D 1的体积为12.故选A.【答案】 A(1)处理体积问题的思路①“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高;②“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算;③“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法.(2)求空间几何体的体积的常用方法①公式法:对于规则几何体的体积问题,可以直接利用公式进行求解;②割补法:把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积;③等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.1.(2020·江西上饶二模)已知下图为某几何体的三视图,则其体积为( )A .π+23B .π+13C .π+43D .π+34解析:选C.几何体为半圆柱与四棱锥的组合体(如图),半圆柱的底面半径为1,高为2,四棱锥的底面为边长为2的正方形,高为1,故几何体的体积V =12×π×12×2+13×22×1=π+43.故选C.2.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD ­A 1B 1C 1D 1挖去四棱锥O ­EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD ­A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V四棱锥O ­EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(多维探究) 角度一 外接球(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2D .π4(2)已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC的体积为9,则球O 的表面积为________.【解析】 (1)设圆柱的底面圆半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ­ABC =V A ­SBC =13×S △SBC ×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,所以球O 的表面积为S =4πR2=4π×32=36π.【答案】 (1)B (2)36π角度二 内切球(1)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,表面积为S 1,球O 的体积为V 2,表面积为S 2,则V 1V 2的值是__________,S 1S 2=________. (2)已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为________.【解析】 (1)设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.S 1S 2=2πR ·2R +2πR 24πR 2=32. (2)正四面体的表面积为S 1=4×34×a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 【答案】 (1)32 32 (2)63π解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.(2020·四川成都一诊)如图,在矩形ABCD 中,EF ∥AD ,GH ∥BC ,BC =2,AF =FG =BG =1.现分别沿EF ,GH 将矩形折叠使得AD 与BC 重合,则折叠后的几何体的外接球的表面积为( )A .24πB .6π C.163π D .83π 解析:选C.由题意可知,折叠后的几何体是底面为等边三角形的三棱柱,底面等边三角形外接圆的半径为23× 12-⎝ ⎛⎭⎪⎫122=33.因为三棱柱的高为BC =2,所以其外接球的球心与底面外接圆圆心的距离为1,则三棱柱外接球的半径为R =⎝ ⎛⎭⎪⎪⎫332+12=233,所以三棱柱外接球的表面积S =4πR 2=16π3.故选C.2.(2020·黑龙江哈尔滨师范大学附属中学模拟)在底面是边长为2的正方形的四棱锥P ­ABCD 中,点P 在底面的射影H 为正方形ABCD 的中心,异面直线PB 与AD 所成角的正切值为2.若四棱锥P ­ABCD 的内切球半径为r ,外接球的半径为R ,则r R=( ) A.23B .25 C.12D .13解析:选B.如图,取E ,F 分别为AB ,CD 的中点,连接EF ,PE ,PF .由题意知,P ­ABCD 为正四棱锥,底面边长为2.因为BC ∥AD ,所以∠PBC 即为异面直线PB 与AD 所成的角.因为∠PBC 的正切值为2,所以四棱锥的斜高为2,所以△PEF 为等边三角形,则正四棱锥P ­ABCD 的内切球的半径r 即为△PEF 的内切圆的半径,为33. 设O 为正四棱锥外接球的球心,连接OA ,AH .由题可得AH =2,PH = 3.在Rt △OHA 中,R 2=(2)2+(3-R )2,解得R =536, 所以r R =25. 确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A.16π B.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为( )A. 2 B.6 2C.112D.52【解析】易知四面体A′EFD的三条侧棱A′E,A′F,A′D 两两垂直,且A′E=1,A′F=1,A′D=2,把四面体A′EFD补成从顶点A′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A′EFD的外接球,球的半径为r=1 212+12+22=62.故选B.【答案】B方法三由性质确定球心利用球心O与截面圆圆心O′的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.正三棱锥A­BCD内接于球O,且底面边长为3,侧棱长为2,则球O的表面积为________.【解析】如图,M为底面△BCD的中心,易知AM⊥MD,DM=1,AM= 3.在Rt△DOM中,OD2=OM2+MD2,即OD2=(3-OD)2+1,解得OD=23 3,故球O的表面积为4π×⎝⎛⎭⎪⎪⎫2332=163π.【答案】163π[基础题组练]1.圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( )A .4πSB .2πSC .πSD .233πS 解析:选A.由πr 2=S 得圆柱的底面半径是S π,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS ,故选A. 2.已知圆锥的高为3,底面半径长为4,若一球的表面积与此圆锥的侧面积相等,则该球的半径长为( ) A .5B .5C .9D .3解析:选B.因为圆锥的底面半径R =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πRl =20π.设球的半径为r ,则4πr 2=20π,所以r =5,故选B.3.(2020·安徽黄山一模)如图所示为某几何体的三视图,则几何体的体积为( )A.12B .1 C.32D .3 解析:选B.由主视图可得如图的四棱锥P ­ABCD ,其中平面ABCD ⊥平面PCD .由主视图和俯视图可知AD =1,CD =2,P 到平面ABCD 的距离为32. 所以四棱锥P ­ABCD 的体积为V =13×S 长方形ABCD ×h =13×1×2×32=1.故选B.4.(2020·河南郑州三模)某几何体的三视图如图所示,则该几何体的体积为( )A.5π3B .4π3 C.π3D .2π3 解析:选D.几何体是半个圆柱挖去半个圆锥所形成的,如图,由题意可知几何体的体积为:12×12·π×2-13×12×12·π×2=2π3.故选D. 5.(2020·广东茂名一模)在长方体ABCD ­A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,D 1B 与DC 所成的角是60°,则长方体的外接球的表面积是( )A .16πB .8πC .4πD .42π解析:选A.如图,在长方体ABCD ­A 1B 1C 1D 1中,因为DC ∥AB ,所以相交直线D 1B 与AB 所成的角是异面直线D 1B 与DC 所成的角.连接AD 1,由AB ⊥平面ADD 1A 1,得AB ⊥AD 1,所以在Rt △ABD 1中,∠ABD 1就是D 1B 与DC 所成的角,即∠ABD 1=60°,又AB =2,AB =BD 1cos 60°,所以BD 1=AB cos 60°=4,设长方体ABCD ­A 1B 1C 1D 1外接球的半径为R ,则由长方体的体对角线就是长方体外接球的直径得4R 2=D 1B 2=16,则R =2,所以长方体外接球的表面积是4πR 2=16π.故选A.6.一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,则该四棱锥的侧面积是________.解析:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图,由题意知底面正方形的边长为2,正四棱锥的高为2, 取正方形的中心O ,AD 的中点E ,连接PO ,OE ,PE ,可知PO 为正四棱锥的高,△PEO 为直角三角形,则正四棱锥的斜高PE =22+12= 5.所以该四棱锥的侧面积S =4×12×2×5=4 5. 答案:457.已知圆锥SO ,过SO 的中点P 作平行于圆锥底面的截面,以截面为上底面作圆柱PO ,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO 的体积与圆锥SO 的体积的比值为________.解析:设圆锥SO 的底面半径为r ,高为h ,则圆柱PO 的底面半径是r 2,高为h 2, 所以V 圆锥SO =13πr 2h ,V 圆柱PO =π⎝ ⎛⎭⎪⎫r 22·h 2=πr 2h 8,所以V 圆柱PO V 圆锥SO =38. 答案:388.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为________.解析:如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE ,因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2.所以S 表=3×12×23×2+33=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3. 设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小棱锥,则r =3336+33=2-1. 答案:2-19.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段的中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a 1+π2.10.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ­ACD 的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC 平面AEC , 所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC=32x ,GB =GD =x 2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E ­ACD 的体积V 三棱锥E ­ACD =13×12·AC ·GD ·BE=624x 3=63,故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ­ACD 的侧面积为3+2 5.[综合题组练])1.如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2D .9π4解析:选C.正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.2.(2020·江西萍乡一模)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A.236 B .72C.76D .4解析:选A.由三视图可得,该几何体是如图所示的三棱柱ABB 1­DCC 1,挖去一个三棱锥E ­FCG 所形成的,故所求几何体的体积为12×(2×2)×2-13×⎝ ⎛⎭⎪⎫12×1×1×1=236. 故选A.3.(2020·福建厦门外国语学校模拟)已知等腰直角三角形ABC 中,∠ACB =90°,斜边AB =2,点D 是斜边AB 上一点(不同于点A ,B ).沿线段CD 折起形成一个三棱锥A ­CDB ,则三棱锥A ­CDB 体积的最大值是( )A .1B .12C.13D .16解析:选D.设AD =x ,将△ACD 折起使得平面ACD ⊥平面BCD .在△ACD 中,由面积公式得12CD ·h 1=12AD ·1(h 1为点A 到直线CD 的距离),则h 1=x1+(x -1)2.由题易知h 1为点A 到平面BCD 的距离,故三棱锥A ­CDB 体积为V =13S △BCD ·h 1=13×⎝ ⎛⎭⎪⎫12BD ·1·h 1=16·2x -x 2x 2-2x +2,x ∈(0,2).令t =x 2-2x +2,则t ∈[1,2),故V =16·2-t 2t =16·⎝ ⎛⎭⎪⎫2t -t .由于2t -t 是减函数,故当t =1时,V取得最大值为16×(2-1)=16.故选D.4.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为( )A .12 3B .183C .24 3D .543解析:选B.如图,E 是AC 的中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE=23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D ­ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B. 5.如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1­ABC 1的体积为________.解析:三棱锥B 1­ABC 1的体积等于三棱锥A ­B 1BC 1的体积,三棱锥A ­B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.答案:3126.已知半球O 的半径r =2,正三棱柱ABC ­A 1B 1C 1内接于半球O ,其中底面ABC 在半球O 的大圆面内,点A 1,B 1,C 1在半球O 的球面上.若正三棱柱ABC ­A 1B 1C 1的侧面积为63,则其侧棱的长是________.解析:依题意O 是正三角形ABC 的中心,设AB =a ,分析计算易得0<a <23,AO =33a ,在Rt △AOA 1中,A ′O =r =2,则AA 1=r 2-AO 2=4-a 23,所以正三棱柱ABC ­A 1B 1C 1的侧面积S =3a ·AA 1=3a4-a 23=3-a 43+4a 2=63,整理得a 4-12a 2+36=0,解得a 2=6,即a =6,此时侧棱AA 1= 2.答案:27.如图,正方体ABCD ­A 1B 1C 1D 1的棱长为1,P 为BC 边的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截正方体所得的截面为S ,当CQ =1时,S 的面积为________.解析:当CQ =1时,Q 与C 1重合.如图,取A 1D 1,AD 的中点分别为F ,G .连接AF ,AP ,PC 1,C 1F ,PG ,D 1G ,AC 1,PF .因为F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点, 所以AF =FC 1=AP =PC 1=52,PG 綊CD ,AF 綊D 1G .由题意易知CD 綊C 1D 1,所以PG 綊C 1D 1,所以四边形C 1D 1GP 为平行四边形, 所以PC 1綊D 1G ,所以PC 1綊AF , 所以A ,P ,C 1,F 四点共面, 所以四边形APC 1F 为菱形.因为AC 1=3,PF =2,过点A ,P ,Q 的平面截正方体所得的截面S 为菱形APC 1F ,所以其面积为12AC 1·PF =12×3×2=62.答案:628.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin ∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π。

2021年高中数学新人教A版必修第二册 8.3简单几何体的表面积与体积 教案(4)

2021年高中数学新人教A版必修第二册 8.3简单几何体的表面积与体积 教案(4)

中学教案学科:数学年级:高一教师:授课时间:教学内容8.3.2 球的表面积和体积教学目标四基:1.掌握球体的表面积和体积公式;2.掌握简单组合体的表面积和体积的计算方法;3.通过球体体积公式的推导,使学生了解极限的思想方法四能:通过对球体体积公式的推导,使学生体会“分割、求近似值、再由近似和转化为球体的体积”的极限思想方法;通过对组合体的表面积和体积求法的分析,提高分析问题解决问题的能力。

数学核心素养:通过球体体积公式的推导,使学生体会用数学的思维理解世界的数学素养。

教材分析地位:三中几何体的表面积和体积的计算,是描述几何体的两个量。

重点:球的表面积和体积公式的运用,求组合体表面积和体积的方法难点:球体体积公式的推导学情分析初中学习过投影是化立体图形直观图的学习基础。

教法模式以学生为主体,采用诱思探究式教学,让学生独立思考,合作学习。

媒体运用多媒体展台,实物模型备注教 学 过 程知 识师生活动 设计意图一、课前小测(检测上节课所学的内容)1. 用一个边长分别为4,6矩形围成一个圆柱面,则这个圆柱的体积是2.用一个半径为6,圆心角为120°的扇形围成一个圆锥,则圆锥的体积为3. 圆台上底半径r 1=1,下底半径r=3,高h=3,求母线长l侧面积s,全面积s 24. 棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm ,求这个棱台的体积。

5. 圆台的上、下底面半径分别为2,4,母线长为,则这个圆台的体积V= 。

ππ3624huo ;3216π;(=)(=)(=);(答案:2325cm 3);二、进行新课(一)情景设置,引入新课前面学习了圆柱、圆锥、圆台的表面积和体积的求法。

除了上述三个旋转体之外还有一个什么旋转体?那么它的表面积和体积又是怎样计算?今天我们就研究这两个内容(二)数学本质,深入理解问题1: 阅读教材117页,回答:球的半径为R ,则球的表面积为?跟踪训练:(教材118页例3)如图8.3-4,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是0.3m,圆柱高0.6m.如果在浮标表面涂一层防水漆,每平方米需要0.5kg 涂料,那么给1000个这样的浮标涂防水漆需要多少涂料?(x取3.14)解:一个浮标的表面积为2πX0.15×0.6+4π×0.152=0.8478(m2),所以给1000个这样的浮标涂防水漆约需涂料0.8478×0.5×1000=423.9(kg).图8.3-4问题2:(1)在小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法,你能由球的表面积公式推导出球的体积公式吗?学生独立完成,而后教师组织评价教师设计问题,学生回答教师引导,学生回答教师组织,学生回顾且回答考查上节课内容的掌握情况回顾旋转体的类型,引出新课直接给出表面积公式组合体表面积的求法以及求表面积公式的运用(2)阅读教材118页。

高一数学空间几何体的表面积和体积知识点及题型例题

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。

二.命题走向----用选择、填空题考查本章的基本性质和求积公式;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。

2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。

四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。

点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。

例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。

(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

图1 图2解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。

作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。

由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。

∵∠A 1AM=∠A 1AN ,∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。

高中数学必修二 8 简单几何体的表面积与体积(精讲)(含答案)

高中数学必修二   8  简单几何体的表面积与体积(精讲)(含答案)

8.3 简单几何体的表面积与体积(精讲)考点一 旋转体的体积【例1】(2021·山东莱西·高一期末)在ABC 中,2AB =,32BC =,120ABC ∠=︒,若将ABC 绕BC 边所在的直线旋转一周,则所形成的面围成的旋转体的体积是______. 【答案】32π 【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以sin 602OA AB =︒==,1cos60212OB AB =︒=⨯=,所以旋转体的体积:()21332V OC OB ππ=⋅⋅-=故答案为:32π. 【一隅三反】1.(2021·湖南省邵东市第三中学高一期中)圆台上、下底面面积分别是π、4π积是( )A B .C D 【答案】D【解析】由题意1(4)3V ππ=+=.故选:D .2.(2021·山东任城·高一期中)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周六尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为6尺,米堆的高为5尺,问堆放的米有多少斛?”已知1斛米的体积约为1.6立方尺,圆周率约为3,估算出堆放的米约有_______斛.【答案】12.5【解析】设圆柱的底面半径为r 尺,则14⨯2πr =6,∴r ≈4,∴圆锥的体积V =21134543⨯⨯⨯⨯=20立方尺,∴堆放的米约有201.6=12.5斛. 故答案为:12.5.3.(2021·上海市七宝中学)已知圆锥的侧面展开图是半径为2的半圆,则圆锥的体积为________.【解析】由题意圆锥的母线长为2l =,设圆锥底面半径为r ,则22r ππ=,1r =,所以高为h体积为2211133V r h ππ==⨯=..考点二 旋转体的表面积【例2】(2021·吉林·延边二中高一期中)如图,圆锥的底面直径和高均是4,过PO 的中点O '作平行于底面的截面,以该截面为底面挖去一个圆柱,(1)求剩余几何体的体积 (2)求剩余几何体的表面积【答案】(1)103π;(2)8π+. 【解析】(1)由题意知,因为O '为PO 的中点,所以挖去圆柱的半径为1,高为2,剩下几何体的体积为圆锥的体积减去挖去小圆柱的体积, 所以22110241233V πππ=⋅⨯⨯-⨯⨯=.(2)因为圆锥的底面直径和高均是4,所以半径为2,母线l =所以圆锥的表面积为2122(4S πππ=⨯+⨯⨯+, 挖去的圆柱的侧面积为:22124S ππ=⨯⨯=,所以剩余几何体的表面积为12(4+4+8S S S πππ==+=+. 【一隅三反】1.(2021·广东·仲元中学高一期中)已知一个母线长为1的圆锥的侧面展开图的圆心角等于240︒,则该圆锥的侧面积为( )A B .881πCD .23π【答案】D【解析】将圆心角240︒化为弧度为:43π,设圆锥底面圆的半径为r 由圆心角、弧长和半径的公式得:4213r ππ=⨯,即23r = 由扇形面积公式得:22133S ππ=⨯⨯=所以圆锥的侧面积为23π.故选:D.2.(2021·全国·高一课时练习)已知圆台的上、下底面半径分别为10和20,它的侧面展开图的扇环的圆心角为180°,则这个圆台的侧面积为( ) A .600π B .300π C .900π D .450π【答案】A【解析】圆台的上底面圆半径10r '=,下底面圆半径20r =,设圆台的母线长为l ,扇环所在的小圆的半径为x ,依题意有:220()210l x x ππππ⨯=+⎧⎨⨯=⎩,解得2020x l =⎧⎨=⎩,所以圆台的侧面积20()()1020600+S r r l πππ'=⨯=+=. 故选:A3(2021·全国·高一课时练习)圆台的上、下底面半径和高的比为1:4:4,若母线长为10,则圆台的表面积为________. 【答案】168π【解析】圆台的轴截面如图所示,设上底面半径为r ,下底面半径为R ,高为h 则4h R r ==,则它的母线长为510l r =, 所以2r,8R =.故()(82)10100S R r l πππ=+=+⨯=侧,22100464168S S r R ππππππ=++=++=表侧.故答案为:168π考点三 多面体的体积【例3-1】(2021·全国·高一课时练习)如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,则三棱锥D-ACD 1的体积是( )A .16B .13C .1 2D .1【答案】A【解析】三棱锥D-ACD 1的体积等于三棱锥D 1-ACD 的体积,三棱锥D 1-ACD 的底面ACD 是直角边长为1的等腰直角三角形,高D 1D=1,∴三棱锥D-ACD 1的体积为V=1132⨯×1×1×1=16.故选:A【例3-2】(2021·全国·高一课时练习)若正四棱台的斜高与上、下底面边长之比为5∶2∶8,体积为14,则棱台的高度为( ) A .8 B .4C .2D .【答案】C【解析】如图,设棱台的上、下底面边长分别为2x ,8x ,斜高h '为5x ,则棱台的高h x ,由棱台的体积公式1()3V S S h '=得:2224161)31(6444++x x x x ⋅=,解得12x =,棱台的高为h =4x =2. 故选:C 【一隅三反】1.(2021·全国·高一课时练习)设四棱锥的底面是对角线长分别为2和4的菱形,四棱锥的高为3,则该四棱锥的体积为( ) A .12 B .24 C .4 D .30【答案】C【解析】所求的体积为11324432⨯⨯⨯⨯=,故选:C.2.(2021·全国·高一课时练习)棱台的上、下底面面积分别是2,4,高为3,则棱台的体积等于( )A .6B .3+C .6+D .6【答案】C【解析】依题意,棱台的上底面面积2S '=,下底面面积4S =,高为3h =,故由公式可知,棱台的体积是()()11243633V S S h '==⨯⨯=+ 故选:C.3.(2021·全国·高一课时练习)若一个四棱锥的底面的面积为3,体积为9,则其高为( ) A .13B .1C .3D .9【答案】D【解析】设四棱锥的高为h ,则由锥体的体积公式得:13×3h =9,解得h =9,所以所求高为9. 故选:D4.(2021·广东·仲元中学高一期中)如图所示,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD '''-则棱锥C A DD '''-的体积与剩余部分的体积之比为( )A .1:5B .1:4C .1:3D .1:2【答案】A【解析】由图知:13C A DD A DD V C D S'''''-''=⋅⋅,ABCD A B C D A D DA V C D S ''''''-''=⋅,而2A D DA A DD S S''''=,∴剩余部分的体积为53ABCD A B C D C A DD A DD V V C D S'''''''''--''-=⋅,∴棱锥C A DD '''-的体积与剩余部分的体积之比为1:5.故选:A考点四 多面体的表面积【例4】(2021·全国·高一课时练习)正六棱柱的底面边长为2,最长的一条对角线长为积为()A .4)B .2)C .1)D .8)【答案】B【解析】正六棱柱的底面边长为2,最长的一条对角线长为12BB =,它的表面积为)16=2622sin 6222412223S S S π=+⨯⨯⨯⨯⨯+⨯⨯==表面积底面积矩形.故选:B. 【一隅三反】1.(2021·全国·高一课时练习)若六棱柱的底面是边长为3的正六边形,侧面为矩形,侧棱长为4,则其侧面积等于( ) A .12 B .48 C .64 D .72【答案】D【解析】六棱柱的底面是边长为3的正六边形, 故底面周长6318C =⨯=, 又侧面是矩形,侧棱长为4, 故棱柱的高4h =,∴棱柱的侧面积72S Ch ==,故选:D2.(2021·全国·高一课时练习)如图,在正方体ABCD ­-A 1B 1C 1D 1中,三棱锥D 1­AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1C .1D .1∶2【答案】C【解析】设正方体的边长为a ,则表面积216S a =,因为三棱锥11D AB C -的各面均是正三角形,其边长为正方体侧面对角线.,三棱锥D 1­AB 1C 的表面积)222142S =⨯⨯=,所以2221::6S S a ==故选:C3(2021·全国·高一课时练习)长方体同一顶点上的三条棱长分别为2,2,3,则长方体的体积与表面积分别为( ) A .12,32 B .12,24 C .22,12 D .12,11【答案】A【解析】长方体的体积为22312⨯⨯=,表面积为()222+23+2332⨯⨯⨯=, 故选:A.4.(2021·全国·高一课时练习)(多选)正三棱锥底面边长为3,侧棱长为则下列叙述正确的是( )A .正三棱锥高为3 BC D 【答案】ABD【解析】设E 为等边三角形ADC 的中心,F 为CD 的中点,连接,,PF EF PE , 则PE 为正三棱锥的高,PF 为斜高,又PF ==32EF ==,故3PE ==, 故AB 正确.而正三棱锥的体积为1393⨯=,侧面积为1332⨯⨯=故C 错误,D 正确. 故选:ABD.5(2021·全国·高一课时练习)(多选)在正方体1111ABCD A B C D -中,三棱锥11D AB C -的表面积与正方体的表面积的比不可能是( )A .1:1B .C .D .1:2【答案】ABD【解析】设正方体1111ABCD A B C D -的棱长为a ,则正方体1111ABCD A B C D -的表面积为226S a =.三棱锥11D AB C -的正四面体,其中一个面的面积为212S ==,则三棱锥11D AB C -的表面积为2214S ==所以三棱锥11D AB C -的表面积与正方体的表面积的比为22126S S a ==::故选:ABD.考点五 有关球的计算【例5-1】(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( ) A .72π B .56π C .14π D .16π【答案】C【解析】设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴2414S R ππ球==. 故选:C【例5-2】(2021·广东高州·高一期末)已知正四面体ABCD的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为( ) A. BCD .3π【答案】C【解析】正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯=,所以a =1, 所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C. 【一隅三反】1.(2021·全国·高一课时练习)表面积为16π的球的内接轴截面为正方形的圆柱的体积为( )A .B .C .16πD .8π【答案】A【解析】由题意可知,4πR 2=16π,所以R =2,即球的半径R =2.设圆柱的底面圆半径为r 2R =,即2816r =,所以r ,∴V 圆柱=πr 2·2r =2π·π.故选:A.2.(2021·全国·高一课时练习)若一个正方体内接于表面积为4π的球,则正方体的表面积等于( )A .B .8C .D .【答案】B【解析】设正方体棱长为x ,球半径为R ,则24π4πS R ==球,解得1R =,22R ==,解得x =所以该正方体的表面积为22668S x ==⨯=正.故选:B.3.(2021·全国·高一课时练习)(多选)我国古代数学名著《九章算术》中将正四棱锥称为方锥.已知半球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点在半球的球面上,若方锥的体积为18,则半球的说法正确的是( ) A .半径是3 B .体积为18π C .表面积为27π D .表面积为18π【答案】ABC【解析】如图,PAC △是正四棱锥的对角面,设球半径为r ,AC 是半圆的直径,,棱锥体积为2312)1833V r r =⨯⨯==,3r =,半球体积为332231833V r πππ==⨯=,表面积为2223327S πππ=⨯+⨯=, 故选:ABC .4.(2021·全国·高一课时练习)一个球内有相距9cm 的两个平行截面,它们的面积分别为249cm π和2400cm π2,求球的体积和表面积.【答案】球的表面积为22500cm π,球的体积为362500cm 3π. 【解析】(1)当截面在球心的同侧时,如图①所示为球的轴截面,由截面性质知12AO //BO ,1O ,2O 为两截面圆的圆心,且11OO AO ⊥,22OO BO ⊥,①设球的半径为R ,因为2249O B ππ=,所以27cm O B =,同理得120cm O A =.设1cm OO x =,则2(9)cm OO x =+, 在1Rt O OA 中,22220R x =+,① 在2Rt OO B 中,2227(9)R x =++,② 联立①②可得15x =,25R =.所以2242500cm S R ππ==球,33462500cm 33V R ππ==球.(2)当截面在球心的两侧时,如图②所示为球的轴截面,由球的截面性质知,12O A//O B ,1O ,2O 分别为两截面圆的圆心,且11OO O A ⊥,22OO O B ⊥.②设球的半径为R ,因为2249O B ππ⋅=,所以27cm O B =.因为21400O A ππ⋅=,所以120cm O A =.设1cm O O x =,则2(9)cm OO x =-. 在1Rt OO A △中,22400R x =+,在2Rt OO B 中,22(9)49R x =-+, 所以22400(9)49x x +=-+, 解得15x =-(不合题意,舍去) 综上所述,球的表面积为22500cm π. 球的体积为362500cm 3π. 考点六 综合运用【例6】(2021·全国·高一课时练习)一块边长为12cm 的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.(1)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积V 表示为关于x 的函数,并标明其定义域; (2)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.请指出此时x 的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积S .【答案】(1)323(012)82x V x x =-+<<;(2)6cm x =,2S =侧.【解析】(1)结合平面图形数据及三棱柱直观图,求得三棱柱的高6cm 2x h ⎫=-⎪⎝⎭,其底面积22cm S =,则三棱柱容器的容积232236624282x x x x V Sh x x ⎫⎛⎫==-=-=-+⎪ ⎪⎝⎭⎝⎭, 即所求函数关系式为323(012)82x V x x =-+<<;(2)此时6cm x =,而相应棱柱的高h ,故侧面积为236S =⨯=. 【一隅三反】1.(2021·安徽镜湖·高一期中)如图所示,在边长为5的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥的底面,围成一个圆锥,求该圆锥的表面积与体积.【答案】表面积10π. 【解析】设圆的半径为r ,扇形的半径为R ,由题意,得(522R r Rr ππ⎧+=⎪⎨=⎪⎩,解得r R ⎧=⎪⎨=⎪⎩所以围成的圆锥的母线长为l =r =h ∴圆锥的表面积210S rl r πππ=+=;∴圆锥的体积为213V r h π==.2.(2021·全国·高一课时练习)有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【答案】36【解析】易知由下向上三个正方体的棱长依次为2,1.考虑该几何体在水平面的投影,可知其水平投影面积等于下底面最大正方体的底面面积.∴S 表=2S 下+S 侧=2×22+4×[22+2+12]=36, ∴该几何体的表面积为36.3.(2021·全国·高一课时练习)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m (高不变);二是高度增加4 m (底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些?【答案】(1)2563π(m 3),96π(m 3);(m 2),60π(m 2);(3)方案二比方案一更加经济. 【解析】(1)若按方案一,仓库的底面直径变成16 m ,则仓库的体积为V 1=13S ·h=13×π×2162⎛⎫⎪⎝⎭×4=2563π(m 3).若按方案二,仓库的高变成8 m ,则仓库的体积为V 2=13S ·h=13×π×2122⎛⎫⎪⎝⎭×8=96π(m 3).(2)若按方案一,仓库的底面直径变成16 m ,半径为8 m.圆锥的母线长为l 1m ),则仓库的表面积为S 1=π×8×(m 2). 若按方案二,仓库的高变成8 m.圆锥的母线长为l 210(m ), 则仓库的表面积为S 2=π×6×10=60π(m 2).(3)由(1)、(2)知,V 1<V 2,S 2<S 1,故方案二体积更大,表面积更小,所需耗材更少,即方案二比方案一更加经济.。

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。

对于这一类学生有以下几点建议。

简单几何体的表面积和体积(1)课件-高一下学期数学人教A版(2019)必修第二册

简单几何体的表面积和体积(1)课件-高一下学期数学人教A版(2019)必修第二册
因为棱锥1、2的底面积相等,即:SAAB SABB 高也相等,即:点C到平面 所以棱锥1、2的体积相等.
知识点一 棱柱、棱锥、棱台的体积
问题4:由祖暅原理可知,底面面积相等,高相等的两个棱锥,体 积相等.那么如果棱锥的底面积是S,高为h,则棱锥的体积公式 是什么?
因为棱锥2、3的底面积相等,即: SBBC SBCC 高也相等,即:点 到平面B 所以棱锥2、3的体积相等.
分析:正四棱台的上底面和下底面均为正方形,侧面是由四个等腰梯形组成的.
小结与反思
要计算棱台的体积关键是要弄清楚棱台的五个基本量(上、下 底面边长、高、斜高、侧棱),然后将基本量转化到直角三角形中 求解,最后再代入体积公式求出体积.
课堂检测
5-1、(金太阳P1141题)已知高为3的三棱柱ABC-A1B1C1的底面边长为1 的正三角形,如图所示,则三棱锥B1-ABC求它的体积.
多面体的表面积就是围成多面体的各个面的面积之和. 棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.
知识点一 棱柱、棱锥、棱台的表面积
问题2:在初中已经学过了正方体和长方体的表面积,你知道正方体 和长方体的展开图与其表面积的关系吗?
几何体表面积
展开图
空间问题
平面图形面积 平面问题
知识点一 棱柱、棱锥、棱台的表面积
棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧 面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面 积和底面面积之和.
这样,求它们的表面积的问题就可转化为求平行四边形、三角形、梯 形的面积问题.
2
PART TWO
例题精讲
例1.(教材P114)四面体P-ABC的各棱长均为a,求它的表面积 .
=

球体的表面积与体积-高一数学课件(人教A版2019必修第二册)

球体的表面积与体积-高一数学课件(人教A版2019必修第二册)

典例精析
题型二:球的截面问题
球的截面问题
性质1: 用一个平面去截球,截面是圆面;
性质2: 球心和截面圆心的连线垂直于截面.
性质3: 球心到截面的距离与球的半径及截面的
半径的关系: = −
O1
例4.已知知半径为5的球的两个平行截面圆的周长分别为6π和8π,则这
两个截面间的距离为________.
探究新知
②再探究球的表面积公式
球的体积,等于所有小棱锥的体积和
球 = + + ⋯ +
球 =



+



+ ⋯+




= ( + + ⋯ + )


= 球

∴ 球 =



=


×



=
极限思想
02
球体的表面积和体积公式的推导
然后代入体积或表面积公式求解.
2.关键要素:半径和球心是球的关键要素,把握住了这两点,计算球的
表面积或体积的相关题目也就轻松自如了.
典例精析
题型二:球的截面问题
例3.一平面截一球得到直径为 的圆面,球心到这个平面的距离是 ,则
该球的体积是( ).
A.
B.
应用新知
题型一:球的表面积和体积
例1.如图,某种浮标由两个半球和一个圆柱黏合而成,半球的直径是. ,
圆柱高. .如果在浮标表面涂一层防水漆,每平方米需要. 涂料,
那么给个这样的浮标涂防水漆需要多少涂料?(取. )
解:一个浮标的表面积为2 × 0.15 × 0.6 + 4 × 0.152 = 0.8478(2 ),

高一数学空间几何体的表面积和体积知识点及题型例题

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。

二.命题走向———-用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲l 表示侧棱长。

12 上、下底面半径,R 表示半径。

四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16即l 2=16所以l =4(cm ).点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。

我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系.例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB⊥AD,∠A 1AB=∠A 1AD=3π。

(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

图1 图2解析:(1)如图2,连结A 1O ,则A 1O⊥底面ABCD 。

作OM⊥AB 交AB 于M ,作ON⊥AD 交AD 于N,连结A 1M ,A 1N 。

由三垂线定得得A 1M⊥AB,A 1N⊥AD。

∵∠A 1AM=∠A 1AN ,∴Rt△A 1NA≌Rt△A 1MA ,∴A 1M=A 1N ,从而OM=ON 。

∴点O 在∠BAD 的平分线上。

(2)∵AM=AA 1cos 3π=3×21=23∴AO=4cosπAM =223。

又在Rt△AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29,∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=

sh

(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积

简单几何体的表面积和体积 课时1(课件)高一数学(人教A版2019必修第二册)

简单几何体的表面积和体积  课时1(课件)高一数学(人教A版2019必修第二册)

情境设置
合作探究·提素养
问题1:你能计算出小明搭的帐篷的侧面积吗?
[答案] 侧面三角形的高为 ,所以侧面积为 .
问题2:棱柱、棱锥、棱台的侧面展开图是什么?
[答案] 棱柱的侧面展开图是平行四边形,一边是棱柱的侧棱,另一边等于棱柱的底面周长,如图①所示;棱锥的侧面展开图是由若干个三角形拼成的,如图②所示;棱台的侧面展开图是由若干个梯形拼接而成的,如图③所示.
4.已知正三棱柱的底面边长为1,侧棱长为2,则它的侧面积为___,表面积为_ ______.
6
[解析] 正三棱柱的底面为正三角形,侧面为三个全等的矩形,所以侧面积为 , 又 ,所以它的表面积为 .
探究1 棱柱、棱锥、棱台的表面积
小明在自家花园为他家小狗搭了个外形为正三棱锥的小帐篷,帐篷的底面边长为 ,侧棱长为 ,如图所示.
求多面体的表面积方法:(1)对于简单几何体,我们可利用公式,直接求出其表面积,而在求不规则几何体的表面积时,通常将所给几何体分割或补全成基本的柱、锥、台体,先求出这些基本的柱、锥、台体的表面积,再通过求和或作差,求出几何体的表面积.
(2)求解棱锥的表面积时,注意棱锥的四个基本量:底面边长、高、斜高、侧棱.并注意它们组成的直角三角形的应用.

自学检测
2.若长方体的长、宽、高分别为 , , ,则长方体的体积为( ).
A. B. C. D.
B
[解析] .
3.已知正四棱锥的底面边长为2,高为3,则它的体积为( ).
A. B. C. D.
B
[解析] 正四棱锥的底面积为 ,则其体积为 .
[解析] .故选B.
随堂检测·精评价
2.棱长都是1的三棱锥的侧面积为( ).
A. B. C. D.

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

【课件】圆柱、圆锥、圆台、球表面积和体积课件高一下学期数学人教A版(2019)必修第二册

例析
例2 如右图,圆柱的底面直径和高都等于球的直径, 求球与圆
柱的体积之比.
解:(1)设球的半径为R,则圆柱的底面半径
为R,高为2R.
4 3
因为 V球
R ,V 圆柱
R2 2R 2 R3
3
所以 V球 : V圆柱
2
3
问题:球的表面积与圆柱的侧面积之比呢?
R O
练习
题型一:圆柱、圆锥、圆台的表面积
例1.(1)已知圆柱的上、下底面的中心分别为1 ,2 ,过直线1 2 的平面截该圆

2.若圆柱的底面圆的直径与圆柱的高相等,则圆柱的侧面展开图是正方形. (
答案:√,×.
辨析2:若圆柱的底面半径为1,母线长为2,则它的侧面积为(
A.2
答案:D.
B.3
C.
D.4
).

新知探索
割 圆 术
早在公元三世纪,我国数学家刘徽为推
导圆的面积公式而发明了“倍边法割圆术”.
他用加倍的方式不断增加圆内接正多边形的
∴ = 5,∴ = × (2 + 6) × 5 + × 22 + × 62 = 40 + 4 + 36 = 80.
练习
题型二:圆柱、圆锥、圆台的体积
例2.(1)若一个圆柱与圆锥的高相等,且轴截面面积也相等,则圆柱与圆锥的体积
之比是(
).
A.1
B.1:2
C. 3:2
D.3:4
的夹角为60°,轴截面中的一条对角线垂直于腰,则圆台的体
积为_____.
解:设上、下底面半径,母线长分别为,,.
作1 ⊥ 于点,则1 = 3,∠1 = 60°.
又∠1 = 90°,∴∠1 = 60°,∴ =

第八章§8.3.1棱柱、棱锥、棱台的表面积和体积高一数学人教A版必修第二册课件

第八章§8.3.1棱柱、棱锥、棱台的表面积和体积高一数学人教A版必修第二册课件
因为△PBC 是正三角形,其边长为 a,所以 S△PBC= 43a2. 因此,四面体 P-ABC 的表面积 SP-ABC=4× 43a2= 3a2.

棱柱、棱锥、棱台的体积
知识梳理
几何体 棱柱 棱锥
体积
V棱柱=Sh 1
V棱锥= 3 Sh
说明 S为棱柱的 底面积 ,h为棱柱的_高__ S为棱锥的ቤተ መጻሕፍቲ ባይዱ底面积 ,h为棱锥的_高__
1234
本课结束
由题意知V长方体ABCD-A′B′C′D′=1×1×0.5=0.5(m3), V 棱锥 P-ABCD=13×1×1×0.5=16(m3). 所以这个漏斗的容积 V=12+16=23≈0.67(m3).
反思感悟
(1)求组合体的表面积和体积,第一应弄清它的组成,其表面有 哪些底面和侧面,各个面应该怎样求,然后再根据公式求出各 面的面积,最后再相加或相减.求体积时也要先弄清组成,求出 各简单几何体的体积,然后再相加或相减.
1
1
A.4
B.2
3 C. 6
√D.
3 4
设三棱锥B1-ABC的高为h,
V 则 三棱锥B1 ABC
=13·S△ABC·h=13×
43×3=
3 4.
(2)正四棱台两底面边长分别为20 cm和10 cm,侧面面积为780 cm2.求其 体积.
正四棱台的大致图形如图所示,其中A1B1=10 cm,AB=20 cm, 取A1B1的中点E1,AB的中点E,则E1E为斜高. 设O1,O分别是上、下底面的中心,则四边形EOO1E1为直角梯形. ∵S 侧=4×12×(10+20)×EE1=780(cm2), ∴EE1=13(cm). 在直角梯形EOO1E1中, O1E1=12A1B1=5(cm),OE=12AB=10(cm),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3月18
高一数学组
主备人
李军伟
备课内容
8.3简单几何体的表面积与体积
教学目标
通过本节课的学习使学生达到以下学习目标:
1、知道柱、锥、台、球体的表面积与体积的计算公式
2、能用公式解决简单的实际问题
3、进一步提高空间想象能力,并初步感悟将空间问题平面化的解决立体几何问题的基本思想
教学重点
柱、锥、台、球体的表面积和体积公式.
教学环节
问题情景
在初中与小学我们已经学习了哪些几何体的表面积与体积公式?
并加以归类
新课
探究
(20分钟)
1、柱、锥、台、球体的表面积公式
结合实例推到表面积公式,重点理解几何体的表面展开图的画法
2、柱、锥、台、球体的体积公式
注意说明柱、锥、台、球体的体积公式见得关系。
范例
讲解
(7分钟)
例1、设置椎体的表面积的问题
教学难点
球体体积公式的推到
课时安排
1课时
教学方法
多媒体演示法,启发诱导、类比法
学情分析
学生已学习长方体、正方体、圆柱的体积公式及表面积公式,但对台体、球体的表面积、体积公式还没有认识,不能熟练进行简单几何体的表面积、体积究空间几何体的度量体积与面积问题,是研究几何体的重点内容之一,通过本节课学习增强感受转化与类比,一般与特殊、极限等数学思想方法、提高逻辑思维、直观想象等数学素养的养成
练习台体的表面积问题
例2、设置台体的体积问题
练习主体体积问题,球的体积问题
课堂小结
柱、锥、台、球体的表面积与体积公式
小组练习
设置月10道小题
包含侧面展开图的问题、求表面积问题、求体积问题、求几何体高、斜高的问题等(分组竞赛)
作业布置
教材习题
相关文档
最新文档