力矩分配法

合集下载

力矩分配法

力矩分配法

§8.1力矩分配法的基本概念力矩分配法是在位移法的基础上发展起来的一种渐近法,它主要应用于分析连续梁和无结点线位移的刚架。

杆端弯矩的正负号规定与位移法相同。

一、名词解释1.转动刚度S ij转动刚度表示杆端对转动的抵抗能力,它在数值上等于使杆端产生单位转角时需要施加的力矩。

远端固定:S AB=4i远端铰支:S AB=3i远端滑移:S AB=i远端自由:S AB=0其中:i=EI/l;2.分配系数μij由转动刚度的定义可知:M AB= S AB•θA=4i AB•θAM AC= S AC•θA=i AC•θAM AD= S AD•θA=3i AD•θA取结点A为隔离体,列ΣM=0,可得:M= S AB•θA+ S AC•θA+ S AD•θAM M∴θ= ──────── = ──S AB + S AC + S AD ΣSΣS表示各杆A端转动刚度之和,把θ反代入,可得:M AB=M• S AB/ΣS M AC=M• S AC/ΣS M AD=M• S AD/ΣS令μAj= S Aj/ΣS 则 M Aj=μAj•MμAj称为分配系数,等于某杆的转动刚度与交于结点的各杆的转动刚度之和的比值;同一结点各杆分配系数之间存在下列关系:ΣμAj=μAB +μAC +μAD = 13.传递系数C AjM AB =4i AB•θA,M BA =2i AB•θAM AC =i AC•θA, M CA = -i AC•θAM AD =3i AD•θA,M DA =0C AB= M BA / M AB =1/2∴远端固定:C=1/2远端滑动:C=-1远端铰支:C=0用下列公式表示传递系数的应用:M BA = C AB• M AB系数C AB称为由A端至B端的传递系数;二、力矩分配的基本概念如下图所示结构,用位移法计算时,此结构有一具未知量Z1,典型方程为:r11•Z1 + R1p = 0r11=3i12 + i13 + 4i14 = S12 + S13 + S14 =ΣSR1P =ΣM1j g =M12g +M13g =M1gR1P代表附加刚臂上反力矩,它等于汇交于结点1的各杆端的固端弯矩的代数和,用M1g表示。

力矩分配法

力矩分配法

力矩分配法简介力矩分配法是一种常用的工程分析方法,用于计算和分析物体受到的力的分布情况以及力矩的平衡。

根据力矩分配法,物体处于平衡状态时,所有作用于物体上的力矩和为零。

利用这个原理,可以计算物体上各点的力的大小和分布。

基本原理力矩是一个力在距离某一点的作用线上产生的旋转效果。

当物体受到多个力作用时,在平衡状态下,力的合力和力矩的合力都为零。

根据力矩的定义,可以得到如下的力矩分配方程:其中,表示物体上所有力矩的代数和。

力矩分配法的步骤力矩分配法一般包括以下几个步骤:1.给定各个力的大小和作用点位置。

2.计算每个力的力矩。

力的力矩可以通过力乘以力臂得到,力臂是力的作用点到某一参考点的直线距离。

3.将各个力矩代入力矩分配方程,求解未知力的大小和作用点位置。

可以利用代数方程或者力矩图等方法进行计算。

4.验证计算结果,检查力矩的合力是否为零,以验证平衡状态。

5.如果力矩不为零,则需要重新调整力的大小和作用点位置,再次计算和验证。

力矩分配法的应用力矩分配法在工程中有广泛的应用。

以下是一些常见的应用例子:1.结构平衡:力矩分配法可以用于计算结构上各个部分受力的平衡情况,如梁、桁架等结构的受力分析。

2.机械设计:力矩分配法可以用于计算机械装置中各个零件受力的分布情况,如齿轮传动、支撑结构等。

3.车辆平衡:力矩分配法可以应用于汽车、飞机等交通工具的平衡分析,确保车辆的稳定性和安全性。

4.物体悬挂:力矩分配法可以计算物体悬挂时各个支点的受力情况,如吊车、吊车臂等。

总结力矩分配法是一种常用的力学分析方法,通过计算力矩的平衡来推导出物体上各点的力的分布情况。

它在工程中的应用非常广泛,可以用于结构平衡、机械设计、车辆平衡等领域。

使用力矩分配法可以帮助工程师更好地理解和分析各种力的作用情况,从而设计出更加稳定和安全的结构和设备。

第5章 力矩分配法

第5章 力矩分配法
S S BA 1 BC BC 1 SB 2 SB 2 传递系数:CAB 1 CC B 0
BA 分配系数:
m 118
A -32 29.5 0.5 32 59 91
91
固端弯矩:
C
ql 2 24 42 M AB 32 12 12 M BC - 3Pl 3 200 4 -150 16 16
B
2
C
l
ql / 8 ql 2 /14 3ql 2 / 56 ql 2 /14 ql 2 /14 ql 2 / 28 A
SCA 4 EI l SCB 3EI l
A
l
解:仅C点有转角位移,结点转动刚度: 力矩分配系数: CA SCA 4 , CB SCB 3 传递系数:
1 3 11 384 117 384 1 12
1 12 1 24 16 384 1 48 40 384
3 16 11 128 35 128
ql
2
解:仅A点有转角位移,结点转动刚度:
1, 3, 4 分配系数: AB 8 AC AD 8 8 1 C 1, C , C AC 0 AD 传递系数: AB 2 11 2 1 1 3 2 F ql ql 固端力及约束力矩: 1P 48 3 12 16 2 分配力矩: 11ql / 48
SC S AB S AC S AD i 3i 4i 8i
• 最后根据各杆端力矩 分配结果画弯矩图。
• 注意跨中荷载的弯矩 叠加。
117 35 16 48 75 48 40 96
1 8
4 8
3 8
1 6 11 384 75 384
1 3 11 384 117 384 1 12

力矩分配法公式

力矩分配法公式

力矩分配法公式力矩分配法是结构力学中求解超静定结构的一种重要方法。

这玩意儿听起来好像挺高深莫测的,但其实只要咱们一步步来,也能把它搞明白。

我记得之前给学生们讲这个知识点的时候,有个叫小李的同学,那表情简直就像是被扔进了一团迷雾里,完全找不着北。

我就问他:“小李,咋啦?”他苦着脸说:“老师,这力矩分配法的公式我咋看都像外星文,根本理解不了啊!”其实啊,力矩分配法的核心就是通过逐次分配和传递不平衡力矩,来逐步逼近真实的内力解。

那力矩分配法的公式到底是啥呢?咱们来瞅瞅。

先说基本的分配系数。

分配系数μij 等于连接在节点 i 的 j 杆端的转动刚度 Sij 除以交于节点 i 的各杆端转动刚度之和∑Sik 。

这就好比一群小伙伴分糖果,每个人能分到的糖果数取决于自己手里的“筹码”(转动刚度)占总“筹码”的比例。

再看传递系数 Cij。

对于不同的杆件,传递系数是不一样的。

比如两端固定的梁,近端的传递系数是 1/2,远端是 0;一端固定一端铰支的梁,固定端的传递系数是 1/2,铰支端是 0 。

然后就是不平衡力矩的分配和传递啦。

先计算不平衡力矩 M,它等于固端弯矩之和。

接着将不平衡力矩按照分配系数分配给各杆端,得到分配弯矩。

分配弯矩再乘以传递系数传递到远端,就得到传递弯矩。

就拿一个简单的连续梁来说吧。

假设我们有一个两跨连续梁,AB跨和 BC 跨,B 节点处有一个集中力。

我们先计算各杆端的转动刚度,确定分配系数。

算出不平衡力矩后进行分配和传递,一次次地重复这个过程,直到误差在允许范围内。

在实际解题的时候,可别被那些密密麻麻的数字和符号给吓住了。

要像剥洋葱一样,一层一层地来。

就像小李同学,在我给他耐心讲解,又带着他做了几道练习题后,他终于恍然大悟,一拍脑门说:“哎呀,老师,原来也没那么难嘛!”总之,力矩分配法公式虽然看起来有点复杂,但只要我们理解了其中的原理,多做几道题练练手,就能把它拿下。

同学们,加油哦!。

《力矩分配法 》课件

《力矩分配法 》课件

05
力矩分配法的未来发展与展 望
力矩分配法在新型结构中的应用
新型材料结构
随着新型材料的不断涌现,力矩分配法在复合材料、智能材料等新型结构中的应 用将更加广泛,为复杂结构的分析和设计提供有力支持。
新型连接方式
针对新型连接方式如焊接、胶接等,力矩分配法将进一步完善其理论体系,以适 应不同连接方式的特性,提高结构的安全性和可靠性。
通过将结构划分为若干个独立的杆件或单元,并假定每个杆件的一端为固定端 ,另一端为自由端,然后根据力的平衡条件和变形协调条件,逐个求解各杆件 的内力和变形。
适用范围与限制
适用范围
适用于分析具有连续梁和刚架结构形 式的问题,如桥梁、房屋、塔架等。
限制
对于具有复杂结构形式或非线性性质 的问题,力矩分配法可能无法得到准 确的结果,需要采用其他数值方法或 实验方法进行分析。
根据杆件长度和截面特性,将杆件力 矩分配至杆件两端。
分配过程中要考虑杆件的弯曲变形和 剪切变形。
计算杆件内力
根据杆件力矩和截面特性,计算杆件的内力(弯矩和剪力) 。
内力的计算要考虑材料的力学性能,如弹性模量、泊松比等 。
03
力矩分配法的应用实例
桥梁工程中的应用
1 2
3
桥梁设计
力矩分配法可以用于计算桥梁的弯矩、剪力和轴力等,为桥 梁设计提供依据。
与其他方法的比较
与有限元法比较
力矩分配法适用于分析具有连续梁和刚架结构形式的问题,计算过程相对简单,但无法处理复杂的结 构形式和非线性问题。有限元法则可以处理各种复杂的结构形式和非线性问题,但计算过程相对复杂 。
与实验方法比较
实验方法可以获得较为准确的结果,但需要耗费大量的人力和物力资源,且实验过程可能存在风险。 力矩分配法虽然可能存在一定的误差,但可以在一定程度上替代实验方法,节省资源和时间。

力矩分配法

力矩分配法

注意:μ12+μ13+μ14=1 C13=1/2
C12=0
C14=-1 结论
计算简图
远端支承
转动刚度
传递系数
A MAB
θ=1
B MBA B MBA B
固定 铰支
SAB=4i
SAB=3i
CAB=1/2
θ=1 A M
AB
CAB=0
A MAB
θ=1
滑移
MBA
SAB=i
CAB=-1
A MAB
θ=1
B MBA
例2.如图连续梁,用力矩分配法计算并绘弯矩图。
2)加约束确定固端弯矩 和不平衡力矩
M M M
f BC
f
CB
f
CD
1 pl 60kNm 8 1 pl 60kNm 8 1 2 ql 90kNm 8
例2.如图12所示,用力矩分配法计算并绘弯矩图。
1)计算各结点的分配系数 结点B:
第6章 力矩分配法
学习目标
1.牢记力矩分配法的使用条件是没有结点 线位移。 2.掌握力矩分配法计算连续梁和无结点线 位移刚架。
学习重点
力矩分配法计算连续梁 1)计算转动刚度、分配系数和传递系 数; 2)计算各杆固端弯矩和不平衡力矩。 3)不平衡力矩的分配和传递 4)最后杆端弯矩的计算。
第一节 力矩分配法的基本概念
80kN A 3m 3m 80kN A
120 15
B 6m
C 6m
10kN D
10kN 120 120kNm
B C 6m
3m 分配系数 固端弯矩 分配弯矩
3m
单位:kNm
0.5 0 0 90 -75
0.5 60 -75 120 0

力矩分配法

力矩分配法
基于位移法的力矩分配法,直接求得杆端弯矩,精度满足工程 要求,应用广泛。适合于手算,与电算并存。常见还有无剪力 分配法、迭代法等。
§7-2 力矩分配法的基本概念
1.正负号的规定
力矩分配法中对杆端弯矩、固端弯矩的正负号规
﹑ 定,与位移法相同,即假设对杆端顺时针转为
正,反之为负;对结点则以逆时针转为正,反之 为负。
MB B MFBC=0
MB
M
F BA
M
F BC
M BFA
(顺时针为正)
A M’AB
MB 放松约束
C
B
(c)
M’BA M’BC
②放松B点的约束,使之由MB到零(原结构没有这
个约束)。
方法:在B点施加力矩-MB
-MB单独作用: 分配力矩: M'BA , M'BC
传递力矩:
M
' AB
③叠加: (b)、 (c)相加后与原结构受力相同。
i AC
1 3
iCE
1 3
AG
4/3 4/3 41/3
0.5
AC
41/ 3 4/3 41/3
0.5
20kN/m A 2I G
I
CI H
I
E
基本结构
CA
41/
3
41/ 3 2/ 3
41/
3
4/3 10 / 3
0.4
CH
2/3 10 / 3
0.2 ,
CE
4/3 10 / 3
0.4
(2)固端弯矩
则: M Aj Aj M 即: M AB AB M
M
D
A
B
A
M AC AC M
M AD AD M

结构力学第七章力矩分配法

结构力学第七章力矩分配法

§7-1 引言
➢ 力矩分配法是基于位移法的逐步逼近精确解的 近似方法。
➢ 力矩分配法可以避免解联立方程组,其计算精 度可按要求来控制。在工程中曾经广泛应用。
➢ 从数学上说,是一种异步迭代法。
➢ 单独使用时只能用于无侧移(线位移)的结构。
➢ 力矩分配法的理论基础是位移法,力矩分配法 中对杆端转角、杆端弯矩、固端弯矩的正负号 规定,与位移法相同(顺时针旋转为正号)。
1
远端铰支时: 3i A i B
C=0
1
远端定向时: i A i B
C=-1
与远端支承 情况有关
§7-2 力矩分配法的基本原理
例7-1 结构的A端、B端,C端的支撑及各杆刚度如图
所示,求SBA、SBC、SBD及CBA、CBC、CBD。
(a)
B
C
A EI
EI
EI l
D
l
l
(b) A
B EI
EI
θB C
结点B作用的力偶,按各杆的分配系数分配给各杆的近端;
可见:各杆B 端的弯矩与各杆B 端的转动刚度成正比。 例7-1 结构的A端、B端,C端的支撑及各杆刚度如图所示,求SBA、SBC、SBD及CBA、CBC、CBD。
近端弯矩MBA、MBC为
§7-2 力矩分配法的基本原理
利用结点B的力矩平衡条件∑MB=0,得
A
B
k=EI/l 3 l
A
θ =1
B
Δ =θ l
FyB=k
SAB
A
B
FyB EI/l
解:当A 端转动θ=1时,因AB杆是刚性转动,所以B 产
生向下的竖向位移Δ=l×θ=l ,弹簧反力FyB=kΔ=EI/l2 。则

9力矩分配法

9力矩分配法

CB 1
CD 0
③传递系数
1 CCB 2
CBC 0
第9章 力矩分配法
§9-3 对称结构的计算
取一半结构进行计算,注意杆件截半后,线刚度增倍。 例9-3-1 求矩形衬砌在上部土压力作用下的弯矩图。
q
A EI1 F
B
EI2
K
l2
C
解:设梁的线刚度为i1=EI1/l1 柱的线刚度为i2=EI2/l2
⑸最后一轮循环最后一个结点分配后只向其他结点传递。
第9章 力矩分配法
⑹不能同时放松相邻结点(因定不出其转动刚度和传递系数), 但可以同时放松所有不相邻的结点,以加快收敛速度。
A
B
C
D
E
B、D同时分配后向C传递,C分配后再同时向B、D传递,如此循 环。
A
B
C
D
E
F
B、D同时分配后同时向C、E传递,C、E同时分配后再同时向B、 D传递,如此循环。
A
B
15.86 3m 3m
C M (kNm) 6m
结点
A
B
C
解:① 不平衡力矩
m
g AB
Pl 8
20 6 8
15
m
g BA
Pl 8
15
mBgC
ql2 8
9
mBg
m
g BA
mBgC
6
杆端
AB
BA BC CB ②分配系数
分配系数
4/7 3/7
固端弯矩 -15
15
-9 0
平衡
分配传递 -1.72 -3.43 -2.57 0
第9章 力矩分配法
§9-1 力矩分配法的基本概念

第7章 力矩分配法

第7章   力矩分配法

M BA 1 C BA M AB 2
传递系数
远端固定
C AC
M CA 1 M AC M DA 0 M AD
远端滑动
C AD
远端铰支
远端弯矩等于近端弯矩乘以传递系数。
§7-1 力矩分配法的基本概念
2பைடு நூலகம்
基本运算(单结点的力矩分配)
计算FP作用下的杆端弯矩。
(1)在结点B加一个阻止转动的约束,阻止B点的转动。
C M CB
28.6 d CM BC 0 ( 42.9) 0
传递弯矩
与远端支承 情况有关
固定状态: F M AB ql 2 / 12 100kN .m
F M BA 100kN .m F F M BC M CB 0
举例分析2:
q 12kN / m
A
A
M AB S AB M S
A
S AB
M S AC S AD
M AD S AD M S
A
M AC
S AC M S
A
§7-1 力矩分配法的基本概念
M AB S AB M S
A
M AC
S AC M S
A
M AD
S AD M S
A
A端弯矩与各杆A端的转动刚度成正比。 统一用下列公式
M Aj Aj M
Aj
S
A
S Aj
——分配系数
力偶M,按各杆的分配系数分配于各杆的A端。 很明显

Aj
1
§7-1 力矩分配法的基本概念
(3)传递系数 由位移法中的刚度方程得
M AB 4i AB A M BA 2i AB A M AC i AC A M CA iCA A M AD 3i AD A M DA 0

力矩分配法

力矩分配法
力矩分配法
问题的提出:
力矩分配法: 力矩迭代法 无剪力分配法
力矩分配法 :主要用于计算连续梁和无结点线位移的刚架。
力矩迭代法 :适用于有结点线位移的刚架。
无剪力分配法 :适用于符合倍数关系的有结点线位移的刚架。
§1 力矩分配法的基本概念
一、力矩分配法依据
1. 理论基础:位移法 2. 解题方法:渐进法 3. 适用范围:连续梁、无结点线位移的刚架 4. 杆端弯矩及结点转角正负号规定同位移法
§3 力矩分配法中特殊问题的处理
一、刚结点集中力偶的处理
刚结点的集中力偶对杆端弯矩表达式没有影响,也就是不产生固端弯矩。 集中力偶的正负号规定以绕刚结点逆时针转为正,分配计算与固端弯矩等效。
二、支座移动和温度变化时的计算
(一)特点 把支座移动、温度变化看作广义荷载。 荷载引起的杆端弯矩
支座移动、温度变化引起的杆端弯矩
二、基本概念
(一)转动刚度
转动刚度表示杆端对转动的抵抗能力。
数值上等于使杆端产生单位转角时在转动端需施加的力矩。
1. 转动刚度用SAB表示,施力端A称为近端,B端称为远端。 2. SAB与杆件的弯曲线刚度i=EI/l有关,还与远端的支承情况有关。 3. SAB是指施力端在没有线位移条件下的转动刚度。 4. A端可为固定铰或可动铰支座,也可为可转动(但不能移动)的刚结点。
(二)分配系数
M1 0
M12 M13 M14 M
Z1
M 12 4i1 S121 M 13 3i1 S131 M i S 1 14 1 14
1
M M S12 S13 S14 S
1 j
S
S1 j
S12 M 12 M M 12 S S13 M 13 M 13 M S S M 14 14 M 14 M S

第九章 力矩分配法

第九章  力矩分配法

BC ( M B ) M BC
例1. 用力矩分配法作图示连续梁 (1)B点加约束 的弯矩图。 167.2 M图(kN· m) 200 6 115.7 F 200kN 150 kN m MAB = 20kN/m 8 90 300 F= 150 kN m M BA EI EI C B A 2 20 6 90kN m MBCF= 3m 6m 3m 8 MB= MBAF+ MBCF= 60 kN m 200kN 60 20kN/m (2)放松结点B,即加-60进行分配 C 设i =EI/l B A 计算转动刚度: -150 150 -90 SBA=4i SBC=3i + -60 4i 0.571 0.429 BA 0.571 分配系数: 4i 3i C A -17.2 -34.3 B -25.7 0 0.571 A -150
Hale Waihona Puke 第9章 力矩分配法【例9-6】设图示连续梁支座A顺时针转动了0.01rad,支座B、C分别下沉了
ΔB =3cm和ΔC =1.8cm,试作出M图,并求D端的角位移θD。已知 EI=2×104kN· m2。
A =0.01rad
B A EI
B
C EI =3cm 4m EI
C =1.8cm
D
4m 3.47 A
分 配 与 传 递
-5.72
+2.86 +2.86 -0.41 +0.21 +0.20 -81.93 +81.93
-11.43 -8.57
4i 0.625 4i 3 0.8i DE BA 0.375
2、计算固端弯矩
F M DE 2kN m F M DC 5.62kN m F M CD 9.38kN m

结构力学(第四章)-力矩分配法

结构力学(第四章)-力矩分配法
C M AB = CM BA = 28.6
C M CB = 0
0 0
配 传 递
最终杆端弯矩: 最终杆端弯矩 M AB = 100 28.6 = 128.6 q = 12kN / m 42.9 M BA = 100 57.1 = 42.9 M BC = 0 42.9 = 42.9 128 .6 M CB = 0
C d M AB = CM BA = 0.5 × ( 57.1) = 28.6 C d M CB = CM BC = 0 × ( 42.9) = 0
传递弯矩
与远端支承 情况有关
固定状态: 固定状态 F M AB = ql 2 / 12 = 100kN .m F M BA = 100kN .m F F M BC = M CB = 0 放松状态: 放松状态 d u M BA = BA ( M B ) = 57.1 d u M BC = BC ( M B ) = 42.9
1
ql / 8
2
12
2
100 0 -57.1 -42.9 -6.1 3.5 2.6
0 0 0
28.6
100
-28.6 -57.1 -42.9
21.4 6.1 -9.2 -12.2 -6.1 1.8 6.1 1.8 3.5 2.6
分 配 传 递
0
M 0
A
0
q = 12 kN / m
40.3
2
B
… … ...
A
M
d BA
B
u MB
B
u MB
C
u d d M B + M BA + M BC = 0 1 u ( M B ) B = S BA + S BC
B

第十七章力矩分配法

第十七章力矩分配法

第十七章力矩分配法一、力矩分配法的基本概念力矩分配法是在位移法基础上发展起来的一种数值解法,它不必计算节点位移,也无须求解联立方程,可以直接通过代数运算得到杆端弯矩。

力矩分配法的适用对象:是连续梁和无节点线位移刚架。

内力正负号的规定:同位移法的规定一致。

杆端弯矩使杆端顺时针转向为正,固端剪力使杆端顺时针转向为正。

1、转动刚度(S)定义:杆件固定端转动单位角位移所引起的力矩称为该杆的转动刚度,(转动刚度也可定义为使杆件固定端转动单位角位移所需施加的力矩)。

转动刚度与远端约束及线刚度有关远端固定: S = 4 i远端铰支: S = 3i远端双滑动支座: S = i远端自由: S = 0 (i为线刚度)力矩分配法的基本思路,刚节点B将产生一个转角位移FM固端弯矩():是被约束隔离各杆件在荷载单独作用下引起的杆端弯矩。

FFFF MMMM,,,BBABCBDFM一般地不等于零,称为节点不平衡力矩现放松转动约束,即去掉刚臂,这个状态称为放松状态,节点B将产生角位移,并在各杆端(包括近端和远端)引起杆端弯矩,记作M’,则固端弯矩与位移弯矩的代数和就是最终杆端弯矩2、近端位移弯矩的计算及分配系数AB杆:远端为固定支座,转动刚度SBA = 4iBC杆:远端为铰支座,转动刚度SBC = 3iBD杆:远端为双滑动支座,转动刚度SBD = i 各杆近端(B端)的杆端弯矩表达式:FFF,MMMiMSM4,,,,,,,,BABABABABABAFFF,MMMiMSM3,,,,,,,,CCBBCBCBBCBCFFF,MMMiMSM,,,,,,,,BBDBDBBDBDDD式中:23FlqlFFFM,,M,0M,CBDBAB1612显然,杆的近端位移弯矩为:,,,MS,MS,,MS,,,BABABDBDBCBC由B节点的力矩平衡条件ΣM = 0得:FFFS,,M,S,,M,S,,M,0BABABCBCBDBDM,M,M,0 BABCBD解得未知量θ为:FFFF(,M,M,M)(,,M)BCBCBCB,,, S,S,S,SBABCBDB解得的未知量代回杆近端位移弯矩的表达式,得到将未知量代回杆近端分配弯矩的表达式,得到:SFBA,M,S,,(,,M)BABAB,SBSFBC,M,S,,(,,M)BCBCB,SBSFBD,M,S,,(,,M)BDBDB,SB上式中括号前的系数称为分配系数,记作μ,即:SSSBCBABD,,,,,,BABCBD,S,,SSBBB一个杆件的杆端分配系数等于自身杆端转动刚度除以杆端节点所连各杆的杆端转动刚度之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SAB 3i
SAB i
力矩分配系数μij :
等于该杆件的转动刚度除以刚结于i结点的 各杆 转动刚度之和。
ij
Sij S
i
且有
ij 1
利用分配系数的概念,近端弯矩可表达为:
Mij

ij
(M
u
i
)
(1)分配系数
BA

S BA SBA SBC
BC

S BC SBA SBC
1,3 2
78.1
12.3 11.6 109.7 -31.2
5.8 5097.1 -62.342-.3109.3
1,3
16 15.2 1537.6 20.9
2
-5.2 -10.3-18.2
0.762 0.238 33.3 -288
129141.1.7 60.6 -51.4
41.7 13
-9.1 288
A
B
1
2
作剪力图,求反力
MA 0
q 12kN / m
A
1
Q1A 10 140 1210 5 0 Q1A 74
Fy 0
QA1 46
A Q A1 46
140 1 Q1 A 69.97
74
40.3 B
2
M
4.03
50.03 Q
Fy 0
74 1 69.97
(1)固定状态:
固端弯矩:
M
F ij
荷载引起的单跨梁两端
的杆端弯矩,绕杆端顺时
针为正.
q 12kN / m B
A EI
B EI
C
10m
10m
q 12kN / m
M
u B
A
B
C
ql2 / 12
M
F AB

ql 2
/ 12

100kN .m
M
F BA

100kN .m
M
F BC

M
F CB
传递系数:远端弯矩Mji与
B
M u' B
C
近端弯矩Mij的比值。
A
B
远端弯矩 C近远 近端弯矩
---传递系数
1 远端固定时:
4i A 1
远端铰支时: 3i A 1
远端定向时: i A
2i
i
C=1/2
B
iB iB
C=0 C=-1
与远端支承 情况有关
M
d BA


BA
(
M
u B
)

57.1
不能产生转角,求出各扦的固端弯矩。
由荷载产生在结点B附加刚臂上的约束
力矩(即结点不平衡力矩)为各杆端固端 q 12kN / m
弯矩之和。
A EI
B EI
C
10m
第二步;放松。放松结点B,相当于 加反向力偶矩(一MB)。
第三步,叠加。叠加以上两步计算所 A 得的杆端弯矩,就得到原结构最终的 杆端弯矩。
2)逐次放松:每次放松一个结点(但相邻结点必须锁 住)进行单结点的力矩分配与传递。轮流放松各结点, 经多次循环后各结点渐趋平衡。
3)叠加:将各次计算所得杆端弯矩相加(代数和)就得 到杆端最终弯矩。
固定状态:
M
F 1A

ql 2
/
8

150
M
F 12

ql 2
/ 12

100
q 12kN / m
4m 4m
10kN / m
B EI C
6m

M F 40
分 配
1.25


0.5 0.5 40 45 0
2.5 2.5 0
M 38.75 42.5 42.5 0
42.5
38.75 40kN
10kN / m
M
练习
求不平衡力矩
40kN.m
M
u B
60
20kN / m
A EI
6m
40kN .m
M
d BC


BC
(
M
u B
)

42.9
A
B
M
u B
B
C
传递弯矩
M
C AB

CM
d BA

0.5 (57.1)

28.6
M
C CB

CM
d BC

0 (42.9)

0
利用传递系数的概念,远端弯矩可表达为:
M ji Cij M ij
等截面直杆的转动刚度和传递系数如下表
远端支承 远端固定 远端铰结 远端滑动 远端自由
转动刚度 S=4i S=3i S=i S=0
传递系数 C=1/2 C=0 C=-1 C=0
利用传递系数的概念,远端弯矩可表达为:
M ji Cij M ij
利用分配系数的概念,近端弯矩可表达为:
Mij

ij
(M
u
i
)
(1)固定状态:
(2)放松状态:
M
u B

M
u' B
需借助分配系数,传递 系数等概念求解
1解,3 :
2
1,3
1) 2)
求分配2.系7 2数.5: 求固端弯-矩0:.9
0.5 0.4
S121323A1A212-10M1..430.327(i.k357-N6130.5..3392m56.,.,1476)86,213S,32BS3B122300-..64324613i713i...78296803359..,42.46,8,
10m
M
u B
B
C
例1.计算图示梁,作弯矩图
解:
EI
SBA 4 8 0.5EI
EI SBC 3 6 0.5EI
BA

0.5EI (0.5 0.5)EI

0.5
BC

0.5EI (0.5 0.5)EI

0.5
40
45
40kN
10kN / m
40
40kN
A EI

M
d BA

M
d BC
0
M
u B

M
u' B
M
d BA


BA
(

M
u B
)
B
M u' B
C
A
B
M
d BA
M u' B
B
M
d BC
M
d BC


BC
(

M
u B
)
M
d BA


BA
(
M
u B
)

57.1
M
d BC


BC
(
M
u B
)

42.9
BC 3i /(3i 4i) 3 / 7 0.429 BA 4i /(3i 4i) 4 / 7 0.571
S21 4i
S2B 3i
21 0.571 2B 0.429
放松结点1(结点2固定):
21.4
6.1
-9.2 -12.2 -6.1
1.8
6.1
S12 4i
S1A 3i
12 0.571 1A 0.429
1.8 3.5 2.6
… … ...
q 12kN / m
R1 74 69.97 143.97(kN )()
R1
100kN/m
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
A
i=1.92 1 i=1.37 2 i=2.4
3
i=1
B
2.5m
3.5m
2m
4.8
μ
0.513 0.478 0.363 0.637
m
78.1 -102.0 102.0 -33.3
SAB i
SAB i
A1
B
A1
B
SAB=4i SAB
i
SAB=i SAB
i
A1
B
A
B
SAB=3i
SAB=0
在确定杆端转动刚度时: 近端看位移(是否为单位位移) 远端看支承(远端支承不同,转动刚度不同)。
SAB A
i
B
1
SAB 4i
SAB
A
i
SAB
i
SAB i
A1
B
对等直杆,SAB只与B端的支 撑条件有关。
i A
ij
Sij S
i
i
B
C
SBA 4i
SBC 3i
BC 3i /(3i 4i) 3 / 7 0.429
BA 4i /(3i 4i) 4 / 7 0.571 BA BC 1
一个结点上的各杆端分配系数总和恒等于1。
(2)分配弯矩
M u' B

100kN .m
M
F BC

M
F CB

0
放松状态:
M
u B
)

57.1
M
d BC


BC
(

M
u B
)

42.9
M
C AB
相关文档
最新文档