干空气物理性质表

合集下载

第二节 空气的物理性质

第二节  空气的物理性质

第二节 空气的物理性质、气体状态方程及流动规律一、空气的组成成份及空气的物理性质1.空气的组成成份大气中的空气主要是由氮、氧、氩、二氧化碳,水蒸气以及其它一些气体等若干种气体混合组成的。

含有水蒸气的空气为湿空气。

大气中的空气基本上都是湿空气。

而把不含有水蒸气的空气称为干空气。

在距地面20 km 以内,空气组成几乎相同。

在基准状态(0℃,绝对压力为101325 Pa ,相对湿度为0)下地面附近的干空气的组成见表11-1。

空气中氮气所占比例最大,由于氮气的化学性质不活泼,具有稳定性,不会自燃,所以空气作为工作介质可以用在易燃、易爆场所。

2.空气的密度单位体积空气的质量,称为空气的密度ρ(kg/m 3),其公式为ρ =m / V (11-1)式中 ρ — 空气密度;m — 空气的质量(kg );V — 空气的体积(m 3)。

气体密度与气体压力和温度有关,压力增加,密度增加,而温度上升,密度减少。

在基准状态下,干空气的密度为 1.293 kg/m 3,在温度 t (℃)、压力(MPa )下的干空气的密度可用下式计算(11-2) 式中 ρ0 — 基准状态下的干空气密度;p — 绝对压力(MPa );ρ — 干空气的密度;t — 温度(℃),其中(273+t )为绝对温度(K )。

对于湿空气的密度可用下式计算(11-3)式中 ρ' — 湿空气的密度;p — 湿空气的全压力(MPa );φ — 空气的相对湿度(%);p b — 温度为t ℃时饱和空气中水蒸气的分压力(MPa )。

3.空气的粘性空气在流动过程中产生的内摩擦阻力的性质叫做空气的粘性,用粘度表示其大小。

空气的粘度受压力的影响很小,一般可忽略不计。

随温度的升高,空气分子热运动加剧,因此,空气的粘度随温度的升高而略有增加。

粘度随温度的变化关系见表11-2。

气体与液体和固体相比具有明显的压缩性和膨胀性。

空气的体积较易随压力和温度的变化而变化。

例如,对于大气压下的气体等温压缩,压力增大0.1 MPa ,体积减小一半。

干空气物理性质表

干空气物理性质表
水分扩散系数
(106 m2 /s)
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56

70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100




02380
水的物理性质
温度
( ℃ )
饱和蒸汽压
(kPa)
密度
(kg/m 3 )
南京
73
郑州
67
玉门
39
洛阳
63
兰州
57
武汉
76
银川
60
长沙
78
青岛
70
南昌
79
济南
55
桂林
73
西安
66
南宁
76
延安
58
广州
75
太原
57
成都
79
大同
54
自贡
77
西宁
61
重庆
83
乌鲁木齐
56
昆明
71
包头
50
贵州
77
呼和浩特
52
遵义
79
哈尔宾
66
拉萨
42
长春
68
锦州
60
吉林
67

干燥计算

干燥计算

U dW Sd
而 dW GdX , [W G(X1 X 2 )]
所以 U GdX
Sd
式中 W’—一批操作中汽化的水分量,kg;
G’—一批操作中干物料的质量,kg。
干燥速率曲线:U与X之间的关系曲线。
由干燥速率曲线,可以将干燥过程分为两个阶段:
物料预热阶段
(1) 恒速干燥阶段
H

水汽质量mv 干空气质量mg

nv M v ng M g
18 nv 29 ng
0.622 p , P p
kg水汽/ kg干空气
(1)
空气饱和时, H s 二、 相对湿度:

0.622
P
ps ps

水汽分压与水的饱和蒸汽压之比,即
p 100 % ps
代入式(1),得 H 0.622 ps
即 Iv0 Iv2 (2) 湿物料进出干燥器时的比热相等,并可取其平均值
即 c1 c2 cm 而 c cs Xcw
由 I0 I g0 H0Iv0 cgt0 Iv0H0
I2 Ig2 H2Iv2 cgt2 Iv2H2
相减并代入假定(1),得
又由
I2 I0 cg (t2 t0 ) Iv2 (H2 H0 ) cg (t2 t0 ) (r0 cv2t2 )(H2 H0 )
恒速干燥阶段
第一降速阶段
(2) 降速干燥阶段
第二降速阶段
干燥机理:
(1) 物料预热阶段,A B
:空气传给物料的热量大于水分汽化所需热量,物料表面温度上
升到空气的湿球温度,, pw , ( pw p) , U
对干燥器进行焓衡算

空冷式冷凝器的设计(1)

空冷式冷凝器的设计(1)

换热器的分类随着科学技术的不断发展,换热器的种类也随着不同介质,不同压力,不同温度的要求随之增加,常见的一些具体分类如下:一、按传热原理分类可分为直接传热式换热器、蓄热式换热器、间壁传热式换热器、中间载体式换热器。

二、按结构分类可分为浮头式换热器、固定管板式换热器、填料函式换热器等。

三、按传热种类分类可分为无相变传热和有相变传热,一般分为冷凝器和重沸器。

管片式换热器一、基本结构管片式换热器的结构与管壳式换热器相似,但选择用翅片管来替代光管作为传热面,换热器由若干根翅片管组成,其主要元件就是翅片管。

根据传热原理,对流传热是指固体表面与流体接触时产生的传热现象,而安装翅片增大了传热面积,提高了换热效率。

二、工作特性管片式换热器常常应用在两侧流体的换热性能相差较大的场合,一般是用管外侧安装翅化表面来减小换热能力较差流体的换热热阻,可以使得整体换热效果得到增强。

管片式换热器的优点有1、结构紧凑、传热能力强、壳体直径或高度可减小,因此结构简单便于布置。

2、翅片管的传热面积比光管大2-10倍冷凝器的概述冷凝器是制冷系统的主要部件,它能够实现气体液体的互相转换,并排放热量。

冷凝器的工作过程是一个放热过程,在蒸发过程中,将蒸汽转变为液体的装置也称之为冷凝器。

设备原理气体通过一根很长的管子(一般是盘成螺线管),使热量散失到四周的空气中,铜类的金属导热性能强,通常用于输送蒸汽。

为了增加冷凝器的效率一般在管道上会额外增加热传导性能优异的散热片,加大散热面积,以此提高散热并通过使用风机来加快空气对流速度,将热量带走。

制冷剂的制冷原理是经压缩机将工质由低温低压的气体压缩成高温高压的气体,再经过冷凝器使其冷凝成中温高压的液体,再经过节流阀节流之后,使其转变成低温低压的液体。

低温低压的液态工质送入蒸发器,在蒸发器中液体吸热蒸发而变成低温低压的蒸汽,蒸汽再次送入压缩机内完成制冷循环。

根据冷却介质的种类,冷凝器主要可以分为空冷冷凝器和水冷冷凝器以及水和空气联合式冷凝器,在正常情况下,三种冷凝器都有很好的冷凝效果,但随着水资源的日渐短缺,空冷冷凝器得到了更多的重视,在化工、冶金、发电等很多不同行业都有着很多的应用。

传热实验(化工原理实验)

传热实验(化工原理实验)

传热实验一、实验目的1、熟悉套管换热器、列管换热器的结构及操作方法;2、通过对套管换热器空气-水蒸汽传热性能的实验研究,掌握对流传热系数的测定方法;3、确定套管传热管强化前后内管中空气的强制湍流换热关联式,并比较强化传热前后的效果;4、通过对列管换热器传热性能实验研究,掌握总传热系数K 的测定方法,并对变换面积前后换热性能进行比较。

二、实验原理1、普通套管换热器传热系数测定及准数关联式的确定:(1)对流传热系数i α的测定:对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。

i i i mQ S t α=⨯⨯∆(1)i i m iQ t S α=∆⨯(2)式中:i α—管内流体对流传热系数,W/(m 2·℃);i Q —管内传热速率,W ;i S —管内换热面积,m 2;m t ∆—壁面与主流体间的温度差,℃。

平均温度差由下式确定:m w t t t∆=-(3)式中:t —冷流体的入口、出口平均温度,℃;w t —壁面平均温度,℃。

因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,w t 用来表示,由于管外使用蒸汽,所以w t 近似等于热流体的平均温度。

管内换热面积:i i iS d L π=(4)式中:i d —内管管内径,m ;i L —传热管测量段的实际长度,m 。

由热量衡算式:21()i i pi i i Q W c t t =-(5)其中质量流量由下式求得:3600i i i V W ρ=(6)式中:i V —冷流体在套管内的平均体积流量,m 3/h ;pi c —冷流体的定压比热,kJ/(kg·℃);i ρ—冷流体的密度,kg/m 3;pi c 和i ρ可根据定性温度查得,122i i m t t t +=为m 冷流体进出口平均温度;1i t 、2i t 、w t 、i V 可采取一定的测量手段得到。

(2)对流传热系数准数关联式的实验确定:流体在管内作强制湍流,被加热状态,准数关联式的形式为:m ni i i Nu ARe Pr =(7)其中:i i i i d Nu αλ=,i i i i i u d Re ρμ=,pi i i ic Pr μλ=。

第二章--风流性质和能量方程

第二章--风流性质和能量方程

第二章矿井风流的基本性质§2—1 矿井空气的物理性质一、空气的密度指单位体积空气的质量,用ρ表示,单位:kg/m3。

ρ=vm式中:v—空气的体积,m3;m—v体积空气的质量,kg。

由理想气态方程,对于干空气:ρ干=3.484TP对于湿空气:ρ湿=(3.458~3.473)TP式中:P—空气绝对大气压力,kPa;T—热力学温度,T=(273.15+t)K;t—空气的温度,℃。

将标准大气压力P =101.325 kPa,t=0℃,φ=0代入上式,得ρ干=1.293 kg/m3。

将标准大气压力P =101.325 kPa,t=20℃,φ=60%代入上式,得ρ湿=1.20 kg/m3。

二、空气的重度指单位体积空气的重力,用γ表示,单位:N/m3。

γ=vW式中:v—空气的体积,m3;W—空气的重力,N。

将W=mg代入上式,得γ=ρg N/m3因此,对于干、湿空气γ干=1.293×9.81=12.684 (N/m3)γ湿=1.20×9.81=11.772 (N/m3)三、空气的比容指单位质量的空气具有的容积,用ν表示,单位:m3/kg。

ν=V/m=1/ρ显然,空气的比容与空气的密度互为倒数。

四、空气的比热指质量为1 kg的空气,温度升高(或降低)1℃时,所吸收(或放出)的热量,单位:k.J/kg. ℃。

五、空气的粘性指空气抗拒剪切力的性质,是空气在流动时产生阻力的内在因素。

由于空气的粘性,空气在巷道中流动时靠近巷道轴部流速快,靠近巷道边沿流速慢。

V小V大§2—2 井巷中的风速与测定一、井巷断面风速分布井巷风速指风流单位时间内流过的距离,用V表示,单位:m/s或m/min。

由于空气的粘性,空气在巷道轴部流动速率快,靠近边沿流速慢,我们所说的风速是指巷道的平均风速。

平均风速与最大风速的比值叫风速分布系数,用k速表示,即k速=V均/V大,一般在0.7~0.9之间。

对于不同的巷道砌碹巷道:k速≈0.83;木棚支护巷道:k速≈0.73;无支护巷道:k速≈0.75。

空调系统自动化原理

空调系统自动化原理
空调系统自动化原理
3、冷冻水循环泵、冷却水循环泵
冷冻水循环泵将从空调前端设备返回的冷冻水(一般为 12℃)加压送入冷冻机,在冷冻机内进行热交换、释 放热量、降低温度后离开冷冻机(一般为7℃ ),到达 空调前端设备进行热交换,实现降温调节,再循环返回 冷冻机。
2、水汽分压力pc:大小反映了水汽的多少,是空 气湿度的一个指标。
p pg pc
3、温度t或T:反映了空气分子热运动的剧烈程度, 表示空气冷热程度的指标。 T=273+t
空调系统自动化原理
4、湿度: (1)绝对湿度x:1m3湿空气中含有的水汽量(单位为
kg),与水汽分压力的关系 xpc/(RcT)
Rc是水汽的气体常数,等于461J/(kg.K)
(2)含湿量d:1kg空气含有的水汽量(单位为g)
(3)相对湿度Ψ:表示空气湿度接近饱和绝对湿度的程度, 饱和绝对湿度指空气中的水汽超过了最大限度,多余的水 汽开始发生凝结的水汽量。
5、露点温度t1:空气由某一温度降至另一适当温度时,其 相对湿度就达到100%,空气中的水汽便凝结成水--结 露,这个降低后的温度为露点温度。
选择根据:建筑物用途、负荷大小和变化情况、 制冷机特性、电源、热源和水源情况、初次建 设投资、运行费用、维护保养、环保和安全等 因素。
空调系统自动化原理
(1)压缩式制冷机: 原理: 制冷量:是制冷剂在蒸发器中进行相变时所吸收的汽化潜热。 以电为能源
(2)吸收式制冷机 以热为能源 制冷剂——溴化锂水溶液(水为制冷剂、溴化锂为吸收剂) 制冷范围不如压缩式。
统、空气--水系统 。

其他分类:定风量空调系统、变风量空调系统。
空调系统自动化原理
3.4.2、 空调系统的组成

大气污染复习

大气污染复习

第一章绪论1.大气组成干洁空气(N2、O2、Ar、CO2、臭氧)水汽(0.02%~6%)杂质:悬浮颗粒和气态物质2.干洁空气物理性质:分子量:29密度:1.293kg/m3 (标准状态, 273 K, 101.3 kPa )假设空气只有氮气和氧气组成,N2:O2=3.78:1几种常见元素的物质的量:N:14 O:16 H:1 C:12 Ca:40 S:323.大气污染的定义:由于人类活动和自然过程引起某种物质进入大气中,呈现出足够的浓度,达到了足够的时间并因此而危害了人体的舒适、健康和福利或危害了生态环境的现象。

气溶胶粒子系:沉降速度可以忽略的小固体粒子、液体粒子或固液混合粒子。

4.大气污染物分类:气溶胶态污染物:(1)粉尘(2)烟(3)飞灰(4)黑烟(5)霾(6)雾气态污染物一次污染物:直接从污染源排到大气中的原始污染物质。

二次污染物:由一次污染物与大气中已有组分或几种一次污染物之间经过一系列化学或光化学反应而生成的与一次污染物性质不同的新污染物。

二次污染物中比较重要的是硫酸烟雾和光化学烟雾。

5.大气污染分类(了解)①煤烟型(还原型)污染:主要污染源是燃煤。

主要污染物是煤炭燃烧时放出的烟尘、SO2等一次污染物,以及由这些污染物发生化学反应而产生的硫酸、硫酸盐类二次污染物。

它们遇上低温、高湿的阴天,且风速很小并伴有逆温存在的情况时,一次污染物扩散受阻,易在低空聚积,生成还原型烟雾。

②石油型(交通型或氧化型)污染 :(光化学烟雾形成的原因:污染源主要是机动车(汽油车和柴油车)和机动船。

主要污染物是CO、NOX和HC。

在相对湿度较低的夏季睛天,交通污染严重的地区可能会出现典型的二次污染——光化学烟雾。

)③混合型污染:包括以煤炭为主要污染源而排出的烟气、粉尘、二氧化硫及其它氧化物所形成的气溶胶;以石油为污染源而排出的烯烃和二氧化氮为主的污染物。

此类污染,其反应更为复杂。

6.我国大气污染的特点:以煤烟型为主,主要污染物为颗粒物和SO27.全球性大气污染问题(定义):温室效应:大气中的二氧化碳和其他微量气体如甲烷、一氧化二氮、臭氧、氟氯烃、水蒸汽等,可以使太阳短波辐射几乎无衰减地通过,但却可以吸收地表的长波辐射,由此引起全球气温升高的现象,称为“温室效应”。

水的物理化学参数(相当全)

水的物理化学参数(相当全)

附表1 全国主要城市年平均温度及湿度附表2 饱和水蒸气表 (以温度为准)续表附表3 水的物理性质温度 /℃ 饱和蒸汽压 /kPa 密度/ (kg/m 3) 焓 (kJ/k g)比热容/[kJ/ (kg·℃)]导热系数λ×102 /[W/(m·℃)] 粘度μ×105 /(Pa ·s)体积膨胀系数β×104/(1/℃)表面张力 σ×103/(N/m)普兰特数 Pr 0 10 20 0.6082 1.2262999.9 999.70 42.04 83.90 4.212 4.191 4.183 55.13 57.45 59.89179.21 130.77-0.63 +0.70 1.8277.1 75.6 74.113.66 9.523040 50 60 70 80 9010 011 012 013 014 015 016 017 018 019 0 2.33464.24747.376612.3419.92331.16447.37570.136101.33143.31198.64270.25361.47476.24618.28998.2995.7992.2988.1983.2977.8971.8965.3958.4951.943.1934.8926.1917.907.125.69167.51209.3251.12292.99334.94376.98419.1461.34503.67546.38589.08632.2675.33719.294.1744.1744.1744.1784.1784.1954.2084.2204.2334.2504.2664.2874.3124.3464.3794.4174.4604.5054.5554.61461.7663.3864.7865.9466.7667.4567.9868.0468.2768.5068.5068.2768.3868.2767.9267.4566.9966.2965.4864.55100.580.0765.6054.9446.8840.6135.6531.6528.3825.8923.7321.7720.1018.6317.3616.2815.3014.4213.6313.0412.463.213.874.495.115.706.326.957.528.088.649.179.7210.310.711.311.912.613.314.114.872.671.069.067.565.663.861.960.05855.953.951.749.647.546.243.140.838.436.133.87.015.424.323.542.982.542.121.961.761.611.471.361.261.181.120 021 022 0 792.591003.51255.61554.771917.722320.884897.3886.9876.863.852.8840.37763.25807.63852.43897.65943.711.051.00.960.930.910.89 续表温度/℃ 饱和蒸汽压/kPa密度/(kg/m3)焓(kJ/kg)比热容/[kJ/(kg·℃)]导热系数λ×102/[W/(m·℃)]粘度μ×105/(Pa·s)体积膨胀系数β×104/(1/℃)表面张力σ×103/(N/m)普兰特数Pr23 024 025 026 0 2798.593347.913977.674693.75827.3813.6799.784.990.181037.491085.641135.044.6814.7564.8444.9494.0705.22963.7362.8061.7660.4859.9657.4555.8211.9711.4710.9810.5910.209.8115.916.818.119.721.623.726.231.629.126.724.221.919.517.20.880.870.860.8727 028 029 030 031 032 033 034 035 036 037 0 5503.996417.247443.298592.949877.9611300.312879.614615.816538.518667.121040.9767.750.7732.3712.5691.1667.1640.2610.1574.4528.450.51185.281236.281289.951344.801402.161462.031526.101594.751671.371761.391892.435.4855.7366.0716.5737.2438.1649.50413.98440.31953.9652.3450.5948.7345.7143.0339.5433.739.429.128.838.538.147.757.266.675.6529.232.938.243.353.466.810926414.712.310.07.825.783.892.060.480.880.890.930.971.021.111.221.381.62.366.08 附表4 干空气的物理性质(101.33Pa)温度t/℃密度ρ/(kg/m3)比热容c,/[kJ/(kg·℃)]导热系数λ×102/[W/(m·℃]粘度μ×105/(Pa·s)普兰德数Pr-50 1.584 1.013 2.035 1.460.728-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 120 140 160 180 200 250 300 1.5151.4531.3951.3421.2931.2471.2051.1651.1281.0931.0601.0291.0000.9720.9460.8980.8540.8150.7790.7460.6740.6151.0131.0131.0091.0091.0091.0091.0131.0131.0131.0171.0171.0171.0221.0221.0221.0261.0261.0261.0341.0341.0431.0472.1172.1982.2792.3602.4422.5122.5932.6752.7562.8262.8962.9663.0473.1283.2103.3383.4893.6403.7803.9314.2684.6051.521.571.621.671.721.771.811.861.911.962.012.062.112.152.192.292.372.452.532.602.742.970.7280.7230.7160.7120.7070.7050.7030.7010.6990.6980.6960.6940.6920.6900.6880.6860.6840.6820.6810.6800.6770.674350 400 500 600 700 800 900 1000 1100 1200 0.5660.5240.4560.4040.3620.3290.3010.2770.2570.2391.0551.0681.0721.0891.1021.1141.1271.1391.1521.1644.9085.2105.7456.2226.7117.1767.6308.0718.5029.1533.143.313.623.914.184.434.674.905.125.350.6760.6780.6870.6990.7060.7130.7170.7190.7220.724附表5 饱和湿空气的性质附表6 各国筛网对照表续表注: ①本表所例系上海产品,供参考。

常用湿空气与焓湿图

常用湿空气与焓湿图

湿空气的物理性质
湿空气的物理性质除和它的组成成分有关外,还决定于它所处的状态。 湿空气的状态通常可以用压力p、温度t、相对湿度φ 、含湿量d及比焓h等参 数来度量和描述。这些参数称为湿空气的状态参数。
一、空气的压力
根据道尔顿分压力定律:混合气体总压力等于各组成气体分压力之和。 湿空气的总压力就等于干空气分压力和水蒸气分压力之和,即p=pg+ps。 湿空气中含水蒸气的分压力大小,是衡量湿空气干燥与潮湿程度的基本指标。 标准大气压力是p=101325Pa。
这里需要强调的是,每一张 图都是按规定的大气压绘制的, 这里需要强调的是,每一张h-d图都是按规定的大气压绘制的,因此在计算工 图都是按规定的大气压绘制的 作中,应选用与要求大气压相符的(或接近的)焓湿图。 作中,应选用与要求大气压相符的(或接近的)焓湿图。
湿空气焓湿图
等φ 线是曲线 等h线是倾斜直线 线是倾斜直线 等d线是垂直线 线是垂直线 等t线接近水平,看似平 线接近水平, 线接近水平 实际互不平行。 行,实际互不平行。 最低的一根等φ 线,其值 为φ =100%。这条曲线称 为饱和线。状态在这条线 上的空气处于饱和状态。 在其他φ 线上的空气都是 非饱和的。空气状态不可 能位于饱和线以下的区域 中。
空气的相对湿度φ 越大,也就是越潮湿。 φ 的最大值是1(或100%),这相当 于饱和空气。如果φ =0,这表明空气中不含水蒸气(干空气)。
湿空气的物理性质
五、比焓
在空气调节工程中,湿空气的状态经常发生变化,常需要确定状态变化过程内 热量的交换量。从热工基础可知,在压力不变化的情况下,焓差值等于热交换 量。而在空气调节过程里,湿空气的状态变化过程可以看成是在定压下进行的, 所以能够用湿空气状态变化前后的焓差值来计算空气得到或失去的热量。

材料的基本性质包括 物理性质

材料的基本性质包括   物理性质

期末复习提纲1、材料的基本性质包括物理性质、力学性质与耐久性。

2、材料的四种含水状态包括完全干燥(烘干)状态、风干(气干)状态、饱和面干(表干)状态、潮湿(湿润)状态。

3、材料的亲水性和憎水性以润湿角θ 来判定,当θ≤90° 时为亲水性,90°<θ <180° 时为憎水性。

4、材料在潮湿空气中吸收空气中水分的性质称为材料的吸湿性。

5、材料的软化系数在0 ~ 1之间波动,轻微受潮或受水浸泡的次要建筑物需选用K软>0.75的材料,用于长期受水浸泡或处于潮湿环境中的材料,若其处于重要结构,则需选用K软>0.85的材料。

6、材料的冻融循环通常指采用-15°C 温度冻结后,再在20°C 的水中融化的过程。

7、对经常受压力水作用的工程所用材料及防水材料应进行抗渗性检验。

8、材料的导热系数越大,导热性越好,保温隔热效果越差。

9、热容量是形容材料加热时吸收热,冷却时放出热量的性质。

10、耐热性的研究包含(1)受热变质、(2)受热变形。

材料耐燃性按耐火要求规定分为非燃烧材料、难燃烧材料、燃烧材料三大类。

11、材料的力学性质包括强度、弹性、塑性、冲击韧性、脆性。

12、材料的强度大小可根据强度值大小,划分为若干标号或强度等级,强度的单位是N/mm 2或MPa 。

13、弹性的特点是外力和变形成正比例关系。

14、材料在外力作用下产生变形,当外力撤去后,仍保持变形后的形状和大小并且不产生裂缝的性质称为塑性。

15、脆性材料的特点是塑性变形小,抗压强度远大于抗拉强度。

16、材料抵抗冲击振动作用能够承受较大变形而不发生突发性破坏的性质称为材料的冲击韧性或韧性。

17、过火石灰的特点煅烧温度过高,CaO结构致密。

处理方法是陈伏。

18、欠火石灰的特点煅烧温度过低,CaCO3未完全分解。

处理方法是废渣排除。

19、石灰陈伏目的是为了保证过火石灰完全熟化。

陈伏时间要求两周以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
500
600
700
800
900
1000
1100
1200
湿空气的性质
温度( ℃ )
湿度
(kg/kg
干空气)
水蒸气压
(kN/m 2 )
水分浓度
(kg/m 3 )
汽化焓
(kJ/kg)
湿焓
(kJ/kg
干空气)
湿容积(m 3 /kg
干空气)
动粘度
(106 m2/s)
湿热
(10 -3kJ/kg)
导热系数
(W/m · K)
干空气物理性质表()
温度t
( ℃ )
密度ρ
(kg/m 3 )
比热c,
(kJ/kg? ℃ )
导热系数λ× 10 2
(W/m? ℃ )
粘度
μ× 10 5
(Pa?s)
普兰德数
Pr
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
120
140
160
180
200
250
300
350
400
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
0
+
109
264
58
全国主要城市年平均温度及湿度表
城市
平均温度(℃)
平均相对湿度(% )
城市
平均温度(℃)
平均相对湿度(% )
北京
59
杭州
82
天津
65
福州
76
石家庄
58
厦门
76
宝鸡
78
开封
71
南京
73
郑州
67
玉门
39
洛阳
63
兰州
57
武汉
76
银川
60
长沙
78
青岛

西安
66
南宁
76
延安
58
广州
75
太原
57
成都
79
大同
54
自贡
77
西宁
61
重庆
83
乌鲁木齐
56
昆明
71
包头
50
贵州
77
呼和浩特
52
遵义
79
哈尔宾
66
拉萨
42
长春
68
锦州
60
吉林
67
抚顺
71
沈阳
67
合肥
75
水分扩散系数
(106 m2 /s)
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100




02380
水的物理性质
温度
( ℃ )
饱和蒸汽压
(kPa)
密度
(kg/m 3 )

(kJ/kg)
比热
kJ/(kg ?℃ )
导热系数λ×10 2 (W/ m ·℃ )
粘度
μ×10 5 (Pa ? a)
体积膨胀系数β×10 4 (1/ ℃ )
表面张力σ×10 3 (N/m)
普兰德数
Pr
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
相关文档
最新文档