偏心受压构件承载力计算例题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解】fc=11.9N/mm2,fy=
′ =300N/mm2, fy
ξ b=0.55,
α1=1.0, β1
=0.8
1.求初始偏心距ei .求初始偏心距
M 180 ×103 e0 = = = 112.5 N 1600
h ea=(20, )= max (20, 30
500 30
)=20mm
ei=e0+ea=112.5+20=132.5mm
2、某矩形截面偏心受压柱,截面尺寸b×h=300mm×500mm, 、某矩形截面偏心受压柱,截面尺寸 × × , 柱计算长度l 柱计算长度 0=2500mm,混凝土强度等级为 ,混凝土强度等级为C25,纵向钢筋 , 采用HRB335级,as=as′=40mm,承受轴向力设计值 采用 级 , N=1600kN,弯矩设计值M=180kN·m,采用对称配筋,求纵 ,弯矩设计值 ,采用对称配筋, 向钢筋面积A 向钢筋面积 s=As′。 。
η
l0 / h =3000/400=7.5>5,应按式(4.3.1)计算。 > ,应按式( )计算。
0.5 f c A 0.5 × 9.6 × 300 × 400 = = 2.22 > 1.0 ζ1 = 3 N 260 ×10
取ξ1=1.0
3000 l0 = 1.15 − 0.01 = 1.075 > 1 ζ 2 = 1.15 − 0.01 h 400
x Ne − α 1 f c bx h0 − 2 f y ′ h0 − a s ′
=1235mm2
(5)验算配筋率 ) As=Asˊ=1235mm2> 0.2%bh=02% ×300×400=240mm2, 故配筋满足要求。 (6)验算垂直弯矩作用平面的承载力 ) lo/ b=3000/300=10>8
4.重新计算x .重新计算 e=ηei+-as=1.0×132.5+-40=342.5mm ξ=
N − ξ bα 1 f c bh 0 + ξb Ne − 0 . 45α 1 f c bh 0 + α 1 f c bh 0 ' ( β 1 − ξ b )( h0 − a s )
1600 ×103 − 0.55 ×11.9 × 300 × 460 = + 0.55 3 1600 ×10 × 342.5 − 0.45 ×1.0 ×11.9 × 300 × 460 + 1.0 ×11.9 × 300 × 460 (0.8 − 0.55)(460 − 40)
1 1 ϕ= = 1 + 0.002(l 0 / b − 8) 2 1 + 0.002(10 − 8) 2
=0.992
Nu =0.9φ[fc A + fyˊ(As +Asˊ)] =0.9×0.992[9.6×300×400+300(1235+1235)] =1690070N>N= 260 kN 故垂直弯矩作用平面的承载力满足要求。每侧纵筋选配 故垂直弯矩作用平面的承载力满足要求。每侧纵筋选配4 ),箍筋选用 箍筋选用Φ8@250,如图。 20( 20(As=Asˊ=1256mm2),箍筋选用Φ8@250,如图。
取ξ2=1.0
1 l0 3000 = 1+ η = 1+ ζ 1ζ 2 × 1.0 ×1.0 = 1.024 597 400 e 1400 1400 i h 400 h0
1
2
2
(3)判断大小偏心受压 )
N x= α1 f c b
260 ×103 = = 90.3mm < ξb ho = 0.55 × (400 − 40) = 198 1.0 × 9.6 × 300
【解】fc=9.6N/mm2,=1.0, fy=fyˊ=300N/mm2,ξ b=0.55 (1)求初始偏心距 i )求初始偏心距e eo=M/N=150×106/260×103=577mm × × ea=max(20,h/30)= max(20,400/30)=20mm ( , ) ( , ) ei=eo+ea = 577+20=597mm (2)求偏心距增大系数 )
2.求偏心距增大系数η .求偏心距增大系数
2500 l0/h= 500
=5≤5,故η=1.0
3.判别大小偏心受压 . h0=h-40=500-40=460mm x=
N α1 f cb
1600 ×103 = 1.0 ×11.9 × 300
=448.2 mm>ξbh0=0.55×460=253 mm 属于小偏心受压构件。 属于小偏心受压构件。
=0.652
x = ξ h0
=0.652×460=299.9mm 5.求纵筋截面面积As、As′ .求纵筋截面面积
As=As′=
Ne − α1 f cbx(h − x / 2) ' ' f y (h0 − as )
1600 ×103 × 342.5 − 1.0 ×11.9 × 300 × 299.9(500 − 299.9 / 2) = 300 × (460 − 40) =1375mm2
故垂直于弯矩作用平面的承载力满足要求。 故垂直于弯矩作用平面的承载力满足要求 。 每侧 各配2 如图所示。 各配 22(As=As′=1520mm2),如图所示。 (
偏心受压构件承载力计算
1、某偏心受压柱,截面尺寸b×h=300×400 mm,采用 、某偏心受压柱,截面尺寸 × × , C20混凝土,HRB335级钢筋,柱子计算长度 o=3000 mm, 混凝土, 级钢筋, 混凝土 级钢筋 柱子计算长度l , 承受弯矩设计值M=150kN.m,轴向压力设计值N=260kN, 承受弯矩设计值 ,轴向压力设计值 , as=asˊ=40mm,采用对称配筋。求纵向受力钢筋的截面 ,采用对称配筋。 面积A 面积 s=Asˊ。
为大偏心受压。 为大偏心受压。
(4Leabharlann Baidu求As=Asˊ )
400 h e = ηei + − a s = (1.024 × 59 + − 40) mm = 771mm 2 2
' x =90.3mm >2a s =80mm,
则有
Asˊ=As=
90.3 260 ×103 × 771 − 1.0 × 9.6 × 300 × 90.3 360 − 2 = 300 ( 360 − 40 )
6.验算垂直于弯矩作用平面的承载力 . l0/b=2500/300=8.33>8 1 1 ϕ= 2 = 1 + 0.002(l 0 / b − 8) 1 + 0.002(8.33 − 8) 2
=0.999 Nu =0.9[(As+As′)fy′+Afc] =0.9×0.999[(1375+1375) ×300+300×500×11.9] =2346651N>N=1600kN