空调自控系统设计方案
江森-空调自控系统
![江森-空调自控系统](https://img.taocdn.com/s3/m/4a60e6d2195f312b3169a585.png)
目录第一章系统说明 (2)第二章系统概述 (3)第三章系统特点 (4)第四章设计依据 (7)第五章楼宇自控系统结构 (13)第六章楼宇自控系统DDC配置 (23)第七章记录及摘要 (27)1第一章系统说明根据桂林农行的设计要求作工程设计,参照所提供之技术说明,并以品质标准进行空调自控系统设计。
选用江森公司的空调自控系统,控制范围包括以下部分:-空调系统-新风系统-冷冻站系统系统摘要一个高素质的空调自控系统是不可缺少的,所以本公司选用Johnson Controls 之空调自控系统, 空调自控系统包括网络控制器(NCU)及台数字控制器(DDC),分别分布在总控中心,现场等地方。
1台中央操作站将采用美国微软公司的视窗NT或视窗95(作业系统为运行环境,Metasys亦以开放式设计,能以不同之技术结合,如DDE,COM/DCOM,TCP/IP,ODBC,OPC,ACTIVETIVEX,BACNET等。
Metasys之LAN网络采用符合工业标准的ARCNET或Ethernet,使网络之应用更广泛,其灵活性及容错性是用户完全可以信任的,所有网络控制器(NCU)与数字控制器均是独立工作及配备电2池.所有资料\数据及程序均不会消除.本系统的好处及特点将会在下一章节详细说明.系统的优点第二章系统概述空调自控系统)的任务是创造安全、舒适与便利的工作环境,尽量减少能源消耗,提高经济效益,以获得强劲的市场竞争力。
美国江森自控公司的Metasys中央监控系统,是一个完美的建管系统。
她利用了90年代所有可以运用的先进科技技术,将每一个不同层面的装置设施结合起来,并发挥其最大的效力。
Metasys再次赋予建管系统以新的生命。
从网络设计方面,它可以透过结构化布线系统的方便,能与任何一个共用布线系统的设备联上而无须增加任何辅件,使其与其他系统的结合功能更为方便.从网络设计方面,它也能以Arcnet或Ethernet等不同形式.软件方面,METASYS也大大的开放了结合的条件,如其具有DDE功能的软件,可以跟其它软件交换资料.而其开放式平台设计跟Windows, UNIX, LonWorks及Bacnet等标准配合,使软件编写时有所依据.3第三章系统特点最先进的技术Metasys系统采用最先进的技术实现受控设备完全自动化控制,其中WIN98/NT、COM/DCOM、TCP/IP、ODBC、OPC、ActiveX、Bacnet、Lonmark等技术已经成功与BAS系统相结合,安装运行已有一万多套,并且又有Johnson Controls 百年的控制经验为强大的后盾,使得Johnson Controls提供的楼宇自控系统是其它厂家无法比拟的。
空调自控系统施工方案
![空调自控系统施工方案](https://img.taocdn.com/s3/m/7fd501879fc3d5bbfd0a79563c1ec5da51e2d643.png)
空调自控系统施工方案空调自控系统施工方案一、项目背景和目标空调自控系统是一种能够根据室内温度、湿度和空气质量等参数自动控制空调设备运行的系统。
该系统能够提升空调设备的控制精度和能效,提升用户舒适度和节能效果。
本项目的目标是设计和施工一套完善的空调自控系统,满足用户对舒适度和能效的要求。
二、系统设计1. 传感器系统:安装温度传感器、湿度传感器和空气质量传感器等传感器,精确测量室内环境参数。
2. 控制器系统:安装空调控制器和配电控制器,控制空调设备的开关、运行模式和风速等参数。
3. 网络系统:通过有线或无线网络,将传感器系统和控制器系统连接起来,实现数据传输和控制指令的传递。
4. 后台管理系统:开发一套管理平台,实时监测和控制空调系统的运行状态,提供远程监控和管理功能。
三、施工步骤1. 前期准备:确定施工计划,采购所需的设备和材料。
2. 传感器系统安装:根据室内布置情况和设计要求,安装温度传感器、湿度传感器和空气质量传感器等传感器。
3. 控制器系统安装:根据室内布置情况和设计要求,安装空调控制器和配电控制器,并进行接线和调试。
4. 网络系统搭建:确保有线或无线网络覆盖整个室内区域,并安装网络设备,完成传感器系统和控制器系统的连接。
5. 后台管理系统开发:根据用户需求和设计要求,开发一套管理平台,实现对空调系统的实时监控和远程控制功能。
6. 联调测试和调试:通过联调测试和调试,确保传感器系统、控制器系统、网络系统和后台管理系统正常运行。
7. 系统交付和培训:将施工完成的系统交付给用户,并对用户进行培训,教授系统的使用和维护方法。
四、预算与时间计划1. 预算:根据施工计划和材料价格,编制详细的预算表,包括设备购置费、施工费和材料费等。
2. 时间计划:根据施工步骤和工期要求,编制详细的施工进度表,明确每个施工环节的时间节点和完成时间。
五、风险控制1. 设备选购:选购可信赖的设备品牌,确保设备质量可靠。
2. 施工过程监管:加强对施工过程的监管,及时发现和解决问题,确保施工质量。
中央空调自控系统设计
![中央空调自控系统设计](https://img.taocdn.com/s3/m/737b5004d0d233d4b04e697e.png)
中央空调自控系统设计第一章中央空调的构成和工作原理1.1 中央空调的组成中央空调系统的组成主要由空调负荷,制冷机组,冷水泵,冷却水泵,冷却塔和水管道连接而成。
从大的方面来看主要有两大系统:一个是冷水系统,一个是冷却水系统。
冷水系统的动力源是冷水泵,12°C的水在冷水泵的作用下进入制冷机组,在制冷机里放热后变成7°C的水,7°C的水进入空调负荷吸热后又变成12°C 的水,重新进入制冷机组。
这样形成一个密闭的冷水循环系统。
冷却水系统的动力源是冷却水泵,冷却水泵把来自于冷却塔的32°C的冷却水泵入制冷却机组,冷却水在制冷机组中吸热后变成38°C的水,此水在冷却泵的作用下重新进入制冷机组,这样反复的运行形成冷却水系统。
与本项目控制有关的设备为:冷却泵,冷却水泵,制冷机组,冷却塔。
与本项目控制有关的设备为:冷却泵,冷却水泵,制冷机组,冷却塔。
1.2 系统特点在该系统中,冷冻泵、冷却泵、水塔风扇变频器采用开环控制,由维护人员根据季节不同和负荷的变化进行调节;风机采用温度闭环控制,可根据温度传感器的反馈值,调节风机的转速,从而使被控环境温度基本保持恒定。
TD2000变频器还提供了RS232/RS485串行接口,以便与中央控制室的微机联网,实现集中监控,使维护人员及时了解各变频器的工作状态。
冷冻机组是中央空调的“制冷源”,通往各个房间的循环水由冷冻机组进行“内部热交换”,降温为“冷冻水”,冷却水塔用于为冷冻机组提供“冷却水”“外部热交换”系统由两个循环水系统组成:1)冷冻水循环系统 2)冷却水循环系统。
1.3中央空调的工作原理1.3.1冷(热)水机组的基本工作过程室外的制冷机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。
中央空调节能自控系统改造方案设计
![中央空调节能自控系统改造方案设计](https://img.taocdn.com/s3/m/6de8aa4355270722182ef747.png)
1.1空调自控系统改造方案1.1.1控制设备范围一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关阀门、膨胀水箱、软化水箱等。
1.1.2空调自控系统1.1.2.1.监测功能信息采集优化A通过冷机通讯接口读取(包括但不限于)以下参数:冷水机组运行状态、故障报警状态冷冻水供/回水温度、冷却水供/回水温度冷冻水温度设定值运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。
B冷冻水系统冷冻水泵运行状态、故障报警、手/自动模式反馈(DI)冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI)冷冻水供回水管温度、水流量反馈(AI)冷冻水泵进口、出口分支管压力(AI)冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI)冷冻水泵变频器频率反馈(AI)最不利末端供回水压差C冷却水系统冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI)冷却水供回水管温度、环网水流量反馈(AI)冷却水泵进口、出口分支管压力反馈(AI)冷却水泵、冷却塔风机变频器频率反馈(AI)冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀压差旁通阀开度反馈(AI)免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控膨胀水箱超高、超低水位监测(DI)软化水补水箱高、低水位监测(DI)F其他参数室外干球温度、相对湿度(AI)计算室外湿球温度、焓值免费供冷系统水泵运行、故障、手/自动状态(DI)免费供冷板换进出口压力监测(AI)1.1.2.2.控制功能1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制)2、冷冻水系统:冷冻水泵启/停控制(DO)及反馈冷冻水泵变频器频率设定(AO)、频率调节及反馈3、冷却水系统:冷却水泵、冷却塔风机启/停控制(DO)及反馈冷却水泵、冷却塔风机变频器频率设定(AO)、频率调节及反馈4、电动蝶阀:分水器各供水支路电动蝶阀开/关控制(DO)冷冻水季节转换电动蝶阀开/关控制(DO)压差旁通阀开度调节(AO)免费供冷管路上切换电动蝶阀开/关控制(DO)5、其他设备控制免费供冷系统水泵启停控制(DO)1.1.2.3.报警功能1、当任何一台冷水机组、冷却塔风机、冷冻泵、冷却泵、补水泵组运行故障时,发出故障报警。
空调自控方案
![空调自控方案](https://img.taocdn.com/s3/m/51b5747f58eef8c75fbfc77da26925c52dc5916b.png)
空调自控方案目录1. 空调自控方案概述 (2)1.1 方案背景 (2)1.2 方案目标 (3)1.3 方案原则 (4)2. 空调系统概述 (5)2.1 系统构成 (6)2.2 系统功能 (7)2.3 系统布局 (8)3. 自控系统要求 (9)3.1 控制系统要求 (10)3.2 通信要求 (11)3.3 安全要求 (12)4. 自控方案设计 (13)4.1.1 控制器选择 (16)4.1.2 数据采集与传输 (18)4.2 通信系统设计 (19)4.2.1 网络架构 (20)4.2.2 通信协议 (21)4.3 人机交互设计 (22)4.3.1 用户界面 (24)4.3.2 操作流程 (25)5. 系统实现 (26)5.1 硬件安装 (28)5.2 软件配置 (29)5.3 现场调试 (30)6. 自控方案优化 (32)6.1 能耗分析 (33)7. 系统维护与升级 (35)7.1 日常维护 (36)7.2 故障处理 (38)7.3 系统升级 (38)8. 案例分析 (40)8.1 成功案例 (41)8.2 故障案例 (42)1. 空调自控方案概述随着技术的不断进步,现代建筑中对空调系统的智能化需求也越来越高。
本空调自控方案旨在通过先进的控制技术,提高建筑的能源使用效率,同时创造出更舒适的环境。
该方案运用了集成化的控制平台,汇集了多种传感器与执行器,不仅能够实时监测室内外环境参数,还能根据预设条件自动调整空调系统的运行模式。
通过运用智能算法,本方案可以有效平衡舒适度与能效之间的关系,体现出“节能减排”的时代要求。
结合自学习能力的控制系统,该方案具有高度的适应性与自我优化能力,能够在用户行为模式改变的情况下,自动更新最佳运行策略。
这不仅减少了对人工干预的依赖,还大大提高了空调系统在日常运行中的自主性和智能化水平。
本空调自控方案强调动态、高效并兼具人机交互的现代空调控制系统设计理念,力求通过先进的技术与创新的设计,为建筑带来最优质的舒适空气体验,也能显著地为业主单位节省能源开支,实现节能环保的双重价值。
空调自控方案
![空调自控方案](https://img.taocdn.com/s3/m/3fae9059640e52ea551810a6f524ccbff021ca64.png)
空调(JK1-1系统)自控原理方案一、正常生产模式1.空调机组新风电动阀XF-01正常开度开启(调试时确定)。
2.回风电动阀 JH-001~JH-006开启,送风电动阀JS-001~JS-007开启,AHU以正常生产模式频率(调试时确定)运行。
3.消毒排风机组在停机状态,电动阀XD-01常闭。
二、臭氧消毒模式:A、正常生产模式→消毒模式1.AHU机组新风电动阀XF-01关闭(或很小开度,保证洁净区正压风量)。
2.AHU机组降频率运行,回风电动阀JH-001~JH-006和送风电动阀JS-001~JS-007保持开启,风机频率值由调试时确定。
3.臭氧发生器工作,开始消毒,保持在规定消毒浓度下运行。
B、消毒模式→消毒排风模式1.达到规定的消毒时间(消毒时间由消毒验证的结果确定)时,臭氧发生器停止工作,消毒结束,HVAC系统切换至消毒排风模式。
2.AHU机组新风电动阀XF-01开启至全开状态,回风电动阀JH-001关闭,机组以合适频率运行。
3.消毒排风机组电动阀XD-01开启,消毒排风机组运行开始置换排风。
4.消毒空气浓度下降至规定值或到达规定时间(由相应的验证结果确定)后,可以切换至正常生产模式。
备注:校核新风管尺寸(包括新风口)与消毒排风能力匹配。
C、消毒排风模式→正常生产模式1.开启回风电动阀JH-001。
2.消毒排风风机降频工作,至停机。
3.关闭消毒排风机电动阀XD-01。
4.新风电动阀调XF-01整至合适开度。
5.AHU机组调整频率等参数,进入正常生产模式。
三、甲醛消毒模式A、正常生产模式→消毒模式1.调节洁净室的温度在24--40℃,湿度在65%以上。
2.AHU机组停止、排风机停止。
3.工作人员在洁区房间放置甲醛消毒设备,开始消毒;甲醛扩散30min后,AHU机组在相应频率(频率值由调试时确定)运行30min 后停止,进行房间的熏蒸消毒。
4.熏蒸消毒达到规定时间(熏蒸时间由甲醛熏蒸消毒验证的结果确定)后,HVAC系统切换至消毒排风模式。
高精度恒温恒湿中央空调的系统设计与控制方案
![高精度恒温恒湿中央空调的系统设计与控制方案](https://img.taocdn.com/s3/m/8824d825dc36a32d7375a417866fb84ae45cc3ce.png)
高精度恒温恒湿中央空调的系统设计与控制方案 随着现代工业的不断发展,生产技术的不断进步,对于产品的精度要求也不断提高,恒温恒湿空调(以下简称CRAC )的应用范围也越来越广,要求也越来越高。
对于高精度CRAC ,空调房间维护结构应满足《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)中表和表的要求,在此基础上,高精度CRAC 的关键在于空调系统的设计和自控系统的设计。
一、 送风温差的确定CRAC 对送风温差和送风量都有一定的要求,因为大的送风量和小的送风温差可以使空调区域温度均匀、减少区域的温度偏差,同时使得气流分布比较稳定。
《民用建筑供暖通风与空气调节设计规范》(GB50736-2012)中表给出了不同精度范围下的送风温差设计值。
本文讨论的高精度温度参数允许波动范围≤℃,其送风温差应<1℃。
二、 气流组织形式与计算根据《实用供热空调设计手册》说明,当空调房间的层高较低,且有吊平顶可供利用,单位面积送风量很大,而空调区又需要保持较低的风速,或对区域温差有严格要求时,应采用孔板送风。
孔板送风是利用吊顶上面的空间为稳压层,空气由送风管进入稳压层后,在静压作用下,通过在吊顶上开设的具有大量小孔的多孔板,均匀地进入空调区的送风方式,而回风口则均匀的布置在房间的下部。
根据送风温差和房间热湿负荷可确定房间送风量,根据送风量和工作区最大风速限制(一般<s )可计算出微孔铝板的孔径。
三、 空气处理流程实验室的回风与部分室外新风进入空调机组的混风段进行混合后,气体通过表冷器冷却到机械露点温度进行除湿,之后通过一级电加热(或二次回风混合)对空气加热至接近室温,如湿度过低则对空气进行电极加湿(等温加湿),处理过的空气通过风机送入风道,空气进入末端控制区域房间后,经过风道上安装的SSR 二级电加热对送风温度进行补偿后送入实验室末端控制区域。
四、 控制系统方案1、新风风速传感器、新风阀控制:PLC 根据送风量与设定新风占送风量的比例得出新风量,已知新风口面积根据测得的风速自动调节新风阀开度,达到新风与送风占比衡定的目的。
毕业设计58基于LONWORKS技术的空调自控系统设计
![毕业设计58基于LONWORKS技术的空调自控系统设计](https://img.taocdn.com/s3/m/1e92b02f192e45361066f5c6.png)
基于LONWORKS技术的空调自控系统设计摘要目前,变风量(VAV)空调系统以其巨大的节能潜力逐渐成为国内外空调系统的主流。
本文通过对变风量空调实验系统的控制原理分析,结合设计要求,设计了以LONWORKS现场总线技术为主的控制网络体系,在设计中分别选取了六个LONWORKS的输入、输出模块,来完成信号的传递和模块间的相互通讯,其中每个输入模块(送风温度、管道静压、二氧化碳浓度)对应一个输出模块(水阀开度、变频器频率、新风阀开度),传感器将现场信号传给输入模块,输入模块再通过双绞线传送至输出模块,由输出模块中的PID控制器运算后,输出一个控制量给执行机构,完成了现场控制功能。
这样,不仅节省了导线成本,控制起来也更加及时方便,使控制系统更有保障。
另外,在系统的上位机运用了组态王软件,并结合LONMAKER FOR WINDOWS软件设计监控画面,实现系统的全程监控。
在对系统送风温度控制回路的调节器的参数进行整定时,使用了史密斯预估补偿法来克服纯滞后环节对系统带来的影响;整定VAV末端串级控制回路,采用“先内后外”的原则,并结合临界比例度整定法对系统进行了整定。
此外,本文还运用了单纯型法对PID参数进行优化,使得调节效果更加显著。
关键词:变风量空调,LonWorks技术,史密斯预估补偿,寻优Design of Automatic Control in VAV SystemBased on LonWorks TechnologyAbstractNowadays, VAV air-conditioning system has gradually become most popular in China and abroad because of its significant energy saving.According to analyzing the principle of control on VAV experimental system and combining with the designing requirement,we select six input and output module of LonWorks, to complete the transmission of the signal and mutual communication among the modules. One input module (air flow temperature, pipeline static pressure, carbon dioxide density) correspond to one output module (open degree of water valve, frequency of converter, open degree of new air flow valve). The transducers send the on –the- spot signals to input modules, and then the input modules send it to output modules through the twist wire. These signals, which are operated by PID controller, are conversed into control signals. The control signals can drive actuator to complete the on-the-spot control. In this way , not only the cost of the wire can be saved, but also the control of the system can become more convenient , make the control system more safe. In addition, we use Kingview 6.5 and LonMaker for Windows soft ware designing the monitoring man-machine interface to monitor the whole system.When setting the parameters of the controller in the air flow temperature control loop, we select Smith predictor to overcome disturbing, which was induced by delay links of the loop; when adjust the VAV box series loops, we adjust the inter-loop firstly, after the inter-loop was adjusted well, we use the critical proportion method to adjust the outer-loop.By the way, a simplex method is adopted to find the best parameters.Key Words: VAV air condition, LonWorks technology,Smith predictor,Optimization目录1 绪论 (1)1.1变风量空调概述 (1)1.1.1变风量空调系统简介 (1)1.1.2 变风量系统基本结构 (1)1.2.2 变风量空调系统的缺点与不足 (4)1.2.3变风量空调系统的应用场合 (5)1.3变风量空调系统的研究现状 (5)2 变风量空调系统的控制 (7)2.1变风量空调系统的工作原理 (7)2.2变风量空调控制系统的分析 (7)2.2.1 室内温度控制 (8)2.2.2新风量控制 (10)2.2.3 送风温度控制 (11)2.3变风量控制系统的原理 (12)2.3.1 系统各回路的控制分析 (12)2.3.2变风量空调系统的常见控制方式 (15)3 基于LONWORKS技术的自控系统方案设计 (17)3.L L ONWORKS技术介绍 (17)3.1.1 LonWorks概述 (17)3.1.2 LonWorks通信技术 (17)3.1.3 LonPoint概述 (18)3.1.4 LonMaker for windows 集成工具 (19)3.1.5 LNS DDE 服务器 (20)3.1.6 PCLTA-20 PCI LonTalk适配器 (20)3.1.7 AI-10模拟量输入接口模块 (21)3.1.8 AO-10模拟量输出接口模块 (21)3.1.9 终结器 (22)3.2基于L ON W ORKS技术的系统硬件设计 (22)3.2.1 lonworks控制器 (22)3.2.2 设备功能设计 (23)3.2.3 设计步骤 (23)3.3LON网络软件的设计、安装和监视 (37)3.3.1用LonMaker for windows 集成工具进行网络设计 (38)3.3.2 用LonMaker Browser进行LON网络监视 (39)4 空调自控系统仿真 (40)4.1送风温度控制回路控制器设计 (40)4.1.1 回路模型建立 (40)4.1.2参数整定 (40)4.1.3史密斯预估补偿设计 (41)4.1.4 PID参数的单纯形法寻优 (44)4.1.5PID控制器的计算机数字化实现 (49)4.2VAV末端控制器设计 (52)4.2.1末端控制回路分析 (52)4.2.2 模型建立 (53)4.2.3 控制器参数整定 (53)4.2.4 PID控制器的计算机数字化实现 (57)5 结论与展望 (58)5.1结论 (58)5.2展望 (58)参考文献 (59)附录1系统控制原理图 (60)附录2系统结构示意图 (61)附录3 设备清单 (62)致谢 (63)1 绪论1.1 变风量空调概述1.1.1变风量空调系统简介随着人民生活水平不断提高和科技水平的不断发展,空调系统已成为人们生活中不可缺少的一部分。
蓝色智谷空调能源站自控系统技术方案
![蓝色智谷空调能源站自控系统技术方案](https://img.taocdn.com/s3/m/3aa1e02e0a1c59eef8c75fbfc77da26925c59688.png)
空调能源站自控系统技术方案目录一、项目概述 (2)1.1 项目背景 (2)1.2 现场设备情况 (2)1.3网络构架 (4)二、设计目标 (5)三、设计功能 (6)四、设计依据 (6)五、设计原则 (6)5.1 标准化和模块化 (7)5.2 开放性 (7)5.3 安全性、可靠性和容错性 (7)5.4 高效率性 (7)5.5 经济性 (8)六、控制策略 (8)6.1 热泵制热(已完成) (8)6.2 空调冷水 (10)6.3 制热经济运行模式 (10)七、CPS系统空调能源站监控子模块 (13)7.1 能源站监控 (13)7.2 能耗统计 (16)7.3 能效分析 (17)7.4 智能策略 (19)一、项目概述1.1 项目背景烟台市高新区蓝色智谷“互联网+”综合体园区由16栋单体建筑及配套商业用房构成,总建筑面积30万平方米。
综合体内建有两座分布式空调能源站,负责园区的供冷和供暖。
本项目此次只针对1#能源站进行,该能源站由单独配电室供电,供应范围为6#主楼、6#裙楼、7#楼、8#楼、9#楼、10#楼。
目前给8号楼供热/冷。
烟台蓝色智谷园区平面图及建筑参数如下所示。
图1.1 烟台蓝色智谷园区平面图表1-1 烟台蓝色智谷园区建筑信息表1.2 现场设备情况1#能源站内包含如下设备:(1)2台顿汉布什冷水机组,参数:制冷量1504.41kW,输入电功率282.2kW,COP=5.74,具体参数见表1-2。
(2)5台空调冷热水循环泵,其中3台45kW,2台37kW。
(3)3台空调冷却泵,额定功率37kW。
(4)2台电蓄热循环泵,额定功率15KW。
(5)20台空气源热泵机组,每台制热电功率42kW,单台制热量140KW,每台制冷电功率39kW,制冷量130KW。
(6)冷却塔风机4台,每台约20kW。
(7)电蓄热2台,每台1500kW。
图1.2 能源站空调管路图表1-2冷热源设备参数表运行工况:夏季由冷水机组制冷为主,空气源热泵辅助。
中央空调自控系统施工方案
![中央空调自控系统施工方案](https://img.taocdn.com/s3/m/b1157dcae43a580216fc700abb68a98271feac05.png)
中央空调自控系统施工方案一、引言中央空调自控系统是一种利用先进的控制技术,实现对中央空调系统进行集中控制与管理的系统。
它能够自动调节空调的温度、湿度、风速等参数,实现室内舒适的环境条件。
本文将介绍中央空调自控系统的施工方案,包括系统组成、施工步骤、设备选型等内容,以期为工程实施提供一定的指导。
二、系统组成中央空调自控系统主要由以下几个组成部分构成:1. 控制器:负责接收传感器反馈的信号,并根据设定的参数进行控制。
2. 传感器:包括温度传感器、湿度传感器、CO2传感器等,用于实时监测室内环境参数。
3. 执行器:如电动阀门、风机等,用于执行控制命令,调节空调系统的运行状态。
4. 通信网络:用于实现传感器、控制器和执行器之间的信息交互和数据传输。
三、施工步骤中央空调自控系统的施工步骤主要分为系统设计、材料采购、布线安装、设备调试等阶段。
1. 系统设计根据不同的工程需求,进行中央空调自控系统的整体设计。
包括系统的布置图、电路图、通信网络方案等。
确保系统设计与实际工程的要求相符合。
2. 材料采购根据系统设计的需求清单,采购所需的控制器、传感器、执行器等设备,确保设备的质量和性能符合规定标准。
3. 布线安装根据设计图纸进行布线安装。
将控制器、传感器与执行器之间的连接线缆进行合理布置,并进行相关的接线工作。
确保布线的可靠性和安全性。
4. 设备调试安装完毕后,对系统进行调试。
包括控制器和传感器的正常工作状态检查、执行器的校准等工作。
确保系统运行的稳定性和效果。
四、设备选型设备选型是中央空调自控系统施工中的重要环节。
合理的设备选型能够确保系统的性能和可靠性。
1. 控制器选型根据系统的规模和功能需求,选择合适的控制器。
考虑控制器的品牌、型号、功能、扩展性等因素。
2. 传感器选型根据需要监测的参数和准确度要求,选择合适的传感器。
如温度传感器、湿度传感器、CO2传感器等。
3. 执行器选型根据系统的要求,选择合适的执行器,如电动阀门、风机等。
某工程中央空调自控系统原理设计图
![某工程中央空调自控系统原理设计图](https://img.taocdn.com/s3/m/14a37165bc64783e0912a21614791711cc79791c.png)
常用空调自控系统技术方案
![常用空调自控系统技术方案](https://img.taocdn.com/s3/m/9f345afc964bcf84b8d57b5b.png)
在满足舒适性的前提下,系统通过合理组织设备运行,使大楼的运行费用为最低。即以能耗值最低为控制目标,进行优化系统控制。系统软件设有节能程序,可以控制设备得以合理运行。系统通过计算机控制程序对全楼的设备进行监视和控制,统一调配所有设备用电量,可以实现用电负荷的最优控制,有效节省电能,减少浪费。
追求最优化的系统设备配置
在满足用户对功能、质量、性能、价格和服务等各方面要求的前提下,追求最优化的系统设备配置,以尽量降低系统造价。
实现一体化控制要求
将楼内的空调系统设备置于一个中央监控系统监视、控制之下,不但方便安装和操作,节约系统投资,并且不同的子系统连接起来后,还可以产生单独控制所不具备的新功能。
常用空调自动控制系统
技术方案
二O一四十二月二十六日
1项目需求分析
1.1项目概述
本建筑地上全部采用夏季中央空调系统,该系统选用4台离心式冷水机组和1台螺杆式冷水机组为系统提供冷源、7台变频冷冻水泵、7台工频冷却水泵、系统利用海水作为冷源,经过空调板换器为系统提供冷却水。冷水机组的冷冻水泵及冷却水泵之间均采用一对一运行,而机、泵又各自并联连接。
Honeywell公司是一家拥有240多亿美元营业额,在航天和航空产品和服务、楼宇和工业控制技术、汽车产品、发电系统、特种化学品、纤维、塑料和先进材料等多种技术和制造方面起着领导潮流作用的企业。
Honeywell公司总部位于(美国)新泽西州Morriston,公司的股票是道琼斯三十种工业指数之一。美国Honeywell有限公司(Honeywelllnc.)成立于1885年,其一贯致力于自控领域的产品开发、技术研究及系统服务工作。在历经超过百年,持之以恒的努力以后,目前Honeywell的业务遍布全球95个国家和地区;全球雇有多达十二万名员工,在全世界经营几百家工厂。公司的股票在纽约和伦敦证券交易所以HON代号上市。世界各地共有五百万座办公大楼和八千条工业控制线安装了Honeywell的自控系统。
毕业设计59基于METASYS的空调自控系统设计
![毕业设计59基于METASYS的空调自控系统设计](https://img.taocdn.com/s3/m/5cf71f986bec0975f465e2c6.png)
基于METASYS的空调自控系统设计摘要空调系统是智能建筑中楼控系统的主要组成部分,但也是系统能耗的主要部分。
随着人们生活水平的不断提高,空调系统被广泛的使用,节能成为人们普遍关注的问题。
由于变风量空调系统显著的节能特点,使其成为空调系统的主流。
同时美国江森公司的METASYS 智能楼宇管理系统,以其独特的优越性,使得空调节能得以更好的发挥。
本文首先对变风量(VAV)空调系统和江森的智能楼宇管理系统——METASYS系统作了概述,还对VAV系统的控制原理和方法进行了分析和详细说明。
通过分析确定系统的监控点、设备的选型,运用组态软件设计METASYS系统的上位机人机界面,最后在MATLAB/Simulink环境下对表冷器和变风量末端的控制器进行了仿真。
关键词:节能,VAV空调系统,METASYS系统Design of Air Conditioning control systembased on METASYSAbstractThe air-conditioning system is the main constituent of the building controls system in the intelligent building, and is the main part of system energy consumption. Along with the enhancement of people living standard, the air-conditioning system were widespread used, energy saving became the universal matter of people concerned. Because of Variable Air V olume air-conditioning system’s remarkable characteristic of energy saving, it become the mainstream of air-conditioning system. Simultaneously the American company JOHNSON-METASYS intelligence building management system having its unique superiority, that makes the energy saving of air-conditioning system better.Firstly, this paper gives the outline of the Variable Air V olume (V A V) air-conditioning system and the JOHNSON——METASYS intelligent building management system, also has analysis and specified the V A V system control principle and the method. By the analysis, determining system monitoring point, choosing the equipment, has designed the METASYS software configuration on workstation was successfully. Finally, the simulation to the cooling coil and V A V terminal controller were carried on in MATLAB/Simulink environment.Key word: Energy saving,V A V air conditioning system,METASYS system目录1.绪论 (1)2.变风量(VAV)空调系统的简介 (2)2.1变风量系统的基本概念 (2)2.1.1 VAV系统的基本组成 (3)2.1.2 VAV系统的特点 (4)2.1.3 变风量(VAV)末端装置 (6)3.METASYS的系统概述 (8)3.1硬件结构 (8)3.1.1 概述 (8)3.1.2 网络通讯 (9)3.1.3 联网能力 (11)3.1.4 操作站 (11)3.1.5 记录/报警打印机 (13)3.1.6 网络控制器(NCU) (13)3.1.7 直接数字控制器(DX-9100-8154 / XT-XP模块) (14)3.1.8 现场设备 (15)3.1.9 程序存贮器 (15)3.1.10 系统的运行环境要求及用电量 (16)3.2软件功能说明 (16)3.2.1 摘要(各类报告清单) (16)3.2.2 密码保护功能 (17)3.2.3 用户图形化编程语言 (17)3.2.4 状态改变报告 (18)3.2.5 报警信息报告及报告分组/报警管理 (18)3.2.6 监控点历史 (18)3.2.7 动态趋势分析 (18)3.2.8 累积、统计功能 (19)3.2.9 数据库下传/上载功能 (19)3.2.10 动态图形显示及操作站工作环境 (19)3.2.11 能量管理控制 (19)3.2.12 时间预定功能 (19)3.2.13 设备循环启/停/及重大设备启/停延时保护 (20)3.2.14 供电恢复启动程序 (20)3.2.15 用电量限制/负载循环 (20)3.3 江森自控集成式可变风量末端单元控制组合——VMA1400系列产品 (21)4.变风量(VAV)空调系统的控制方法及原理 (23)4.1变风量空调系统的控制方法 (23)4.1.1 自动控制系统的要求 (23)4.1.2 变风量系统的自动控制方法 (24)4.1.3 VAV系统的控制对象 (27)4.2变风量空调自控系统的控制原理 (30)4.2.1 变风量空调系统分析 (30)4.2.2 末端调节的变风量系统TRAV (32)4.2.3 变风量空调系统的组成 (35)4.3各回路控制原理 (36)4.3.1 温度控制回路 (36)4.3.2 压力(静压)控制回路 (39)4.3.3 新风量(CO2浓度)控制回路 (42)4.4VAV空调系统的监控和设备选型 (43)4.4.1 空调机组自控方式和说明 (43)4.4.2 空调系统设备的选型 (45)4.5用组态王软件设计METASYS系统的上位机人机界面 (46)5.控制器设计和仿真 (49)5.1表冷器控制器参数的确定 (51)5.2变风量末端控制器参数的确定 (54)6.总结 (59)参考文献 (60)附录 (61)致谢 (65)1.绪论空调系统也称为HVAC(Heating Ventilation and Air Conditioning),是智能建筑中楼控系统的主要组成部分,作用是创造良好的空气品质,提供舒适的生活环境,但它同时又是耗能大户,消耗建筑物50%以上的能耗。
(最新整理)基于plc的中央空调自动控制系统设计.
![(最新整理)基于plc的中央空调自动控制系统设计.](https://img.taocdn.com/s3/m/4e2e60f1a5e9856a561260e2.png)
(完整)基于plc的中央空调自动控制系统设计.编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)基于plc的中央空调自动控制系统设计.)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)基于plc的中央空调自动控制系统设计.的全部内容。
基于plc的中央空调自动控制系统设计摘要中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占建筑物总电能消耗的50%。
通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
本文首先介绍了中央空调的结构和工作原理,然后采用西门子的S7—200PLC 作为主控制单元,利用传统PID控制算法,通过西门子MM440 变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,同时又可以节约大量能源。
关键词:PLC;中央空调;控制Design of automatic control system for central air conditioningsystem based on PLCAbstractThe central air conditioning system is one of the necessary supporting facilities of modern large-scale buildings. The consumption of electric energy is very large, which accounts for about 50% of the total energy consumption. The frozen host usually in the central air-conditioning system load can automatically according to the change of temperature and load regulation, refrigeration pump and cooling pump matched with the frozen host can automatically adjust the load, almost run 100%under load operation, resulting in a great waste of energy, but also worsen the operation environment and operation quality of Central air conditioning. This paper first introduces the structure and working principle of central air conditioning, then use SIEMENS S7 200PLC as the main control unit, using the traditional PID control algorithm, through the SIEMENS MM440 inverter control pumpspeed ensure system according to the actual situation to adjust load flow, realize constant temperature control, but also can save a lot of energy。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳利源轨道交通设备有限公司暖通空调自控系统项目HVAC暖通空调自控系统技术方案设计书一. 总体设计方案根据用户对项目要求,并结合沈阳建筑智能化建筑现状,沈阳利源轨道交通装备有限公司暖通空调自控系统项目是屹今为止整个沈阳所有建筑物厂区当中智能化程度要求较高的。
沈阳利源轨道交通装备有限公司暖通空调自控系统项目里面分布着大量的暖通空调机电设备。
?如何将这些暖通空调机电设备有机的结合起来,达到集中监测和控制,提高设备的无故障时间,给投资者带来明显的经济效益;?如何能够使这些暖通空调机电设备经济的运行,既能够节能,又能满足工作要求,并在运行中尽快的将效益体现出来;?如何提高综合物业管理综合水平,将现代化的的计算机技术应用到管理上提高效率。
这是目前业主关心的也是我们设计所侧重的。
沈阳利源轨道交通装备有限公司暖通空调楼宇自动化控制系统的监测和控制主要包括下列子系统:➢冷站系统➢空调机组系统本暖通空调楼宇自动化控制系统之设计是依据沈阳利源轨道交通设备有限公司暖通空调自控系统项目的设计要求配置的,主体的设计思想是结合招标文件及设计图纸为准。
1.1冷站系统(1)控制设备内容根据项目标书要求,暖通自控系统将会对以下冷站系统设备进行监控:(2)控制说明本自控系统针对冷站主要监控功能如下:监控内容控制方法冷负荷需求计算根据冷冻水供、回水温度和回水流量测量值,自动计算建筑空调实际所需冷负荷量。
机组台数控制根据建筑所需冷负荷自动调整冷水机组运行台数,达到最佳节能目的。
独立空调区域负荷计算根据Q=C*M*(T1-T2)T1=分回水管温度,T2=分供水总管温度,M=分回水管回水流量当负荷大于一台机组的15%,则第二台机组运行。
机组联锁控制启动:冷却塔蝶阀开启,冷却水蝶阀开启,开冷却水泵,冷冻水蝶阀开启,开冷冻水泵,开冷水机组。
停止:停冷水机组,关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷却塔风机、蝶阀。
冷却水温度控制根据冷却水温度,自动控制冷却塔风机的启停台数,并且自动调节风扇频率。
水泵保护控制水泵启动后,水流开关检测水流状态,如故障则自动停机水泵运行时如发生故障,备用泵自动投入运行。
机组定时启停控制根据事先排定的工作节假日作息时间表,定时启停机组自动统计机组各水泵、风机的累计工作时间,提示定时维修。
机组运行状态监测系统内各机组的工作状态,自动显示,定时打印及故障报警。
机组运行状态监测系统内各机组的工作状态,自动显示,定时打印及故障报警。
冷冻机组控制流程框图如下图所示:1.2 空调机组系统➢冷水阀控制工作于夏季工况,DDC 控制器会监测回风温度并将它与预设的温度值(可供用户调较)作比较, 进行PID运算, 然後输出至冷水阀, 以作温度调节作用。
如:回风温度>20℃时阀门开大;温度<20℃时阀门开小。
另外此冷冻水阀会与风机状态联锁, 在没有风机状态的情况下, 将冷水阀关死。
➢ 60度冷水阀控制工作于冬季工况,DDC 控制器会监测回风温度并将它与预设的温度值(可供用户调较)作比较, 进行PID运算, 然後输出至热水阀, 以作温度调节作用。
如:回风温度>20℃时阀门开小;温度<20℃或时阀门开大。
另外此热水阀会与风机状态联锁, 在没有风机状态的情况下, 将冷水阀关死。
➢滤网状态监察BA 系统通过压差开关, 监测初效和中效过滤网的前後压差。
当压差超过压差开关的预设值(在压差开关上可调), BA 系统会以声光报警形式在操作站上显示, 以提醒操作人员安排有关人员做滤网清洗工作。
而 BA 系统也会将有关的事项一一记录, 以作日後检查之用。
积运行时间, 以便维修人员在设备运行至一定时间後, 进行维修工作。
➢冷水阀控制工作于夏季工况,DDC 控制器会监测回风温度并将它与预设的温度值(可供用户调较)作比较, 进行PID运算, 然後输出至冷水阀, 以作温度调节作用。
如:回风温度>20℃时阀门开大;温度<20℃时阀门开小。
另外此冷冻水阀会与风机状态联锁, 在没有风机状态的情况下, 将冷水阀关死。
➢ 60度冷水阀控制BAS系统结构和硬件介绍根据沈阳利源轨道交通设备有限公司的系统要求,我们本着集中管理、分散控制这种集散式监控结构的设计原则来实现整体功能。
其系统总体参考示意图如下:从以上BAS结构示意图可知此系统是由中央操作站、网络区域控制器、直接数字控制器(DDC)等组成,中央操作站及网络控制器是通过Ethernet网(管理层)将各节点连接起来,同时安装在建筑物各处的直接数字控制器(DDC),将通过自动化层连接到网络控制器上,与中央操作站保持紧密联系。
传感器及执行器等连接至以上各直接数字控制器内。
系统之主要组件如下:➢通讯网络管理层自动化层➢网络区域控制单元(NCE/NAE)➢直接数字式控制器(DX)以下分别就沈阳利源轨道交通设备有限公司暖通空调自动化控制系统所配置的硬件设备做详细说明:8.1 二层通讯网络BAS系统采用控制层和管理层两层网络结构,服务器、操作站、网络通信设备等通过管理层网络相联,管理层网络采用100M BASE-T以太网,以标准TCP/IP协议互相通信,在物理连接上利用现有的综合布线路由,通过网络设备的设置将管理层网络连通;所有控制器能通过控制层网络以现场总线方式通信。
采用分布智能式控制系统,控制层网络中任一节点故障时均不致影响系统的正常运行和信号的传输。
8.1.1 管理层网络管理层网络除了将系统自身的管理设备连接起来外,还将建筑物中其他相关系统和独立的智能化系统连接起来,实现各系统之间的数据通信、信息共享以及其他厂商设备和系统的通讯。
同时管理层网络还将建筑设备监控系统中的所有监控信息及时地反馈到信息共享管理系统中的中心数据库,并获取信息共享管理系统的相关运行信息,实现相关信息的双向通讯。
管理层采用TCP/IP协议,中央操作站及分站,数据管理服务器,网络控制引擎等设备分布其上。
网上各节点之间的数据交换采用点对点(peer to peer)方式,各节点均具备动态数据访问(Dynamic Data Access)功能,您只需在网络的任意节点添加计算机,通过标准的WEB浏览器,即可以您的用户名和密码轻松访问您权限范围内的被控设备。
甚至可以在全世界任何地方通过内联网或互联网进行显示和控制操作。
当然,灵活的模块化网络结构也为您未来的扩展提供了保证。
8.1.2自动化层网络采用分布智能式控制系统,实现各控制节点之间,控制节点与中央控制中心之间,以及它们与专用控制、接口设备之间的数据通信。
控制层每个现场控制器DDC采用分散控制的原则,分布在被控设备的附近,现场工作人员可以通过DDC上的显示面板和操作面板就近操作或监测被控设备。
每个DDC由控制器及其扩展模块组成,①当现场被控设备的监控点位需要增加时,只需增加相应的扩展模块即可,不会影响其他被控设备;②当需要增加其他被控设备时,只需在控制层网络上增加控制器,同样也不会影响其他控制设备。
中央控制中心通过控制层网络将信息传送到任何指定的控制节点。
网络控制器(NCE)网络型DDC控制器(NCE)位于控制管理层网络,是一种基于Web的网络控制器,它内置了Microsoft Windows CE操作系统和楼宇自控系统软件,负责监控安装在其现场总线上的扩展控制器,扩展控制器可以是BACnet控制器或N2控制器。
NCE通过嵌入式网络用户界面进行系统导航、系统配置及系统操作。
当网络型DDC控制器(NCE)与IP网络相连时,可以为其它大型网络型DDC控制器和数据管理服务器提供数据信息。
这种智能设备抛弃了以往需要安装系统软件的操作站,它支持多个Web浏览器用户同时访问,提供监控、警告和事件管理、数据交换、趋势分析、能量管理、时间表以及数据储存的功能,并采用了密码授权以及IT行业的安全保护技术。
网络控制引擎向建筑控制市场提供工业级的高可靠性,包括:⏹工业用单片机⏹Windows® CE embeded 内嵌式操作系统⏹128MB非易失性固态闪存,用于存储所有的程序和数据⏹128MB DRAM用于动态数据存储⏹可充电数据保护电池,保护DRAM上的数据,在断电后将其存入闪存,电池寿命为5~7年⏹采用后备电池的实时计时装置⏹电源配有发光二极管用于提醒,出现问题后易更换⏹可拆式螺丝固定终端24V AC电源,⏹SA总线网络⏹BACnet总线网络连接、Lonwalk总线网络、N2总线网络供选择⏹用于RS-232-C的标准9针D型串行接口⏹标准USB串行接口⏹用于内置调制解调器的RJ-11型电话线连接装置⏹用于连接以太网的RJ-45型连接装置⏹内置33个输入输出点位,并可扩展数模转换精度16Bit网络控制器(NAE)NAE网络控制引擎是江森自控 MSEA系统架构中的核心设备之一,也代表了业界最新的技术和发展趋势。
2003年江森自控与美国微软公司达成合作伙伴关系,并与之合作推出了核心控制楼宇的智能硬件。
它在硬件中内置了Windows Embedded 操作系统和楼宇自控系统的监控管理软件,基于 Web 的设计使这个硬件能够作为 Web 服务器将建筑设备监控管理系统的信息在以太网上发布,并通过嵌入式网络用户界面进行系统导航、系统配置及系统操作,而不需要安装任何专用程序。
1) 性能特点■ 基于WEB浏览器的用户界面这种智能设备抛弃了以往需要安装系统软件的操作站,同时支持多个Web浏览器用户同时访问,提供监控、警告和事件管理、数据交换、趋势分析、能量管理、时间表以及数据储存的功能,并采用了密码授权以及IT行业的安全保护技术。
用户不需要任何专门的工作站软件,就可以实现局域网内或远程的管理、配置和诊断等功能。
另外还内置有必要的编程软件,任何一台配有标准网络浏览器的工作站或便携终端都可以对系统进行配置、逻辑编程、试运行、数据存档等工作。
■ 开放接口能力作为楼宇控制的核心,位于管理层的网络控制引擎 NAE 收集和管理整个楼宇的设备信息,并向 IBMS 的集成管理平台提交。
在控制层面上支持多种开放式标准网络,包括 LonWorks 网络、BACnet系统设备、MetasysN2 网络和 Integrator 集成器,从而满足与不同厂商设备和子系统的接入。
■ 先进的IT通讯技术网络控制引擎直接连接到以太网络中。
网络间的数据传输采用标准IT协议、服务以及格式,包括网际协议(IP)、超文本传输协议(HTTP)、对象访问协议(SOAP)、网络时间协议(SNTP)、邮件传输协议(SMTP)、网络管理协议(SNMP),并支持超文本链接标示语言(HTML)和可扩展链接标记语言(XML)的静态、动态数据定义。
网络控制引擎还支持动态IP寻址协议,例如动态主机配置协议(DHCP)、域命名服务(DNS)等。