动点产生的面积问题-教师版

合集下载

因动点产生的面积问题

因动点产生的面积问题

第6讲 因动点产生的面积问题【例1】如图,在直角坐标系中,抛物线c bx x y ++=2经过点上(0,10)和(4,2). (1) 求这条抛物线的解析式。

(2) 如图,在边长一定的矩形ABCD 中,CD =1,点C 在y 轴右侧沿抛物线c bx x y ++=2滑动,在滑动过程中C D ∥x 轴,AB 在CD 的下方。

当点D 在y 轴上时,AB 落在x 轴上。

1) 求边BC 的长;2) 当矩形ABCD 在滑动过程中被x 轴分成两部分的面积比为1:4时,求点C 的坐标。

【例2】如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.【例3】如图1,抛物线23y ax ax b =-+经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B 。

⑴求此抛物线的解析式;⑵若直线1(0)y kx k =-≠将四边形ABCD 面积二等分,求k 的值;⑶如图2,过点E (1,-1)作EF ⊥x 轴于点F ,将△AEF 绕平面内某点旋转180°后得△MNQ (点M ,N ,Q 分别与点A ,E ,F 对应),使点M ,N 在抛物线上,求点M ,N 的坐标.图15【例4】如图,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴正半轴上,边CO在y 轴的正半轴上,且322==OB AB ,,矩形ABOC 绕点O 逆时针旋转后得到矩形EFOD ,且点A 落在y 轴上的E 点,点B 的对应点为点F ,点C 的对应点为点D .(1)求F 、E 、D 三点的坐标;(2)若抛物线c bx ax y ++=2经过点F 、E 、D ,求此抛物线的解析式; (3)在x 轴上方的抛物线上求点Q 的坐标,使得三角形QOB 的面积等于矩形ABOC 的面积?【例5】如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.参考答案【例2】解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明), 此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =.故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+.解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续CD 下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,P G ,均在CD 上,不存在PG AB ∥)【例3】(1)如图1, ∵抛物线.⎩⎨⎧+-=++=.992,30b a a b a a 解得,.221⎪⎩⎪⎨⎧=-=b a∴抛物线的解析式y=-223212++x x . (2)方法1:如图1,由y=-223212++x x 得B (B图6 B 图7B图9(0,2).∴CD ∥AB ∴S ABCD 梯形=21(5+3)×2=8 设直线y=kx-1分别交AB 、CD 于点H 、T ,则H (k 1,0)、T (k 3,2). ∵直线y=kx-1平分四边形ABCD 面积, ∴S AHTD 梯形=21S ABCD 梯形=4.∴21(k 1+1+k 3)×2=4 ∴k=34,∴k=34时,直线y=34x-1将四边形ABCD 面积二等分.方法2:过点C 作CG ⊥AB 与点G . 由y=-223212++x x 得B (4,0)、D (0,2). ∴CD ∥AB 由抛物线的对称性得四边形ABCD 是等腰梯形, ∴BCG AOD S S ∆∆= 设矩形ODCH 的对称中心为R ,则R (23,1).由矩形的中心对称性知:过R 点任一直线将它的面积平分,∴过R 点且与CD 相交的任一直线将梯形ABCD 面积平分.当直线y=kx-1经过点R 时,得1=23k-1 ∴k=34,(3)方法1:如图2,由题意知,四边形AEMN 是平行四边形, ∴AN ∥EM 且AN=EM. ∵E (1,-1)、A (-1,0) ∴设M (m ,n ),则N (m-2,n+1).∵M 、N 在抛物线上,∴⎪⎪⎩⎪⎪⎨⎧+-+--=+++-=2)2(23)2(2112232122m m n m m n 解得⎩⎨⎧==.1,3n m∴M (3,2),N (1,3).方法2:如图2,由题意知△AEF ≌△MNQ .∴MQ=AF=2,NQ=EF=1,∠MQN=∠AFE=90设M (m ,223212++-m m ),N (n ,223212++-n n ), ∴⎪⎩⎪⎨⎧=++--++-=-;1)22321(22321,222m m n n n m 解得⎩⎨⎧==.1,3n m ∴M (3,2),N (1,3).注:中对学生的解法提炼出来的.方法3:如图2,设旋转中心P (m ,n ), ∵A (-1,0) E (1,-1) , 根据中点坐标公式得M (2m+1,2n ) N (2m-1,2n+1).∵M 、N 在抛物线上,∴⎪⎪⎩⎪⎪⎨⎧+-+--=+++++-=2)12(23)12(21122)12(23)12(21222m m n m m n 解得⎩⎨⎧==.1,1n m∴M (3,2),N (1,3).方法4:如图2,由题意知,四边形AEMN 是平行四边形,∴NM ∥AE 且MN=AE=5,∵直线AE 的解析式为y=2121--x , ∴可设MN 的解析式为y=x 21-+b ,联立方程组⎪⎪⎩⎪⎪⎨⎧++-=+=.22321,21- 2x x y b x y 消去y ,整理得 2x -4x-4+2b=0设M (),11y x 、N (22,y x ),由根与系数关系得421=+x x , 21x x =2b-4∴(221)x x -=(221)x x +-421x x =32-8b而MN 2=(221)x x -+(21y y -)2=(221)x x -+[(-211x +b )-(-212x +b )]2 =45(221)x x - ∴45(221)x x -=5 ∴32-8b=4 解得b=27 将b=27代入方程组解得⎩⎨⎧==.1,311y x ,⎩⎨⎧==.3,122y x∴M (3,2),N (1,3).【例4】解:(1)联结AO , 矩形ABOC 322==OB AB ,40=∴A ----(1分)矩形ABOC 绕点O 逆时针旋转后得到矩形EFOD ,A 落在y 轴上的点E4==∴EO AO )4,0(E ∴ --------------------------------------------(1分) 过D 点作D H ⊥X 轴于H ,AOB DOH ABO DHO ∠=∠∠=∠, ,DHO ∆∴∽ABO ∆AODOOB HO AB DH ==∴4,2,32,2====AO DO OB AB 3,1==∴OH DH)1,3(-∴D ------------------------------------------------------------(1分)同理求得)3,3(F ∴-----------------------------------------------------------------------(1分) (2)因为抛物线c bx ax y ++=2经过点F 、E 、D⎪⎩⎪⎨⎧+-=++=∴43314333b a b a 求得:4,33,32==-=c b a ---------------------------------------------------------(3分) 所求抛物线为:433322++-=x x y ---------------------------------------------(1分) (3)因为在x 轴上方的抛物线上有点Q ,使得三角形QOB 的面积等于矩形ABOC 的面积设三角形Q O B 的OB 边上的高为h ,则3223221⨯=⨯⨯h ,所以4=h --------------------(1分)因为点Q 在x 轴上方的抛物线上, )4,(x Q ∴23.0,433324212==++-=∴x x x x ----------------------------------(1分) 所以Q 的坐标是)4,0(或)4,23(--------------------------------------------------------(2分) 【例5】解:(1)Q (1,0) ·············································································································· 1分 点P 运动速度每秒钟1个单位长度. ················································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=. 在Rt △AFB中,10AB 3分过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分(3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t A M M P∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ····························································· 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ································ 6分 此时P 的坐标为(9415,5310) . ······················································································· 7分(4) 当 53t =或29513t =时, OP 与PQ 相等. ····························································· 9分对一个加1分,不需写求解过程.。

专题10 动点产生的面积关系(解析版)

专题10 动点产生的面积关系(解析版)

专题10 动点产生的面积关系教学重难点1.体会点的运动过程,能从点的运动过程中抓住一些不变的量;2.能从点的运动过程中建立自变量与面积的关系式;3.让学生学会求一些基本图形的面积;4.体会压轴题的解题方法和思路。

【备注】:1.此部分知识点梳理,根据第1个图先让学生初步体会到压轴题中求图形面积的种类,可以看看每一类图形学生都是怎么求解的;2再根据第2个图引导学生总结求三角形面积的一般方法。

时间5分钟左右完成。

压轴题中求图形面积类型:三角形面积的一般求解方法:【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“参考教法”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比式引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。

例1(2020静安区建承中学一模)在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC .(1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【整体分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案; (2)过点D 作DH ∠BC 于H ,在∠ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案;(3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB∠∠OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标. 【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143a b c =-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x =-+-.(2)过点D 作DH ⊥BC 于H ,在∠ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∠DH//y轴,∴25 CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355 CH DH==⨯=.∴64255 BH BC CH=-=-=.∴tan∠DBC=32 DHBH=.(3)延长AE至x轴,与x轴交于点F,∠OA=OC=3,∴∠OAC=∠OCA=45°,∠∠OAB=∠OAC-∠BAC=45°-∠BAC,∠OFA=∠OCA-∠FAC=45°-∠FAC,∠∠BAC=∠FAC,∴∠OAB=∠OFA . ∴△OAB∠∠OFA , ∴13OB OA OA OF ==. ∴OF=9,即F (9,0);设直线AF 的解析式为y=kx+b (k≠0),可得093k b b =+⎧⎨-=⎩ ,解得133k b ⎧=⎪⎨⎪=-⎩,∴直线AF 的解析式为:133y x =-, 将x=2代入直线AF 的解析式得:73y =-,∴E (2,73-). 【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.例2..已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB =(如图所示)。

北师大版八上一次函数动点问题面积问题

北师大版八上一次函数动点问题面积问题

精品文档一次函数的动点问题类型一面积问题23.如图,直线y3x1和两坐标轴交于点A,B,以线段AB为边在第一象限作等边三角形ABC,存在点31ABC的面积与ABP的面积相等,求m的值。

P(m,),使2练习1如图,直线y1x1和两坐标轴交于点A,B,把线段AB绕点A顺时针旋转90°得到线段AB'.〔1〕求直线AB'的解析式。

2(2)假设动点C(1,a)使得S ABC S ABB'的面积相等,求a的值。

.练习2如图,一次函数y 1xb的图像过A(2,3),AB x轴于点B,连接OA。

〔1〕求一次函数解析式。

2〔2〕设点P为直线y1x b上一点,且在第一象限内,经过点P〔不与A重合〕作x轴的垂线,2假设SPOQ S AOB,求点P的坐标。

练习3A(0,2),B(2,0),C(0,0)三个点为顶点的三角形被直线yaxa分成两局部,〔1〕填空:不管a为何值,直线yax a必定经过一顶点C,那么该顶点为。

〔2〕假设所分的两局部面积之比为1:7,求a的值。

.如图,直线y2x4的图像交两坐标轴于点A,B ,点C 为OB 的中点,直线l 经过点C ,与AB 交于点D,把AOB 的面积分为1:2,求直线l 的解析式。

如图,直线y2x 3与x 轴交于点A ,与y 轴交于点B 。

〔1〕求点A,B 的坐标。

〔2〕过点B 作直线BP 与x 轴交于点P ,假设S ABP15,求直线BP 的解析式。

4.二动点问题一条直线上顺次有A,B,C三个港口,甲乙两船分别从A,B港口出发,沿直线行驶到C港口,最终到达C 港口在一条直线上依次有A、B、C三个港口,甲乙两船同时分别从A、B港口出发,沿直线匀速驶向C 港.最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2〔km〕,y1、y2与x的函数关系如下图.〔1〕填空:A、C两港口间的距离____km,a=_____;2〕求图中点P的坐标,并解释该点坐标所表示的实际意义;3〕假设两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时,x的取值范围.两城A,B间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y〔千米〕与行驶时间x〔小时〕之间的函数图像.〔1〕求甲车返回过程中y与x之间的函数解析式,并写出x的取值范围;〔2〕乙车与返回的甲车相遇距离B城还有多远?.精品文档特殊三角形问题A(1,0),B(4,4),在y轴上找一点C,使得ABC为等腰三角形,求出点C的坐标。

由动点引出的几种面积问题(含答案)

由动点引出的几种面积问题(含答案)

专题9:由动点引出的几种面积问题动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点. 解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”. 即把动态问题变为静态问题,变为我们所熟知的模型来解。

基本模型一利用“铅垂高、水平宽”求三角形面积.面积公式:S =12ah 基本模型二CABD其中::ACD BCD S S AD BD =△△: ,:ACD BCA S S AD BA =△△: 基本模型三OB()12AOB ACB AOBC S S S a h OA =+=+△△四边形 类型一、一次函数由动点问题引出的面积问题例1. 如图例1-1,在平面直角坐标系中,直线121y x =+和直线2443y x =-+交于点A . 直线y n =从x 轴出发以每秒2个单位的速度向上运动,至通过A 点时停止. 在运动过程中,直线y n =分别交y 1、y 2两条直线于C 、B 两点,交y 轴于点D . 连接OC 、OB .(1)设运动时间为t (s ),求t 的取值范围.(2)求出△OBC 的面积S 与t 的函数关系式,并求出S 的最大值及此时n 的值.y=n类型二、二次函数由动点问题引出的面积问题例2. 如图例2-1,二次函数y =ax 2+bx +c 的图像与x 轴的交点为A 、D (A 在D 的右侧),与y 轴的交点为C ,且A (4,0),C (0,-3),对称轴是直线x =1. (1)求二次函数的解析式;(2)若M 是第四象限抛物线上一动点,且横坐标为m ,设四边形OCMA 的面积为S .请写出S 与m 之间的函数关系式,并求出当m 为何值时,四边形OCMA 的面积最大.图例2-1图例2-2类型三、反比例函数由动点问题引出的面积问题例3. 如图例3-1,直线y=2x+6与反比例函数kyx(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?图例3-1类型四、利用三角函数求解由动点问题引出的面积问题例4. 如图例4-1,在矩形OABC中,点O为原点,边OA的长度为8,对角线AC=10,抛物线y =-49x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . 求S 关于m 的函数表达式并求出S 最大时的m 值.图例4-1.类型五、由动点问题引出的面积存在性问题例5. 如图例5-1,在平面直角坐标系中,△ABC 是等腰直角三角形,∠BAC =90°,A (1,0),B (0,2),C (3,1)抛物线2122y x bx =+-的图象过C 点,交y 轴于点D . (1)在后面的横线上直接写出点D 的坐标及b 的值: ,b = ;(2)平移该抛物线的对称轴所在直线l ,设l 与x 轴交于点G (x ,0),当OG 等于多少时,恰好将△ABC的面积分为相等的两部分?AOxyBCGF H E图例5-1 图例5-2类型六、利用转化思想解决由动点问题引出的面积问题如图例6-1,在平面直角坐标系中,抛物线24 5y ax x c=++与直线2255y x=--交于A、B两点,已知点B的横坐标是4,直线2255y x=--与x、y轴的交点分别为A、C,点P是抛物线上一个动点.(1)求抛物线的解析式;(2)若点P在直线2255y x=--上方,求△P AC的最大面积.OxyPACBGEH 图例6-1专题9:由动点引出的几种面积问题动点题是近年来中考的一个热点问题也是难点问题,而因动点产生的面积问题是这类题目考查的重点. 解这类题目要掌握几个基本图形及思路,而后“以静制动”、“转化求解”. 即把动态问题变为静态问题,变为我们所熟知的模型来解。

1.4因动点产生的面积问题(教师版)

1.4因动点产生的面积问题(教师版)

例1 2015年边长为8的正方形ABCD 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上A 、C 两点间的一个动点(含端点),过点P 作PF ⊥BC 于点F .点D 、E 的坐标分别为(0, 6)、(-4, 0),联结PD 、PE 、DE .(1)直接写出抛物线的解析式;(2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值.进而猜想:对于任意一点P ,PD 与PF 的差为定值.请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE 的面积为整数” 的点P 记作“好点”,则存在多个“好点”,且使△PDE 的周长最小的点P 也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE 周长最小时“好点”的坐标.解答(1)抛物线的解析式为2188y x =-+.(2)小明的判断正确,对于任意一点P ,PD -PF =2.说理如下: 设点P 的坐标为21(,8)8x x -+,那么PF =y F -y P =218x .而FD 2=22222222111+(86)+(2)(2)888x x x x x -+-=-=+,所以FD =2128x +.因此PD -PF =2为定值. (3)“好点”共有11个.在△PDE 中,DE 为定值,因此周长的最小值取决于FD +PE 的最小值.而PD +PE =(PF +2)+PE =(PF +PE )+2,因此当P 、E 、F 三点共线时,△PDE 的周长最小(如图2). 此时EF ⊥x 轴,点P 的横坐标为-4.所以△PDE 周长最小时,“好点”P 的坐标为(-4, 6).第(3)题的11个“好点”是这样求的:如图3,联结OP ,那么S △PDE =S △POD +S △POE -S △DOE . 因为S △POD =1()32P OD x x ⋅-=-,S △POE =2111624P OE y x ⋅=-+,S △DOE =12,所以 S △PDE =21316124x x --+-=21344x x --+=21(6)134x -++. 因此S 是x 的二次函数,抛物线的开口向下,对称轴为直线x =-6. 如图4,当-8≤x ≤0时,4≤S ≤13.所以面积的值为整数的个数为10.当S =12时,方程21(6)13124x -++=的两个解-8, -4都在-8≤x ≤0范围内. 所以“使△PDE 的面积为整数” 的 “好点”P 共有11个.例2 2014年昆明在平面直角坐标系中,y =ax 2+bx -3(a ≠0)与x 轴交于A (-2, 0)、B (4, 0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从点A 出发,在线段AB 上以每秒3个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒时△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK ∶S △PBQ =5∶2,求点K 的坐标.(1)因为抛物线与x 轴交于A (-2, 0)、B (4, 0)两点,所以y =a(x +2)(x -4).所以-8a =-3.解得38a =.所以抛物线的解析式为3(2)(4)8y x x =+-233384x x =--.(2)如图2,过点Q 作QH ⊥x 轴,垂足为H .在Rt △BCO 中,OB =4,OC =3,所以BC =5,sin B =35.在Rt △BQH 中,BQ =t ,所以QH =BQ sin B =35t .所以S △PBQ =211399(63)(1)2251010BP QH t t t ⋅=-⨯=--+.因为0≤t ≤2,所以当t =1时,△PBQ 的面积最大,最大面积是910。

因动点产生的面积问题

因动点产生的面积问题

因动点产生的面积问题1.如图1, 四边形OABC是矩形, 点A.C的坐标分别为(3,0), (0,1). 点D是线段BC上的动点〔与端点B.C不重合〕, 过点D作直线交折线OAB于点E.〔1〕记△ODE的面积为S, 求S与b的函数关系式;〔2〕当点E在线段OA上时, 假设矩形OABC关于直线DE的对称图形为四边形O1A1B1C1, 试探究四边形O1A1B1C1与矩形OABC的重叠局部的面积是否发生变化?假设不变, 求出重叠局部的面积;假设改变,请说明理由.图12.如图1, 直角梯形OABC的边OA在y轴的正半轴上, OC在x轴的正半轴上, OA=AB=2, OC=3, 过点B作BD⊥BC, 交OA于点D. 将∠DBC绕点B按顺时针方向旋转, 角的两边分别交y轴的正半轴、x轴的正半轴于E和F.〔1〕求经过点A.B.C三点的抛物线的解析式;〔2〕当BE经过〔1〕中抛物线的顶点时, 求CF的长;〔3〕连结EF, 设△BEF与△BFC的面积之差为S, 问当CF为何值时S最小, 并求出最小值.图13.如图1, 在△ABC中, ∠C=90°, AC=3, BC=4, CD是斜边AB上的高, 点E在斜边AB上, 过点E 作直线与△ABC的直角边相交于点F, 设AE=x, △AEF的面积为y.〔1〕求线段AD的长;〔2〕假设EF⊥AB, 当点E在斜边AB上移动时,①求y与x的函数关系式〔写出自变量x的取值范围〕;②当x取何值时, y有最大值?并求出最大值.〔3〕假设点F在直角边AC上〔点F与A、C不重合〕, 点E在斜边AB上移动, 试问, 是否存在直线EF 将△ABC的周长和面积同时平分?假设存在直线EF, 求出x的值;假设不存在直线EF, 请说明理由.图1 备用图4.如图1, : 抛物线y=x2+bx-3与x轴相交于A.B两点, 与y轴相交于点C, 并且O..OC.〔1〕求这条抛物线的解析式;〔2〕过点C作CE // x轴, 交抛物线于点E, 设抛物线的顶点为点D, 试判断△CDE的形状, 并说明理由;〔3〕设点M在抛物线的对称轴l上, 且△MCD的面积等于△CDE的面积, 请写出点M的坐标〔无需写出解题步骤〕.图15.如图1, 在平面直角坐标系xOy中, 直角梯形OABC的顶点O为坐标原点, 顶点A.C分别在x轴、y 轴的正半轴上, CB∥OA, OC=4, BC=3, OA=5, 点D在边OC上, CD=3, 过点D作DB的垂线DE, 交x 轴于点E.〔1〕求点E的坐标;〔2〕二次函数y=-x2+bx+c的图像经过点B和点E.①求二次函数的解析式和它的对称轴;②如果点M在它的对称轴上且位于x轴上方, 满足S△CEM=2S△ABM, 求点M的坐标.图16.如图1, 直线l经过点A(1, 0), 且与双曲线(x>0)交于点B(2, 1). 过点(p>1)作x轴的平行线分别交曲线(x>0)和(x<0)于M、N两点.〔1〕求m的值及直线l的解析式;〔2〕假设点P在直线y=2上, 求证: △PMB∽△PNA;〔3〕是否存在实数p, 使得S△AMN=4S△AMP?假设存在, 请求出所有满足条件的p的值;假设不存在,请说明理由.图1因动点产生的面积问题1.〔2021年广州市中考第25题〕如图1, 四边形OABC是矩形, 点A.C的坐标分别为(3,0), (0,1). 点D是线段BC上的动点〔与端点B.C不重合〕, 过点D作直线交折线OAB于点E.〔1〕记△ODE的面积为S, 求S与b的函数关系式;〔2〕当点E在线段OA上时, 假设矩形OABC关于直线DE的对称图形为四边形O1A1B1C1, 试探究四边形O1A1B1C1与矩形OABC的重叠局部的面积是否发生变化?假设不变, 求出重叠局部的面积;假设改变,请说明理由.图1思路点拨1. 数形结合, 用b表示线段OE、CD.AE、BE的长.2.求△ODE的面积, 要分两种情况.当E在OA上时, OE边对应的高等于OC;当E在AB边上时, 要利用割补法求△ODE的面积.3. 第〔2〕题中的重叠局部是邻边相等的平行四边形.4.图形翻折、旋转等运动中, 计算菱形的边长一般用勾股定理.总分值解答(1)①如图2, 当E在OA上时, , 由可知, 点E的坐标为(2b,0), OE=2b.此时S=S△ODE=.②如图3, 当E在AB上时, , 把y=1代入可知, 点D的坐标为(2b-2,1), CD=2b-2, BD=5-2b.把x=3代入可知, 点E的坐标为, AE=, BE=.此时S=S矩形OABC-S△OAE-S△BDE -S△OCD=.(2)如图4, 因为四边形O1A1B1C1与矩形OABC关于直线DE对称, 因此DM=DN,那么重叠局部是邻边相等的平行四边形, 即四边形DMEN是菱形.作DH⊥OA, 垂足为H. 由于CD=2b-2, OE=2b, 所以EH=2.设菱形DMEN的边长为m.在Rt△DNH中, DH=1, NH=2-m, DN=m, 所以12+(2-m)2=m2.解得.所以重叠局部菱形DMEN的面积为.图2 图3 图4考点伸展把此题中的矩形OABC绕着它的对称中心旋转, 如果重叠局部的形状是菱形〔如图5〕, 那么这个菱形的最小面积为1, 如图6所示;最大面积为, 如图7所示.图5 图6 图72.2021年湖州市中考第24题如图1, 直角梯形OABC的边OA在y轴的正半轴上, OC在x轴的正半轴上, OA=AB=2, OC=3, 过点B作BD⊥BC, 交OA于点D.将∠DBC绕点B按顺时针方向旋转, 角的两边分别交y轴的正半轴、x 轴的正半轴于E和F.〔1〕求经过点A.B.C三点的抛物线的解析式;〔2〕当BE经过〔1〕中抛物线的顶点时, 求CF的长;〔3〕连结EF, 设△BEF与△BFC的面积之差为S, 问当CF为何值时S最小, 并求出最小值.图1 图2思路点拨1. 过点B向坐标轴作垂线, 图形中就构造出丰富的余角, 从而构造出相似三角形. 此题中因为点B的坐标特殊, 因此构造出全等三角形.2.用CF表示△BEF与△BFC的面积之差, 首先要判断△BEF是等腰直角三角形, 这样△BEF的面积就转化为求BF2的问题.总分值解答(1)根据题意可得A(0,2), B(2,2), C(3,0). 设抛物线的解析式为y=ax2+bx+c,那么解得, , . 所以抛物线的解析式为.(2)由, 得抛物线的顶点G的坐标为〔〕.如图2, 过点B作x轴的垂线, 垂足为M, 过点E作y轴的垂线, 交BM于N.因为∠BEN与∠FBM都是∠EBN的余角, 所以∠BEN=∠FBM.又因为BM=EN=2, 所以△BMF≌△ENB. 因此BE=BF, BN=FM.当BE经过抛物线的顶点G时, . 此时.(3)设CF的长为a. 在Rt△BFM中, .因为△BEF是等腰直角三角形, 所以.因此.所以当CF=2时, S取得最小值, 最小值为.考点伸展:图2是一个典型图, 在这个图形中, △BMC≌△BAD, △BFC≌△BED, △BFM≌△BEA≌△ENB, △BEF与△BDC、△BAM都是等腰直角三角形.如果把此题中的条件“角的两边分别交y轴的正半轴、x轴的正半轴于E和F〞改为“角的两边分别交y 轴、x轴于E和F〞, 那么上述结论依然成立〔如图3, 图4〕.图3 图43.如图1, 在△ABC中, ∠C=90°, AC=3, BC=4, CD是斜边AB上的高, 点E在斜边AB上, 过点E 作直线与△ABC的直角边相交于点F, 设AE=x, △AEF的面积为y.〔1〕求线段AD的长;〔2〕假设EF⊥AB, 当点E在斜边AB上移动时,①求y与x的函数关系式〔写出自变量x的取值范围〕;②当x取何值时, y有最大值?并求出最大值.〔3〕假设点F 在直角边AC 上〔点F 与A 、C 不重合〕, 点E 在斜边AB 上移动, 试问, 是否存在直线EF 将△ABC 的周长和面积同时平分?假设存在直线EF, 求出x 的值;假设不存在直线EF, 请说明理由.图1 备用图 思路点拨1. 第〔1〕题求得的AD 的长, 就是第〔2〕题分类讨论x 的临界点.2. 第〔2〕题要按照点F 的位置分两种情况讨论.3.第〔3〕题的一般策略是:先假定平分周长, 再列关于面积的方程, 根据方程的解的情况作出判断. 总分值解答(1) 在Rt △ABC 中, AC =3, BC =4, 所以AB =5. 在Rt △ACD 中, .(2) ①如图2, 当F 在AC 上时, . 在Rt △AEF 中, . 所以 . 如图3, 当F 在BC 上时, . 在Rt △BEF 中, . 所以 . ②当 时, 的最大值为 ;当 时, 的最大值为 .因此, 当 时, y 的最大值为 .图2 图3 图4(3)△ABC 的周长等于12, 面积等于6.先假设EF 平分△ABC 的周长, 那么AE =x, AF =6-x, x 的变化范围为3<x ≤5.因此 .解方程 , 得 .因为 在3<x ≤5范围内〔如图4〕, 因此存在直线EF 将△ABC 的周长和面积同时平分.考点伸展如果把第〔3〕题的条件“点F 在直角边AC 上〞改为“点F 在直角边BC 上〞, 那么就不存在直线EF 将△ABC 的周长和面积同时平分.先假设EF 平分△ABC 的周长, 那么AE =x, BE =5-x, BF =x +1. 因此21133sin (5)(1)(45)22510BEF S BE BF B x x x x ∆=⋅⋅=-+⨯=---. 解方程 . 整理, 得 . 此方程无实数根.4.如图1, : 抛物线y =x2+bx -3与x 轴相交于A.B 两点, 与y 轴相交于点C, 并且OA = OC. 〔1〕求这条抛物线的解析式;〔2〕过点C 作CE // x 轴, 交抛物线于点E, 设抛物线的顶点为点D, 试判断△CDE 的形状, 并说明理由;〔3〕设点M 在抛物线的对称轴l 上, 且△MCD 的面积等于△CDE 的面积, 请写出点M 的坐标〔无需写出解题步骤〕.思路点拨1. 求抛物线的解析式, 关键是求点A 的坐标, 根据条件, 数形结合. 2.判断△CDE 的形状是等腰直角三角形, 可以方便第〔3〕求解点M 的坐标.总分值解答 〔1〕因为抛物线y =x2+bx -3与y 轴交于点C(0, -3), OA =OC, 所以点A 的坐标为(-3, 0).将A (-3, 0)代入y =x2+bx -3, 解得b =2. 因此抛物线的解析式为y =x2+2x -3. 〔2〕由y =x2+2x -3=(x +1) 2-4, 得顶点D 的坐标为(-1, -4) . 因为CE // x 轴所以点C 与点E 关于抛物线的对称轴对称. 因此CE =2, DE =DC. 由两点间的距离公式, 求得DC = . 于是可得DE2+DC2=CE2.所以△CDE 是等腰直角三角形.〔3〕M1〔-1, -2〕, M2〔-1, -6〕.考点伸展第〔3〕题的解题思路是这样的:如图2, 如图3, 因为△MCD 与△CDE 是同底的两个三角形, 如果面积相等, 那么过点E 作CD 的平行线, 与抛物线的对称轴的交点就是要探求的点M .再根据对称性, 另一个符合条件的点M 在点D 的下方, 这两个点M 关于点D 对称.还有更简单的几何说理方法:因为△CDE 是等腰直角三角形, 对于点D 上方的点M, 四边形CDEM 是正方形, 容易得到点M 的坐标为〔-1, -2〕.再根据对称性, 得到另一个点M 的坐标为〔-1, -6〕.图2 图35.如图1, 在平面直角坐标系xOy 中, 直角梯形OABC 的顶点O 为坐标原点, 顶点A.C 分别在x 轴、y 轴的正半轴上, CB ∥OA, OC =4, BC =3, OA =5, 点D 在边OC 上, CD =3, 过点D 作DB 的垂线DE, 交x 轴于点E. 〔1〕求点E 的坐标;〔2〕二次函数y =-x2+bx +c 的图像经过点B 和点E. ①求二次函数的解析式和它的对称轴;②如果点M 在它的对称轴上且位于x 轴上方, 满足S △CEM =2S △ABM, 求点M 的坐标.图1思路点拨1. 这三道题目步步为赢, 错一道题目, 就要影响下一道的计算.2. 点M 在抛物线的对称轴上且位于x 轴上方, 要分两种情况讨论, 分别为点M 在线段FB 和FB 的延长线上. 因为用点M 的纵坐标表示△ABM 的底边长, 因点M 的位置不同而不同.总分值解答〔1〕因为BC ∥OA, 所以BC ⊥CD. 因为CD =CB =3, 所以△BCD 是等腰直角三角形. 因此∠BCD =45°. 又因为BC ⊥CD, 所以∠ODE =45°. 所以△ODE 是等腰直角三角形, OE =OD =1. 所以点E 的坐标是〔1, 0〕.〔2〕①因为抛物线y =-x2+bx +c 经过点B 〔3, 4〕和点E 〔 1, 0〕, 所以 解得 所以二次函数的解析式为y =-x2+6x -5, 抛物线的对称轴为直线x =3.②如图2, 如图3, 设抛物线的对称轴与x 轴交于点F, 点M 的坐标为〔3, t 〕.CEM MEF COE OFMC S S S S ∆∆∆=--梯形111(4)321442222t t t =+⨯-⨯⨯-⨯⨯=+. 〔ⅰ〕如图2, 当点M 位于线段BF 上时, .解方程 , 得 . 此时点M 的坐标为〔3, 〕.〔ⅱ〕如图3, 当点M 位于线段FB 延长线上时, .解方程, 得.此时点M的坐标为〔3, 8〕.图2 图3考点伸展对于图2, 还有几个典型结论: 此时, C.M、A三点在同一条直线上;△CEM的周长最小. 可以求得直线AC 的解析式为, 当x=3时, . 因此点M〔3, 〕在直线AC上. 因为点A.E关于抛物线的对称轴对称, 所以ME+MC=MA+MC. 当A.M、C三点共线时, ME+MC最小, △CEM的周长最小.6.如图1, 直线l经过点A(1, 0), 且与双曲线(x>0)交于点B(2, 1). 过点(p>1)作x轴的平行线分别交曲线(x>0)和(x<0)于M、N两点.〔1〕求m的值及直线l的解析式;〔2〕假设点P在直线y=2上, 求证: △PMB∽△PNA;〔3〕是否存在实数p, 使得S△AMN=4S△AMP?假设存在, 请求出所有满足条件的p的值;假设不存在,请说明理由.思路点拨1. 第〔2〕题准确画图, 点的位置关系尽在图形中.2. 第〔3〕题把S△AMN=4S△AMP转化为MN=4MP, 按照点M与线段NP的位置关系分两种情况讨论.总分值解答〔1〕因为点B(2, 1)在双曲线上, 所以m=2. 设直线l的解析式为, 代入点A(1, 0)和点B(2, 1), 得解得所以直线l的解析式为.〔2〕由点(p>1)的坐标可知, 点P在直线上x轴的上方.如图2, 当y=2时, 点P的坐标为(3, 2). 此时点M的坐标为(1, 2), 点N的坐标为(-1, 2).由P(3, 2)、M(1, 2)、B(2, 1)三点的位置关系, 可知△PMB为等腰直角三角形.由P(3, 2)、N(-1, 2)、A(1, 0)三点的位置关系, 可知△PNA为等腰直角三角形.所以△PMB∽△PNA.图2 图3 图4〔3〕△AMN和△AMP是两个同高的三角形, 底边MN和MP在同一条直线上.当S△AMN=4S△AMP时, MN=4MP.①如图3, 当M在NP上时, xM-xN=4(xP-xM). 因此.解得或〔此时点P在x轴下方, 舍去〕. 此时.②如图4, 当M在NP的延长线上时, xM-xN=4(xM-xP). 因此.解得或〔此时点P在x轴下方, 舍去〕.此时.考点伸展在此题情景下, △AMN能否成为直角三角形?情形一, 如图5, ∠AMN=90°, 此时点M的坐标为〔1, 2〕, 点P的坐标为〔3, 2〕.情形二, 如图6, ∠MAN=90°, 此时斜边MN上的中线等于斜边的一半.不存在∠ANM=90°的情况.图5 图6。

人教版八年级数学下册 一次函数与面积相关的动点问题

人教版八年级数学下册 一次函数与面积相关的动点问题

A
O
x
自学检测
变式一(1): 若点P(x, y) 是第三象限内的直线上的一个动点;其他 条件不变。 当点P运动过程中,试写出△OPA的面积S与x 的函数关系式,并写出自变量x的取值范围; y
2 2 | x x 6 6|。 6 OA=____,PH=______ 3 3
F
S△ O PA
1 OA PH 2 1 2 6 ( x 6) 2 3 2 x 18 (x<-9)
点e的坐标为2当点p运动过程中试写出opa的面积s与x的函数关系式并写出自变量x的取值范围
一次函数与面积相关的动点问题
例1.如图,直线y=kx+6与x轴y轴分别相交于点E,F.点E的 坐标为(- 9, 0),点A的坐标为(-6,0),点P(x,y)是第二 象限内的直线上的一个动点。 (1)求k的值; (2)当点P运动过程中,试写出△OPA的面积S与x的函数 关系式,并写出自变量x的取值范围; (3)探究:当△OPA的面积为3.6时,求P的坐标。 y 解: (1)将E(-9,0)代入y = kx+6 F p 得-9k+6=0 2 得k= 3 E A O x
如图,直线y = kx+6与x轴y轴分别相交于点E,F. 点E的 坐标为(- 9, 0), 点A的坐标为(- 6,0). 点P(x,y)是 第二象限内的直线上的一个动点。 (3)探究:当△OPA的面积为3.6时,求P的坐标 解:令S=3.6 即2x+18=3.6 解得x=-7.2 y 2 将x=-7.2代入 y = 3 x+6 得, F y =1.2 ∴当△OPA的面积为3.6时, P的坐标P(-7.2,1.2) E p
----
F
H E A

2014年中考专题复习之因动点产生的面积问题(教案)

2014年中考专题复习之因动点产生的面积问题(教案)

【教学标题】2014年中考专题复习之因动点产生的面积问题(教案)【专题诠释】1. 研究_基本_图形2. 分析运动状态:①由起点、终点确定t 的范围;②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.3. 分段画图,选择适当方法表达面积.【例题讲解】【例1】已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积.(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.参考答案:(1)当t =32时,四边形MNQP平方厘米.(2) 当0<t ≤1时,S =;当1<t ≤2时,S =; 当2<t <3时,S =+【例2】如图,等腰梯形ABCD 中,AB ∥CD ,AB= CDCE=角线AC 、BD 交于点H .平行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、AB C MNQPABCG ,当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S =,求x .(1)90°;4 (2)x =2.【例3】如图,△ABC 中,∠C =90°,AC =8cm,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△P AR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上?(2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为98?若能,求出此时t 的值;若不能,请说明理由.(1)当t =125时,点Q' 恰好落在AB 上.(2)当0<t ≤125时,23-+38S t t =;当125<t ≤6时,29(8-)56S t = (3)由(2)问可得,当0<t ≤125时,239-388t t += ; 当125<t ≤6时,299(8-)568t =;解得,t =t =98S =. 【过手训练】1. 如图,在△ABC 中,∠A =90°,AB =2cm ,AC =4cm ,动点P 从点A 出发,沿AB 方向以1cm/s 的速度向点B 运动,动点Q 从点B 同时出发,沿BA 方向以1cm/s 的速度向点A 运动.当点P 到达点B 时,P ,Q 两点同时停止运动.以AP 为边向上作正方形APDE ,过点Q 作QF HD CBAA B CD H H DCBA AB CDM N R QF G HE H DC BAH DCB A CBABCPRQ Q'l∥BC,交AC于点F.设点P的运动时间为t s,正方形APDE和梯形BCFQ重叠部分的面积为S cm2.(1)当t=_____s时,点P与点Q重合;(2)当t=_____s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.AC(1)1 (2)45(3)当1<t≤43时,29-24S t t=;当43<t<2时,29-10-84S t t=+.2.如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD 为一边向上作正方形ABCD.(1)填空:点B的坐标为________,点C的坐标为_________.(2)若正方形以每秒5个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t (秒)的函数关系式,并写出相应的自变量t的取值范围.(1)(﹣1,3),(﹣3,2)(2)当0<t≤2时,25S t=;当2<t≤1时,5-4S t=;当1<t≤32时,225-515-4S t t=+.【拓展训练】如图,在平面直角坐标系xOy中,已知直线l1:y=12x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.(1)求M ,N 的坐标.(2)已知矩形ABCD 中,AB =1,BC =2,边AB 在x 轴上,矩形ABCD 沿x 轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD 与△OMN 重叠部分的面积为S ,移动的时间为t (从点B 与点O 重合时开始计时,到点A 与点N 重合时计时结束).求S 与自变量t 之间的函数关系式,并写出相应的自变量t 的取值范围.(1)M (4,2) N (6,0)(2)当0≤t ≤1时,24t S =;当1<t ≤4时,1-24t S =; 当4<t ≤5时,231349--424S t t =+; 当5<t ≤6时,13-2S t =+;当6<t ≤7时,()217-2St = 【课后作业】1、如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O . (1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.图1动感体验请打开几何画板文件名“12菏泽21”,拖动点P在第一象限内的抛物线上运动,可以体验AB C DNMOy到,当四边形PB ′A ′B 是等腰梯形时,四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍. 请打开超级画板文件名“12菏泽21”,拖动点P 在第一象限内的抛物线上运动,可以体验到,当四边形PB ′A ′B 是等腰梯形时,四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍.思路点拨1.四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍,可以转化为四边形PB ′OB 的面积是 △A ′B ′O 面积的3倍.2.联结PO ,四边形PB ′OB 可以分割为两个三角形.3.过点向x 轴作垂线,四边形PB ′OB 也可以分割为一个直角梯形和一个直角三角形.满分解答(1)△AOB 绕着原点O 逆时针旋转90°,点A ′、B ′的坐标分别为(-1, 0) 、(0,2).因为抛物线与x 轴交于A ′(-1, 0)、B (2, 0),设解析式为y =a (x +1)(x -2), 代入B ′(0, 2),得a =1.所以该抛物线的解析式为y =-(x +1)(x -2) =-x 2+x +2. (2)S △A ′B ′O =1.如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3. 如图2,作PD ⊥OB ,垂足为D .设点P 的坐标为 (x ,-x 2+x +2).232'1111(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形.2321113(2)(2)22222PDB S DB PD x x x x x ∆=⨯=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ∆=+=-+四边形梯形.解方程-x 2+2x +2=3,得x 1=x 2=1. 所以点P 的坐标为(1,2).图2 图3 图4(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.如图1,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12河南23”,拖动点P 在直线AB 下方的抛物线上运动,可以体验到,PD 随点P 运动的图象是开口向下的抛物线的一部分,当C 是AB 的中点时,PD 达到最大值.观察面积比的度量值,可以体验到,左右两个三角形的面积比可以是9∶10,也可以是10∶9.思路点拨1.第(1)题由于CP //y 轴,把∠ACP 转化为它的同位角.2.第(2)题中,PD =PC sin ∠ACP ,第(1)题已经做好了铺垫.3.△PCD 与△PCB 是同底边PC 的两个三角形,面积比等于对应高DN 与BM 的比. 4.两个三角形的面积比为9∶10,要分两种情况讨论.满分解答(1)设直线112y x =+与y 轴交于点E ,那么A (-2,0),B (4,3),E (0,1).在Rt △AEO 中,OA =2,OE =1,所以AE .所以sin AEO ∠=因为PC //EO ,所以∠ACP =∠AEO .因此sin ACP ∠A (-2,0)、B (4,3)分别代入y =ax 2+bx -3,得4230,1643 3.a b a b --=⎧⎨+-=⎩ 解得12a =,12b =-.(2)由211(,3)22P m m m --,1(,1)2C m m +, 得221111(1)(3)42222PC m m m m m =+---=-++.所以221sin 4)1)2PD PC ACP m m m =∠==-++=-所以PD (3)当S △PCD ∶S △PCB =9∶10时,52m =;当S △PCD ∶S △PCB =10∶9时,329m =.图2考点伸展第(3)题的思路是:△PCD 与△PCB 是同底边PC 的两个三角形,面积比等于对应高DN 与BM 的比.而211cos cos 4)(2)(4)25DN PD PDN PD ACP m m m m =∠=∠=-++=-+-, BM =4-m .①当S △PCD ∶S △PCB =9∶10时,19(2)(4)(4)510m m m -+-=-.解得52m =.②当S △PCD ∶S △PCB =10∶9时,110(2)(4)(4)59m m m -+-=-.解得329m =.3.如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1).点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1动感体验请打开几何画板文件名“10广州25”,拖动点D 由C 向B 运动,观察S 随b 变化的函数图象,可以体验到,E 在OA 上时,S 随b 的增大而增大;E 在AB 上时,S 随b 的增大而减小.双击按钮“第(3)题”,拖动点D 由C 向B 运动,可以观察到,E 在OA 上时,重叠部分的形状是菱形,面积不变.双击按钮“第(2)题”可以切换.思路点拨1.数形结合,用b 表示线段OE 、CD 、AE 、BE 的长.2.求△ODE 的面积,要分两种情况.当E 在OA 上时,OE 边对应的高等于OC ;当E在AB边上时,要利用割补法求△ODE的面积.3.第(3)题中的重叠部分是邻边相等的平行四边形.4.图形翻着、旋转等运动中,计算菱形的边长一般用勾股定理.满分解答(1)①如图2,当E在OA上时,由12y x b=-+可知,点E的坐标为(2b,0),OE=2b.此时S=S△ODE=112122OE OC b b⋅=⨯⨯=.②如图3,当E在AB上时,把y=1代入12y x b=-+可知,点D的坐标为(2b-2,1),CD=2b-2,BD=5-2b.把x=3代入12y x b=-+可知,点E的坐标为3(3,)2b-,AE=32b-,BE=52b-.此时S=S矩形OABC-S△OAE-S△BDE-S△OCD=1315133()()(52)1(22)22222b b b b-⨯-----⨯⨯-252b b=-+.(2)如图4,因为四边形O1A1B1C1与矩形OABC关于直线DE对称,因此DM=DN,那么重叠部分是邻边相等的平行四边形,即四边形DMEN是菱形.作DH⊥OA,垂足为H.由于CD=2b-2,OE=2b,所以EH=2.设菱形DMEN的边长为m.在Rt△DEH中,DH=1,NH=2-m,DN=m,所以12+(2-m)2=m2.解得54m=.所以重叠部分菱形DMEN的面积为54.图2 图3 图4考点伸展把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为53,如图7所示.图5 图6 图7。

微课《一次函数中动点产生的面积问题》教学设计方案.doc

微课《一次函数中动点产生的面积问题》教学设计方案.doc
微课教学设计方案
微课名称
一次函数屮动点产生 的面积问题
参赛者姓名
谢荻
参赛者单位
攀枝花ቤተ መጻሕፍቲ ባይዱ外国语学校
知识点来源
学科:数学 年级:八年级教材版本:华师版
所属章节:第十七章函数及其图像
录制工具和方 法
录屏软件录制几何画板 动画制作软件制作动画、整体视频
设计思路
动点问题既是教学中的重点,也是难点,难就难在它要动,通过微 课让它动起來,着重讲解与面积有关的动点问题,让学生逐步掌握 解决此类问题的方法。
(・6,0),点P(x,y)是直线上的一个动点。当点P在第二象限内运动时,OA=,卩到乂轴距离PH=,试写出AOPA的面积S与x的函
数关系式,并写出自变量x的取值范围。
第三关:如图,直线y = ?x + 6‘点A的坐标为(-6,0),点P(x ,y)是直3
线上的第二象限内运动。AOPA的面积S=2x+18 (-9<x<0)o探究:
教学设计
教学目的
1•掌握待定系数法求函数解析式;
2.学会根据图形的特殊性确定动点的位置,并加以分类讨论;
3.分清变量、不变量,掌握动点产生的面积问题的解决方法;
4.体会分类讨论、转化、函数、方程、数形结合等数学思想。
教学重点难点
1・学会根据图形的特殊性确定动点的位置,并加以分类讨论;
2.分清变量、不变量,掌握动点产生的面积问题的解决方法;
的面积S与x的函数关系式,并写出自变量x的取值范围;
⑶探究:当AOPA的面积为3.6时,求P的坐标。
小结:
1•关键点:(1)分清变量、不变量;(2)化动为静;(3)分类讨论。
2.口诀:动点问题随它变,化动为静是关键,分类讨论要全面,不重 不漏记心间。

动点产生的面积问题

动点产生的面积问题

例1.已知△ABC 中,AB =4,BC =6,AC >AB ,点D 为AC 边上一点,且DC =AB ,E 为BC 边的中点,联结DE ,设AD =x 。

设ABEDCDES y S ∆=四边形,求y 关于x 的函数关系式,并写出定义域。

【解法点拨】:一.寻找题目中的已经条件:1.边:AB =4,BC =6,DC =AB ;2.特殊点:E 为BC 边的中点;3.动点:点D 为AC 边上一动点。

(2)求面积比ABEDCDES S ∆四边形:方法一:用含x 的代数式单独表示四边形ABED 和三角形CDE ∆的面积; 方法二:用面积比求解,ABED CDE S S ∆四边形=1ABD BDE ABDCDE CDES S S S S ∆∆∆∆∆+=+; 又因为ABD DBC S S ∆∆=24ABD CDE S x S ∆∆=即2ABD CDE S xS ∆∆=,即可求得。

【满分解答】:连BD ,∵点E 为BC 中点,∴BDE CDE S S ∆∆= ∴1ABD BDE ABDCDE CDES S S y S S ∆∆∆∆∆+==+∵4ABD DBC S x S ∆∆=,∴24ABD CDE S x S ∆∆=,即2ABD CDE S x S ∆∆= ∴12xy =+(0<x <6) 例2.如图,已知在直角梯形ABCD 中,BD ∥BC ,AB BC ⊥,11AD =,13BC =,12AB =.动点P 、Q 分别在边AD 和BC 上,且2BQ DP =.线段PQ 与BD 相交于点E ,过点E 作EF ∥BC ,交CD 于点F ,射线PF 交BC 的延长线于点G ,设DP x =. (1)求CFDF的值。

(★★★★)(2)当点P 运动时,试探究四边形EFGQ 的面积是否会发生变化?如果发生变化,请用x 的代数式表示四边形EFGQ 的面积S ;如果不发生变化,请求出这个四边形的面积S 。

【参考教法】:可参考以下教法,以问题式引导学生分析题目、解决问题 一.寻找题目中的不变条件或特殊条件,让学生找找看。

函数图象中的存在性问题—因动点产生的面积问题

函数图象中的存在性问题—因动点产生的面积问题

函数图象中的存在性问题—因动点产生的面积问题函数图像中的存在性问题是函数图像是否存在的研究。

在研究函数图像的存在性时,我们通常会考虑到以下几个问题:函数是否有定义域和值域,函数是否连续,函数是否可导等等。

其中,因动点产生的面积问题是函数图像的一个特殊存在性问题。

考虑一个动点在平面上运动,其轨迹为函数的图像,我们可以通过计算该轨迹所围成的面积来研究函数图像的存在性。

首先,让我们考虑一个较简单的函数图像,例如:y=x。

当动点在平面上矩形区域内运动时,其轨迹就可以看作是函数y=x的图像。

我们可以将矩形区域分成无数个小长方形,并计算每个小长方形所围成的面积的和。

当矩形区域趋近于函数图像所占据的面积时,这个和就可以逼近函数图像所围成的面积。

如果这个和存在且为有限值,则可以认为函数图像所围成的面积存在。

然而,对于一些函数图像,存在动点产生的面积问题可能并不存在。

例如:y=1/x。

当动点运动到x=0的位置时,函数图像与x轴相切,不再围成一个有限的面积。

在这种情况下,我们无法通过动点产生的面积来研究函数图像的存在性。

对于一些较为复杂的函数图像,动点产生的面积问题可能会更加具有挑战性。

例如:y = sin(x)。

当动点在平面上运动时,函数图像会在一些位置出现多个极大值和极小值。

在这种情况下,计算动点产生的面积变得更为复杂,可能需要使用更高级的数学工具来解决。

总之,动点产生的面积问题是函数图像存在性问题的一个特殊情况。

通过计算动点所产生的面积,我们可以研究函数图像的存在性。

然而,对于一些复杂的函数图像,动点产生的面积问题可能并不存在或更加困难。

因此,在研究函数图像的存在性时,我们需要综合考虑多个因素,并使用合适的数学工具来解决。

著名机构讲义春季15-八年级培优版-动点产生的面积问题-教师版

著名机构讲义春季15-八年级培优版-动点产生的面积问题-教师版

教师姓名学生姓名年级初二上课时间学科数学课题名称动点产生的面积问题知识模块Ⅰ:面积的计算问题函数背景下求三角形或四边形的面积问题,较复杂的题目可以采取“割补”的思想构造较简单的图形进行求解.【例1】如图,直线443y x=-+与y轴交于点A,与直线4455y x=+交于点B,且直动点产生的面积问题xy BAOC线4455y x =+与x 轴交于点C ,求△ABC 的面积. 【答案】∵直线443y x =-+与y 轴交于点A ,∴A (0,4);∵直线443y x =-+与x 轴交于点D ,∴D (3,0);令⎪⎩⎪⎨⎧+=+-=5454434x y x y , 解得:⎪⎩⎪⎨⎧==223y x , 则322B ⎛⎫⎪⎝⎭,;∵直线4455y x =+与x 轴交于点C , ∴C (-1,0),∴424214421=⨯⨯-⨯⨯=-=BCD ACD ABC S S S △△△. 【例2】如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像.【答案】当P 在AB 上运动时,即10≤<x ,y =x AP AD S APM =⋅=21△; 当P 在BC 上运动时,即31≤<x , ∵PCM ABP ABCM APM S S S S △△梯形△--=, ∴y =454432123+-=----=x x x S APM △; 当P 在CM 上运动时,即273≤<x , y =x x S APM -=⨯⎪⎭⎫ ⎝⎛-=2722721△.【例3】如图1,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,A (0,4),C (5, 0),点D 是y 轴正半轴上一点,将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线A BCDMP段AB 上的点E 处.过点E 作y 轴的平行线与x 轴交于点N .折痕与直线EN 交于点M ,联结DE 、OM . 设OD =t ,MN =s .(1)试判断四边形EDOM 的形状,并证明;(2)当点D 在线段OA 上时,求s 关于t 的函数解析式,并写出函数的定义域; (3)用含t 的代数式表示四边形EDOM 与矩形OABC 重叠部分的面积.【答案】(1)四边形EDOM 是菱形.∵将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处, ∴EDM ODM ∠=∠,DE OD =. ∵EM ∥OD , ∴DME ODM ∠=∠, ∴DME EDM ∠=∠,∴EM DE =,∵DE OD =,∴EM OD =. ∵EM ∥OD ,∴四边形EDOM 是平行四边形, ∵EM DE =,∴平行四边形EDOM 是菱形; (2)由(1)可得:OD =EM = t , ∵EN =OA =4, ∴t s -=4(24t <<); (3)当点D 在线段OA 上时,∵t EM ED OM OD ====,4=EN ,s t =-4∴()22224816224ON OM MN t t t t =-=--=-=-∴四边形EDOM 与矩形OABC 重叠部分面积为:224224OD ON t t t t ⋅=⋅-=-; 当点D 在线段OA 延长上时(如图所示),∵4AD t BD t =-=,, ∴2222(4)224AE BD AD t t t =-=--=-, ∴四边形EDOM 与矩形OABC 重叠部分面积为:2244824AE OA t t ⋅=-⨯=-, 综上所述,四边形EDOM 与矩形OABC 重叠部分的面积为224t t -或824t -. 【例4】已知:如图1,梯形ABCD 中,AD //BC ,∠A =90°,∠C =45°,MA BCDEMNABCOOxy xyE D NAB =AD =4.E 是直线AD 上一点,联结BE ,过点E 作EF ⊥BE 交直线CD 于点F .联结BF . (1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示) ①求证:BE =EF ;②设DE =x ,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域;(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.【答案】(1)①在AB 上截取AG =AE ,连接EG ,∵∠A =90°,AG =AE , ∴︒=∠=∠45AEG AGE , ∴︒=∠135BGE∵AD //BC ,∠C =45°, ∴︒=∠135D ,∴D BGE ∠=∠ ∵AG =AE ,AB =AD , ∴ED =BG∵∠A =90°,EF ⊥BE , ∴DEF ABE ∠=∠∵ED =BG ,D BGE ∠=∠,DEF ABE ∠=∠ ∴△BGE ≌△EDF , ∴BE =EF ;②∵DE =x ,∴4AE x =-, ∵∠A =90°,∴()222244+-=+=x AB AE BE ,∵BE =EF , ∴()()23284444212122222+-=+-⋅+-=⋅⋅=x x x x EF BE y (40<<x );AB CDEFABCD图1备用图备用图ABCDG EFG(2)①当点E 在线段AD 上时,∵()11448222ABE S AB AE x x =⨯⨯=⨯⨯-=-△,又3BEF ABE S S =V V ,∴()23282832+-=-⨯x x x ,解得:522±-=x (负值舍去),∴522+-=DE ;②当点E 在线段DA 延长线上时,延长BA 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,222222111114(4)83222222BEF S BE EF BE AB AE x x x =⨯⨯=⨯=+=+-=-+V ,∵()824421-=-⨯⨯=x x S ABE △,又3BEF ABE S S =V V , ∴()23288232+-=-⨯x x x ,解得:5210±=x ,∴5210±=DE ;③当点E 在线段AD 延长线上时,延长AB 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,222222111114(4)83222222BEF S BE EF BE AB AE x x x =⨯⨯=⨯=+=++=++V ,∵()144282ABE S x x =⨯⨯+=+△,又3BEF ABE S S =V V ,∴()28323282x x x ++⨯+=,解得:225x =±(负值舍去),∴225DE =+;综上所述,当△BEF 是△ABE 面积的3倍时,DE 的长为225-+或1025± 或225+.知识模块Ⅱ:动点产生的函数解析式点在运动的背景下,产生的面积与动点之间的关系,关键点是找出决定这个面积变化的几个量是怎样变化的.【例5】如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经xyOB A过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解 析式.【答案】∵直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,∴A (-3,0),B (0,3), ∴293321=⨯⨯=OAB S △. 当OBA OBCS S △△32=时, 则2932321⨯=⨯⨯C y ,则2=C y , ∵C 点在直线AB 上,∴C (-1,2), 则直线l 的解析式为:2y x =-;当OBA OBC S S △△31=时,则2931321⨯=⨯⨯C y ,则1=C y , ∵C 点在直线AB 上,∴C (-2,1),则直线l 的解析式为:x y 21-=.综上直线l 的解析式为2y x =-或x y 21-=.【例6】已知:在梯形ABCD 中,AD //BC ,∠B =90°,AB =BC =4,点E 在边AB 上,CE =CD .(1)如图1,当∠BCD 为锐角时,设AD =x ,△CDE 的面积为y ,求y 与x 之间 的函数解析式,并写出函数的定义域; (2) 当CD =5时,求△CDE 的面积.【答案】(1)过C 作CF ⊥AD 交AD 延长线于F∵AD //BC ,∠B =90°,AB =BC =4, ∴四边形ABCF 是正方形.∵CE =CD ,BC =CF ,∴△BCE ≌△FCD ,∴DF =BE ∵AD =x ,∴x DF -=4,∴x BE -=4ABCDEF∴ADE BEC ABCD y S S S =--△△梯形 ()()1114444222x x x x =+⨯-⋅⋅-⨯⨯- 2142x x =-+, 定义域为:40<<x ;(2)当∠BCD 为锐角时, ∵CD =5时,CF =4,∴由勾股定理可得:3=DF ,则1=AD 代入解析式中可得:27=y ; 当∠BCD 为钝角时,易知3DF BE ==. ∴CDE BCE ADE ABCD S S S S =--V V V 梯形111(47)43417222=⨯+⨯-⨯⨯-⨯⨯ 252=. 综上所述,△CDE 的面积为27或252.【例7】如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上. (1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域; (3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长. 【答案】(1)当点G 到边BC 中点时,BG =2,∵∠B =45°,正方形EFGH 的两个顶点F 、G 始终在边BC 上.∴BF =EF =FG ∵BG =2,∴FG =1,即正方形EFGH 的边长为1;A B CDEFH AB CDEF G令⎩⎨⎧+-=+=m x y n x y 2, 解得:323m n x m n y -⎧=⎪⎪⎨+⎪=⎪⎩,∴P (3m n -,32nm +);(2)∵点Q 是直线P A 与y 轴的交点, ∴Q (0,n ). ∵四边形PQOB 的面积56, ∴()65321221=-⋅-⋅-⋅⋅=-n m n m m m S S CPQ COB △△. ∵AB =2, ∴23=+n m, ∴21m n ==,. ∴直线P A 的解析式为:1y x =+, 直线PB 的解析式为:22y x =-+.【习题1】如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示) ABCDE F 图1GHABC DEF图2GHMM【答案】(1)过点G 作GM ⊥BC 于M .∵四边形EFGH 为正方形时,∴︒=∠+∠90BEF AEH ∵︒=∠+∠90AHE AEH ,∴BEF AHE ∠=∠ ∵BEF AHE ∠=∠,B A ∠=∠,EF EH =, ∴BEF AHE ≌△△同理可知:BEF MFG ≌△△ ∴2===AE BF GM∴10=-=BF BC FC ,则10=GFC S △; (2)过点G 作GM ⊥BC 于M ,连接HF ∵AD ∥BC ,∴MFH AHF ∠=∠ ∵EH ∥FG ,∴GFH EHF ∠=∠ ∴MFG AHE ∠=∠∵MFG AHE ∠=∠,GMF A ∠=∠,GF EH =, ∴MFG AHE ≌△△ ∴2==AE GM ∴()a a GM FC S GFC -=⨯-=⋅=122122121△. 【习题2】如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q . (1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______; (3)当S △AOQ =23S △APQ 时,求点P 的坐标. 【答案】(1)过P 作x 轴、y 轴的垂线,垂足分别为H 、T ,∵P 是函数y =x (x >0)图像上一点∴PH =PT ,PH ⊥PT∵PQ ⊥AP ,∴QPT APH ∠=∠∵QPT APH ∠=∠,PH =PT ,QTP AHP ∠=∠ ∴△PHA ≌△PTQ ∴AP =PQ ;PQAyO x(2)由(1)可得:TQ a AH =-=2∵OH OT TQ OQ ==+,∴a a b =-+2,即22-=a b ;(3)设()P a a ,,∵2221-=⋅⋅=a OQ OA S AOQ △,222122+-==a a AP S APQ △, ∴()2232222+-=-a a a , 解得:255±=a . ∴⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P .【习题3】如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .(1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得到的结论;(3)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.【答案】(1)当E 是AB 中点时,AE =BE∵AE =BE ,AEG BEF ∠=∠,B EAG ∠=∠∴△EAG ≌△EBF∴AG =BF(2)AE AG BF =+过点F 作FH ⊥DA ,垂足为H ,则四边形ABFH 是矩形∴FH =AB =AD∵DE ⊥FG ,∴DEA ADE G ∠=∠-︒=∠90∵FH =AD ,DEA G ∠=∠,G A ∠=∠ A B CD E F G H∴△FHG ≌△DAE ,∴GH =AE ,即AE AG HA =+∵BF =HA ,∴AE AG BF =+;(3)由(2)可得:FG =DE∴224+==x DE FG∴221442122222+=+⋅+=x x x y (20<<x )【习题4】如图,已知:直角梯形ABCD 中,AB ∥CD ,∠A =90°,AB =6,AD =4,DC =3,点P 从点A 出发,沿ADCB 方向移动,动点Q 从点A 出发,在AB 边上移动,设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长.(1) 求y 关于x 的函数解析式,并写出x 和y 的取值范围;(2) 当P 不在BC 边上时,线段PQ 能否平分ABCD 的面积?若能,求出此时x的值;若不能,说明理由.【答案】(1)过C 做CE ⊥AB 于E ,则CD =AE =3.∵CE =4, ∴BC =5,∴梯形的周长为18.∵线段PQ 平分梯形ABCD 的周长, ∴9=+y x .∵60≤≤y , ∴93≤≤x ,∴x y -=9(93≤≤x );(2)∵P 不在BC 边上时,则73≤≤x .当43<≤x 时,点P 在AD 边上,则xy S APQ 21=△. A B C D P Q E。

新苏科版九年级数学下册《5章二次函数——之动点产生的面积问题》教案_21

新苏科版九年级数学下册《5章二次函数——之动点产生的面积问题》教案_21

课题:二次函数——之动点产生的面积问题课题二次函数——之动点产生的面积问题课型复习项目内容理论依据设计意图教材分析地位与作用近几年中考数学中动点问题倍受青睐,它不仅综合考查初中数学骨干知识,如函数(一次函数、二次函数与反比例函数)与方程等,更重要的是综合考查初中基本数学思想与方法。

此类题型也往往起到了考试的选拔作用,使学生之间的数学考试成绩由此而产生距离,所以准确快速解决此类问题是赢得中考数学胜利的关键。

根据教学内容的特点,并结合学生的实际能力水平教学目标通过教学掌握解决动点形成的面积类题型的规律与方法;通过教学过程使学生掌握随点的位置的变换而导致的图形的变换,画图分析;培养学生主动探索、敢于实践的精神。

教学流程活动一:回答下列问题:已知如图的抛物线,根据图象你能得到哪些信息?2、在如图所示的抛物线上,你只要再给出一个条件就能确定这个二次函数,请说说你给出的条件,并说出你的条件下的解析式。

如:顶点坐标(1,4),解析式是:y=-(x-1)2+43、把得到的抛物线先向左平移3个单位,再向上平移5个单位,得到的抛物线的解析式是y=-(x+2)2+91、活动二:例1:如图,抛物线y=-(x+2)2+9 顶点为A,与坐标轴分别交于点B、C,1)直接写出直线BC的解析式;2)在第二象限的抛物线上有一动点E,过点E作y轴的平行线交直线BC于点F,设E的横坐标为m,请用含m的代数式表示线段EF的长;并求出当m为何值时,线段EF有最大值?3)在(2)的条件下,连结EC、EB,当m为何值时,⊿BCE面积最大?4)在抛物线上是否存在点P,使⊿PBC的面积等于20,若能请求出P的坐标,若不能请说明理由。

活动三:例2:正方形ABCD中,AB=8cm,对角线AC,BD相交于点O点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),则△OEF的面积s(cm2)与t(s)的函数关系可用图象表示为【】通过回答,回顾二次函数的简单知识点,巩固待定系数法求解析式,并从问题3转入例题。

1.6 因动点产生的面积问题(1)

1.6 因动点产生的面积问题(1)

1.6 因动点产生的面积问题1、如图1,直线l 经过点A (1,0),且与双曲线my x=(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平行线分别交曲线m y x =(x >0)和my x=-(x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.拓展:在本题情景下,△AMN 能否成为直角三角形?若存在求出满足条件的p 值图12、如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.拓展:把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,那么这个菱形的最小面积为,最大面积为。

图13、如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.拓展:如果把第(3)题的条件“点F在直角边AC上”改为“点F在直角边BC上”,那么是否存在直线EF将△ABC的周长和面积同时平分?图1 备用图4、如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1 图2。

八年级春季班-16-动点产生的面积问题-教师版

八年级春季班-16-动点产生的面积问题-教师版

初二数学春季班(学生版)动点产生的面积问题内容分析知识结构模块一:面积计算的问题知识精讲本节主要是在函数背景下求三角形或四边形的面积问题,较复杂的题目可以采取“割补”的思想构造较简单的图形进行求解.xy12QPAOCBxyAOB【例1】 如图,已知直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,将直线y=x向上平移1个单位长度得到直线P A ,点Q 是直线P A 与y 轴的交点,求四边形PQOB 的面积. 【难度】★★【答案】65.【解析】由题意可得:直线P A 的解析式为1+=x y令⎩⎨⎧+-=+=221x y x y ,解得:⎪⎩⎪⎨⎧==3431y x ,则⎪⎭⎫ ⎝⎛3431,P .∵点Q 是直线P A 与y 轴的交点, ∴()01Q ,. ∵直线l :22y x =-+与x 轴、y 轴分别交于点B 、C , ∴B (1,0),C (0,2). ∴65311211221=⨯⨯-⨯⨯=-=CPQ COB PQO B S S S △△四边形. 【总结】考察四边形面积的求法,不规则图形的面积用割补法来解决.【例2】 如图,已知直线AB :2y x =+与直线OA :13y x =交于点A ,与直线OB :3y x =交于点B 两点.求△AOB 的面积. 【难度】★★ 【答案】4.【解析】令⎪⎩⎪⎨⎧=+=x y x y 312,解得:⎩⎨⎧-=-=13y x ,则()31A --,. 令⎩⎨⎧=+=x y x y 32,解得:⎩⎨⎧==31y x ,则()13B ,. 设直线AB 与x 轴相交于C ,则C (-2,0),∴412213221=⨯⨯+⨯⨯=+=OCB OAC OAB S S S △△△.【总结】考察三角形面积的求法,不能直接求面积则用割补法来解决,注意交点坐标 的求法.例题解析【例3】 如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解 析式. 【难度】★★【答案】2y x =-或x y 21-=.【解析】∵直线3y x =+的图像与x 轴、y 轴分别交于∴A (-3,0),B (0,3),∴293321=⨯⨯=OAB S △.当OBA OBCS S △△32=时, 则2932321⨯=⨯⨯C y ,则2=C y , ∵C 点在直线AB 上,∴C (-1,2), 则直线l 的解析式为:2y x =-;当OBA OBC S S △△31=时,则2931321⨯=⨯⨯C y ,则1=C y , ∵C 点在直线AB 上,∴C (-2,1),则直线l 的解析式为:x y 21-=.综上直线l 的解析式为2y x =-或x y 21-=.【总结】考察面积的求法,本题中要注意分类讨论.【例4】 如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示)【难度】★★★ 【答案】见解析.【解析】(1)过点G 作GM ⊥BC 于M .∵四边形EFGH 为正方形时,∴︒=∠+∠90BEF AEH ∵︒=∠+∠90AHE AEH ,∴BEF AHE ∠=∠ ∵BEF AHE ∠=∠,B A ∠=∠,EF EH =, ∴BEF AHE ≌△△同理可知:BEF MFG ≌△△ ∴2===AE BF GM∴10=-=BF BC FC ,则10=GFC S △; (2)过点G 作GM ⊥BC 于M ,连接HF ∵AD ∥BC ,∴MFH AHF ∠=∠ ∵EH ∥FG ,∴GFH EHF ∠=∠ ∴MFG AHE ∠=∠∵MFG AHE ∠=∠,GMF A ∠=∠,GF EH =, ∴MFG AHE ≌△△∴2==AE GM∴()a a GM FC S GFC -=⨯-=⋅=122122121△.【总结】本题主要考察菱形、正方形的性质和全等三角形的判定和性质.A BCDEF 图1GHABCDE F 图2GHMM【例5】 如图1,正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限,一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F . (1)若△DEF 与△BCF 的面积比为1∶2,求k 的值; (2)联结BE ,当BE 平分∠FBA 时,求k 的值. 【难度】★★★【答案】(1)1=k ;(2)2=k .【解析】(1)∵正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限, ∴B (2, 1),C (2, 3),D (0, 3).∵一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F , ∴E (0, 2). 设F (m , 3),∵△DEF 与△BCF 的面积比为1∶2, ∴()212221121=⨯-⨯⋅m m ,解得:1=m ,∴F (1, 3) ∵F (1, 3)在直线y =kx +2上,∴1=k ; (2)延长BE 交CD 的延长线于H , ∵BE 平分∠FBA ,∴ABE FBE ∠=∠∵CD ∥AB ,∴ABE H ∠=∠,∴FBE H ∠=∠,∴FB=HF ∵AE =1,DE=1,∴AE=DE∵AE=DE ,BAE HDE ∠=∠,BEA HED ∠=∠ ∴△HED ≌△BEA∴HD=AB =2,∴H (-2, 3) 设F (n , 3) ∵FB=HF ,∴()22222+=+-n n ,解得:21=n , ∴F (21, 3) ∵F (21, 3)在直线y =kx +2上, ∴2=k .【总结】考察等腰三角形的性质和两点之间的距离公式的运用,注意点的坐标与解析式的关系.ABCD EFxyOH【例6】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的表达式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请求出点P 的坐标; (3)若点H 为坐标平面内任意一点,是否存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由. 【难度】★★★【答案】(1)6+=x y ;(2)P (6, 12)或P (-18, -12); (3)H (-12, 0)或H (-6, 18)或H (56-, 518). 【解析】(1)∵函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,∴A (-6, 0),B (0, 12)∵点M 为线段OB 的中点, ∴M (0, 6), 则直线AM 的表达式为6+=x y ; (2)当点P 在AM 的延长线上时∵S △ABP =S △AOB ,∴OP ∥AB ,则可知直线OP 的表达式为x y 2=. ∵P 在直线AM 上,∴令⎩⎨⎧+==62x y x y ,解得:⎩⎨⎧==126y x , ∴P (6, 12);当P 在AM 的反向延长线上时,过P 点作PN ⊥OB ,垂足为H 设P (n , n+6)∵AONP ABO BPN ABP S S S S 梯形△△△--=, S △ABP =S △AOB ,()()()()1262166621126216621⨯⨯=--⨯--⨯-⨯⨯----⋅n n n n ,解得:18-=n ,则P (-18, -12).(3)存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形.若以AM 为底,BM 为腰,过点B 作AM 的平行线,当点H (-12, 0)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以BM 为底,AM 为腰,过点A 作BM 的平行线,当点H (-6, 18)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以AB 为底,BM 为腰,过点M 作AB 的平行线,当点H (56-, 518)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形.【总结】本题综合性较强,本题一方面考察面积的确定,另一方面考察等腰梯形的性质和分类讨论.ABOMxy【例7】 如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q . (1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当S △AOQ =23S △APQ 时,求点P 的坐标.【难度】★★★【答案】(1)见解析;(2)22-=a b ;(3)⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【解析】(1)过P 作x 轴、y 轴的垂线,垂足分别为H 、T ,∵P 是函数y =x (x >0)图像上一点 ∴PH=PT ,PH ⊥PT∵PQ ⊥AP ,∴QPT APH ∠=∠∵QPT APH ∠=∠,PH=PT ,QTP AHP ∠=∠ ∴△PHA ≌△PTQ ∴AP =PQ ;(2)由(1)可得:TQ a AH =-=2 ∵OH OT TQ OQ ==+, ∴a a b =-+2, 即22-=a b ; (3)设()P a a ,, ∵2221-=⋅⋅=a OQ OA S AOQ △,222122+-==a a AP S APQ △, ∴()2232222+-=-a a a , 解得:255±=a . ∴⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【总结】本题主要考察全等的运用,及三角形面积的求法,注意利用面积公式确定点的坐标.P QAy O x本节主要研究点在运动的背景下,产生的面积与动点之间的关系,关键点是找出决定这个面积变化的几个量是怎样变化的,重点在于思维能力的培养,难度较大.【例8】 如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像. 【难度】★★ 【答案】见解析.【解析】当P 在AB 上运动时,即10≤<x ,y =x AP AD S APM =⋅=21△;当P 在BC 上运动时,即31≤<x , ∵PCM ABP ABCM APM S S S S △△梯形△--=, ∴y =454432123+-=----=x x x S APM △; 当P 在CM 上运动时,即273≤<x , y =x x S APM -=⨯⎪⎭⎫ ⎝⎛-=2722721△. 函数图像如由图所示.【总结】本题主要考察面积与动点的结合,注意进行讨论.模块二:与面积相关的函数解析式知识精讲例题解析ABCDMP【例9】 如图,在梯形ABCD 中,AD //BC ,AB =CD =AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动过程中,是否存在x 使得PQ =AB ,若存在,求出所有的x 的值;若不存在,请说明理由. 【难度】★★【答案】(1)102+=x y (50≤≤x ); (2)3=x ;(3)35=x 或311=x . 【解析】(1)作AE ⊥BC 于E ,DF ⊥BC 于F ,∵AB =CD =AD =5cm ,BC =11cm , ∴BE=CF =3,则4=AE . ∵2DP x BQ x ==,, ∴()10242521+=⨯+-⨯=x x x y (50≤≤x ); (2)当四边形ABQP 的面积与四边形QCDP 的面积相等时, 四边形ABQP 的面积等于四边形ABCD 的面积的一半,∴()41152121102⨯+⨯⨯=+x ,解得:3=x ;(3)∵PQ =AB ,AD //BC ,∴四边形ABQP 为平行四边形或等腰梯形. 当四边形ABQP 为平行四边形时,则AP =BQ ,∴x x 25=-,解得:35=x ;当四边形ABQP 为等腰梯形时,则四边形PQCD 为平行四边形,∴x x 211-=,解得:311=x ;综上所述,当PQ =AB 时,x 的值为53或113.【总结】本题主要考察动点背景下的平行四边形和等腰梯形的性质的综合运用.ABCDPQE F【例10】 已知:如图1,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE <AB ),连结EG 并延长交DC 于点M ,作MN ⊥AB ,垂足为N ,MN 交BD 于P .设正方形ABCD 的边长为1. (1)证明:△CMG ≌△NBP ;(2)设BE =x ,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长. 【难度】★★★ 【答案】见解析.【解析】(1)∵正方形ABCD 和正方形BEFG ,∴︒=∠45ABD ,︒=∠45BEG ∵CM ∥BE ,∴︒=∠=∠45BEG CMG ∵正方形ABCD ,MN ⊥AB ,∴四边形BCMN 是矩形, ∴CM=NB . ∵CM=NB ,PNB C ∠=∠,PBN CMG ∠=∠ ∴△CMG ≌△NBP ;(2)∵正方形BEFG ,BE =x ,∴x BE BG ==, ∴x CG -=1,∴()()212111212+-=-+=x x x y (10<<x );(3)由已知可得:MN ∥BC ,MG ∥BP , ∴四边形BGMP 是平行四边形.要使四边形BGMP 是菱形,则MG BG =, ∴()x x -=12,解得:22-=x , ∴当22-=BE 时,四边形BGMP 是菱形.【总结】本题考察正方形的性质和动点背景的下面积问题,解题时注意认真分析题目中的条件.ABC DEFGPMN【例11】 已知:在梯形ABCD 中,AD //BC ,∠B =90°,AB =BC =4,点E 在边AB上,CE =CD .(1)如图1,当∠BCD 为锐角时,设AD =x ,△CDE 的面积为y ,求y 与x 之间 的函数解析式,并写出函数的定义域; (2) 当CD =5时,求△CDE 的面积. 【难度】★★★【答案】(1)x x y 4212+-=(40<<x );(2)27或252.【解析】(1)过C 作CF ⊥AD 交AD 延长线于F∵AD //BC ,∠B =90°,AB =BC =4, ∴四边形ABCF 是正方形.∵CE =CD ,BC=CF ,∴△BCE ≌△FCD ,∴DF=BE ∵AD =x ,∴x DF -=4,∴x BE -=4 ∴ADE BEC ABCD y S S S =--△△梯形 ()()1114444222x x x x =+⨯-⋅⋅-⨯⨯- 2142x x =-+, 定义域为:40<<x ;(2)当∠BCD 为锐角时, ∵CD =5时,CF=4,∴由勾股定理可得:3=DF ,则1=AD代入解析式中可得:27=y ;当∠BCD 为钝角时,易知3DF BE ==. ∴CDEBCEADEABCD SS SS=--梯形111(47)43417222=⨯+⨯-⨯⨯-⨯⨯ 252=. 综上所述,△CDE 的面积为27或252. 【总结】考察全等三角形的构造和正方形的性质的综合运用,第(2)问要注意分类讨论.AB CDE FA B CDEF【例12】 如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x m =-+交折线OAB 于点E .(1)当点E 恰为AB 中点时,求m 的值;(2)当点E 在线段OA 上,记△ODE 的面积为y ,求y 与m 的函数关系式并写出定义域;(3)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试判断四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,写出该重叠部分的面积;若改变,写出重叠部分面积S 关于m 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】∵四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),∴B (3,1). (1)当点E 恰为AB 中点时,则E (3,21) ∵点E 在直线12y x m =-+上, ∴代入E 点坐标,可得:2=m ;(2)当点E 在线段OA 上,∵直线12y x m =-+交折线OAB 于点E , ∴E (m 2,0),∴m m y =⋅⋅=1221(312m <≤); (3)设O 1A 1与CB 相交于点M ,OA 与B 1C 1相交于点N ,则四边形O 1A 1B 1C 1与 矩形OABC 的重叠部分的面积为四边形DNEM 的面积. ∵DM ∥NE ,DN ∥ME ,∴四边形DNEM 是平行四边形 ∵NED MED ∠=∠,NED MDE ∠=∠,∴NED MED ∠=∠, ∴ME MD =,∴四边形DNEM 是菱形过D 作DH ⊥OA ,垂足为H ,设菱形DNEM 的边长为a∵D (22-m ,1),E (m 2,0), ∴DH =1,HE =()2222m m --=, ∴2NH EN EH a =-=-, 在直角△DHN 中,()22212+-=a a ,解得:45=a ∴菱形DNEM 的面积为:55144⨯=.【总结】本题综合性较强,一方面考查面积与动点的结合,另一方面考查面积的定值,注意进行分析.AB CDEOxy【例13】 如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G . (1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得到的结论;(3)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.【难度】★★★【答案】(1)见解析;(2)AE AG BF =+;(3)2212+=x y (20<<x ).【解析】(1)当E 是AB 中点时,AE=BE∵AE=BE ,AEG BEF ∠=∠,B EAG ∠=∠ ∴△EAG ≌△EBF ∴AG =BF(2)AE AG BF =+过点F 作FH ⊥DA ,垂足为H ,则四边形ABFH 是矩形 ∴FH=AB=AD∵DE ⊥FG ,∴DEA ADE G ∠=∠-︒=∠90 ∵FH=AD ,DEA G ∠=∠,G A ∠=∠ ∴△FHG ≌△DAE , ∴GH=AE ,即AE AG HA =+ ∵BF=HA , ∴AE AG BF =+; (3)由(2)可得:FG=DE ∴224+==x DE FG ∴221442122222+=+⋅+=x x x y (20<<x ) 【总结】本题主要考察正方形背景下的动点问题,注意对常见辅助线的添加以及线段间的转化.A BCD EF GH【例14】 如图1,梯形ABCD 中,AD //BC ,∠B =90°,AD =18,BC =21.点P 从点A 出发沿AD 以每秒1个单位的速度向点D 匀速运动,点Q 从点C 沿CB 以每秒2个单位的速度向点B 匀速运动.点P 、Q 同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB =10时,设A 、B 、Q 、P 四点构成的图形的面积为S ,求S 关于t 的函数关系式,并写出定义域;(2)设E 、F 为AB 、CD 的中点,求四边形PEQF 是平行四边形时t 的值.【难度】★★★【答案】(1)t S 5105-=(5.100≤≤t ); (2)23=t . 【解析】(1)由题意可得:AP =t ,CQ =t 2,则()t t t S 51051022121-=⨯-+⨯=(5.100≤≤t );(2)过点D 作DH ⊥BC 于H ,取CH 的中点G ,则四边形ABHD 是矩形.∵F 是CD 的中点,G 是CH 的中点,∴DH FG 21=∵AD //BC ,∠B =90°,AD =18,BC =21∴CH =21-18=3,CG =2321=CH∴232-=-=t GC QC QG ∵四边形PEQF 是平行四边形, ∴PE=QF∵AB FG AE 21==,90A FGQ ∠=∠=∴△AEP ≌△GFQ , ∴QG=AP∴t t =-232, 解得:23=t ,即当四边形PEQF 是平行四边形时,t 的值为32. 【总结】本题一方面考察梯形背景下的动点结合,另一方面考察中位线及平行四边形的性质的综合运用,注意认真分析.GABCDE F PABCD Q图1备用图H【例15】 如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上.(1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域;(3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长. 【难度】★★★ 【答案】见解析.【解析】(1)当点G 到边BC 中点时,BG=2,∵∠B =45°,正方形EFGH 的两个顶点F 、G 始终在边BC 上. ∴BF=EF=FG ∵BG=2,∴FG=1, 即正方形EFGH 的边长为1;(2)当10≤<x 时,()212121122++-=--=x x x y ,当31≤<x 时,1=y ;(3)当FH=HC 时,∵HG ⊥CF ,∴FG=CG=1, ∴2114=--=--=FG GC BC BF ; 当FC=HC 时,∵CG CG FG FC +=+=1,2221GC GC GH HC +=+= ∴112+=+GC GC ,解得:0=GC , ∴3014=--=--=FG GC BC BF ;当FH=FC 时,则2=FC ,此时24-=-=FC BC BF , 综上所述,当△FHC 是等腰三角形时,BF 的长为2或3或42-.【总结】本题主要考察平行四边形与正方形的性质的综合运用,解题时注意对等腰三角形要进行分类讨论.HAB C DEF G【例16】 如图1,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,A (0,4),C (5, 0),点D 是y 轴正半轴上一点,将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处.过点E 作y 轴的平行线与x 轴交于点N .折痕与直线EN 交于点M ,联结DE 、OM . 设OD =t ,MN =s . (1)试判断四边形EDOM 的形状,并证明;(2)当点D 在线段OA 上时,求s 关于t 的函数解析式,并写出函数的定义域; (3)用含t 的代数式表示四边形EDOM 与矩形OABC 重叠部分的面积.【难度】★★★ 【答案】见解析.【解析】(1)四边形EDOM 是菱形.∵将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处, ∴EDM ODM ∠=∠,DE OD =. ∵EM ∥OD , ∴DME ODM ∠=∠, ∴DME EDM ∠=∠,∴EM DE =,∵DE OD =,∴EM OD =. ∵EM ∥OD ,∴四边形EDOM 是平行四边形, ∵EM DE =,∴平行四边形EDOM 是菱形; (2)由(1)可得:OD =EM = t , ∵EN =OA =4, ∴t s -=4(24t <<); (3)当点D 在线段OA 上时,∵t EM ED OM OD ====,4=EN ,s t =-4∴()22224816224ON OM MN t t t t =-=--=-=-∴四边形EDOM 与矩形OABC 重叠部分面积为:224224OD ON t t t t ⋅=⋅-=-; 当点D 在线段OA 延长上时(如图所示),∵4AD t BD t =-=,, ∴2222(4)224AE BD AD t t t =-=--=-, ∴四边形EDOM 与矩形OABC 重叠部分面积为:2244824AE OA t t ⋅=-⨯=-, 综上所述,四边形EDOM 与矩形OABC 重叠部分的面积为224t t -或824t -. 【总结】本题主要考察菱形的判定方法和性质的综合运用,解题时注意进行分析.MA BCDE MNAB C OOxy xyE DN【例17】 已知:如图1,梯形ABCD 中,AD //BC ,∠A =90°,∠C =45°,AB =AD =4.E 是直线AD 上一点,联结BE ,过点E 作EF ⊥BE 交直线CD 于点F .联结BF .(1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示) ①求证:BE =EF ;②设DE =x ,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域;(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.【难度】★★★ 【答案】见解析.【解析】(1)①在AB 上截取AG=AE ,连接EG ,∵∠A =90°,AG=AE , ∴︒=∠=∠45AEG AGE , ∴︒=∠135BGE ∵AD //BC ,∠C =45°, ∴︒=∠135D ,∴D BGE ∠=∠ ∵AG=AE ,AB =AD , ∴ED=BG∵∠A =90°,EF ⊥BE , ∴DEF ABE ∠=∠∵ED=BG ,D BGE ∠=∠,DEF ABE ∠=∠ ∴△BGE ≌△EDF , ∴BE =EF ;②∵DE =x ,∴4AE x =-, ∵∠A =90°,∴()222244+-=+=x AB AE BE ,∵BE =EF ,∴()()23284444212122222+-=+-⋅+-=⋅⋅=x x x x EF BE y (40<<x );A BCDEFABCD图1备用图备用图ABCDGEF G(2)①当点E 在线段AD 上时,∵()11448222ABE S AB AE x x =⨯⨯=⨯⨯-=-△,又3BEFABESS=,∴()23282832+-=-⨯x x x ,解得:522±-=x (负值舍去),∴522+-=DE ;②当点E 在线段DA 延长线上时,延长BA 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,21122BEF S BE EF BE =⨯⨯=⨯== ∵()824421-=-⨯⨯=x x S ABE △,又3BEFABES S=,∴()23288232+-=-⨯x x x ,解得:5210±=x ,∴5210±=DE ;③当点E 在线段AD 延长线上时,延长AB 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,21122BEF S BE EF BE =⨯⨯=⨯==,∵()144282ABE S x x =⨯⨯+=+△,又3BEFABESS=,∴()28323282x x x ++⨯+=,解得:2x =±,∴2DE =+综上所述,当△BEF 是△ABE 面积的3倍时,DE 的长为2-+10±或2+【总结】本题综合性较强,主要考察全等三角形的构造方法和梯形的性质运用,注意对点在直线上的准确理解,要分多种情况进行讨论.【例18】 如图,已知正方形ABCD 的边长为3,菱形EFGH 的三个顶点E 、G 、H 分别在正方形的边AB 、CD 、DA 上,AH =1,联结CF . (1)当DG =1时,求证菱形EFGH 为正方形;(2)设DG =x ,△FCG 的面积为y ,写出y 关于x 的函数解析式,并指出x 的取值范围;(3)当DG =433时,求∠GHE 的度数.【难度】★★★ 【答案】见解析.【解析】(1)当DG =1时,∵AH =1,∴DG=AH∵菱形EFGH , ∴HG=HE ,∵90A D ∠=∠=, ∴△HDG ≌△EAH , ∴AEH DHG ∠=∠ ∵︒=∠+∠90AEH AHE ,∴︒=∠+∠90DHG AHE ,∴︒=∠90GHE ∴菱形EFGH 是正方形;(2)联结GE ,过F 作FM ⊥DC 交DC 的延长线于M , ∵CD ∥AB ,∴AEG CGE ∠=∠∵FG ∥HE ,∴HEG FGE ∠=∠,∴HEA FGC ∠=∠ ∵HEA FGC ∠=∠,M A ∠=∠,FG=HE , ∴△AHE ≌△MFG , ∴1==FM HA ,∴()x x y 21233121-=-⋅⨯=(30<<x );(3)∵正方形ABCD 的边长为3,AH =1, ∴DH =2.当DG =433时,213233422222=⎪⎭⎫⎝⎛+=+=DG DH GH , ∴2132=HE ,∴33522=-=HA HE AE . 过G 做GN ⊥AB 于N ,∵DG =433,335=AE , ∴33=NE , ∴21323332222=⎪⎪⎭⎫ ⎝⎛+=+=EN GN GE , ∴HE GE GH ==, ∴△EGH 是等边三角形, ∴︒=∠60GHE .【总结】本题主要考察正方形的性质及全等三角形的综合运用,注意辅助线的合理添 加.ABCD EFG H M N【例19】 已知:如图,四边形OABC 的四个顶点坐标分别为O (0, 0),A (8, 0),B (4,4),C (0, 4),直线l :y =x +m 保持与四边形OABC 的边交于点M 、N (M 在折线AOC 上,N 在折线ABC 上).设四边形OABC 在l 右下方部分的面积为S 1,在l 左上方部分的面积为S 2,记S =S 1-S 2(S ≥0). (1)求∠OAB 的大小;(2)当M 、N 重合时,求l 的解析式;(3)当m ≤0时,线段AB 上是否存在点N ,使得S =0?若存在,求m 的值;若不存在,请说明理由;(4)求S 与m 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】(1)过B 作BE ⊥x 轴,垂足为E ,则点E (4,0)∵B (4,4), ∴44==AE BE ,,∴△ABE 为等腰直角三角形, ∴︒=∠45OAB ; (2)∵S ≥0,∴点M 、N 只能重合到点C (0, 4),此时4=m ,故直线l 的解析式为:y =x +4;(3)四边形OABC 的面积()2448421=⨯+⨯.∵直线l :y =x +m 保持与四边形OABC 边交于点M 、N , ∴△AMN 为等腰直角三角形.当S =0时,则△AMN 的面积为四边形OABC 的面积的一半. 过N 做x 轴的垂线NH ,则NH=AH=MH .设a NH =,则122212==⋅⋅a a a ,解得:32=a , ∴()82323N -,, ∵点N 在直线l :y =x +m 上, ∴834-=m ;ABCOxy NME H(4)∵S =S 1-S 2(S ≥0),∴834-≥m .①当0834<≤-m 时,m OM -=,m AM +=8, 经过A (8, 0),B (4,4)的直线解析式为:8+-=x y ,令⎩⎨⎧+=+-=m x y x y 8, 解得:⎪⎩⎪⎨⎧+=-=2828m y m x ∴16441282822121++=+⨯+⨯⨯=m m m m S ,1224S S -=, ∴88212422121++=-=-=m m S S S S ;②当40≤≤m 时,m OM =,m CM -=4,∴()22421m S -=,1224S S -=,∴882242121++-=-=-=m m S S S S ;综上所述,2218880)288(04)m m m S m m m ⎧++≤<⎪=⎨⎪-++≤≤⎩.【总结】本题综合性较强,主要考察图形的运动,包含了一次函数的性质及解析式的求法.解题时要注意从多个角度分析,特别要清楚动点的移动位置.【例20】 在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设P A =x ,PCE S y =△.(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出P A 的长;如果不能,请简单说明理由. 【难度】★★★ 【答案】见解析.【解析】(1)延长FP 交AB 于点G∵正方形ABCD 中,PF ⊥CD 于点F ,∴四边形AGFD 是矩形, ∴DF=AG ,︒=∠90AGF ∵正方形ABCD , ∴︒=∠45BAC∵︒=∠90AGF ,∴GP AG =,∴GP DF = 同理可得:BG PF CF ==∵PE ⊥PB ,︒=∠90AGF ,∴FPE GBP ∠=∠ ∵FPE GBP ∠=∠,BG PF =,PFE BGP ∠=∠ ∴△GBP ≌△FPE ,∴GP=EF ∵GP DF =,∴EF DF =; (2)∵P A =x , ∴x GP AG 22==,x EF DF 22==, 则x DE 2=,∴x CE 24-=, ∵x PF 224-=, ∴()8232122424212+-=⎪⎪⎭⎫ ⎝⎛--=x x x x y (022x ≤≤)(3)点P 在运动过程中能使△PEC 为等腰三角形. 当点E 在CD 边上时,∵︒≥∠90CEP ,要使△PEC 为等腰三角形,则︒=∠=∠45ECP CPE ,则PE ⊥CE . ∵PE ⊥PB , ∴BP ∥CD , ∴BP ∥BA .于是点P 在AB 上,又点P 在AC 上,∴A 与P 重合,此时AP =0. 当点E 在DC 延长线上时,要使△PEC 为等腰三角形,只能是PC=CE , ∴易得P A =4.【总结】本题主要考查正方形的性质的综合运用,注意对等腰的分类讨论.A BCDE F P OGxy BAOC【习题1】 如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求△ABC 的面积. 【难度】★★ 【答案】4.【解析】∵直线443y x =-+与y 轴交于点A ,∴A (0,4);∵直线443y x =-+与x 轴交于点D ,∴D (3,0);令⎪⎩⎪⎨⎧+=+-=5454434x y x y , 解得:⎪⎩⎪⎨⎧==223y x , 则322B ⎛⎫ ⎪⎝⎭,;∵直线4455y x =+与x 轴交于点C , ∴C (-1,0),∴424214421=⨯⨯-⨯⨯=-=BCD ACD ABC S S S △△△. 【总结】考察面积的求法,不规则图形的面积用割补法来解决,注意交点坐标的确定.随堂检测【习题2】 已知直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,另一条直线(0)y kx b k =+≠经过点C (1,0),且把△AOB 分成两部分.若△AOB 被分成的两部分面积比为1:5,求k 和b 的值. 【难度】★★★【答案】22k b ==-,或2233k b =-=,.【解析】∵直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,∴A (2,0),B (0,2).若△AOB 被分成的两部分面积比为1:5,那么直线(0)y kx b k =+≠与y 轴或A B 交点的纵坐标为:326122=⨯⨯. 当(0)y kx b k =+≠与直线2y x =-+相交时,交点为D ,当32=y 时,223x =-+,解得:34=x ,∴D (34,32), ∵点C (1,0),D (34,32)在直线(0)y kx b k =+≠上, ∴22k b ==-,;当(0)y kx b k =+≠与y 轴相交时,交点为E ,当32=y 时,223x =-+,解得:34=x ,∴E (0,32), ∵C (1,0),E (0,32)在直线(0)y kx b k =+≠上, ∴2233k b =-=,.综上,22k b ==-,或2233k b =-=,.【总结】本题主要考察面积的求法及交点坐标的确定,注意要分类讨论.【习题3】 直线364y x =-+与坐标轴分别交与点A 、B 两点,点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿O B A →→运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线364y x =-+与坐标轴分别交与点A 、B 两点,∴A (8,0),B (0,6);(2)∵OA=8,OB=6,∴AB=10.∵点Q 沿线段OA 运动,速度为每秒1个单位长度, ∴运动时间为8秒,∴点P 的运动速度是(6+10)÷8=2. 当点P 在线段OB 上运动时(03)t ≤≤, ∵t OQ =,t OP 2=, ∴2t S =;当点P 在线段BA 上运动时(38)t <≤,t OQ =,t t AP 2162106-=-+=, ∵8tOA OQ S S OPAOPQ ==△△,10216t BA AP S S OBA OPA -==△△,∴t t t t S t t S OAB OPQ 52453241021681021682+-=⨯-⋅=-⋅=△△,综上所述,S 与t 之间的函数关系为:22(03)324(38)55t t S t t t ⎧≤≤⎪=⎨-+<≤⎪⎩;(3)当485S =时,∵6321548⨯⨯>,∴点P 在AB 上,当485S =时,524524532=+-t t ,解得:4=t ,∴524=PD ,8=AP ,532=AD , ∴58=OD ,∴P (58,524), ∴以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标(528,524)或 (512-,524)或(512,524-)ABxyOQ P【习题4】 如图,已知:过点A (8,0)、B (0,83)两点的直线与直线3y x =交于点C ,平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1) 写出点C 的坐标和t 的取值范围; (2) 求s 与t 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线过点A (8,0)、B (0,83),∴直线AB 的解析式为383+-=x y . 令⎪⎩⎪⎨⎧=+-=x y x y 3383, 解得:⎩⎨⎧==344y x ,∴C (4,43), 40≤≤t ;(2)作EM ⊥y 轴与M ,DG ⊥y 轴于点G∵直线l 的运动时间为t (秒),∴D (t ,383t -+),E (t ,3t ), ∴t t t DE 32383383-=-+-=, ∴等边△DEF 的DE 边上的高为:()t t DE 31232382323-=-=. ∵E (t ,3t ),∴t ME =,t MN 33=,同理可得:t GH 33= ∴可求梯形上底为:t t 3323238--, ∴当点F 在BO 边上时:t t =-312,∴3=t . 当30<≤t 时,重叠部分为等腰梯形,223783238323383233t S t t t t t ⎛⎫=-+--=-+ ⎪ ⎪⎝⎭; 当43≤≤t 时,重叠部分为三角形,()()348324333123238212+-=--=t t t t S .【总结】本题综合性较强,主要考察一次函数与动点的结合以及图形的运动,解题时 一方面要清晰动点的运动轨迹,另一方面要学会表示动点的坐标,第(2)问注意 要分类讨论.AB CDEOxy l FPMGxy QPAOC B【作业1】 如图,已知直线P A :(0)y x n n =+>与直线PB :2()y x m m n =-+>交于点P .(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线P A 与y 轴的交点,且四边形PQOB 的面积56,AB=2,试求 点P 的坐标,并写出直线P A 与PB 的解析式. 【难度】★★ 【答案】见解析.【解析】(1)∵直线P A :(0)y x n n =+>交x 轴与A ,∴A (n -,0),∵直线PB :2()y x m m n =-+>交x 轴与B , ∴B (2m,0), 令⎩⎨⎧+-=+=m x y n x y 2, 解得:323m n x m n y -⎧=⎪⎪⎨+⎪=⎪⎩,∴P (3m n -,32nm +);(2)∵点Q 是直线P A 与y 轴的交点, ∴Q (0,n ).∵四边形PQOB 的面积56,∴()65321221=-⋅-⋅-⋅⋅=-n m n m m m S S CPQ COB △△. ∵AB=2, ∴23=+n m, ∴21m n ==,. ∴直线P A 的解析式为:1y x =+, 直线PB 的解析式为:22y x =-+.【总结】本题主要考察点的坐标的求法及几何图形面积的表示.课后作业xy FEO【作业2】 如图所示,直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,点E 的坐标为(-4,0). (1)求直线y kx b =+的表达式;(2)若点P (x ,y )是该直线第二象限上的一个动点,P A ⊥x 轴,PB ⊥y 轴,垂足分别为点A 、B ,试求四边形OAPB 的面积S 与x 的函数关系式,并写出自变量x 的取值范围. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,∴点E 的坐标为(-4,0),∴直线y kx b =+的表达式为623+=x y ;(2)∵点P (x ,y )是该直线第二象限上的一个动点,∴623+=x y ,∴()x x x x S 6236232--=⎪⎭⎫⎝⎛+-=(04<<-x ).【总结】考察一次函数解析式的求法及图形面积的确定, 注意点的坐标与线段长度的关系.【作业3】 如图,已知:直角梯形ABCD 中,AB ∥CD ,∠A =90°,AB =6,AD =4,DC =3,点P 从点A 出发,沿ADCB 方向移动,动点Q 从点A 出发,在AB 边上移动,设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长. (1) 求y 关于x 的函数解析式,并写出x 和y 的取值范围;(2) 当P 不在BC 边上时,线段PQ 能否平分ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 【难度】★★★ 【答案】见解析.【解析】(1)过C 做CE ⊥AB 于E ,则CD=AE =3. ∵CE =4, ∴BC =5,∴梯形的周长为18.∵线段PQ 平分梯形ABCD 的周长, ∴9=+y x . ∵60≤≤y , ∴93≤≤x , ∴x y -=9(93≤≤x );ABCDP QE(2)∵P 不在BC 边上时,则73≤≤x . 当43<≤x 时,点P 在AD 边上,则xy S APQ 21=△. ∵线段PQ 能否平分ABCD 的面积, ∴921=xy . 由1929xy x y ⎧=⎪⎨⎪+=⎩,解得:,∴36x y =⎧⎨=⎩或63x y =⎧⎨=⎩(舍去);当74≤≤x 时,P 在CD 边上,此时()y x S ADPQ +-⨯=4421四边形 ∵线段PQ 能否平分ABCD 的面积, ∴()94421=+-⨯y x联立9=+y x ,方程组无解.故当x =3时,线段PQ 平分ABCD 的面积.【总结】本题考察的知识点较多,包含了梯形的性质,面梯形面积及三角形的面积公式,二元二次方程组的解法等,第(1)问注意对解析式的确定,第(2)问注意利用第(1)问的结论,同时要进行分类讨论.【作业4】 如图,在平面直角坐标系中,两个函数162y x y x ==-+,的图像交于点A ,动点P 从点O 开始在线段O 向点A 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PAMN ,设它与△ABO 重叠部分的面积为S .(1) 求点A 的坐标;(2) 试求出点P 在线段OA 上运动时,S 与运动的时间t (秒)的关系式.【难度】★★★【答案】见解析.【解析】(1)令⎪⎩⎪⎨⎧+-==621x y x y , 解得:⎩⎨⎧==44y x ,∴A (4,4);ABCP Q O yx(2)∵动点P 从点O 开始在线段O 向点A 方向以每秒1个单位的速度运动, ∴t OP =, 则P (t 22,t 22). ∵PQ ∥x 轴,∴Q (t 212-,t 22), ∴t PQ 22312-=. 当t t 2222312=-时, 23=t . 当230≤<t 时,t t t t S 262322312222+-=⎪⎪⎭⎫ ⎝⎛-=; 当P 到达A 点时,24=t , 当2423<<t 时,144236292231222+-=⎪⎪⎭⎫ ⎝⎛-=t t t S ,综上所述,223(0291442t t S t t ⎧-+<≤⎪⎪=⎨⎪-+<⎪⎩. 【总结】本题主要考察交点坐标与面积的确定,解题的关键是要能够掌握重叠部分图 形的特点,一开始是矩形,后来才是正方形,要找出这个临界点,这样就将问题简化 了.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 29xy12QPAOCBxyAOB【例1】 如图,已知直线l :22y x =-+与x 轴、y 轴分别交于点B 、C ,将直线y=x向上平移1个单位长度得到直线P A ,点Q 是直线P A 与y 轴的交点,求四边形PQOB 的面积. 【难度】★★【答案】65.【解析】由题意可得:直线P A 的解析式为1+=x y令⎩⎨⎧+-=+=221x y x y ,解得:⎪⎩⎪⎨⎧==3431y x ,则⎪⎭⎫ ⎝⎛3431,P .∵点Q 是直线P A 与y 轴的交点, ∴()01Q ,. ∵直线l :22y x =-+与x 轴、y 轴分别交于点B 、C , ∴B (1,0),C (0,2). ∴65311211221=⨯⨯-⨯⨯=-=CPQ COB PQOB S S S △△四边形. 【总结】考察四边形面积的求法,不规则图形的面积用割补法来解决.【例2】 如图,已知直线AB :2y x =+与直线OA :13y x =交于点A ,与直线OB :3y x =交于点B 两点.求△AOB 的面积. 【难度】★★ 【答案】4.【解析】令⎪⎩⎪⎨⎧=+=x y x y 312,解得:⎩⎨⎧-=-=13y x ,则()31A --,. 令⎩⎨⎧=+=x y x y 32,解得:⎩⎨⎧==31y x ,则()13B ,. 设直线AB 与x 轴相交于C ,则C (-2,0),∴412213221=⨯⨯+⨯⨯=+=OCB OAC OAB S S S △△△.【总结】考察三角形面积的求法,不能直接求面积则用割补法来解决,注意交点坐标 的求法.例题解析【例3】 如图,已知直线3y x =+的图像与x 轴、y 轴分别交于A 、B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为2:1两部分,求直线l 的解 析式. 【难度】★★【答案】2y x =-或x y 21-=.【解析】∵直线3y x =+的图像与x 轴、y 轴分别交于∴A (-3,0),B (0,3),∴293321=⨯⨯=OAB S △.当OBA OBCS S △△32=时, 则2932321⨯=⨯⨯C y ,则2=C y , ∵C 点在直线AB 上,∴C (-1,2), 则直线l 的解析式为:2y x =-;当OBA OBC S S △△31=时,则2931321⨯=⨯⨯C y ,则1=C y , ∵C 点在直线AB 上,∴C (-2,1),则直线l 的解析式为:x y 21-=.综上直线l 的解析式为2y x =-或x y 21-=.【总结】考察面积的求法,本题中要注意分类讨论.3 / 29【例4】 如图,已知,在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在矩形ABCD 边AB 、BC 、DA 上,AE =2.(1)如图1,当四边形EFGH 为正方形时,求△GFC 的面积;(2)如图2,当四边形EFGH 为菱形,且BF =a 时,求△GFC 的面积.(用含a 的代数式表示)【难度】★★★ 【答案】见解析.【解析】(1)过点G 作GM ⊥BC 于M .∵四边形EFGH 为正方形时,∴︒=∠+∠90BEF AEH ∵︒=∠+∠90AHE AEH ,∴BEF AHE ∠=∠ ∵BEF AHE ∠=∠,B A ∠=∠,EF EH =, ∴BEF AHE ≌△△同理可知:BEF MFG ≌△△ ∴2===AE BF GM∴10=-=BF BC FC ,则10=GFC S △; (2)过点G 作GM ⊥BC 于M ,连接HF ∵AD ∥BC ,∴MFH AHF ∠=∠ ∵EH ∥FG ,∴GFH EHF ∠=∠ ∴MFG AHE ∠=∠∵MFG AHE ∠=∠,GMF A ∠=∠,GF EH =, ∴MFG AHE ≌△△∴2==AE GM∴()a a GM FC S GFC -=⨯-=⋅=122122121△.【总结】本题主要考察菱形、正方形的性质和全等三角形的判定和性质.A BCDEF 图1GHABCDE F 图2GHMM4 / 29【例5】 如图1,正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限,一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F . (1)若△DEF 与△BCF 的面积比为1∶2,求k 的值; (2)联结BE ,当BE 平分∠FBA 时,求k 的值. 【难度】★★★【答案】(1)1=k ;(2)2=k .【解析】(1)∵正方形ABCD 的边长为2,点A (0, 1)和点D 在y 轴正半轴上,点B 、C 在第一象限, ∴B (2, 1),C (2, 3),D (0, 3).∵一次函数y =kx +2的图像l 交AD 、CD 分别于E 、F , ∴E (0, 2). 设F (m , 3),∵△DEF 与△BCF 的面积比为1∶2, ∴()212221121=⨯-⨯⋅m m ,解得:1=m ,∴F (1, 3) ∵F (1, 3)在直线y =kx +2上,∴1=k ; (2)延长BE 交CD 的延长线于H , ∵BE 平分∠FBA ,∴ABE FBE ∠=∠∵CD ∥AB ,∴ABE H ∠=∠,∴FBE H ∠=∠,∴FB=HF ∵AE =1,DE=1,∴AE=DE∵AE=DE ,BAE HDE ∠=∠,BEA HED ∠=∠ ∴△HED ≌△BEA∴HD=AB =2,∴H (-2, 3) 设F (n , 3) ∵FB=HF ,∴()22222+=+-n n ,解得:21=n , ∴F (21, 3) ∵F (21, 3)在直线y =kx +2上, ∴2=k .【总结】考察等腰三角形的性质和两点之间的距离公式的运用,注意点的坐标与解析式的关系.ABCD EFxy OH5 / 29【例6】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的表达式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请求出点P 的坐标; (3)若点H 为坐标平面内任意一点,是否存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由. 【难度】★★★【答案】(1)6+=x y ;(2)P (6, 12)或P (-18, -12); (3)H (-12, 0)或H (-6, 18)或H (56-, 518). 【解析】(1)∵函数y =2x +12的图像分别交x 轴、y 轴于A 、B 两点,∴A (-6, 0),B (0, 12)∵点M 为线段OB 的中点, ∴M (0, 6), 则直线AM 的表达式为6+=x y ; (2)当点P 在AM 的延长线上时∵S △ABP =S △AOB ,∴OP ∥AB ,则可知直线OP 的表达式为x y 2=. ∵P 在直线AM 上,∴令⎩⎨⎧+==62x y x y ,解得:⎩⎨⎧==126y x , ∴P (6, 12);当P 在AM 的反向延长线上时,过P 点作PN ⊥OB ,垂足为H 设P (n , n+6)∵AONP ABO BPN ABP S S S S 梯形△△△--=, S △ABP =S △AOB ,()()()()1262166621126216621⨯⨯=--⨯--⨯-⨯⨯----⋅n n n n ,解得:18-=n ,则P (-18, -12).(3)存在点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形.若以AM 为底,BM 为腰,过点B 作AM 的平行线,当点H (-12, 0)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以BM 为底,AM 为腰,过点A 作BM 的平行线,当点H (-6, 18)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形;若以AB 为底,BM 为腰,过点M 作AB 的平行线,当点H (56-, 518)时,以A 、B 、M 、H 为顶点的四边形是等腰梯形.【总结】本题综合性较强,本题一方面考察面积的确定,另一方面考察等腰梯形的性质和分类讨论.ABOMxy6 / 29【例7】 如图1,已知直角坐标平面内点A (2, 0),P 是函数y =x (x >0)图像上一点,PQ ⊥AP 交y 轴正半轴于点Q . (1)试证明:AP =PQ ;(2)设点P 的横坐标为a ,点Q 的纵坐标为b ,那么b 关于a 的函数关系式是_______;(3)当S △AOQ =23S △APQ 时,求点P 的坐标.【难度】★★★【答案】(1)见解析;(2)22-=a b ;(3)⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【解析】(1)过P 作x 轴、y 轴的垂线,垂足分别为H 、T ,∵P 是函数y =x (x >0)图像上一点 ∴PH=PT ,PH ⊥PT∵PQ ⊥AP ,∴QPT APH ∠=∠∵QPT APH ∠=∠,PH=PT ,QTP AHP ∠=∠ ∴△PHA ≌△PTQ ∴AP =PQ ;(2)由(1)可得:TQ a AH =-=2 ∵OH OT TQ OQ ==+, ∴a a b =-+2, 即22-=a b ; (3)设()P a a ,, ∵2221-=⋅⋅=a OQ OA S AOQ △,222122+-==a a AP S APQ △, ∴()2232222+-=-a a a , 解得:255±=a . ∴⎪⎪⎭⎫ ⎝⎛--255255,P 或⎪⎪⎭⎫ ⎝⎛++255255,P . 【总结】本题主要考察全等的运用,及三角形面积的求法,注意利用面积公式确定点的坐标.P QAy O x7 / 29【例8】 如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,试写出△APM 的面积y 与点P 经过的路程x 之间的函数关系,写出定义域,并画出函数图像. 【难度】★★ 【答案】见解析.【解析】当P 在AB 上运动时,即10≤<x ,y =x AP AD S APM =⋅=21△;当P 在BC 上运动时,即31≤<x , ∵PCM ABP ABCM APM S S S S △△梯形△--=, ∴y =454432123+-=----=x x x S APM △; 当P 在CM 上运动时,即273≤<x , y =x x S APM -=⨯⎪⎭⎫⎝⎛-=2722721△.函数图像如由图所示.【总结】本题主要考察面积与动点的结合,注意进行讨论.【例9】 如图,在梯形ABCD 中,AD //BC ,AB =CD =AD =5cm ,BC =11cm ,点P 从点D 出发沿DA 边以每秒1cm 的速度移动,点Q 从点B 出发沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域;(2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值;(3)在移动过程中,是否存在x 使得PQ =AB ,若存在,求出所有的x 的值;若不存在,请说明理由. 【难度】★★【答案】(1)102+=x y (50≤≤x ); (2)3=x ;(3)35=x 或311=x . 【解析】(1)作AE ⊥BC 于E ,DF ⊥BC 于F ,∵AB =CD =AD =5cm ,BC =11cm , ∴BE=CF =3,则4=AE .ABCDMPABCDPQE F8 / 29∵2DP x BQ x ==,, ∴()10242521+=⨯+-⨯=x x x y (50≤≤x ); (2)当四边形ABQP 的面积与四边形QCDP 的面积相等时, 四边形ABQP 的面积等于四边形ABCD 的面积的一半,∴()41152121102⨯+⨯⨯=+x ,解得:3=x ;(3)∵PQ =AB ,AD //BC ,∴四边形ABQP 为平行四边形或等腰梯形. 当四边形ABQP 为平行四边形时,则AP =BQ ,∴x x 25=-,解得:35=x ;当四边形ABQP 为等腰梯形时,则四边形PQCD 为平行四边形,∴x x 211-=,解得:311=x ;综上所述,当PQ =AB 时,x 的值为53或113.【总结】本题主要考察动点背景下的平行四边形和等腰梯形的性质的综合运用.【例10】 已知:如图1,在线段AE 的同侧作正方形ABCD 和正方形BEFG (BE <AB ),连结EG 并延长交DC 于点M ,作MN ⊥AB ,垂足为N ,MN 交BD 于P .设正方形ABCD 的边长为1. (1)证明:△CMG ≌△NBP ;(2)设BE =x ,四边形MGBN 的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)如果按照题设方法作出的四边形BGMP 是菱形,求BE 的长. 【难度】★★★ 【答案】见解析.【解析】(1)∵正方形ABCD 和正方形BEFG ,∴︒=∠45ABD ,︒=∠45BEG ∵CM ∥BE ,∴︒=∠=∠45BEG CMG ∵正方形ABCD ,MN ⊥AB ,∴四边形BCMN 是矩形, ∴CM=NB . ∵CM=NB ,PNB C ∠=∠,PBN CMG ∠=∠ ∴△CMG ≌△NBP ;(2)∵正方形BEFG ,BE =x , ∴x BE BG ==, ∴x CG -=1,ABC DEFGPMN9 / 29∴()()212111212+-=-+=x x x y (10<<x ); (3)由已知可得:MN ∥BC ,MG ∥BP , ∴四边形BGMP 是平行四边形.要使四边形BGMP 是菱形,则MG BG =, ∴()x x -=12,解得:22-=x , ∴当22-=BE 时,四边形BGMP 是菱形.【总结】本题考察正方形的性质和动点背景的下面积问题,解题时注意认真分析题目中的条件.【例11】 已知:在梯形ABCD 中,AD //BC ,∠B =90°,AB =BC =4,点E 在边AB上,CE =CD .(1)如图1,当∠BCD 为锐角时,设AD =x ,△CDE 的面积为y ,求y 与x 之间 的函数解析式,并写出函数的定义域; (2) 当CD =5时,求△CDE 的面积. 【难度】★★★【答案】(1)x x y 4212+-=(40<<x );(2)27或252.【解析】(1)过C 作CF ⊥AD 交AD 延长线于F∵AD //BC ,∠B =90°,AB =BC =4, ∴四边形ABCF 是正方形.∵CE =CD ,BC=CF ,∴△BCE ≌△FCD ,∴DF=BE ∵AD =x ,∴x DF -=4,∴x BE -=4 ∴ADE BEC ABCD y S S S =--△△梯形 ()()1114444222x x x x =+⨯-⋅⋅-⨯⨯- 2142x x =-+, 定义域为:40<<x ;(2)当∠BCD 为锐角时, ∵CD =5时,CF=4,∴由勾股定理可得:3=DF ,则1=AD代入解析式中可得:27=y ;当∠BCD 为钝角时,易知3DF BE ==.AB CDEFA B CDEF10 / 29∴CDEBCEADEABCD SS SS=--梯形111(47)43417222=⨯+⨯-⨯⨯-⨯⨯ 252=. 综上所述,△CDE 的面积为27或252. 【总结】考察全等三角形的构造和正方形的性质的综合运用,第(2)问要注意分类讨论.【例12】 如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x m =-+交折线OAB 于点E .(1)当点E 恰为AB 中点时,求m 的值;(2)当点E 在线段OA 上,记△ODE 的面积为y ,求y 与m 的函数关系式并写出定义域;(3)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试判断四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,写出该重叠部分的面积;若改变,写出重叠部分面积S 关于m 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】∵四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),∴B (3,1). (1)当点E 恰为AB 中点时,则E (3,21) ∵点E 在直线12y x m =-+上, ∴代入E 点坐标,可得:2=m ;(2)当点E 在线段OA 上,∵直线12y x m =-+交折线OAB 于点E , ∴E (m 2,0),∴m m y =⋅⋅=1221(312m <≤); (3)设O 1A 1与CB 相交于点M ,OA 与B 1C 1相交于点N ,则四边形O 1A 1B 1C 1与 矩形OABC 的重叠部分的面积为四边形DNEM 的面积.AB CDEOxy∵DM ∥NE ,DN ∥ME ,∴四边形DNEM 是平行四边形 ∵NED MED ∠=∠,NED MDE ∠=∠,∴NED MED ∠=∠, ∴ME MD =,∴四边形DNEM 是菱形过D 作DH ⊥OA ,垂足为H ,设菱形DNEM 的边长为a∵D (22-m ,1),E (m 2,0), ∴DH =1,HE =()2222m m --=,∴2NH EN EH a =-=-, 在直角△DHN 中,()22212+-=a a ,解得:45=a ∴菱形DNEM 的面积为:55144⨯=.【总结】本题综合性较强,一方面考查面积与动点的结合,另一方面考查面积的定值,注意进行分析.【例13】 如图1,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G . (1)当E 是AB 中点时,求证AG =BF ;(2)当E 在边AB 上移动时,观察BF 、AG 、AE 之间具有怎样的数量关系?并证明你所得到的结论;(3)联结DF ,如果正方形的边长为2,设AE =x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域.【难度】★★★【答案】(1)见解析;(2)AE AG BF =+;(3)2212+=x y (20<<x ).【解析】(1)当E 是AB 中点时,AE=BE∵AE=BE ,AEG BEF ∠=∠,B EAG ∠=∠ ∴△EAG ≌△EBF ∴AG =BF(2)AE AG BF =+过点F 作FH ⊥DA ,垂足为H ,则四边形ABFH 是矩形 ∴FH=AB=AD∵DE ⊥FG ,∴DEA ADE G ∠=∠-︒=∠90 ∵FH=AD ,DEA G ∠=∠,G A ∠=∠ ∴△FHG ≌△DAE , ∴GH=AE ,即AE AG HA =+ ∵BF=HA , ∴AE AG BF =+;A BCD EF GH(3)由(2)可得:FG=DE ∴224+==x DE FG ∴221442122222+=+⋅+=x x x y (20<<x ) 【总结】本题主要考察正方形背景下的动点问题,注意对常见辅助线的添加以及线段间的转化.【例14】 如图1,梯形ABCD 中,AD //BC ,∠B =90°,AD =18,BC =21.点P 从点A 出发沿AD 以每秒1个单位的速度向点D 匀速运动,点Q 从点C 沿CB 以每秒2个单位的速度向点B 匀速运动.点P 、Q 同时出发,其中一个点到达终点时两点停止运动,设运动的时间为t 秒.(1)当AB =10时,设A 、B 、Q 、P 四点构成的图形的面积为S ,求S 关于t 的函数关系式,并写出定义域;(2)设E 、F 为AB 、CD 的中点,求四边形PEQF 是平行四边形时t 的值.【难度】★★★【答案】(1)t S 5105-=(5.100≤≤t ); (2)23=t . 【解析】(1)由题意可得:AP =t ,CQ =t 2,则()t t t S 51051022121-=⨯-+⨯=(5.100≤≤t );(2)过点D 作DH ⊥BC 于H ,取CH 的中点G ,则四边形ABHD 是矩形.∵F 是CD 的中点,G 是CH 的中点,∴DH FG 21=∵AD //BC ,∠B =90°,AD =18,BC =21∴CH =21-18=3,CG =2321=CH∴232-=-=t GC QC QG ∵四边形PEQF 是平行四边形, ∴PE=QF∵AB FG AE 21==,90A FGQ ∠=∠=GABCDE F PABCD Q图1备用图H∴△AEP ≌△GFQ , ∴QG=AP∴t t =-232, 解得:23=t ,即当四边形PEQF 是平行四边形时,t 的值为32. 【总结】本题一方面考察梯形背景下的动点结合,另一方面考察中位线及平行四边形的性质的综合运用,注意认真分析.【例15】 如图1,在菱形ABCD 中,∠B =45°,AB =4.左右作平行移动的正方形EFGH 的两个顶点F 、G 始终在边BC 上.当点G 到边BC 中点时,点E 恰好在边AB 上.(1)如图1,求正方形EFGH 的边长;(2)设点B 与点F 的距离为x ,在正方形EFGH 作平行移动的过程中,正方形EFGH 与菱形ABCD 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域;(3)联结FH 、HC ,当△FHC 是等腰三角形时,求BF 的长. 【难度】★★★ 【答案】见解析.【解析】(1)当点G 到边BC 中点时,BG=2,∵∠B =45°,正方形EFGH 的两个顶点F 、G 始终在边BC 上. ∴BF=EF=FG ∵BG=2,∴FG=1, 即正方形EFGH 的边长为1;(2)当10≤<x 时,()212121122++-=--=x x x y ,当31≤<x 时,1=y ;(3)当FH=HC 时,∵HG ⊥CF ,∴FG=CG=1, ∴2114=--=--=FG GC BC BF ; 当FC=HC 时,∵CG CG FG FC +=+=1,2221GC GC GH HC +=+= ∴112+=+GC GC ,解得:0=GC , ∴3014=--=--=FG GC BC BF ;当FH=FC 时,则2=FC ,此时24-=-=FC BC BF , 综上所述,当△FHC 是等腰三角形时,BF 的长为2或3或42-.HAB C DEF G【总结】本题主要考察平行四边形与正方形的性质的综合运用,解题时注意对等腰三角形要进行分类讨论.【例16】 如图1,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,A (0,4),C (5, 0),点D 是y 轴正半轴上一点,将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处.过点E 作y 轴的平行线与x 轴交于点N .折痕与直线EN 交于点M ,联结DE 、OM . 设OD =t ,MN =s . (1)试判断四边形EDOM 的形状,并证明;(2)当点D 在线段OA 上时,求s 关于t 的函数解析式,并写出函数的定义域; (3)用含t 的代数式表示四边形EDOM 与矩形OABC 重叠部分的面积.【难度】★★★ 【答案】见解析.【解析】(1)四边形EDOM 是菱形.∵将四边形OABC 沿着过点D 的直线翻折,使得点O 落在线段AB 上的点E 处, ∴EDM ODM ∠=∠,DE OD =. ∵EM ∥OD , ∴DME ODM ∠=∠, ∴DME EDM ∠=∠,∴EM DE =,∵DE OD =,∴EM OD =. ∵EM ∥OD ,∴四边形EDOM 是平行四边形, ∵EM DE =,∴平行四边形EDOM 是菱形; (2)由(1)可得:OD =EM = t , ∵EN =OA =4, ∴t s -=4(24t <<); (3)当点D 在线段OA 上时,∵t EM ED OM OD ====,4=EN ,s t =-4∴()22224816224ON OM MN t t t t =-=--=-=-∴四边形EDOM 与矩形OABC 重叠部分面积为:224224OD ON t t t t ⋅=⋅-=-; 当点D 在线段OA 延长上时(如图所示),∵4AD t BD t =-=,, ∴2222(4)224AE BD AD t t t =-=--=-, ∴四边形EDOM 与矩形OABC 重叠部分面积为:2244824AE OA t t ⋅=-⨯=-, 综上所述,四边形EDOM 与矩形OABC 重叠部分的面积为224t t -或824t -. 【总结】本题主要考察菱形的判定方法和性质的综合运用,解题时注意进行分析.MA BCDE MNAB C OOxy xyE DN【例17】 已知:如图1,梯形ABCD 中,AD //BC ,∠A =90°,∠C =45°,AB =AD =4.E 是直线AD 上一点,联结BE ,过点E 作EF ⊥BE 交直线CD 于点F .联结BF .(1)若点E 是线段AD 上一点(与点A 、D 不重合),(如图1所示) ①求证:BE =EF ;②设DE =x ,△BEF 的面积为y ,求y 关于x 的函数解析式,并写出此函数的定义域;(2)直线AD 上是否存在一点E ,使△BEF 是△ABE 面积的3倍,若存在,直接写出DE 的长,若不存在,请说明理由.【难度】★★★ 【答案】见解析.【解析】(1)①在AB 上截取AG=AE ,连接EG ,∵∠A =90°,AG=AE , ∴︒=∠=∠45AEG AGE , ∴︒=∠135BGE ∵AD //BC ,∠C =45°, ∴︒=∠135D ,∴D BGE ∠=∠ ∵AG=AE ,AB =AD , ∴ED=BG∵∠A =90°,EF ⊥BE , ∴DEF ABE ∠=∠∵ED=BG ,D BGE ∠=∠,DEF ABE ∠=∠ ∴△BGE ≌△EDF , ∴BE =EF ;②∵DE =x ,∴4AE x =-, ∵∠A =90°,∴()222244+-=+=x AB AE BE ,∵BE =EF , ∴()()23284444212122222+-=+-⋅+-=⋅⋅=x x x x EF BE y (40<<x );A BCDEFABCD图1备用图备用图ABCDGEF G(2)①当点E 在线段AD 上时,∵()11448222ABE S AB AE x x =⨯⨯=⨯⨯-=-△,又3BEFABESS=,∴()23282832+-=-⨯x x x ,解得:522±-=x (负值舍去),∴522+-=DE ;②当点E 在线段DA 延长线上时,延长BA 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,21122BEF S BE EF BE =⨯⨯=⨯= ∵()824421-=-⨯⨯=x x S ABE △,又3BEFABES S=,∴()23288232+-=-⨯x x x ,解得:5210±=x ,∴5210±=DE ;③当点E 在线段AD 延长线上时,延长AB 到G ,使得BG =DE ,连接EG , 则△AGE 是等腰直角三角形.同(1)可证△BGE ≌△EDF , ∴BE =EF ,21122BEF S BE EF BE =⨯⨯=⨯==,∵()144282ABE S x x =⨯⨯+=+△,又3BEFABESS=,∴()28323282x x x ++⨯+=,解得:2x =±,∴2DE =+;综上所述,当△BEF 是△ABE 面积的3倍时,DE 的长为2-+或10±或2+【总结】本题综合性较强,主要考察全等三角形的构造方法和梯形的性质运用,注意对点在直线上的准确理解,要分多种情况进行讨论.【例18】 如图,已知正方形ABCD 的边长为3,菱形EFGH 的三个顶点E 、G 、H 分别在正方形的边AB 、CD 、DA 上,AH =1,联结CF . (1)当DG =1时,求证菱形EFGH 为正方形;(2)设DG =x ,△FCG 的面积为y ,写出y 关于x 的函数解析式,并指出x 的取值范围;(3)当DG =433时,求∠GHE 的度数.【难度】★★★ 【答案】见解析.【解析】(1)当DG =1时,∵AH =1,∴DG=AH∵菱形EFGH , ∴HG=HE ,∵90A D ∠=∠=, ∴△HDG ≌△EAH , ∴AEH DHG ∠=∠ ∵︒=∠+∠90AEH AHE ,∴︒=∠+∠90DHG AHE ,∴︒=∠90GHE ∴菱形EFGH 是正方形;(2)联结GE ,过F 作FM ⊥DC 交DC 的延长线于M , ∵CD ∥AB ,∴AEG CGE ∠=∠∵FG ∥HE ,∴HEG FGE ∠=∠,∴HEA FGC ∠=∠ ∵HEA FGC ∠=∠,M A ∠=∠,FG=HE , ∴△AHE ≌△MFG , ∴1==FM HA ,∴()x x y 21233121-=-⋅⨯=(30<<x );(3)∵正方形ABCD 的边长为3,AH =1, ∴DH =2.当DG =433时,213233422222=⎪⎭⎫⎝⎛+=+=DG DH GH , ∴2132=HE ,∴33522=-=HA HE AE . 过G 做GN ⊥AB 于N ,∵DG =433,335=AE , ∴33=NE , ∴21323332222=⎪⎪⎭⎫ ⎝⎛+=+=EN GN GE , ∴HE GE GH ==, ∴△EGH 是等边三角形, ∴︒=∠60GHE .【总结】本题主要考察正方形的性质及全等三角形的综合运用,注意辅助线的合理添 加.ABCD EFG H M N【例19】 已知:如图,四边形OABC 的四个顶点坐标分别为O (0, 0),A (8, 0),B (4,4),C (0, 4),直线l :y =x +m 保持与四边形OABC 的边交于点M 、N (M 在折线AOC 上,N 在折线ABC 上).设四边形OABC 在l 右下方部分的面积为S 1,在l 左上方部分的面积为S 2,记S =S 1-S 2(S ≥0). (1)求∠OAB 的大小;(2)当M 、N 重合时,求l 的解析式;(3)当m ≤0时,线段AB 上是否存在点N ,使得S =0?若存在,求m 的值;若不存在,请说明理由;(4)求S 与m 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】(1)过B 作BE ⊥x 轴,垂足为E ,则点E (4,0)∵B (4,4), ∴44==AE BE ,,∴△ABE 为等腰直角三角形, ∴︒=∠45OAB ; (2)∵S ≥0,∴点M 、N 只能重合到点C (0, 4),此时4=m ,故直线l 的解析式为:y =x +4;(3)四边形OABC 的面积()2448421=⨯+⨯.∵直线l :y =x +m 保持与四边形OABC 边交于点M 、N , ∴△AMN 为等腰直角三角形.当S =0时,则△AMN 的面积为四边形OABC 的面积的一半. 过N 做x 轴的垂线NH ,则NH=AH=MH .设a NH =,则122212==⋅⋅a a a ,解得:32=a , ∴()82323N -,,∵点N 在直线l :y =x +m 上, ∴834-=m ;ABC OxyN ME H(4)∵S =S 1-S 2(S ≥0),∴834-≥m .①当0834<≤-m 时,m OM -=,m AM +=8, 经过A (8, 0),B (4,4)的直线解析式为:8+-=x y , 令⎩⎨⎧+=+-=m x y x y 8, 解得:⎪⎩⎪⎨⎧+=-=2828m y m x ∴16441282822121++=+⨯+⨯⨯=m m m m S ,1224S S -=, ∴88212422121++=-=-=m m S S S S ; ②当40≤≤m 时,m OM =,m CM -=4,∴()22421m S -=,1224S S -=,∴882242121++-=-=-=m m S S S S ;综上所述,2218880)288(04)m m m S m m m ⎧++≤<⎪=⎨⎪-++≤≤⎩.【总结】本题综合性较强,主要考察图形的运动,包含了一次函数的性质及解析式的求法.解题时要注意从多个角度分析,特别要清楚动点的移动位置.【例20】 在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设P A =x ,PCE S y =△.(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出P A 的长;如果不能,请简单说明理由. 【难度】★★★ 【答案】见解析.【解析】(1)延长FP 交AB 于点G∵正方形ABCD 中,PF ⊥CD 于点F ,∴四边形AGFD 是矩形, ∴DF=AG ,︒=∠90AGF ∵正方形ABCD , ∴︒=∠45BAC∵︒=∠90AGF ,∴GP AG =,∴GP DF = 同理可得:BG PF CF ==∵PE ⊥PB ,︒=∠90AGF ,∴FPE GBP ∠=∠ ∵FPE GBP ∠=∠,BG PF =,PFE BGP ∠=∠ ∴△GBP ≌△FPE ,∴GP=EF ∵GP DF =,∴EF DF =; (2)∵P A =x , ∴x GP AG 22==,x EF DF 22==, 则x DE 2=,∴x CE 24-=, ∵x PF 224-=, ∴()8232122424212+-=⎪⎪⎭⎫ ⎝⎛--=x x x x y (022x ≤≤)(3)点P 在运动过程中能使△PEC 为等腰三角形. 当点E 在CD 边上时,∵︒≥∠90CEP ,要使△PEC 为等腰三角形,则︒=∠=∠45ECP CPE ,则PE ⊥CE . ∵PE ⊥PB , ∴BP ∥CD , ∴BP ∥BA .于是点P 在AB 上,又点P 在AC 上,∴A 与P 重合,此时AP =0. 当点E 在DC 延长线上时,要使△PEC 为等腰三角形,只能是PC=CE , ∴易得P A =4.【总结】本题主要考查正方形的性质的综合运用,注意对等腰的分类讨论.A BCDE F P OGxy BAOC【习题1】 如图,直线443y x =-+与y 轴交于点A ,与直线4455y x =+交于点B ,且直线4455y x =+与x 轴交于点C ,求△ABC 的面积. 【难度】★★ 【答案】4.【解析】∵直线443y x =-+与y 轴交于点A ,∴A (0,4);∵直线443y x =-+与x 轴交于点D ,∴D (3,0);令⎪⎩⎪⎨⎧+=+-=5454434x y x y , 解得:⎪⎩⎪⎨⎧==223y x , 则322B ⎛⎫ ⎪⎝⎭,;∵直线4455y x =+与x 轴交于点C , ∴C (-1,0),∴424214421=⨯⨯-⨯⨯=-=BCD ACD ABC S S S △△△. 【总结】考察面积的求法,不规则图形的面积用割补法来解决,注意交点坐标的确定.随堂检测【习题2】 已知直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,另一条直线(0)y kx b k =+≠经过点C (1,0),且把△AOB 分成两部分.若△AOB 被分成的两部分面积比为1:5,求k 和b 的值. 【难度】★★★【答案】22k b ==-,或2233k b =-=,.【解析】∵直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,∴A (2,0),B (0,2).若△AOB 被分成的两部分面积比为1:5,那么直线(0)y kx b k =+≠与y 轴或A B 交点的纵坐标为:326122=⨯⨯. 当(0)y kx b k =+≠与直线2y x =-+相交时,交点为D ,当32=y 时,223x =-+,解得:34=x ,∴D (34,32), ∵点C (1,0),D (34,32)在直线(0)y kx b k =+≠上, ∴22k b ==-,;当(0)y kx b k =+≠与y 轴相交时,交点为E ,当32=y 时,223x =-+,解得:34=x ,∴E (0,32), ∵C (1,0),E (0,32)在直线(0)y kx b k =+≠上, ∴2233k b =-=,.综上,22k b ==-,或2233k b =-=,.【总结】本题主要考察面积的求法及交点坐标的确定,注意要分类讨论.【习题3】 直线364y x =-+与坐标轴分别交与点A 、B 两点,点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿O B A →→运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线364y x =-+与坐标轴分别交与点A 、B 两点,∴A (8,0),B (0,6);(2)∵OA=8,OB=6,∴AB=10.∵点Q 沿线段OA 运动,速度为每秒1个单位长度, ∴运动时间为8秒,∴点P 的运动速度是(6+10)÷8=2. 当点P 在线段OB 上运动时(03)t ≤≤, ∵t OQ =,t OP 2=, ∴2t S =;当点P 在线段BA 上运动时(38)t <≤,t OQ =,t t AP 2162106-=-+=, ∵8t OA OQ S S OPAOPQ ==△△,10216tBA AP S S OBA OPA -==△△, ∴t t t t S t t S OAB OPQ 52453241021681021682+-=⨯-⋅=-⋅=△△,综上所述,S 与t 之间的函数关系为:22(03)324(38)55t t S t t t ⎧≤≤⎪=⎨-+<≤⎪⎩;(3)当485S =时,∵6321548⨯⨯>,∴点P 在AB 上,当485S =时,524524532=+-t t ,解得:4=t ,∴524=PD ,8=AP ,532=AD , ∴58=OD ,∴P (58,524), ∴以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标(528,524)或 (512-,524)或(512,524-)ABxyOQ P【习题4】 如图,已知:过点A (8,0)、B (0,83)两点的直线与直线3y x =交于点C ,平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1) 写出点C 的坐标和t 的取值范围; (2) 求s 与t 的函数关系式. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线过点A (8,0)、B (0,83),∴直线AB 的解析式为383+-=x y . 令⎪⎩⎪⎨⎧=+-=x y x y 3383, 解得:⎩⎨⎧==344y x ,∴C (4,43), 40≤≤t ;(2)作EM ⊥y 轴与M ,DG ⊥y 轴于点G∵直线l 的运动时间为t (秒),∴D (t ,383t -+),E (t ,3t ), ∴t t t DE 32383383-=-+-=, ∴等边△DEF 的DE 边上的高为:()t t DE 31232382323-=-=. ∵E (t ,3t ),∴t ME =,t MN 33=,同理可得:t GH 33= ∴可求梯形上底为:t t 3323238--, ∴当点F 在BO 边上时:t t =-312,∴3=t . 当30<≤t 时,重叠部分为等腰梯形,223783238323383233t S t t t t t ⎛⎫=-+--=-+ ⎪ ⎪⎝⎭; 当43≤≤t 时,重叠部分为三角形,()()348324333123238212+-=--=t t t t S .【总结】本题综合性较强,主要考察一次函数与动点的结合以及图形的运动,解题时 一方面要清晰动点的运动轨迹,另一方面要学会表示动点的坐标,第(2)问注意 要分类讨论.AB CDEOxy l FPMGxy QPAOC B【作业1】 如图,已知直线P A :(0)y x n n =+>与直线PB :2()y x m m n =-+>交于点P .(1)用m 、n 表示出A 、B 、P 点的坐标;(2)若点Q 是直线P A 与y 轴的交点,且四边形PQOB 的面积56,AB=2,试求 点P 的坐标,并写出直线P A 与PB 的解析式. 【难度】★★ 【答案】见解析.【解析】(1)∵直线P A :(0)y x n n =+>交x 轴与A ,∴A (n -,0),∵直线PB :2()y x m m n =-+>交x 轴与B , ∴B (2m,0), 令⎩⎨⎧+-=+=m x y n x y 2, 解得:323m n x m n y -⎧=⎪⎪⎨+⎪=⎪⎩,∴P (3m n -,32nm +);(2)∵点Q 是直线P A 与y 轴的交点, ∴Q (0,n ).∵四边形PQOB 的面积56,∴()65321221=-⋅-⋅-⋅⋅=-n m n m m m S S CPQ COB △△. ∵AB=2, ∴23=+n m, ∴21m n ==,. ∴直线P A 的解析式为:1y x =+, 直线PB 的解析式为:22y x =-+.【总结】本题主要考察点的坐标的求法及几何图形面积的表示.课后作业xy FEO【作业2】 如图所示,直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,点E 的坐标为(-4,0). (1)求直线y kx b =+的表达式;(2)若点P (x ,y )是该直线第二象限上的一个动点,P A ⊥x 轴,PB ⊥y 轴,垂足分别为点A 、B ,试求四边形OAPB 的面积S 与x 的函数关系式,并写出自变量x 的取值范围. 【难度】★★★ 【答案】见解析.【解析】(1)∵直线y kx b =+的截距为6,该直线分别交x 轴、y 轴于E 、F ,∴点E 的坐标为(-4,0),∴直线y kx b =+的表达式为623+=x y ;(2)∵点P (x ,y )是该直线第二象限上的一个动点,∴623+=x y ,∴()x x x x S 6236232--=⎪⎭⎫⎝⎛+-=(04<<-x ).【总结】考察一次函数解析式的求法及图形面积的确定, 注意点的坐标与线段长度的关系.【作业3】 如图,已知:直角梯形ABCD 中,AB ∥CD ,∠A =90°,AB =6,AD =4,DC =3,点P 从点A 出发,沿ADCB 方向移动,动点Q 从点A 出发,在AB 边上移动,设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长. (1) 求y 关于x 的函数解析式,并写出x 和y 的取值范围;(2) 当P 不在BC 边上时,线段PQ 能否平分ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 【难度】★★★ 【答案】见解析.【解析】(1)过C 做CE ⊥AB 于E ,则CD=AE =3. ∵CE =4, ∴BC =5,∴梯形的周长为18.∵线段PQ 平分梯形ABCD 的周长, ∴9=+y x . ∵60≤≤y , ∴93≤≤x , ∴x y -=9(93≤≤x );ABCD PQ E(2)∵P 不在BC 边上时,则73≤≤x . 当43<≤x 时,点P 在AD 边上,则xy S APQ 21=△. ∵线段PQ 能否平分ABCD 的面积, ∴921=xy . 由1929xy x y ⎧=⎪⎨⎪+=⎩,解得:,∴36x y =⎧⎨=⎩或63x y =⎧⎨=⎩(舍去);当74≤≤x 时,P 在CD 边上,此时()y x S ADPQ +-⨯=4421四边形 ∵线段PQ 能否平分ABCD 的面积, ∴()94421=+-⨯y x联立9=+y x ,方程组无解.故当x =3时,线段PQ 平分ABCD 的面积.【总结】本题考察的知识点较多,包含了梯形的性质,面梯形面积及三角形的面积公式,二元二次方程组的解法等,第(1)问注意对解析式的确定,第(2)问注意利用第(1)问的结论,同时要进行分类讨论.【作业4】 如图,在平面直角坐标系中,两个函数162y x y x ==-+,的图像交于点A ,动点P 从点O 开始在线段O 向点A 方向以每秒1个单位的速度运动,作PQ ∥x 轴交直线BC 于点Q ,以PQ 为一边向下作正方形PAMN ,设它与△ABO 重叠部分的面积为S .(1) 求点A 的坐标;(2) 试求出点P 在线段OA 上运动时,S 与运动的时间t (秒)的关系式.【难度】★★★【答案】见解析.【解析】(1)令⎪⎩⎪⎨⎧+-==621x y x y , 解得:⎩⎨⎧==44y x ,∴A (4,4);ABCP Q O yx(2)∵动点P 从点O 开始在线段O 向点A 方向以每秒1个单位的速度运动, ∴t OP =, 则P (t 22,t 22). ∵PQ ∥x 轴,∴Q (t 212-,t 22), ∴t PQ 22312-=. 当t t 2222312=-时, 23=t . 当230≤<t 时,t t t t S 262322312222+-=⎪⎪⎭⎫ ⎝⎛-=; 当P 到达A 点时,24=t , 当2423<<t 时,144236292231222+-=⎪⎪⎭⎫ ⎝⎛-=t t t S ,综上所述,223(0291442t t S t t ⎧-+<≤⎪⎪=⎨⎪-+<⎪⎩.【总结】本题主要考察交点坐标与面积的确定,解题的关键是要能够掌握重叠部分图 形的特点,一开始是矩形,后来才是正方形,要找出这个临界点,这样就将问题简化 了.。

相关文档
最新文档