midas斜拉桥建模

合集下载

Midas斜拉桥成桥阶段和施工阶段分析

Midas斜拉桥成桥阶段和施工阶段分析
复制弹性连接(开) > 方向 >x;距离s(m)(414)
2点(163,159)
2点(161,157)
图23 生成桥墩上的主梁支座
输入边界条件
本例题中斜拉桥模型的边界条件如下。
索塔、桥墩下端: 固端 (Dx, Dy, Dz, Rx, Ry, Rz)
主梁与支座的连接: 弹性连接 (Dx, Dy, Dz, Rx, Ry, Rz)
图8 斜拉桥建模助手对话框
使用斜拉桥建模助手建立斜拉桥模型时,边跨和中间跨主梁均被建成为简支梁,所以在主梁与索塔相交处,将生成重复的节点。因为本例题桥梁为自锚式斜拉桥,所以主梁应为三跨连续梁形式,重复的节点需使用合并节点功能删除,从而使主梁满足连续条件。
节点号 (开) 正面
模型 / 单元 / 合并节点
图1 斜拉桥分析模型
桥梁基本数据
为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。
本例题桥梁的基本数据如下。
桥梁形式:
三跨连续斜拉桥(自锚式)
桥梁等级:
1级
桥梁全长:
100.0 m + 220.0 m + 100.0 m = 420.0 m
桥梁宽度:
15.6 m
支座的基本数据如下。
SDx :20,367,407tonf/m, SDy :7,483tonf/m, SDz :7,483tonf/m
自动对齐
模型 / 边界条件 /弹性连接
窗口缩放(图23的①)
选项 >添加/替换;连接类型 >General 类型
SDx (tonf/m)(20367407); SDy(tonf/m)(7483); SDy(tonf/m)(7483)

Midas做斜拉桥成桥阶段分析

Midas做斜拉桥成桥阶段分析

查看施工阶段分析结果
62
查看变形形状 / 62
查看弯矩 / 63
查看轴力 / 64
施工阶段分析变化图形 / 65
概要
斜拉桥成桥阶段和施工阶段分析
斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型 式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计 理念的桥梁形式之一。
的材料表单里点击
键。
定义多种材料
时,使用
按钮
会更方便一些。
模型 / 特性值 / 材料 名称 (拉索) 类型 > 用户定义 弹性模量 (2.0e7) ; 比重 (7.85) ↵
泊松比 (0.3)
按上述方法参照表1输入主梁、索塔、主梁横向系梁、索塔横梁等的材料特性值。
表1 材料特性值

项目
1
拉索
2
主梁
3
索塔
4
主梁横向系梁
5
索塔横梁
弹性模量 (tonf/m2) 2.0×107 2.1×107 2.0×106 2.0×107 2.0×106
泊松比 0.3 0.3 0.17 0.3 0.17
比重 (tonf/m3) 7.85 7.85 2.5 7.85 2.5
图5 定义材料特性对话框 4
斜拉桥成桥阶段和施工阶段分析
正面 窗口选择 (图16的①) 激活


激活索塔构件
第1号索塔
图16 选择索塔构件
第2号索塔
17
高级应用例题
使用建立单元功能建立索塔横梁单元。
标准
节点号 (开)
捕捉单元(关)
模型 / 单元 / 建立单元 单元类型 > 一般梁/变截面梁 材料 > 5: 索塔横梁 截面 > 5: 索塔横梁 连接节点 (142,72) (145,73) (144,74) (147,75)

MIDAS索单元应用悬索桥斜拉桥分析

MIDAS索单元应用悬索桥斜拉桥分析
midasusercom平衡单元节点内力荷载初始荷载大位移平衡单元节点内力?该功能仅适用于施工阶段分析时选择非线性分析的独立模型并且勾选了包含平衡单元节点内力选项时的情形
利用MIDAS 做悬索桥、斜拉桥分析
目录
1. 悬索桥分析
① 基本操作步骤 ② 索单元简介 ③ 索单元初始刚度 ④ 初始平衡状态 ⑤ 悬索桥分析控制
悬索桥分析:索单元初始刚度
初始单元内力
荷载>初始荷载>小位移>初始单元内力
根据输入的初始单元内力,提供初始刚度,与几何刚度荷载类似。但 仅适用于小位移分析,其初始刚度不随新荷载的输入而进行修正。 是为了对于非线性结构进行线性分析而提供的功能,例如对于悬索桥 进行特征值分析、移动荷载分析等。
悬索桥分析:索单元初始刚度
可) ; ⑥ 定义自重、二期等荷载 ⑦ 定义斜拉索的单位初力(例如输入1tonf)
斜拉桥分析:基本操作步骤
⑧ 运行静力分析后,利用 “未知荷载系数法” ,计算符合 设计要求的成桥平衡状态的拉索张拉力。
⑨ 利用成桥状态模型,通过倒拆施工阶段分析,计算各施工 阶段,每根斜拉索张拉控制应力。
⑩ 再利用求得的拉索张拉控制应力,进行正装施工阶段分析 。查看最终施工阶段的变形、内力等结果是否符合设计要 求。(因跨中合拢时,合拢段构件存在未必和配合力,最 终阶段的成桥状态可能与初始成桥分析结果不同)
◦ 程序不仅可以计算出,每根斜拉索的未必和配合力,还可计算出合拢段的未必和配合 力。使最终阶段的内力以及变形结果与成桥目标完全闭合。 (注:合拢段的未必和配合力,其实也没有实际意义。因目前还没有能够对于合拢段 预加内力的工具)
谢谢 !
斜拉桥分析:体内力与体外力应

斜拉桥的施工工艺中不存在先张法工艺,只有后张法。体内力结果对 于施工来说是没有意义的。

高墩多塔斜拉桥Midas全桥模型的建立-最新文档资料

高墩多塔斜拉桥Midas全桥模型的建立-最新文档资料

高墩多塔斜拉桥Midas全桥模型的建立:This article is based on the principles of finite element to establish the MIDAS full bridge model.Respectively, It is considered the simulation of the bridge components, such as main beam, cable, pylon, tower pier, and the boundary conditions of the simulation, including connection between the tower, pier and beam, connection between cable and tower beam, and the support analog. This paper is reference for modeling onCable-stayed bridge with high-pier & multi-pylons.Keywords:Cable-stayed bridge with high-pier &multi-pylons, Midas/Civil, Full bridge model1引言在全桥空间结构分析中, 建立有限元数值模型至关重要,在全桥空间模型的建立过程中, 主要考虑以下几个方面的原则[1]:1) 结构形状的要求;2) 材料特征变化的要求;3) 连接单元特征的要求;4) 桥面恒载, 汽车荷载作用模拟的要求;5) 计算精度的要求;6) 求解过程中不出现病态的要求;依据以上基本原则,应用大型有限元程序Midas/Civil所提供的前处理模块建立空间结构分析模型。

通过把各种单元类型组合起来, 形成统一的全桥分析模型。

midas斜拉桥建模

midas斜拉桥建模

实用标准文案
设定建模环境
为了做斜拉桥成桥阶段分析首先打开新项目 “ cable stayed ” 为名保存文件 , 开 始建立模型。
单位体系设置为“m”和“tonf”。该单位体系可以根据输入的数据类型随时随意 更换。
文件 / 文件 /
新项目 保存 (cable stayed)
工具 / 单位体系 长度 > m ;力 > tonf
Izz (m4) 15.0 500.0 5.0 0.0
图 5. 定义截面特性值对话框 精彩文档
实用标准文案
成桥阶段分析
建立好成桥阶段模型后计算自重和二期荷载引起的索初拉力。然后利用拉索初拉 力进行成桥阶段初始平衡状态分析。
首先建立斜拉桥的成桥阶段二维模型,利用包含索力优化功能的未知荷载系数功 能计算拉索初拉力。
7.85 2.5 7.85 7.85
图 4. 定义材料特性值
精彩文档
实用标准文案
输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。在材料和截面特性对话
框的截面表单选择
按钮。
模型 / 材料和截面特性 / 截面 数值表单 截面号 (1) ; 名称 (加劲梁) 截面形状>实腹长方形截面 截面特性值>面积 (0.8)
②④

图12. 输入边界条件
实用标准文案
索初拉力计算
为了改善斜拉桥成桥阶段的加劲梁、主塔、拉索、支座的受力状态,给拉索施加 初拉力荷载,使之与恒荷载平衡。
斜拉桥是多次超静定结构体系,所以计算拉索初拉力需要多次的反复计算。另 外,对于每跟拉索的张力并不是只有一个解,对同一个斜拉桥不同的设计者可以选择 不同的拉索初拉力。
选项 > 添加 ; 连接类型 > 一般类型 SDx (tonf/m) (500000) ; SDy(tonf/m) (100000000) ; SDz(tonf/m) (1000) 剪切型弹性支承位置 (开) 到端点I的距离比 : SDy (1) ; SDz (1) Beta角 > (0) 2点 (26,5) 2点 (27,17)

斜拉桥成桥阶段和施工阶段分析(MIDAS算例)

斜拉桥成桥阶段和施工阶段分析(MIDAS算例)

目录概要1桥梁基本数据/ 2荷载/ 2设定建模环境/ 3定义材料和截面的特性值/ 4成桥阶段分析6结构建模/ 7生成二维模型/ 8建立索塔模型/ 10建立三维模型/ 13建立主梁横向系梁/ 15建立索塔横梁/ 17生成索塔上的主梁支座/ 19生成桥墩上的主梁支座/ 23输入边界条件/ 25计算拉索初拉力/ 28输入荷载条件/ 29输入荷载/ 30运行结构分析/ 33建立荷载组合/ 34计算未知荷载系数/ 35查看成桥阶段分析结果39查看变形形状/ 39施工阶段分析40施工阶段分类/ 41逆施工阶段分类/ 42逆施工阶段分析/ 42输入拉索初拉力/ 45定义施工阶段/ 49定义结构群/ 50指定边界群/ 53指定荷载群/ 56建立施工阶段/ 59输入施工阶段分析数据/ 61运行结构分析/ 61查看施工阶段分析结果62查看变形形状/ 62查看弯矩/ 63查看轴力/ 64施工阶段分析变化图形/ 65概要斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。

斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。

在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。

为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态,然后按顺序做施工阶段分析。

在本例题中将介绍建立斜拉桥分析模型的方法、计算拉索初拉力的方法、施工阶段分析的步骤以及查看分析结果的方法。

本例题中的桥梁模型如图1所示为三跨连续斜拉桥,中间跨径为220m、边跨跨径为100m。

图1 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。

MIDAS索单元应用悬索桥斜拉桥分析ppt课件

MIDAS索单元应用悬索桥斜拉桥分析ppt课件
1
目录
1. 悬索桥分析
① 基本操作步骤 ② 索单元简介 ③ 索单元初始刚度 ④ 初始平衡状态 ⑤ 悬索桥分析控制
2. 斜拉桥分析
① 基本操作步骤 ② 未知荷载系数法 ③ 体外力与体内力 ④ 未必和配合力
2
悬索桥分析:基本操作步骤
① 定义主缆、边缆、主塔、加劲梁、吊杆等构件的材料和截面 特性;
② 打开主菜单“模型/结构建模助手/悬索桥”,输入相应参数 (各参数意义可参考在线帮助);
7
悬索桥分析:索单元初始刚度
几何刚度初始荷载
荷载>初始荷载>大位移>几何刚度 初始荷载
静力线性分析:不起作用。 静力非线性分析:根据输入的内力, 赋予索单元相应的初始刚度,对于定 义的荷载工况,进行几何非线性分析。 仅提供初始刚度之用,所输入内力 值不起作用,即没有荷载效应。
8
悬索桥分析:索单元初始刚度
9
悬索桥分析:索单元初始刚度
初始单元内力
荷载>初始荷载>小位移>初始单元内力
根据输入的初始单元内力,提供初始刚度,与几何刚度荷载类似。但 仅适用于小位移分析,其初始刚度不随新荷载的输入而进行修正。 是为了对于非线性结构进行线性分析而提供的功能,例如对于悬索桥 进行特征值分析、移动荷载分析等。
10
平衡单元节点内力:仅适用于施工阶段几何非线性分析。不仅提供几 何初始刚度且有荷载效应。还可考虑索单元以外单元的初始刚度以及 内力效应。与上述两个同时定义时,平衡单元节点内力优先起作用。
初始单元内力:仅适用于成桥荷载的小位移分析,如移动荷载、特征 值分析等。仅提供刚度。与上述三项无优先级。
11
第二步骤:根据第一步骤平衡状态分析得出的主缆线形(坐标)以及 吊杆的长度自动计算索单元的自重。然后,重新考虑索构件自重及 “桥面系”栏输入的荷载进行第二次平衡状态分析。

midas_斜拉桥正装分析操作例题

midas_斜拉桥正装分析操作例题

midas_斜拉桥正装分析操作例题目录概要错误!未定义书签。

桥梁基本数据错误!未定义书签。

荷载错误!未定义书签。

设定建模环境错误!未定义书签。

定义材料和截面特性值错误!未定义书签。

成桥阶段分析错误!未定义书签。

建立模型错误!未定义书签。

建立加劲梁模型错误!未定义书签。

建立主塔错误!未定义书签。

建立拉索错误!未定义书签。

建立主塔支座错误!未定义书签。

输入边界条件错误!未定义书签。

索初拉力计算错误!未定义书签。

定义荷载工况错误!未定义书签。

输入荷载错误!未定义书签。

运行结构分析错误!未定义书签。

建立荷载组合错误!未定义书签。

计算未知荷载系数错误!未定义书签。

查看成桥阶段分析结果错误!未定义书签。

查看变形形状错误!未定义书签。

正装施工阶段分析错误!未定义书签。

正装施工阶段分析错误!未定义书签。

正装施工阶段分析错误!未定义书签。

正装分析模型错误!未定义书签。

定义施工阶段错误!未定义书签。

定义结构组错误!未定义书签。

定义边界组错误!未定义书签。

定义荷载组错误!未定义书签。

定义施工阶段错误!未定义书签。

施工阶段分析控制数据错误!未定义书签。

运行结构分析错误!未定义书签。

查看施工阶段分析结果错误!未定义书签。

查看变形形状错误!未定义书签。

查看弯矩错误!未定义书签。

查看轴力错误!未定义书签。

查看计算未闭合配合力时使用的节点位移和内力值错误!未定义书签。

成桥阶段分析和正装分析结果比较错误!未定义书签。

概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。

为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。

一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。

在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。

Midas civil软件培训——斜拉桥专题

Midas civil软件培训——斜拉桥专题
9
midas Civil 2010斜拉桥专题Fra bibliotek斜拉桥分析专题
斜拉桥
但是设计人员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果 是不闭合的。这是因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得 到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。即,
结果>未知荷载系数 利用未知荷载系数功能,可以计算出最小误差范围内的能够满足特定约束条 件的最佳荷载系数,利用这些荷载系数计算拉索初拉力。 指定位移、反力、内力的“0”值以及最大最小值作为约束条件,拉索初拉力作 为变量(未知数)来计算。 计算未知荷载系数适用于线性结构体系,为了计算出最佳的索力,必须要输 入适当的约束条件。
斜拉桥
1)刚性支承连续梁法 刚性支承连续梁法是指成桥状态下,斜拉桥主梁的弯曲内力和刚性支承连续梁的内力状态 一致。因此可以非常容易地根据连续梁的支承反力确定斜拉索的初张力。 2)零位移法 零位移法的出发点是通过索力调整,使成桥状态下主梁和斜拉索的交点的位移为零。对于 采用满堂支架一次落架的斜拉桥体系,其结果与刚性支承连续梁法的结果基本一致。 上述2种方法用于确定主跨和边跨对称的单塔斜拉桥的索力是最为有效的,对于主跨和边 跨几乎对称的3跨斜拉桥次之,对于主跨和边跨的不对称性较大的斜拉桥,几乎失去了作用 (因为这两种方法必然导致比较大的塔根弯矩,失去了索力优化的意义)。 3)倒拆和正装法 倒拆法是斜拉桥安装计算广泛采用的一种方法,通过倒拆、正装交替计算,确定各施工阶 段的安装参数,使结构逐步达到预定的线形和内力状态。
可以改变主梁的受力条件。活载作用下,斜拉索对主梁提供了弹性支承,使主梁相当于弹性支
承的连续梁。由此可见,对于斜拉桥而言,斜拉索的初张力分析是非常重要的。

Midas对矮塔斜拉桥有限元建模

Midas对矮塔斜拉桥有限元建模

基于Midas对矮塔斜拉桥的有限元建模分析【摘要】矮塔斜拉桥之所以被广泛应用、快速发展源于其合理的结构体系,结构受力清晰、明确,具有经济、美观、施工方便、适用跨径灵活多变等优点。

本文以某市矮塔斜拉桥为案例进行有限元建模分析,通过这个过程去了解斜拉桥的施工方法和流程,为今后类似桥梁工程设计施工提供借鉴。

1、某市矮塔斜拉桥主要情况该桥位于某市高速公路,桥梁结构形式采用双塔三跨预应力混凝土单索面,设计荷载为公路-I级,桥面横坡为双向2.0%,主桥宽度25.50米[2*10.72(行车道)+3.00米(中间带)+2*0.5(防撞栏)],5cm沥青砼磨耗层+ 10cm厚的水泥砼桥面铺装。

2、桥跨布置2.1主梁尺寸:跨径组合为100m+180m+100m,即边跨跨径100m,主跨跨径180m,塔根部无索区长度34m,与主跨径比值为0.188,跨中无索区长度48m,与主跨径比值为0.267,边跨无索区长度取34m,与边跨跨径比值为0.34。

2.2索塔尺寸:截面采用矩形,横桥向为2.2m,纵桥向由有索区段4.5m渐变为塔底的8.0m,塔高26m。

2.3斜拉索布置:采用单索面双排索布置,取梁上索距为4m,塔上索距为1.2m。

全桥共36对斜拉索,编号从索塔根部至跨中(从里到外)分别为C1~C9,拉索倾角为19.21~21.51°。

3、主要结构设计施工要点3.1、主梁:主梁采用变高度单箱三室截面,斜腹板,顶板宽25.5m,顶板悬臂长度4.00m。

3.2、顶板厚度:顶板厚度为30cm,悬臂板端部厚30cm,根部板厚40cm。

3.3底板厚度:底板板厚由跨中40cm变厚至支点处140cm,边腹板厚为60cm,中腹板板厚为50cm。

3.4、腹板厚度:边腹板厚为60cm,中腹板板厚为50cm。

3.5、中室和边室横隔板厚度分别为30cm和30cm。

端横梁的厚度150cm。

3.6、主梁节段划分:主梁零号块长度为10m,悬臂施工标准节段长度分为3.5m、3、3.2、2.5和19×4.00m几种,全桥共设3个合龙段,其长度为2.00和1.6米,悬臂施工的节段最大重量为4500kN,边跨现浇段长度8m。

桥梁工程MIDAS建模方案

桥梁工程MIDAS建模方案

桥梁工程MIDAS建模方案1. 引言桥梁工程在交通基础设施中具有重要的地位,其承载着车辆和行人的重量,必须具备充分的强度和稳定性。

MIDAS是一款专业的结构建模软件,被广泛用于桥梁工程的建模和分析。

本文将介绍如何使用MIDAS进行桥梁工程的建模。

2. 建模流程2.1 数据准备在建模之前,需要准备以下数据:•桥梁的设计图纸或CAD文件•桥梁的材料参数,如混凝土的强度等•桥梁的荷载信息,如车辆荷载、自重等2.2 建立模型使用MIDAS建模软件,按照以下步骤建立桥梁模型:1.导入设计图纸或CAD文件,根据设计要求创建桥梁的几何形状。

2.根据桥梁的材料参数,设置梁、柱等构件的材料属性。

3.设置梁、柱等构件的截面属性,包括形状、尺寸等。

4.根据桥梁的荷载信息,定义荷载类型和大小,如车辆荷载、自重等。

5.将荷载应用到桥梁模型中的相应位置。

2.3 边界条件设置为确保建模结果的准确性,需要设置正确的边界条件。

以下是设置边界条件的步骤:1.设置支座条件:根据实际情况确定桥梁的支座类型和位置,并设置支座的约束条件。

2.设置约束条件:根据实际情况,设置构件的约束条件,如固支、铰支等。

2.4 材料模型定义MIDAS提供了多种材料模型供选择,根据桥梁的具体材料特性选择合适的材料模型,并进行参数设置。

2.5 荷载分析完成模型的建立和边界条件的设置后,使用MIDAS进行荷载分析。

以下是荷载分析的步骤:1.设置分析类型:根据需要选择静力分析、动力分析、地震分析等。

2.进行荷载分析:根据桥梁的设计要求和实际情况,设置荷载类型和大小,并进行荷载分析。

3. 结果分析完成荷载分析后,可以对建模结果进行分析。

以下是结果分析的步骤:1.查看计算结果:MIDAS会生成桥梁各部位的应力、变形等计算结果,可以通过查看计算结果来评估桥梁的性能。

2.进行结果分析:根据计算结果,进行桥梁的强度、稳定性等性能分析。

4. 结论本文介绍了使用MIDAS进行桥梁工程建模的方案。

midas-civil-斜拉桥专题—斜拉桥设计专题教程文件

midas-civil-斜拉桥专题—斜拉桥设计专题教程文件

同上 同上 同上
同上
备注
不同结构中索单元的使用:
• 悬索桥的主缆和吊杆:建议使用考虑大变形的悬索单元 • 大跨斜拉桥的斜拉索:对于近千米或者超过千米的斜拉桥建议使用考虑大 变形的索单元 • 中小跨斜拉桥的斜拉索:建议使用考虑恩斯特公式修正的等效桁架单元 • 拱桥的吊杆:建议使用桁架单元或只受拉桁架单元 • 系杆拱桥的系杆:建议使用桁架单元 • 体内预应力或体外预应力的钢索(钢束):与索单元无关,使用预应力荷 载功能按荷载来模拟即可。
STEP 3. 输入恒载和单位荷载
STEP 4. 对恒载和单位荷载进行荷载组合
STEP 5. 利用未知荷载系数功能计算未知荷载系数
STEP 6. 利用调索功能调整拉索初始索力
STEP 7. 查看分析结果并最终确定初始索力
4.未闭合配合力功能
midas Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正装分析。 这种通过无应力长与索长度的关系计算索初拉力的功能叫未闭合配合力功能。未 闭合配合力具体包括两部分,一是因为施工过程中产生的结构位移和结构体系的 变化而产生的拉索的附加初拉力,二是为使安装合拢段时达到设计的成桥阶段状 态合拢段上也会产生附加的内力。利用此功能可不必进行倒拆分析,只要进行正 装分析就能得到最终理想的设计桥型和内力结果。
上述2种方法用于确定主跨和边跨对称的单塔斜拉桥的索力是最为有效的,对于主跨和边跨 几乎对称的3跨斜拉桥次之,对于主跨和边跨的不对称性较大的斜拉桥,几乎失去了作用(因 为这两种方法必然导致比较大的塔根弯矩,失去了索力优化的意义)。
3)倒拆和正装法 倒拆法是斜拉桥安装计算广泛采用的一种方法,通过倒拆、正装交替计算,确定各施工阶段
第二步:利用算得的成桥状态的初拉力(不再是单位力), 建立成桥模型并定义倒拆施工阶段,以求出在各施工阶段需 要张拉的索力。此时斜拉索采用只受拉索单元来模拟,在施 工阶段分析控制对话框中选择“体内力”。

midas斜拉桥建模

midas斜拉桥建模

目录概要 1桥梁基本数据 2荷载 2设定建模环境 3定义材料和截面特性值 4成桥阶段分析 6建立模型 7建立加劲梁模型 8建立主塔 9建立拉索 11建立主塔支座 12输入边界条件 13索初拉力计算 14定义荷载工况 18输入荷载 19运行结构分析 24建立荷载组合 24计算未知荷载系数 25查看成桥阶段分析结果 29查看变形形状 29正装施工阶段分析 30正装施工阶段分析 34正装施工阶段分析 34正装分析模型 36定义施工阶段 38定义结构组 41定义边界组 48定义荷载组 53定义施工阶段 59施工阶段分析控制数据 64运行结构分析 65查看施工阶段分析结果 66查看变形形状 66查看弯矩 67查看轴力 68查看计算未闭合配合力时使用的节点位移和内力值 69成桥阶段分析和正装分析结果比较 70概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。

为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。

一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。

在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。

本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。

图 1. 斜拉桥分析模型桥梁基本数据 为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计内容有所差异。

本例题桥梁的基本数据如下。

桥梁形式 三跨连续斜拉桥 桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁高度 主塔下部 : 20m ,主塔上部 : 40m 图 2. 立面图 荷载 分 类 荷载类型 荷载值 自重 自重 程序内部自动计算 索初拉力 初拉力荷载 满足成桥阶段初始平衡状态的 索初拉力 挂篮荷载 节点荷载 80 tonf 支座强制位移 强制位移 10 cm使用MIDAS/Civil 软件内含的优化法则计算出索初拉力。

斜拉桥模型分析

斜拉桥模型分析

斜拉桥的模型分析第一章建模综述1.1 Midas Civil 简介本次建模分析采纳Midas Civil软件,Midas Civil是个通用的空间有限元分析软件,可适用于桥梁结构、地下结构、工业建筑、飞机场、大坝、港口等结构的分析与设计。

特殊是针对桥梁结构,MidaSCiviI结合国内的法律规范与习惯,在建模、分析、后处理、设计等方面供应了很多的便利的功能,目前已为各大大路、铁路部门的设计院所采纳。

1.2 斜拉桥简介斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且依据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,简洁与周边环境融合,是符合环境设计理念的桥梁形式之一。

1.3 建模基本步骤(1)采用斜拉桥建模助手生成斜拉桥二维索塔模型,并扩建为三维模型;(2)建立主梁横向系,并生成索塔与桥墩上的主梁支座;(3)输入边界条件;(4)输入荷载及荷载条件;(5)采用未知荷载系数功能计算拉索初拉力;(6)施工阶段分析计算;进行分析计算图1桥梁模型建立流程图其次章斜拉桥模型基本参数选取2.1 斜拉桥基本数据图1斜拉桥示意图2.2 2斜拉桥材料特性值对斜拉桥不同部位材料参数基本信息进行选取。

本次模型分析主要选取拉索、桥梁主塔、桥梁索塔、主梁横系梁、索塔横梁、加劲梁等部位纳入分析体系。

选取材料的弹性模量、泊松比、容重等参数,如表2。

在材料对话框中输入如下参数。

2. 3斜拉桥截面特性值在截面特性对话框下输入如下参数。

2.4荷载作用荷载作用可以分为可变作用和永久作用,在建立模型中需要分别进行设定。

1.1 .1永久作用对于斜拉桥,永久作用主要指桥梁自重。

自重系数选取K二期恒载包括桥面上路缘石、防撞护栏、栏杆、灯柱、泄水管、桥面铺装等。

人行道荷载设为恒载。

其中二期恒载为18.6KN∕m,人行道荷载为6. 2KN∕m02.4 . 2可变作用桥梁模型设为双车道,采纳中国城市桥梁荷载(CJJ77・98),车轮间距1.8m,采纳大路I级车道荷载,取值依据JTGD60-2004《大路桥涵设计通用法律规范》规定选取。

midas斜拉桥荷载试验建模流程

midas斜拉桥荷载试验建模流程

midas斜拉桥荷载试验建模流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!MIDAS斜拉桥荷载试验建模流程详解在桥梁工程领域,精确的荷载试验建模对于评估桥梁结构的安全性和耐久性至关重要。

斜拉桥成桥阶段和施工阶段分析MIDAS算例

斜拉桥成桥阶段和施工阶段分析MIDAS算例

目录概要1桥梁基本数据 / 2荷载 / 2设定建模环境 / 3定义材料和截面的特性值 / 4成桥阶段分析5结构建模 / 7生成二维模型 / 8建立索塔模型 / 10建立三维模型 / 13建立主梁横向系梁 / 15建立索塔横梁 / 17生成索塔上的主梁支座 / 19生成桥墩上的主梁支座 / 23输入边界条件 / 25计算拉索初拉力 / 28输入荷载条件 / 29输入荷载 / 30运行结构分析 / 33建立荷载组合 / 34计算未知荷载系数 / 35查看成桥阶段分析结果39查看变形形状 / 39施工阶段分析40施工阶段分类 / 41逆施工阶段分类 / 42逆施工阶段分析 / 42输入拉索初拉力 / 45定义施工阶段 / 49定义结构群 / 50指定边界群 / 53指定荷载群 / 56建立施工阶段 / 59输入施工阶段分析数据 / 61运行结构分析 / 61查看施工阶段分析结果62查看变形形状 / 62查看弯矩 / 63查看轴力 / 64施工阶段分析变化图形 / 65概要斜拉桥将拉索和主梁有机地结合在一起,不仅桥型美观,而且根据所选的索塔型式以及拉索的布置能形成多种多样的结构形态,易与周边环境融合,是符合环境设计理念的桥梁形式之一。

斜拉桥对设计和施工技术的要求非常严格,斜拉桥的结构分析与设计与其它桥梁形式有很大不同,设计人员需具有较深厚的理论基础和较丰富的设计经验。

在斜拉桥设计中,不仅要对恒荷载和活荷载做静力分析,而且必须做特征值分析、移动荷载分析、地震分析和风荷载分析。

为了决定各施工阶段中设置拉索时的张力,首先要决定在成桥阶段自重作用下的初始平衡状态,然后按顺序做施工阶段分析。

在本例题中将介绍建立斜拉桥分析模型的方法、计算拉索初拉力的方法、施工阶段分析的步骤以及查看分析结果的方法。

本例题中的桥梁模型如图1所示为三跨连续斜拉桥,中间跨径为220m、边跨跨径为100m。

图1 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析的步骤,本例题桥梁采用了比较简单的分析模型,可能与实际桥梁设计内容有所不同。

1使用MIDASCivil做斜拉桥分析时的一些注意事项

1使用MIDASCivil做斜拉桥分析时的一些注意事项

1使⽤MIDASCivil做斜拉桥分析时的⼀些注意事项使⽤MIDAS/Civil做斜拉桥分析时的⼀些注意事项斜拉桥的设计过程与⼀般梁式桥的设计过程有所不同。

对于梁式桥梁结构,如果结构尺⼨、材料、⼆期恒载都确定之后,结构的恒载内⼒也随之基本确定,⽆法进⾏较⼤的调整。

对于斜拉桥,由于其荷载是由主梁、桥塔和斜拉索分担的,合理地确定各构件分担的⽐例是⼗分重要的。

因此斜拉桥的设计⾸先是确定其合理的成桥状态,即合理的线形和内⼒状态,其中起主要调整作⽤的就是斜拉索的张拉⼒。

确定斜拉索张拉⼒的⽅法主要有刚性⽀承连续梁法、零位移法、倒拆和正装法、⽆应⼒状态控制法、内⼒平衡法和影响矩阵法等,各种⽅法的原理和适⽤对象请参考刘⼠林等编著的公路桥梁设计丛书-《斜拉桥》。

MIDAS/Civil程序针对斜拉桥的张拉⼒确定、施⼯阶段分析、⾮线性分析等提供了多种解决⽅案,下⾯就⼀些功能的⽬的、适⽤对象和注意事项做⼀些说明。

1.未闭合⼒功能通常,在进⾏斜拉桥分析时,第⼀步是进⾏成桥状态分析,即建⽴成桥模型,考虑结构⾃重、⼆期恒载、斜拉索的初拉⼒(单位⼒),进⾏静⼒线性分析后,利⽤“未知荷载系数”的功能,根据影响矩阵求出满⾜所设定的约束条件(线形和内⼒状态)的初拉⼒系数。

此时斜拉索需采⽤桁架单元来模拟,这是因为斜拉桥在成桥状态时拉索的⾮线性效应可以看作不是很⼤,⽽且影响矩阵法的适⽤前提是荷载效应的线性叠加(荷载组合)成⽴。

第⼆步是利⽤算得的成桥状态的初拉⼒(不再是单位⼒),建⽴成桥模型并定义倒拆施⼯阶段,以求出在各施⼯阶段需要张拉的索⼒。

此时斜拉索采⽤只受拉索单元来模拟,在施⼯阶段分析控制对话框中选择“体内⼒”。

第三步是根据倒拆分析得到的各施⼯阶段拉索的内⼒,将其按初拉⼒输⼊建⽴正装施⼯阶段的模型并进⾏分析。

此时斜拉索仍需采⽤只受拉索单元来模拟,但在施⼯阶段分析控制对话框中选择“体外⼒”。

但是设计⼈员会发现上述过程中,倒拆分析和正装分析的最终阶段(成桥状态)的结果是不闭合的。

midas斜拉桥建模

midas斜拉桥建模
成桥阶段分析
建立好成桥阶段模型后计算自重与二期荷载引起的索初拉力。然后利用拉索初拉 力进行成桥阶段初始平衡状态分析。
首先建立斜拉桥的成桥阶段二维模型,利用包含索力优化功能的未知荷载系数功能 计算拉索初拉力。
斜拉桥成桥阶段模型参见图6。
图 6、 斜拉桥成桥阶段模型
midas斜拉桥建模
建立模型
首先建立成桥阶段分析模型,待成桥阶段分析结束后另存为其它名称做施工阶段分 析。
面积
Ixx
Iyy
Izz

项目
截面形状
(m2)
(m4)
(m4)
(m4)
1
加劲梁
实腹长方形
0、8
15、0
1、0
15、0
2
主塔下部 实腹长方形
50、0
1000、0
500、0
500、0
3
主塔上部 实腹长方形
0、3
5、0
5、0
5、0
4
拉索
实腹圆形
0、005
0、0
0、0
0、0
图 5、 定义截面特性值对话框
midas斜拉桥建模
一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分 析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析 方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例题 中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。
图 1、 斜拉桥分析模型
midas斜拉桥建模
斜拉桥成桥阶段与正装施工阶段分析
midas斜拉桥建模
目录
概要 1 桥梁基本数据 2 荷载 2 设定建模环境 3 定义材料与截面特性值 4

midas_Civil_2010斜拉桥专题—斜拉桥设计专题

midas_Civil_2010斜拉桥专题—斜拉桥设计专题

按桁架单元(或考虑成桥时的几何刚度)进行线性分析
12
midas Civil 2010
斜拉桥专题—斜拉桥分析专题
斜拉桥
成桥状态荷载工况 不勾选“在PostCS…” 移动荷载 按桁架单元考虑 (线性叠加) 支座沉降 动力分析 (特征值分析等) 同上 同上
勾选“PostCS…” 考虑成桥状态的索单元 和梁单元的几何刚度 同上 同上
影响非常小,如果取主梁上的位移或弯矩作为控制值,会导致病态方程。对于辅助墩附近
的斜拉索建议人为假定索力进行试算,以得到理想的结构内力和线形。
7
midas Civil 2010
斜拉桥专题—斜拉桥分析专题
斜拉桥
三、 midas Civil中的斜拉桥功能
斜拉桥的设计过程与一般梁式桥的设计过程有所不同。对于梁式桥梁结构,如果结构尺寸、 材料、二期恒载都确定之后,结构的恒载内力也随之基本确定,无法进行较大的调整。但对于
张拉斜拉索时,实际上已经将该斜拉索脱离出来单独工作,因为斜拉索的张力和结构的其
它部分无关,而只与千斤顶有关,因此在张拉斜拉索时,其初张力效应必须采用隔离体分析 (midas Civil中采用体外力来进行模拟)。
确定斜拉索张拉力的方法主要有刚性支承连续梁法、零位移法、倒拆和正装法、无应力状 态控制法、内力平衡法和影响矩阵法等,各种方法的原理和适用对象请参考刘士林等编著的公 路桥梁设计丛书 -《斜拉桥》。
midas Civil 2010斜拉桥专题—斜拉桥设计专题
Integrated Solution System for Bridge and Civil Strucutres
目 一、斜拉桥概述

二、斜拉桥索力调整理论 三、midas Civil中的斜拉桥功能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录概要 1桥梁基本数据 2荷载 2设定建模环境 3定义材料和截面特性值 4成桥阶段分析 6建立模型 7建立加劲梁模型 8建立主塔 9建立拉索 11建立主塔支座 12输入边界条件 13索初拉力计算 14定义荷载工况 18输入荷载 19运行结构分析 24建立荷载组合 24计算未知荷载系数 25查看成桥阶段分析结果 29查看变形形状 29正装施工阶段分析 30正装施工阶段分析 34正装施工阶段分析 34正装分析模型 36定义施工阶段 38定义结构组 41定义边界组 48定义荷载组 53定义施工阶段 59施工阶段分析控制数据 64运行结构分析 65查看施工阶段分析结果 66查看变形形状 66查看弯矩 67查看轴力 68查看计算未闭合配合力时使用的节点位移和力值 69成桥阶段分析和正装分析结果比较 70概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。

为了决定安装拉索时的控制拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。

一般进行斜拉桥分析时首先通过倒拆分析计算初拉力,然后进行正装施工阶段分析。

在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析力进行正装分析的方法。

本例题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。

图 1. 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计容有所差异。

本例题桥梁的基本数据如下。

桥梁形式 三跨连续斜拉桥桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m 桥梁高度 主塔下部 : 20m ,主塔上部 : 40m图 2. 立面图荷载分 类荷载类型 荷载值 自重自重 程序部自动计算 索初拉力 初拉力荷载 满足成桥阶段初始平衡状态的索初拉力挂篮荷载 节点荷载 80 tonf 支座强制位移 强制位移10 cm使用MIDAS/Civil 软件内含的优化法则计算出索初拉力。

索主塔主梁索40m110m40m设定建模环境为了做斜拉桥成桥阶段分析首先打开新项目“cable stayed”为名保存文件,开始建立模型。

单位体系设置为“m”和“tonf”。

该单位体系可以根据输入的数据类型随时随意更换。

文件 / 新项目文件 / 保存(cable stayed)工具 / 单位体系长度> m ;力> tonf图 3. 设定建模环境及单位体系定义材料和截面特性值输入加劲梁、主塔下部、主塔上部、拉索的材料特性值。

在材料和截面对话框中选择材料表单点击按钮。

模型 / 材料和截面特性 / 材料名称 (加劲梁) 设计类型 > 用户定义弹性模量 (2.1e7) ; 泊松比 (0.3)容重 (7.85)按上述方法参照表1输入主塔下部、主塔上部、拉索的材料特性值。

号 项目 弹性模量 (tonf/m 2) 泊松比 容重 (tonf/m 3) 1 加劲梁 2.1×107 0.3 7.85 2 主塔下部 2.5×106 0.17 2.5 3 主塔上部 2.1×107 0.3 7.85 4拉索1.57×1070.37.85图 4. 定义材料特性值定义多种材料时,使用按钮会更方便一些。

输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。

在材料和截面特性对话框的截面表单选择按钮。

模型 / 材料和截面特性 / 截面数值表单截面号(1) ; 名称(加劲梁)截面形状>实腹长方形截面截面特性值>面积(0.8)按上述方法参照表2输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。

号项目截面形状面积(m2)Ixx(m4)Iyy(m4)Izz(m4)1 加劲梁实腹长方形0.8 15.0 1.0 15.02 主塔下部实腹长方形50.0 1000.0 500.0 500.03 主塔上部实腹长方形0.3 5.0 5.0 5.04 拉索实腹圆形0.005 0.0 0.0 0.0图 5. 定义截面特性值对话框成桥阶段分析建立好成桥阶段模型后计算自重和二期荷载引起的索初拉力。

然后利用拉索初拉力进行成桥阶段初始平衡状态分析。

首先建立斜拉桥的成桥阶段二维模型,利用包含索力优化功能的未知荷载系数功能计算拉索初拉力。

斜拉桥成桥阶段模型参见图6。

图 6. 斜拉桥成桥阶段模型建立模型首先建立成桥阶段分析模型,待成桥阶段分析结束后另存为其它名称做施工阶段分析。

建立斜拉桥成桥阶段模型的详细步骤如下。

1. 建立加劲梁模型2. 建立主塔模型3. 建立拉索模型4. 生成主塔上的支座5. 输入边界条件6. 拉索初拉力计算:利用未知荷载系数功能7. 输入荷载工况以及荷载8. 运行结构分析9. 计算位置荷载系数建立加劲梁模型首先用建立节点功能建立节点后使用扩展单元功能生成910+25+9 10m的梁单元模型。

正面,捕捉节点(开), 捕捉点栅格 (开)自动对齐(开), 节点号(开)模型 / 节点 / 建立节点坐标( -95, 0, 0 ) ↵模型 / 单元 / 扩展单元全选扩展类型>节点 线单元单元属性>单元类型>梁单元材料>1 : 加劲梁; 截面>1 : 加劲梁生成类型>复制和移动复制和移动>任意间距 ; 方向>x间距>910, 25, 910 ↵图 7. 建立加劲梁单元建立主塔在主塔下部利用建立节点功能建立节点后,利用扩展功能建立10m +5m的主塔下部梁单元。

模型 / 节点 / 建立节点坐标(-55 , 0, -20 )复制>复制次数(1) ; 距离(110, 0, 0)↵模型 / 单元 / 扩展单元窗口选择 (节点 : 图8的①;节点22,23)生成类型>节点 线单元单元属性>单元类型>梁单元材料>2 : 主塔下部; 截面>2 : 主塔下部生成类型>复制和移动复制和移动>任意间距; 方向>z间距>10, 5 ↵①选择节点22, 23선택图 8. 建立主塔下部选择节点后利用 扩展功能 建立加劲梁上部梁单元(10m+5m+310m )。

模型 / 单元 /扩展单元窗口选择 (节点 : 图9的①;节点26,27) 扩展类型>节点 线单元 单元属性>单元类型>梁单元材料>3 : 主塔上部 ; 截面>3 : 主塔上部 生成类型>复制和移动复制和移动>任意间距 ; 方向>z 间距>15, 310图 9. 建立主塔上部①选择节点26, 27①建立拉索利用建立单元功能建立拉索单元。

显示单元> 单元坐标轴(开) ↵模型 / 单元 / 建立单元单元类型>桁架单元材料>4: 拉索 ; 截面>4: 拉索; Beta角( 0 )节点连接( 34, 1 )节点连接( 34, 3 )节点连接( 34, 7 )节点连接( 34, 9 )节点连接( 35, 13 )节点连接( 35, 15 )节点连接( 35, 19 )节点连接( 35, 21 ) ↵图 10. 建立拉索建立主塔支座使用弹性连接(Elastic Link )建立主塔上的支座。

支座的支承条件如下:SDx : 500000 tonf/m, SDy : 100000000 tonf/m, SDz : 1000 tonf/m模型 / 边界条件 / 弹性连接窗口缩放 (图21的①)选项 > 添加 ; 连接类型 > 一般类型SDx (tonf/m) (500000) ; SDy(tonf/m) (100000000) ; SDz(tonf/m) (1000)剪切型弹性支承位置 (开)到端点I 的距离比 : SDy (1) ; SDz (1)Beta 角 > (0)2点 (26,5) 2点 (27,17)图 11. 建立主塔支座①窗口放大输入剪切型弹性支座在弹性连接单元的位置。

调整弹性连接单元的布置方向。

弹性连接单元是把两个节点按用户所需要的刚度连接而形成的有限计算单元。

弹性连接单元由3个轴向刚度值和3个旋转刚度组成,6个自由度按弹性连接单元的单元坐标系输入。

弹性连接单元轴向刚度输入单位长度所施加的力,旋转刚度输入单位转角所施加的弯矩值。

输入边界条件分析模型的边界条件如下。

▪ 主塔下端 : 固定端 (Dx, Dy, Dz, Rx, Ry, Rz)▪ 桥台下端 : 铰支座 ( Dy, Dz, Rx, Rz) 输入主塔和桥台处边界条件。

自动对齐模型 / 边界条件 / 一般支承窗口选择 (节点 : 图12的①;节点22, 23) 边界组名称 > 默认值选项 > 添加 ; 支承类型 > D-ALL , R-ALL ↵窗口选择 (节点 : 图12的②;节点1, 21) 边界组名称 > 默认值选项 > 添加 ; 支承类型 > Dy, Dz, Rx, Rz ↵图12. 输入边界条件①②①②索初拉力计算为了改善斜拉桥成桥阶段的加劲梁、主塔、拉索、支座的受力状态,给拉索施加初拉力荷载,使之与恒荷载平衡。

斜拉桥是多次超静定结构体系,所以计算拉索初拉力需要多次的反复计算。

另外,对于每跟拉索的力并不是只有一个解,对同一个斜拉桥不同的设计者可以选择不同的拉索初拉力。

MIDAS/Civil的未知荷载系数功能使用了索力优化法则,可以计算出特定约束条件的最佳荷载系数,在计算斜拉桥拉索初拉力非常有效。

使用未知荷载系数功能计算斜拉桥拉索初拉力的计算步骤如表3。

表 3. 拉索初拉力计算步骤流程图初始平衡状态分析为了使斜拉桥结构在恒载作用下拉索垂度、加劲梁纵段变形、拉索锚固点坐标、拉索力、主塔坐标达到设计期望值,通过初始平衡状态分析计算初始节点坐标、拉索变形前长度、拉索初始拉力。

斜拉桥设计时,最重要的是如何使加劲梁和主塔的弯曲力达到最小状态。

通过初始平衡状态分析可以使恒载作用下成桥阶段变形形状接近于设计期望状态时,力也会达到最小状态。

对于斜拉桥分析,初始平衡状态分析非常重要,且初始平衡状态分析能够计算出变形前拉索长度、追踪拉索力、加劲梁和主塔的预拱度、加劲梁的弯矩图等设计参数。

斜拉桥的特殊结构体系决定了主塔和加劲梁上将产生很大的轴力,这些轴力和拉索的力决定结构的变形形状。

为了确定拉索的初始力,桥轴方向的变形和拉索的力要反映到结构分析计算中。

但斜拉桥是多次超静定结构体系,计算拉索初拉力需要多次的反复计算,所以计算出满足初始状态分析的施工控制力不是简单的事情。

相关文档
最新文档