第6章 Matlab平面连杆机构的动力学分析
matlab平面连杆结构分析(机械原理课程设计)
优化参数:连杆 长度、角度、质 量等
优化结果:得到 最优的连杆结构 设计
感谢观看
汇报人:
平面连杆结构的应用范围
机械工程:用于设计、分析和优化机械设 备
生物医学:用于设计、分析和优化假肢、 康复设备等
航空航天:用于设计、分析和优化飞机、 火箭等航天器
机器人技术:用于设计、分析和优化机器 人关节、机械臂等
汽车工业:用于设计、分析和优化汽车底 盘、悬挂系统等
建筑工程:用于设计、分析和优化建筑结 构、桥梁等
03
平面连杆结构的运动学分析
平面连杆结构的运动学方程
平面连杆结构的运动学方程是描述连杆系统运动状态的数学模型 运动学方程包括位移方程、速度方程和加速度方程 运动学方程的建立需要知道连杆系统的几何参数和运动参数 运动学方程的求解可以通过数值积分方法或解析方法进行
平面连杆结构的运动学特性
运动学方程:描述连杆结构的运动状态 运动学参数:包括位移、速度、加速度等 运动学约束:限制连杆结构的运动范围 运动学仿真:通过计算机模拟连杆结构的运动过程
平面连杆结构的形状优化
优化目标:提 高连杆结构的 稳定性和刚度
优化方法:有 限元分析、拓
扑优化等
优化参数:连 杆的长度、宽
度、厚度等
优化效果:提 高连杆结构的 承载能力和使
用寿命
平面连杆结构的拓扑优化
拓扑优化:通过改变材料的分布和形状, 约束条件:结构的刚度、强度、稳定
以实现最优的结构性能
性等性能要求
目标函数:最小化重量或体积,同时 满足给定的性能要求
优化方法:遗传算法、粒子群算法、 模拟退火算法等
设计变量:材料的分布和形状
应用领域:汽车、航空航天、机械制 造等
基于MATLAB的六杆机构动力学分析与仿真
六杆机构的动力学分析仿真一系统模型建立为了对机构进行仿真分析,首先必须建立机构数学模型,即位置方程,然后利用MATLAB仿真分析工具箱Simulink对其进行仿真分析。
图3.24所示是由原动件(曲柄1)和RRR—RRP六杆机构。
各构件的尺寸为r1=400mm,r2=1200mm,r3=800mm,r4=1500mm,r5=1200mm;各构件的质心为rc1=200mm,rc2=600mm,rc3=400mm,rc5=600mm;质量为m1=1.2kg,m2=3kg,m3=2.2kg;m5=3.6kg,m6=6kg; 转动惯量为J1=0.016kg·m2,J2=0.25kg·m2;J3=0.09kg·m2,J5=0.45kg·m2;构件6的工作阻力F6=1000N,其他构件所受外力和外力矩均为零,构件1以等角速度10 rad/s逆时针方向回转,试求不计摩擦时,转动副A的约束反力、驱动力矩、移动副F的约束反力。
图1-1此机构模型可以分为曲柄的动力学、RRR II级杆组的动力学和RRP II级杆组的动力学,再分别对这三个模型进行相应参数的求解。
图1-2 AB 构件受力模型如上图1-2对于曲柄AB 由理论力学可以列出表达式:111XA Re R ••=+-s m F R X XB 111y A Im R ••=+-s m F R y yB1111111111111cos )(sin )(cos sin ••=---+-++θθθθθJ r r R r r R r R r R M M c yB c XB c yA c XA F由运动学知识可以推得:)cos()2/cos(Re Re 12111111πθθπθθ++++=•••••••c c r r A s )sin()2/sin(Im Im 12111111πθθπθθ++++=•••••••c c r r A s将上述各式合并成矩阵形式有,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+++++-++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡••••••••••g m R F r m r m A m R F r m r m A m M R R yB y c c XBX c c yA XA 111211111111112111111111)sin()2/sin(Im )cos()2/cos(Re πθθπθθπθθπθθ(1-21)如图1-3,对构件BC 的约束反力推导如下,图1-3 BC 构件受力模型222Re ••=++s m R F R XC X XB 2222Im ••=-++s m g m R F R yC y yB2222222222222cos )(sin )(cos sin ••=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yB c XB如图1-4,对构件BC 的约束反力推导如下,图 1-4 CD 构件受力模型333Re ••=-+s m R F R XC X XD 3333Im ••=-++s m g m R F R yC y yD3333333333333cos )(sin )(cos sin ••=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yD c XD由运动学可以推导得,)sin()2/sin(Im Im 22222222πθθπθθ++++=•••••••c c r r B s )cos()2/cos(Re Re 22222222πθθπθθ++++=•••••••c c r r B s )cos()2/cos(Re Re 32333333πθθπθθ++++=•••••••c c r r D s )sin()2/sin(Im Im 32333333πθθπθθ++++=•••••••c c r r D s将上述BC 构件,CD 构件各式合并成矩阵形式有,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------33333333332222222222cos sin cos )(sin )(0010100001010000cos )(sin )(cos sin 001010000101θθθθθθθθc c c c c c c c r r r r r r r r r r r r ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡yD XD yC XC yB XB R R R R R R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-++++-++++-+-++++-++++••••••••••••••••••••••••3333332333333333323333333322222222222222222222222222)sin()2/sin(Im )cos()2/cos(Re )sin()2/sin(Im )cos()2/cos(Re M J g m F r m r m D m F r m r m D m M J g m F r m r m B m F r m r m B m y c c X c c y c c X c c θπθθπθθπθθπθθθπθθπθθπθθπθθ (1-22)如图1-5 对构件5进行约束反力的推导如下,图1-5 CE 杆件受力模型••=++s m R F R xE x xC Re 55 ••=-++s m g m R F R yE y yC Im 5555555555555555cos )(sin )(cos sin ••=-+-+--θθθθθJ r r R r r R r R r R M c yE c xE c yC c xC如图1-6 对滑块进行受力分析如下,滑块受力模型••=--E m R R F F xE x Re sin 666θ ••=-+-E m g m R R F F yE y Im cos 6666θ由运动学可推,)cos()2/cos(C Re Re 5255555πθθπθθ•••••••+++=c c r r s )sin()2/sin(C Re Im 5255555πθθπθθ•••••••+++=c c r r s66cos Re θ••••=s E 66sin Im θ••••=s E⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+---+-++++-++++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------••••••••••••••••g m F s m F s m M J g m F r m r m m F r m r m m R R R R R r r r r r r y x y c c x c c F yE xE yC xC c c c c 66666666655555525555555555255555555665555555555sin cos )sin()2/sin(C Re )cos()2/cos(C Re cos 1000sin 01000cos )(sin )(cos sin 010*******θθθπθθπθθπθθπθθθθθθθθ(1-23)二编程与仿真利用MATLAB进行仿真分析,主要包括两个步骤:首先是编制计算所需要的函数模块,然后利用其仿真工具箱Simulink建立仿真系统框图,设定初始参数进行仿真分析。
基于MATLAB的平面连杆机构运动分析及动画毕业论文
基于MATLAB的平面连杆机构运动分析及动画摘要建立了平面机构运动分析的数学模型,利用MATLAB进行了编程并设计了计算交互界面进而求解,为解析法的复杂计算提供了便利的方法,此方法也同样适用于复杂平面机构的运动分析,并为以后机构运动分析的通用软件的设计提供了基础。
建立了平面四杆机构运动分析的数学模型,以MATLAB 程序设计语言为平台,将参数化设计与交互式相结合,设计了平面四杆机构仿真软件,该软件具有方便用户的良好界面,并给出界面设计程序,从而使机构分析更加方便、快捷、直观和形象。
设计者只需输入参数就可得到仿真结果,再将运行结果与设计要求相比较,对怎样修改设计做出决策,它为四杆机构设计提供了一种实用的软件与方法。
以一种平面六连杆为例建立了平面多连杆机构的运动分析数学模型,应用MATLAB 软件进行了优化设计和仿真分析,为机构优化设计提供了一种高效、直观的仿真手段,提高了对平面多连杆机构的分析设计能力。
同时,也为其他机构的仿真设计提供了借鉴。
关键词:解析法,平面连杆机构,MATLAB,运动分析,运动仿真Based on the MATLAB Planar Linkage Mechanism MotionAnalysis and AnimationABSTRACTThis article established the kinematical mathematic model of the planar mechanism ,which is programmed and solved with designing the mutual interface of the calculation by MATLAB.This convenient method is provided for the complicated calculation of the analysis and also applicable to the kinematical analysis of the complex planar mechanism.A mathematical model of motion analysis was established in planar four- linkage ,and emulational software was developed. The software adopted MATLAB as a design language. It combined parametric design with interactive design and had good interfacefor user. Thus,it was faster and more convenient to analyse linkage. The emulational result was obtained as soon as input parameters was imported and the devisers can make decision-making of modification by the comparing emulational result with design demand. It provides an applied software and method for linkage.This paper took a planar six-linkage mechanism as a example to set up the mathematics model of planar multi-linkage mechanisms, and made the optimization design and simulation by the MATLAB software. It gave a efficiently and directly method to optimization design of mechanisms, and improved the ability of analyzing and designing the planar multi-linkage mechanisms. At the same time, it also provides a use for reference to the design and simulation for other mechanisms.KEY WORDS: analysis, planar linkage mechanisms, MATLAB, kinematical analysis, kinematical simulation目录1.1 平面连杆机构的研究意义 (1)1.2 平面连杆机构的研究现状 (1)1.3 MATLAB软件介绍 (2)1.3.1 MATLAB简介 (2)1.3.2 MATLAB软件的特点 (4)1.3.3 用MATLAB处理工程问题优缺点 (5)第2章平面机构运动分析的复数矢量解 (6)第3章平面四杆机构运动分析 (8)3.1 铰链四杆机构曲柄存在条件 (8)3.2 平面四杆机构的位移分析 (9)3.3 平面四杆机构的速度分析 (14)3.4 平面四杆机构的加速度分析 (15)第4章基于MATLAB的平面四杆机构运动分析 (17)4.1 基于MATLAB的平面四杆机构运动参数输入界面 (17)4.2 基于MATLAB的平面四杆机构运动参数计算 (21)4.3 基于MATLAB的平面四杆机构运动分析界面 (24)4.4 基于MATLAB的平面四杆机构运动仿真 (26)4.5 基于MATLAB的平面四杆机构运动参数清空及退出 (30)第5章平面六杆机构运动分析 (32)5.1 构建平面六杆机构数学模型 (32)5.2 平面六杆机构的运动分析 (33)5.2.1 曲柄导杆机构的运动分析 (33)5.2.2 摆动滑块机构的运动分析 (36)第6章基于MATLAB的平面六杆机构运动分析 (39)6.1 基于MATLAB的平面六杆机构运动参数输入界面 (39)6.2 基于MATLAB的平面六杆机构运动参数计算 (45)6.3 基于MATLAB的平面六杆机构运动分析界面 (49)6.4 基于MATLAB的平面六杆机构运动仿真 (52)6.5 基于MATLAB的平面六杆机构运动参数清空及退出 (56)结论 (57)参考文献 (59)第1章前言1.1 平面连杆机构的研究意义机构运动分析是不考虑引起机构运动的外力的影响,而仅从几何角度出发,根据已知的原动件的运动规律(通常假设为匀速运动),确定机构其它构件上各点的位移、速度、加速度,或构件的角位移、角速度、角加速度等运动参数。
(完整)基于matlab的四杆机构运动分析
1平面连杆机构的运动分析1。
1 机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据.机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计.1。
2 机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b。
组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
1.3 机构的数学模型的建立1。
3。
1建立机构的闭环矢量位置方程在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。
如图1所示,先建立一直角坐标系.设各构件的长度分别为L1 、L2 、L3 、L4 ,其方位角为、、、.以各杆矢量组成一个封闭矢量多边形,即ABCDA。
其个矢量之和必等于零。
基于MATLAB的六杆机构动力学分析和仿真
六杆机构的动力学分析仿真一系统模型建立为了对机构进行仿真分析,首先必须建立机构数学模型,即位置方程,然后利用MATLAB 仿真分析工具箱Simulink对其进行仿真分析。
图3.24所示是由原动件(曲柄1)和RRR—RRP 六杆机构。
各构件的尺寸为r1=400mm,r2=1200mm,r3=800mm,r4=1500mm,r5=1200mm;各构件的质心为rc1=200mm,rc2=600mm,rc3=400mm,rc5=600mm;质量为m1=1.2kg,m2=3kg,m3=2.2kg;m5=3.6kg,m6=6kg; 转动惯量为J1=0.016kg·m2,J2=0.25kg·m2;J3=0.09kg·m2,J5=0.45kg·m2;构件6的工作阻力F6=1000N,其他构件所受外力和外力矩均为零,构件1以等角速度10 rad/s逆时针方向回转,试求不计摩擦时,转动副A的约束反力、驱动力矩、移动副F的约束反力。
图1-1此机构模型可以分为曲柄的动力学、RRR II级杆组的动力学和RRP II级杆组的动力学,再分别对这三个模型进行相应参数的求解。
图1-2 AB 构件受力模型如上图1-2对于曲柄AB 由理论力学可以列出表达式:111XA Re R ∙∙=+-s m F R X XB 111y A Im R ∙∙=+-s m F R y yB1111111111111cos )(sin )(cos sin ∙∙=---+-++θθθθθJ r r R r r R r R r R M M c yB c XB c yA c XA F由运动学知识可以推得:)cos()2/cos(Re Re 12111111πθθπθθ++++=∙∙∙∙∙∙∙c c r r A s )sin()2/sin(Im Im 12111111πθθπθθ++++=∙∙∙∙∙∙∙c c r r A s将上述各式合并成矩阵形式有,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+++++-++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙∙∙∙∙∙∙∙∙∙g m R F r m r m A m R F r m r m A m M R R yB y c c XBX c c yA XA 111211111111112111111111)sin()2/sin(Im )cos()2/cos(Re πθθπθθπθθπθθ(1-21)如图1-3,对构件BC 的约束反力推导如下,图1-3 BC 构件受力模型222Re ∙∙=++s m R F R XC X XB 2222Im ∙∙=-++s m g m R F R yC y yB2222222222222cos )(sin )(cos sin ∙∙=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yB c XB如图1-4,对构件BC 的约束反力推导如下,图 1-4 CD 构件受力模型333Re ∙∙=-+s m R F R XC X XD 3333Im ∙∙=-++s m g m R F R yC y yD3333333333333cos )(sin )(cos sin ∙∙=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yD c XD由运动学可以推导得,)sin()2/sin(Im Im 22222222πθθπθθ++++=∙∙∙∙∙∙∙c c r r B s )cos()2/cos(Re Re 22222222πθθπθθ++++=∙∙∙∙∙∙∙c c r r B s )cos()2/cos(Re Re 32333333πθθπθθ++++=∙∙∙∙∙∙∙c c r r D s )sin()2/sin(Im Im 32333333πθθπθθ++++=∙∙∙∙∙∙∙c c r r D s将上述BC 构件,CD 构件各式合并成矩阵形式有,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------33333333332222222222cos sin cos )(sin )(0010100001010000cos )(sin )(cos sin 001010000101θθθθθθθθc c c c c c c c r r r r r r r r r r r r ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡yD XD yC XC yB XB R R R R R R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-++++-++++-+-++++-++++∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3333332333333333323333333322222222222222222222222222)sin()2/sin(Im )cos()2/cos(Re )sin()2/sin(Im )cos()2/cos(Re M J g m F r m r m D m F r m r m D m M J g m F r m r m B m F r m r m B m y c c X c c y c c X c c θπθθπθθπθθπθθθπθθπθθπθθπθθ (1-22)如图1-5 对构件5进行约束反力的推导如下,图1-5 CE 杆件受力模型∙∙=++s m R F R xE x xC Re 55 ∙∙=-++s m g m R F R yE y yC Im 5555555555555555cos )(sin )(cos sin ∙∙=-+-+--θθθθθJ r r R r r R r R r R M c yE c xE c yC c xC如图1-6 对滑块进行受力分析如下,滑块受力模型∙∙=--E m R R F F xE x Re sin 666θ ∙∙=-+-E m g m R R F F yE y Im cos 6666θ由运动学可推,)cos()2/cos(C Re Re 5255555πθθπθθ∙∙∙∙∙∙∙+++=c c r r s )sin()2/sin(C Re Im 5255555πθθπθθ∙∙∙∙∙∙∙+++=c c r r s66cos Re θ∙∙∙∙=s E 66sin Im θ∙∙∙∙=s E⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+---+-++++-++++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙g m F s m F s m M J g m F r m r m m F r m r m m R R R R R r r r r r r y x y c c x c c F yE xE yC xC c c c c 66666666655555525555555555255555555665555555555sin cos )sin()2/sin(C Re )cos()2/cos(C Re cos 1000sin 01000cos )(sin )(cos sin 010*******θθθπθθπθθπθθπθθθθθθθθ(1-23)二编程与仿真利用MATLAB进行仿真分析,主要包括两个步骤:首先是编制计算所需要的函数模块,然后利用其仿真工具箱Simulink建立仿真系统框图,设定初始参数进行仿真分析。
机械原理4-23MATLAB平面连杆机构动力学分析
基于MATLAB/Solidworks COSMOSMotion的平面连杆机构动力学分析07208517王锡霖4-23在图示的正弦机构中,已知l AB =100 mm,h1=120 mm,h2 =80 mm,W1 =10 rad/s(常数),滑块2和构件3的重量分别为G2 =40 N和G3 =100 N,质心S2 和S3 的位置如图所示,加于构件3上的生产阻力Fr=400 N,构件1的重力和惯性力略去不计。
试用解析法求机构在Φ1=60°、150°、220°位置时各运动副反力和需加于。
构件1上的平衡力偶Mb分别对三个构件进行受力分析如图:构件3受力图构件2受力图构件1受力图(1)滑块2:V S2 =L AB W1 ①a s2 = L AB W12②构件3:S=L AB sinΦ1 ③V3=L AB W1 COSΦ1 ④a3=-L AB W12 sinΦ1 ⑤(2)确定惯性力:F12=m2as2=(G2/g)LABW12 ⑥F13=m3a3=(G3/g)LABW12sinΦ1 ⑦(3)各构件的平衡方程:构件3:∑Fy=0,FR23 =Fr-F13∑Fx=0,FR4’=FR4∑MS3 =0,FR4=FR23LAcosΦ1/h2构件2:∑Fx=0,FR12x=F12cosΦ1∑Fy=0,FR12y=FR32-F12sinΦ1构件1:∑Fx=0,FR41x=FR12x∑Fy=0,FR41y=FR12y∑MA =0,Mb=FR32LABcosΦ1总共有八个方程,八个未知数。
归纳出一元八次方程矩阵:1 0 0 0 0 0 0 0 FR23 Fr-F130 1 -1 0 0 0 0 0 FR4’ 0-LAB COSΦ1/h20 1 0 0 0 0 0 FR40 0 0 1 0 0 0 0 FR12x = F12cosΦ1-1 0 0 0 1 0 0 0 FR12y -F12sinΦ10 0 0 -1 0 1 0 0 FR41x 00 0 0 0 -1 0 1 0 FR41y 0-LABCOSΦ1 0 0 0 0 0 0 1 Mb 0 AX=B进而可得:X=A\B。
第6章Matlab应用之动力学与振动
一.运动微分方程 当
0, F ( ) 0 时,得到线性振动系统的自由振动方程。
d x dx 2 x0 2 d d
2
上一页
目录
返回
下一页
13
6.2 单自由度系统
二.MATLAB求解 编写方程对应的函数文件FreeOscillation.m function xdot=FreeOscillation(t,x,zeta,Alpha) xdot=[x(2);-2.0*zeta*x(2)-x(1)-Alpha*x(1)^3]; end
上一页
目录
返回
下一页
21
6.2 单自由度系统
续上: figure(1) xlabel('\tau'); ylabel('x(\tau)'); axis([0.0,30.0,-3.0,3.0]); legend(d(1,:),d(2,:),d(3,:)); figure(2) xlabel('x(\tau)'); ylabel('dx/d\tau'); axis([-2.0,3.0,-2.0,3.0]); legend(d(1,:),d(2,:),d(3,:));
dx1 x2 d dx2 x1 d signum( x2 ) d
d x dx x d signum( ) 2 d d
上一页 目录 返回 下一页
25
6.2 单自由度系统
2、Matlab求解
编写常微分方程对应的函数文件FrictionOscillation.m
function xdot=FrictionOscillation(t,x,d) % 非线性阻尼系统ode文件 if abs(x(1))<=d && x(2)==0.0; xdot=[0;0]; else xdot=[x(2);-d*sign(x(2))-x(1)]; end
平面连杆机构运动分析&动态静力分析及机械运动方程求解的Matlab语言m文件使用说明及算例
构件上点的运动分析函数文件(m文件)格式:function [ 输出参数] = 函数名(输入参数)p_crank.m function [p_Nx,p_Ny]=p_crank(Ax,Ay,theta,phi,l1)v_crank.m function [v_Nx,v_Ny]=v_crank(l1,v_Ax,v_Ay,omiga,theta,phi)a_crank.m function [a_Nx,a_Ny]=a_crank(l1,a_Ax,a_Ay,alpha,omiga,theta,phi)函数中的符号说明函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )p_RRR.m function [cx,cy,theta2,theta3]=p_RRR(bx,by,dx,dy,l2,l3,m)v_RRR.m function [vcx,vcy,omiga2,omiga3]=v_RRR(vbx,vby,vdx,vdy,cx,cy,bx,by,dx,dy)a_RRR.m function [acx,acy,alpha2,alpha3]=a_RRR(abx,aby,adx,ady,cx,cy,bx,by,dx,dy,omiga2,omiga3)函数中的符号说明m =1 m = -1RRR Ⅱ级杆组运动分析函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )p_RRP.m function [cx,cy,sr,theta2]=p_RRP(bx,by,px,py,theta3,l2,m)v_RRP.m function [vcx,vcy,vr,omiga2]=v_RRP(bx,by,cx,cy,vbx,vby,vpx,vpy,theta2,theta3,l2,sr,omiga3) a_RRP.m function [acx,acy,ar,alpha2]=a_RRP(bx,by,cx,cy,px,py,abx,aby,apx,apy,theta3,vr,omiga2,omiga3,alpha3)函数中的符号说明1 1∠BCP < 90︒,∠BC 'P > 90︒,m =1RRP Ⅱ级杆组运动分析函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )p_RPR.m function [dx,dy,sr,theta3]=p_RPR(bx,by,cx,cy,e,l3,m)v_RPR.m function [vdx,vdy,omiga3,vr]=v_RPR(bx,by,cx,cy,dx,dy,vcx,vcy,vbx,vby,theta3) a_RPR.m function [adx,ady,alpha3,ar]=a_RPR(bx,by,cx,cy,dx,dy,acx,acy,abx,aby,vr,omiga3,theta3)RPR Ⅱ级杆组运动分析实线位置,m =1 虚线位置,m = -1函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )F_RRR.m function [R12x,R12y,R23x,R23y,R34x,R34y]=F_RRR(bxy,cxy,dxy,s2,s3,m2,m3,Js2,Js3,M2,M3,F2,F3,as2,as3,alpha2,alpha3)RRR Ⅱ级杆组力分析R 23xF 2R F 3xR 23函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )F_RRP.m function [R12x,R12y,R23x,R23y,R34x,R34y,lcn]=F_RRP(bxy,cxy,s2,s3,m2,m3,Js2,Js3,M2,M3,F2,F3,theta3,as2,as3,alpha2,alph3)RRP Ⅱ级杆组力分析R 34函数文件(m 文件)格式: function [ 输出参数 ] = 函数名( 输入参数 )F_RPR.m function [R12x,R12y,R23x,R23y,R35x,R35y,lcn]=F_RRP(bxy,cxy,dxy,s2,s3,m2,m3,Js2,Js3,M2,M3,F2,F3,R34,theta3,as2,as3,alpha3)RPR Ⅱ级杆组力分析238. 作用有平衡力的构件力分析作用有平衡力的构件力分析函数文件(m文件)格式:function [ 输出参数] = 函数名(输入参数)F_Bar.m function [R01x,R01y,Mb]=F_Bar(axy,bxy,s1,m1,Js1,M1,F1,R12,as1,alpha1)函数中的符号说明9. 平面连杆机构运动分析算例例1图示曲柄摇杆机构,已知l 1=150mm ,l 2=220mm ,l 3=250mm ,l 4=300mm ,曲柄以n 1=100r/min 逆时针匀速转动,分析该机构的运动。
平面多连杆机构动力学建模与分析研究
平面多连杆机构动力学建模与分析研究Chapter 1 引言在机械传动领域,平面多连杆机构是一种很常见的机械结构。
由于其设计简单、性能可靠等特点,在机械制造、航空、汽车、电子等领域有着广泛的应用。
平面多连杆机构的运动学和动力学分析一直是机械设计和计算机辅助设计领域需要解决的难题之一,因此对平面多连杆机构的动力学建模与分析的研究有着重要的意义。
本文主要介绍平面多连杆机构的动力学建模与分析的研究,包括平面多连杆机构的运动学方程、动力学方程等内容。
Chapter 2 平面多连杆机构的运动学方程平面多连杆机构是由多个连接杆件连成一个复杂的梯形链条结构,运动学方程是了解机构运动状态的基础,是机构动力学建模的前提。
平面多连杆机构的运动学方程通过从机构的杆件运动状态、几何条件及运动约束方程中推导而来。
运动状态是指多连杆机构在其由静止到运动的状态,即是以不同杆件为坐标系所定义的各运动参数与系统间所建立的模型。
悬链线方程是运动学中一个重要的公式,在平面多连杆机构的运动学方程中,用来关联各个连接杆件的运动和几何参数,因此其正确性对运动学方程的推导至关重要。
运动学方程包含了平面多连杆机构四驱动链和五驱动链,它们分别包括四个和五个独立的驱动旋转关节,计算公式如下:四驱动链:$$\begin{cases}x_3=x_0+l_1cos\alpha_1+l_2cos\alpha_2+l_3cos\alpha_3\\y_3=y_0+l_1sin\alpha_1+l_2sin\alpha_2+l_3sin\alpha_3\end{cases}$$五驱动链:$$\begin{cases}x_4=x_0+l_1cos\alpha_1+l_2cos\alpha_2+l_3cos\alpha_3\\y_4=y_0+l_1sin\alpha_1+l_2sin\alpha_2+l_3sin\alpha_3\\x_5=x_2-l_4cos\alpha_4-l_5cos\alpha_5-l_6cos\alpha_6\\y_5=y_2-l_4sin\alpha_4-l_5sin\alpha_5-l_6sin\alpha_6\end{cases}$$其中,$x_i$和$y_i$表示杆件i的末端的坐标,$l_i$是杆件i的长度,$\alpha_i$表示杆件的转角。
matlab动力学分析程序详解
matlab动力学分析程序详解··1.微分方程的定义对于duffing 方程032=++x x xω ,先将方程写作--==3112221x x x x x ω function dy=duffing(t,x) omega=1;%定义参数f1=x(2);f2=-omega^2*x(1)-x(1)^3; dy=[f1;f2];2.微分方程的求解function solve (tstop) tstop=500;%定义时间长度 y0=[0.01;0];%定义初始条件[t,y]=ode45('duffing',tstop,y0,[]);function solve (tstop) step=0.01;%定义步长y0=rand(1,2);%随机初始条件tspan=[0:step:500];%定义时间范围[t,y]=ode45('duffing',tspan,y0);3.时间历程的绘制时间历程横轴为t ,纵轴为y ,绘制时只取稳态部分。
plot(t,y(:,1));%绘制y 的时间历程 xlabel('t')%横轴为t ylabel('y')%纵轴为y grid;%显示网格线axis([460 500 -Inf Inf])%图形显示范围设置4.相图的绘制相图的横轴为y ,纵轴为dy/dt ,绘制时也只取稳态部分。
红色部··分表示只取最后1000个点。
plot(y(end-1000:end,1),y(end-1000:end,2));%绘制y 的时间历程xlabel('y')%横轴为yylabel('dy/dt')%纵轴为dy/dt grid;%显示网格线5.Poincare 映射的绘制对于不同的系统,Poincare 截面的选取方法也不同对于自治系统一般每过其对应线性系统的固有周期,截取一次对于非自治系统,一般每过其激励的周期,截取一次例程:duffing 方程032=++x x x ω的poincare 映射function poincare(tstop) global omega; omega=1;T=2*pi/omega;%线性系统的周期或激励的周期step=T/100;%定义步长为T/100 y0=[0.01;0];%初始条件tspan=[0:step:100*T];%定义时间范围[t,y]=ode45('duffing',tspan,y0);for i=5000:100:10000%稳态过程每个周期取一个点plot(y(i,1),y(i,2),'b.'); hold on;% 保留上一次的图形 endxlabel('y');ylabel('dy/dt');Poincare 映射也可以通过取极值点得到 function poincare(tstop) y0=[0.01;0];tspan=[0:0.01:500];[t,y]=ode45('duffing',tspan,y0); count=find(t>100);%截取稳态过程 y=y(count,:);n=length(y(:,1));%计算点的总数··for i=2:n-1if y(i-1,1)+epsy(i+1,1)+eps % 简单的取出局部最大值plot(y(i,1),y(i,2),'.'); hold on end endxlabel('y');ylabel('dy/dt');6.频谱yy=fft(y(end-1000:end,1)); N=length(yy); power=abs(yy);freq=(1:N-1)*1/step/N;plot(freq(1:N/2),power(1:N/2)); xlabel('f(y)') ylabel('y')7.算例duffing 方程03=++x x x的时间历程,相图,频谱和poincare 映射。
连杆MATLAB
图 4.1、杆组 DEF 位置参数
图 4.2、构件 EF 和 DE 的受力模型
质心 S4 和 S5 的加速度分别为 S4 和 S5 ,在 x 轴上的投影为 ReS4 和 ReS5 ,在 y 轴 上的投影为 ReS4 和 ReS5 。点 D、E、F 的位移、速度和加速度分别用用矢量 D 、E 、 F , D、E、F 和 D、E 、F 来表示,对 x 轴的投影为ReD、ReE、ReF,ReD、ReE、ReF 和 ReD、ReE、ReF , 对 y 轴 的 投 影 为 ImD、ImE、ImF , ImD、ImE、ImF 和
2 r3 cos θ3 + π θ3 r3 sin θ3 + π
(3.9) (3.10)
θ3
(3.11)
(3.12)
在以上等式中:θ3 = θ2 + 50° ;θ3 = θ2 ;θ3 = θ2 ; (2)根据以上等式,可编写求解θ3 、θ3 、θ3 、ReD 和 ImD的运动仿真模块,如图 3.5所示,该仿真模块具有6个输入,5个输出,对应的SIMOUT2模块具有包含5个参数, 该仿真模块对应的M函数详见附录②。
(4)杆组 DEF 动力学分析
杆组 DEF 的位置参数如图 4.1 所示,主要有构件 DE 和 EF 组成 ,其受力分析如图 4.2 所示。对于 DEF-RRRⅡ级杆组,分别以 2 个构件 EF 和 DE 为受力分析对象进行分 析。对于构件 EF,其向量的模 r5 为常量,幅角 θ5 为变量(以 x 轴为起始线,逆时针度 量为正) ,质心 S5 到转动副 F 的距离为 rc5 ,质量为 m5 ,绕 F 点的转动惯量为 J5 ,转 动副 F 的约束反力为 R x5 和 R y5 , 无其他外力或外力矩。 对于构件 DE, 其向量的模 r4 为 常量, 幅角 θ4 为变量 (以 x 轴为起始线,逆时针度量为正) , 质心到转动副 E 的距离为 rc4 , 质量为 m4 ,绕质心的转动惯量为 J4 ,转动副 F 的约束反力为R x4 和 R y4 ,无其他外力或 外力矩【35】 。
(完整版)在MATLAB环境下开发平面连杆机构运动分析系统毕业设计
在MATLAB环境下开发平面连杆机构运动分析系统摘要建立了铰链四杆机构运动分析的数学模型 ,以MATLAB程序设计语言为平台 ,将参数化设计与交互式相结合 ,设计了铰链四杆机构分析软件 ,该软件具有方便用户的良好界面 ,并给出界面设计程序 ,从而使机构分析更加方便、快捷、直观和形象.设计者只需输入参数就可得到分析结果 ,再将运行结果与设计要求相比较 ,对怎样修改设计做出决策.它为四杆机构设计提供了一种实用的软件与方法.关键词:平面四杆机构,MATLAB软件,运动分析,分析THE DEVELOPMENT OF SYSTEM FOR ANALYSIS OF MOTION IN PLANE FOUR BAR MECHANISM BASED ONMATLAB SOFTWAREAbstractA mathematical model of motion analysis was established in planefour - linkage , and analytical software was developed. The software adopted Matlab as a design language. It combined parametric design with interactive design and as input parameters was imported and the devisers can make decision - making of modification by the comparing analytical result with design demand. It provides an applied software and method for linkage.Key words:Plane Four Bar Mechanism, MATLAB, Analysis of Motion, Analyze目录1 绪论 (1)2 平面连杆机构的设计分析 (4)2.1平面四连杆机构的运动分析 (4)2.2 机构的数学模型的建立 (4)2.2.1 建立机构的闭环矢量位臵方程 (5)2.2.2 求解方法 (7)3 基于MATLAB程序设计 (8)3.1 程序流程 (8)3.2M文件编写 (8)3.3程序运行结果输出 (12)4 基于MATLAB图形界面设计 (23)4.1界面设计 (23)4.2代码设计 (24)5 结论.......................................................................................... 错误!未定义书签。
第6章 Matlab应用之动力学与振动概要
习题
上一页
目录
返回
下一页
3
6.1 轨迹
举例说明:重力场中有两个物体,其中质量为m2的物体固定,而 质量为m1的物体绕m2做平面圆周运动.做圆周运动的m1物体
的轨道半径用变量r表示,角度用变量a表示.
m1 r a m2
上一页
目录
返回
下一页
4
6.1 轨迹
例6.1:卫星绕地球转动时,m2等于地球的质量,m1等于卫 星的质量,r为卫星球心与地球球心间的距离。其运动轨迹由 下列方程组决定:
2
与例6.2相同,只是 改变了Alpha的值, 可以直接借用例6.2 的函数文件
上一页
目录
返回
下一页
19
6.2 单自由度系统
由初始条件建立执行文件(execute_63.m)
程序如下 zeta=0.2;Alpha=[0.00,-0.25,-0.25];
x0=[-2.00,-2.00,-2.00];v0=[2.00,2.00,2.31]; tspan=linspace(0.0,30.0,401); lintyp=char('-k','--k','-.k'); options=odeset('RelTol',1e-8,'AbsTol',[1e-8 1e-8]); d=char('Linear:x_0=-2 v_0=2 \alpha=0',... 'Nonlinear:x_0=-2 v_0=2 \alpha=-0.25',... 'Nonlinear:x_0=-2 v_0=2.31 \alpha=-0.25');
15
第6章 Matlab平面连杆机构的动力学分析
§6-1 曲柄的动力学仿真模块
由运动学知识可推得:
Re i Re A rcii cos i 2 rcii2 cos i s Im i Im A rcii sin i 2 rcii2 sin i s
§6-1 曲柄的动力学仿真模块
1.曲柄的动力学矩阵表达式 曲柄AB复向量的模 ri 为常数、幅角 i 为变量。 质心到转动副A的距离为 rci ,质量为 mi ,绕质心的转动惯量为 Ji , 作用于质心上的外力为 Fxi 和 Fyi 、 外力矩为M i ,曲柄与机架联接, 转动副A的约束反力为 RxA 和 RyA , 驱动力矩为 M 1 。
由理论力学可得:
RxA RxB Fxi mi Re i s
RyA RyB Fyi mi g mi Im i s
M1 M i RxArci sin i RyArci cos i RxB ri rci sin i RyB ri rci cos i J ii
§6-2 RRR II级杆组的动力学仿真模块
2.RRR II级杆组动力学分析M函数
g=9.8; %重力加速度 ri=1; rj=07; %两杆的长度 rci=0.5;rcj=0.35; %质心到铰链B的距离 %质心到铰链D的距离 mi=3; mj=2.2; %两杆的质量 Ji=0.25;Jj=0.09;%两杆的转动惯量 ReddD=0;ImddD=0; Fxi=0;Fyi=0;Mi=O; %i杆的外力和外力矩 a=zeros(6); a(1,1)=1;a(1,3)=1; a(2,2)=1; a(2,4)=1; a(3,1)=rci*sin(x(1)); a(3,2)=-rci*cos(x(1)); a(3,3)=-(ri-rci)*sin(x(1)); a(3,4)=(ri-rci)*cos(x(1)); a(4,3)=-1; a(4,5)=1; a(5,4)=-1; a(5,6)=1; a(6,3)=(rj-rcj)*sin(x(2)); a(6,4)=-(rj-rcj)*cos(x(2)); a(6,5)=rcj*sin(x(2)); a(6,6)=-rcj*cos(x(2));
机械原理3-28MATLAB平面连杆机构运动分析,解三角函数超越方程
根据第一步得到的数据进行数据输入,运行程序计算各速度值。程序如下:
x2=[x1' p(:,2) p(:,3) p(:,4) 10*ones(15,1) 40*ones(15,1) 50*ones(15,1)... 75*ones(15,1) 35*ones(15,1) 70*ones(15,1) p(:,1) 60*ones(15,1)]; q=zeros(4,15); for m=1:15 y2=rrrvel(x2(m,:)); q(:,m)=y2; end q
norm(f); end; y(1)=lA; y(2)=theta2; y(3)=theta3; y(4)=theta4;
再进行数据输入,运行程序进行运算。这里我们根据上面分析的θ1 的极限 位置取θ1 的范围为 40°~55°并均分成 15 个元素: clc
clear x1=linspace(40*pi/180,55*pi/180,15); x=zeros(length(x1),11); for n=1:15 x(n,:)=[x1(:,n) pi/6 8*pi/9 2*pi/3 40 50 75 35 70 75 60]; end p=zeros(length(x1),4); for k=1:15 y= rrrposi(x(k,:)); p(k,:)=y; end >> p
% while norm(f)>epsilon
J=[0 -x(6)*sin(theta2) x(7)*sin(theta3) -x(8)*sin(theta4);
0 x(6)*cos(theta2) -x(7)*cos(theta3) x(8)*cos(theta4);
cos(x(1)) 0 0 x(11)*sin(theta4); sin(x(1)) 0 0 -x(11)*cos(theta4)]; dth=inv(J)*(-1.0*f); lA=lA+dth(1); theta2=theta2+dth(2); theta3=theta3+dth(3); theta4=theta4+dth(4);
基于MATLAB的平面六杆机构运动分析
而变化。
式(1)在戈、Y轴的分量等式为
』L2cos(1v/2)+LI cosq)=S23cosO
,,、
lL2 sin(w/2)+£l sinq)=S23 sinO
、。7
当垂在0。~3600作匀速变化时,就可求出对应
的导杆3的转角0及滑块2位移5.,值。
假设曲柄做匀角速度OJ运动,即to=dqo/dt是常 数,对式(2)求时间导数,得到导杆3的角速度∞,及 滑块2沿导杆3移动的速度y:,,方程式如下
Abstract:The article introduces the rule of kinematical analysis of a plane six.bar mechanism by MATLAB。,Its
visual.The result was
kinematical analysis is viewing,simple and precise SO that the design precision and the
ቤተ መጻሕፍቲ ባይዱend
%绘制滑块5的速度线图
subplot(2,2,4) plot(d45(:,1),d45(:,3))
grid
x/abel(7曲柄转角7) ylabel(7滑块加速度’) 2.2结果可视化 程序运行时,输入以下内容:机架长度40ram; 曲柄长度25mm;导杆长度90ram;连杆长80mm;滑 块到坐标原点距离80ram:角速度10rad/s。 图2为该六杆机构滑块5的位移、速度、加速度 及连杆4的角加速度的运动规律。
c7,
连杆4角加速度m和滑块5加速度佻方程
暇-L4 si。n¥8-。1吲:
th32atan(2水(11+12冰sin(th(1)))/(12半cos(th(1)))); else ifth(1)<=270木dr th32atan(2术(11+12术sin(th(1)))/(12木cos(th(1))))+pi;
基于-MATLAB的六杆机构动力学分析及仿真
六杆机构的动力学分析仿真一系统模型建立为了对机构进行仿真分析,首先必须建立机构数学模型,即位置方程,然后利用MATLAB仿真分析工具箱Simulink对其进行仿真分析。
图3.24所示是由原动件(曲柄1)和RRR—RRP六杆机构。
各构件的尺寸为r1=400mm,r2=1200mm,r3=800mm,r4=1500mm,r5=1200mm;各构件的质心为rc1=200mm,rc2=600mm,rc3=400mm,rc5=600mm;质量为m1=1.2kg,m2=3kg,m3=2.2kg;m5=3.6kg,m6=6kg; 转动惯量为J1=0.016kg·m2,J2=0.25kg·m2;J3=0.09kg·m2,J5=0.45kg·m2;构件6的工作阻力F6=1000N,其他构件所受外力和外力矩均为零,构件1以等角速度10 rad/s逆时针方向回转,试求不计摩擦时,转动副A的约束反力、驱动力矩、移动副F的约束反力。
图1-1此机构模型可以分为曲柄的动力学、RRR II 级杆组的动力学和RRP II 级杆组的动力学,再分别对这三个模型进行相应参数的求解。
图1-2 AB 构件受力模型如上图1-2对于曲柄AB 由理论力学可以列出表达式:111XA Re R ∙∙=+-s m F R X XB111yA Im R ∙∙=+-s m F R y yB1111111111111cos )(sin )(cos sin ∙∙=---+-++θθθθθJ r r R r r R r R r R M M c yB c XB c yA c XA F由运动学知识可以推得:)cos()2/cos(Re Re 12111111πθθπθθ++++=∙∙∙∙∙∙∙c c r r A s )sin()2/sin(Im Im 12111111πθθπθθ++++=∙∙∙∙∙∙∙c c r r A s将上述各式合并成矩阵形式有,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+++++-++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙∙∙∙∙∙∙∙∙∙g m R F r m r m A m R F r m r m A m M R R yB y c c XBX c c yA XA 111211111111112111111111)sin()2/sin(Im )cos()2/cos(Re πθθπθθπθθπθθ(1-21)如图1-3,对构件BC 的约束反力推导如下,图1-3 BC 构件受力模型222Re ∙∙=++s m R F R XC X XB2222Im ∙∙=-++s m g m R F R yC y yB2222222222222cos )(sin )(cos sin ∙∙=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yB c XB如图1-4,对构件BC 的约束反力推导如下,图 1-4 CD 构件受力模型333Re ∙∙=-+s m R F R XC X XD3333Im ∙∙=-++s m g m R F R yC y yD3333333333333cos )(sin )(cos sin ∙∙=-----+θθθθθJ r r R r r R r R r R M c yC c XC c yD c XD由运动学可以推导得,)sin()2/sin(Im Im 22222222πθθπθθ++++=∙∙∙∙∙∙∙c c r r B s )cos()2/cos(Re Re 22222222πθθπθθ++++=∙∙∙∙∙∙∙c c r r B s )cos()2/cos(Re Re 32333333πθθπθθ++++=∙∙∙∙∙∙∙c c r r D s )sin()2/sin(Im Im 32333333πθθπθθ++++=∙∙∙∙∙∙∙c c r r D s将上述BC 构件,CD 构件各式合并成矩阵形式有,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------33333333332222222222cos sin cos )(sin )(0010100001010000cos )(sin )(cos sin 001010000101θθθθθθθθc c c c c c c c r r r r r r r r r r r r ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡yD XD yC XC yB XB R R R R R R =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-+-++++-++++-+-++++-++++∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3333332333333333323333333322222222222222222222222222)sin()2/sin(Im )cos()2/cos(Re )sin()2/sin(Im )cos()2/cos(Re M J g m F r m r m D m F r m r m D m M J g m F r m r m B m F r m r m B m y c c X c c y c c X c c θπθθπθθπθθπθθθπθθπθθπθθπθθ (1-22)如图1-5 对构件5进行约束反力的推导如下,图1-5 CE 杆件受力模型∙∙=++s m R F R xE x xC Re 55∙∙=-++s m g m R F R yE y yC Im 5555555555555555cos )(sin )(cos sin ∙∙=-+-+--θθθθθJ r r R r r R r R r R M c yE c xE c yC c xC如图1-6 对滑块进行受力分析如下,滑块受力模型∙∙=--E m R R F F xE x Re sin 666θ∙∙=-+-E m g m R R F F yE y Im cos 6666θ由运动学可推,)cos()2/cos(C Re Re 5255555πθθπθθ∙∙∙∙∙∙∙+++=c c r r s )sin()2/sin(C Re Im 5255555πθθπθθ∙∙∙∙∙∙∙+++=c c r r s66cos Re θ∙∙∙∙=s E 66s i n Im θ∙∙∙∙=s E⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+---+-++++-++++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙g m F s m F s m M J g m F r m r m m F r m r m m R R R R R r r r r r r y x y c c x c c F yE xE yC xC c c c c 66666666655555525555555555255555555665555555555sin cos )sin()2/sin(C Re )cos()2/cos(C Re cos 10sin 0100cos )(sin )(cos sin 011000101θθθπθθπθθπθθπθθθθθθθθ(1-23)二编程与仿真利用MATLAB进行仿真分析,主要包括两个步骤:首先是编制计算所需要的函数模块,然后利用其仿真工具箱Simulink建立仿真系统框图,设定初始参数进行仿真分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6-1 曲柄的动力学仿真模块
1.曲柄的动力学矩阵表达式 曲柄AB复向量的模 ri 为常数、幅角 i 为变量。 质心到转动副A的距离为 rci ,质量为 mi ,绕质心的转动惯量为 Ji , 作用于质心上的外力为 Fxi 和 Fyi 、 外力矩为M i ,曲柄与机架联接, 转动副A的约束反力为 RxA 和 RyA , 驱动力矩为 M 1 。
Re j Re D rcj j cos j 2 rcj j2 cos j s Im j Im D rcj j sin j 2 rcj j2 sin j s
§6-2 RRR II级杆组的动力学仿真模块
对构件CD受力分析得
RxD Fxj RxC m j Re j s
RyD Fyj RyC mj g mi Im i s
M j RxD rcj sin j RyD rcj cos j RxC rj rcj sin j RyC rj rcj cos j J j j
RxB RyB RxC RyC R xD rcj cos j RyD 0 0 0 0 1
§6-2 RRR II级杆组的动力学仿真模块
2.RRR II级杆组动力学分析M函数
function y=RRRdy(x) % %Function for Dyanmic analysis of RRR dayard group % %Input parameters %x(1)=theta-I %x(2)=theta-j %x(3)=dtheta-I %x(4)=dtheta-j %x(5)=ddtheta-I %x(6)=ddtheta-j %x(7)=Re[ddB] %x(8)=Im[ddB] %x(9)=Fxj %x(10)=Fyj %x(11)=Mj %0utput parameters % %y(1)=RxB %Y(2)=RyB %y(3)=RxC %y(4)=RyC %y(5)=RxD %y(6)=RyD %
y(1)=mi*ReddA+mi*rci*x(3)*cos(x(1)+pi/2)+mi*rci*x(2)^2*cos(x(1)+pi)-Fxi+x(4); y(2)=mi*ImddA+mi*rci*x(3)*sin(x(1)+pi/2)+mi*rci*x(2)^2*sin(x(1)+pi)-Fyi+x(5)+mi*g; y(3)=Ji*x(3)-y(1)*rci*sin(x(1))+y(2)*ric*cos(x(1))-x(4)*(ri-rci)*sin(x(1))+x(5)*(ri-rci)*cos(x(1))-Mi;
根据上式编写曲柄原பைடு நூலகம்件MATLAB的M函数如下:
§6-1 曲柄的动力学仿真模块
2.曲柄的动力学分析M函数
function y=crankdy(x) %Function for Dyanmic analysis of crank %%Input parameters %x(1)=theta-i %x(2)=dtheta-i %x(3)=ddtheta-i %x(4)=RxB %x(5)=RyB %%0utput parameters %y(1)=RxA %y(2)=RyA %y(3)=M1 g=9.8; %重力加速度 ri=0.4; %曲柄长度 rci=0.2;%质心离铰链A的距离 mi=1.2;%曲柄质量 Ji=0.016; %绕质心转动惯量 Fxi=0; Fyi=0; Mi=0; %作用于质心的外力 和外力矩 ReddA=0; ImddA=0; %铰链A的加速度
示例1 四杆机构的MATLAB动力学仿真
2.铰链四杆机构MATLAB仿真模型
用到曲柄和RRR杆组的 2个运动学仿真模块、曲柄原动件和RRR杆组的 2个动力 学仿真模块;曲柄原动件和RRR杆组的运动学仿真模块(已经建立,)为RRR杆 组的动力学仿真模块提供运动学参数。
§6-2 RRR II级杆组的动力学仿真模块
2.RRR II级杆组动力学分析M函数
g=9.8; %重力加速度 ri=1; rj=07; %两杆的长度 rci=0.5;rcj=0.35; %质心到铰链B的距离 %质心到铰链D的距离 mi=3; mj=2.2; %两杆的质量 Ji=0.25;Jj=0.09;%两杆的转动惯量 ReddD=0;ImddD=0; Fxi=0;Fyi=0;Mi=O; %i杆的外力和外力矩 a=zeros(6); a(1,1)=1;a(1,3)=1; a(2,2)=1; a(2,4)=1; a(3,1)=rci*sin(x(1)); a(3,2)=-rci*cos(x(1)); a(3,3)=-(ri-rci)*sin(x(1)); a(3,4)=(ri-rci)*cos(x(1)); a(4,3)=-1; a(4,5)=1; a(5,4)=-1; a(5,6)=1; a(6,3)=(rj-rcj)*sin(x(2)); a(6,4)=-(rj-rcj)*cos(x(2)); a(6,5)=rcj*sin(x(2)); a(6,6)=-rcj*cos(x(2));
第6章
平面连杆机构的动 力学分析
概
述
• 机构的动力分析,主要是在运动学分析的基础上,由已 知工作阻力,求出运动副的约束反力和驱动力(或力矩), 为选择和设计轴承、零部件强度的计算及选择原动机提 供理论依据。 • 本章以机构的组成原理为出发点,主要以应用最为广泛 的平面连杆II级机构为分析对象,用复数向量推导出曲 柄原动件、RRR杆组、RRP杆组、RPR杆组、PRP杆组和RP P杆组的动力学矩阵数学模型,并编制相应仿真M函数。 • 在Matlab/simulink仿真平台,可以搭建所有平面连杆 II级机构的动力学仿真模型并进行动力学仿真.。
b=zeros(6,1); b(1,1)=mi*rci*x(5)*cos(x(1)+pi/2)+mi*x(7)+mi*rci*x(3)^2*cos(x(1)+pi)-Fxi; b(2,1)=mi*rci*x(5)*sin(x(1)+pi/2)+mi*x(8)+mi*rci*x(3)^2*sin(x(1)+pi)-Fyi+mi*g; b(3,1)=Ji*x(5)-Mi; b(4,1)=mj*rcj*x(6)*cos(x(2)+pi/2)+mj*ReddD+mj*rcj*x(4)^2*cos(x(2)+pi)-x(9); b(5,1)=mj*rcj*x(6)*sin(x(2)+pi/2)+mj*ImddD+mj*rcj*x(4)^2*sin(x(2)+pi)-x(10)+mj*g; b(6,1)=Jj*x(6)-x(11); y=inv(a)*b;
对构件BC受力分析得
RxB Fxi RxC mi Re i s
RyB Fyi RyC mi g mi Im i s
M i RxB rci sin i RyB rci cos i RxC ri rci sin i RyC ri rci cos i J ii
§6-2 RRR II级杆组的动力学仿真模块
由运动学可推得
Im i Im B rcii sin i 2 rcii2 sin i s Re i Re B rcii cos i 2 rcii2 cos i s
合并整理得
mi Re A mi rcii cos i 2 mi rcii2 cos i Fxi RxB RxA R mi Im A mi rcii sin i 2 mi rcii2 sin i Fyi RyB mi g yA M 1 J ii RxA rci sin i RyA rci cos i RxB ri rci sin i RyB ri rci cos i M i
§6-1 曲柄的动力学仿真模块
由运动学知识可推得:
Re i Re A rcii cos i 2 rcii2 cos i s Im i Im A rcii sin i 2 rcii2 sin i s
示例1 四杆机构的MATLAB动力学仿真
1. 四杆机构的MATLAB动力学仿真
如图3.8所示,铰链四杆机构由曲柄1和1个RRR杆组四杆机构组成。各构件的尺寸为 rl=400mm,r2=1000mm,r3=700mm,r4=1200mm;质心为rc1=200mm,rc2= 500mm.rc3=350mm质量为ml=1.2kg,m2=3kg.m3=2.2kg;转动惯量为J1= 0.016kg· m2,J2=0.25kg· m2,J3=0.09kg· m2,构件3的工作阻力矩M3= 100N· m.顺时针方向,其他构件所受外力和外力矩均为零,构件1以等角速度10 rad /s逆时针方向回转,试求不计摩擦时,转动副A的约束反力、驱动力矩M1及其所作功。
§6-2 RRR II级杆组的动力学仿真模块
1.RRR II级杆组动力学矩阵表达式
如图3.2所示,RRR II级杆组,分别以2个构件BC(长度为 ri )和CD(长度为r j ) 为受力分析对象进行受力分析,其受力情况同曲柄 ,只是不受驱动力矩, 则转动副B,C,D的约束反力推导如下。
§6-2 RRR II级杆组的动力学仿真模块
由理论力学可得:
RxA RxB Fxi mi Re i s
RyA RyB Fyi mi g mi Im i s
M1 M i RxArci sin i RyArci cos i RxB ri rci sin i RyB ri rci cos i J ii