成都七中七年级上数学半期试题

合集下载

【实用型】成都七中七年级(上)数学半期考试题.doc

【实用型】成都七中七年级(上)数学半期考试题.doc

成都七中嘉祥外国语学校初2013级七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多知识财富!下面这套试卷是为了展示你最近的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易放弃,就一定会有出色的表现!注意:请将选择题和填空题的答案填在后面的表格中A 卷(100分)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、12的相反数的绝对值是 ( )A .12- B.2 C.-2 D. 122、下列语句中错误的是 ( ) A.数字0也是单项式 B.单项式-a 的系数与次数都是 1 C.21xy 是二次单项式 D.-32ab 的系数是 -32 3、下列各式计算正确的是 ( ) A .2(4)16--=- B .826(16)(2)--⨯=-+⨯- C .6565445656⎛⎫÷⨯=÷⨯ ⎪⎝⎭D. 20032004(1)(1)11-+-=-+ 4、如果3,1,a b a b ==>且,那么b a +的值是 ( ) A . 4 B . 2 C . 4- D . 4或25、下列说法上正确的是 ( ) A .长方体的截面一定是长方形; B .正方体的截面一定是正方形; C .圆锥的截面一定是三角形; D .球体的截面一定是圆6、 如图,四条表示方向的射线中,表示北偏东60°的是 ( )7、若x-y 2(x y)4, -6 2(x y)x-yx y x y -+=+++则代数式的值是 ( ) A .4 B .311C -3D 22..不能确定 8、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.姓名_____________________ 班级_____________________ 学号____________________ …………………………………密………………………………………封……………………………………线……………………………………..⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A. xy 7-B. xy 7+C. xy -D. xy +9、 下列说法正确的个数为 ( ) (1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离 (3)两点之间的所有连线中,线段最短 (4)射线比直线段一半 (5)直线AB 和直线BA 表示同一条直线A .2B .3C .4D .5 10、某电影院共有座位n 排,已知第一排的座位为m 个,后一排总是比前一排多1个,则电影院中共有座位 ( )A.mn+22nB. (1)2n n mn -+C.mn+nD. (1)2n n mn ++二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在题中横线上.11、比较大小:–π________–3.14(填=,>,<号).12、单项式2a b -的系数是___________,单项式2715x y π-的次数是________.13、在数轴上,点M 表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是 .14、一桶油连桶的重量为a 千克,桶重量为b 千克,如果把油平均 分成3份,每份油的重量是____________.15、如图:三角形有___________个.15题16、为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费.小明家六月份交水费33. 6元,则小明家六月份实际用水______________立方米成都七中嘉祥外国语学校…..初2013级七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良 注意:请将选择题和填空题的答案填在后面的表格中一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在横线上.11、 12、 13、14、 15、 16、三、图形题:本大题每小题5分,共10分.17、(本题5分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图主视图 左视图18、(本题5分)如图:正方形的边长为a 其中有一直径为a 的圆,阴影部分面积为S .(1)用含a 的代数式表示阴影面积S ;(2)当4a cm =时,求阴影部分面积S .( 3.14)π取四、运算题:本大题共2小题,共9分,解答应写出必要的计算过程. 19、(1)(本题4分) (-61+43-125)⨯)12(- 24132(2)(本题5分)()()[]2421315.011--⨯⨯---五、代数式运算题:本大题共2小题,每题5分,共15分,解答应写出必要的计算过程. 20、(1)(本题5分)化简 ]2)(5[)3(2222mn m mn m m mn +-----(2)(本题5分)先化简,再求值:22215{2[32(2)]}2abc a b abc ab a b ---- ,求当3,1,2=-==c b a 时的值.(3)(本题5分)若关于x y 、的代数式22(27)(291)x ax y bx x y +-+--+-的值与字母x 的取值无关,求a b -.六、解答题:本大题共3小题,每小题6分.共18分,解答应写出必要的计算过程或文字说明.21、(本题6分)如图,点P 在线段AB 上,点M N 、分别是线段AB AP 、的中点,若16AB =cm ,6BP =cm ,求线段NP 和线段MN 的长.22、(本题6分)如图,OE 为∠AOD 的角平分线,∠COD=41∠EOC ,∠COD=15°, 求:①∠EOC 的大小; ②∠AOD 的大小.23、(本题6分)“十·一”黄金周期间,上海世博园风景区7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):N P(1) 若9月30日的游客人数记为a ,请用a 的代数式表示10月2日的游客人数: 万人 .(2) 请判断七天内游客人数最多的是 日,最少的是 日. (3) 以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:B 卷(50分)一、填空.(共5小题,每题4分,共20分)24、如果522)3(5x m y x n-+是关于x,y 的六次二项式,则m 、n 应满足条件____________. 25、7点20分,钟表上时针与分针所成的角是______________度26、已知多项式281468ax bx cx -+-,当3x =时值为2010,当3x =-时281468ax bx cx -++ 的值为 .(日) ………………..27、点,A B 在直线l 上,5AB =cm ,画点C ,使点C 是在直线l 上到点A 的距离是3的点,则点C 到点B 的距离是____________cm .28、如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有______个.二、解答题(共30分)29、 (本题5分)已知a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()cda b m m m ++-的值是多少?30、(本题6分)数a ,b ,c 在数轴上的位置如图所示且c a =; (1)化简2a c b b a c b a b ++----++; (2)用“<”把a ,b ,b -,c 连接起来;31、(本题9分)全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧迫的任务,某地区沙漠原有面积100万公倾.为了解该地区沙漠面积的变化情况,进行了连续3年预计该地区沙漠的面积将继续按此趋势扩大.① ② ③(1)如果不采取措施,第4年底,该地区沙漠化面积将变成多少万公顷?(2)如果不采取措施,那么到第m 年底,该地区沙漠面积将变为多少万公顷?(3)如果第5年后采取措施,每年改造0.8万公倾沙漠,那么到第n 年该地区沙漠的面积为多少万公顷(5 n )?32、(本题10分)如图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.层数 1 2 3 4 5 6 该层对应的点数 所有层的总点数(2)写出第n 层所对应的点数.(3)如果某一层共96个点,你知道它是第几层吗? (4)有没有一层,它的点数为100点? (5)写出n 层的六边形点阵的总点数.美文欣赏1、 走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。

2022-2023学年四川省成都七中万达学校七年级(上)期中数学试卷

2022-2023学年四川省成都七中万达学校七年级(上)期中数学试卷

2022-2023学年四川省成都七中万达学校七年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分1.(4分)的倒数是()A.﹣2022B.2022C.D.2.(4分)下列运算正确的是()A.2ab+3ba=5ab B.a+a=a2C.5ab﹣2a=3b D.7a2b﹣7ab2=03.(4分)已知一天有86400秒,一年按365天计算共有31536000秒,“中国飞人”苏炳添经过5年(约157680000秒),从里约到东京,以9秒83创亚洲纪录的成绩成为首位闯进奥运会男子百米决赛的中国人,将157680000用科学记数法表示为()A.1.5768×108B.15.768×108C.1.5768×107D.15.768×1074.(4分)如图所示,是下列哪个几何体从三个方向看到的平面图形()A.B.C.D.5.(4分)下列各数中是负数的是()A.﹣(﹣)B.﹣|﹣2022|C.(﹣1)2022D.﹣(﹣)36.(4分)下列计算正确的是()A.x2﹣(2x﹣y2+y)=﹣2x+y2+yB.﹣(2x+y)﹣(﹣x2+y2)=﹣2x+y+x2﹣y2C.2x2﹣3(x﹣4)=2x2﹣3x+4D.2x2﹣2(y2﹣1)=2x2﹣2y2+27.(4分)已知|x|=6,y2=4,且xy>0,则x+y的值为()A.8B.﹣8C.8或﹣8D.2或﹣28.(4分)下列说法正确的个数有()(1)若|a|=|b|,则a=±b;(2)若a、b互为相反数,则=﹣1;(3)多项式5a2b2﹣2a2b+ab2﹣2的次数是5;(4)单项式7×103a4的次数是6;(5)﹣a一定是一个负数;(6)平方是本身的数是1.A.1B.2C.3D.4二、填空题(本大题共5个小题,每小题4分共20分9.(4分)比较大小:(1)0.5﹣49;(2)﹣﹣.10.(4分)﹣的系数是,次数是.11.(4分)若5a m+2b4与﹣a5b n的和仍是一个单项式,则m+n=.12.(4分)将如图所示的平面展开图折叠成正方体后,相对面上两个数字或代数式互为相反数,则2x+3y =.13.(4分)在有理数范围内,定义一种新运算符号“⊕”,规定a⊕b=4a+5b﹣12,则(﹣5)⊕6的值为.三、解答题(本大题共5个小题,共48分14.(16分)计算:(1)13﹣(﹣17)+(﹣5)﹣17;(2)﹣12022×[6﹣(﹣3)2]+7+(﹣);(3)4a﹣5b﹣6c+7b+8a+3c;(4)﹣(﹣3xy2)﹣(+4x2y)+3(﹣5xy2+2x2y).15.(8分)先化简,再求值:2a2b﹣[3ab2﹣2(ab﹣a2b)]﹣2ab,其中a,b满足|b+1|+(3a﹣6)2=0.16.(7分)如图,已知线段AB=23,BC=15,点M是AC的中点.(1)求线段AM的长;(2)在CB上取一点N,使得CN:NB=1:2,求线段MN的长.17.(7分)已知有a、b、c在数轴上所对应的点的位置如图,且|a|=|c|.(1)求a+c的值.(2)化简|a+b|﹣|a﹣b|+2(a+c﹣b).18.(10分)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?一、填空每小题4分共20分19.(4分)设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的有理数,那么a2﹣b2+2d﹣c=.20.(4分)已知代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y﹣1的值与字母x的取值无关,则的值为.21.(4分)已知:C==3,C==10,C==15,…,观察上面的计算过程,寻找规律并计算C=.22.(4分)现用棱长为1cm的若干小正方体,按如图所示的规律在地上搭建若个几何体,图中每个几何体自上而下分别叫第一层,第二层……第n层(n为正整数),其中第一层摆放一个小正方体,第二层摆放3个小正方体,第三层放6个小正方体……依次按此规律继续放n层,为了美观将每个几何体的所有漏出部分(不包含底面)都喷涂油漆,已知喷涂1cm2需要0.2克,则喷涂该几何体要油漆克.23.(4分)我们知道,在数轴上,点M,N分别表示数m,n,则点M.N之间的距离为项式|m﹣n|,知点A,B,C,D在数轴上分别表示数a,b,c,d,且|a﹣c|=|b﹣c|=|d﹣a|=2(a≠b),则线段BD的长度为.二、解答题(共30分)24.(8分)给出新定义如下:f(x)=|2x﹣2|,g(y)=|y+3|;例如:f(2)=|2×2﹣2|=2,g(﹣6)=|﹣6+3|=3;根据上述知识,解下列问题:(1)若x=﹣2,y=3,则f(x)+g(y)=;(2)若f(x)+g(y)=0;求2x﹣3y的值;(3)若x<﹣3,化简:f(x)+g(x);(结果用含x的代数式表示)(4)若f(x)+g(x)=5,求x的值.25.(10分)观察下列式子,并完成后面的问题:13+23=13+23+33=13+23+33+43=…(1)13+23+33+43+…+n3=;(2)(2n)3=2n×2n×2n=2×2×2n•n•n=23n3=8n3.你能利用上述关系计算23+43+63+83+…+203=;(3)得用(1)、(2)得到结论,73+93+…+193等于多少吗?并写出你是怎样得到的?26.(12分)已知数轴上有A、B、C三点分别表示数﹣24,﹣10,10,两只电子蚂蚁甲、乙分别从A、C 两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒(1)问甲、乙在数轴上的哪个点相遇?(2)同多少秒后甲到A、B、C三点的距离之和为46个单位?若此时甲调头往回走,甲、乙还能在数轴上相遇吗?若能求出相遇点若不能请说明理由.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁,Q表示乙蚂蚁)分别从A、C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变直,写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所在连线段的中点.。

成都七中初一上数学半期考试卷及答案

成都七中初一上数学半期考试卷及答案

2013—2014学年度七年级(上)数学半期试题(总分:120分检测时间120分钟命题人:陶远辉 审题人:孙华 魏进华温馨提示:请将所有答案均写在答题卷上,交卷时只交答题卷.....。

注意所有解答题均要有完整过程,书写要工整,格式要规范。

相信你,你将取得理想的成绩!A 卷(共100分)第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.在-2,0,1,-4这四个数中,最大的数是( ).A .-4B .-2C .0D .12.去年中央财政安排农村义务教育营养膳食补助资金共150.5亿元,150.5亿元用科学记数法表示为( ).A .910505.1⨯元B .1010505.1⨯元C .0.1505×1011元D .111005.15⨯元3.计算23-的值是( ).A .9B .-9C .6D .-64.下面说法正确的有( ).(1)正整数和负整数统称整数;(2)0既不是正数,又不是负数;(3)有绝对值最小的有理数;(4)正数和负数统称有理数.A .4个B .3个C .2个D .1个5.数轴上到2的距离等于5的点表示的数是( ).A .3B .7C .-3D .-3或76.若m 、n 满足0)2(122=-++n m ,则n m 的值等于( ).A .-1B .1C .-2D .41 7.用语言叙述代数式22b a -,正确的是( ).A .a ,b 两数的平方差B .a 与b 差的平方C .a 与b 平方的差D .b ,a 两数的平方差8.如图所示,A 、B 、C 、D 在同一条直线上,则图中共有线段的条数为( ).A .3B .4C .5D .69.如果整式252+--x x n 是关于x 的三次三项式,那么n 等于( ).A .3B .4C .5D .610.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有( )盒.A .8B .9C .10D .11第Ⅱ卷 (非选择题 共70分)二、填空题(每小题4分,共20分)11.计算-(-3)= ,|-3|= ,2)3(-= . 12.单项式-522y x 的系数是,次数是. 13.若53b a m 与124+n b a 是同类项,则n m +=.14.若m n n m -=-,且4=m ,3=n ,则2)(n m += .15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是.三、解答题(共50分)16.(6分)在数轴上表示下列各数,并用“<”号连接起来.)2(--,2-,211-,5.0,)3(--,4--,5.317.计算(每小题4分,共8分)(1)2132)5(22÷-+-⨯(2))2()211(4.03)3(2-÷⎥⎦⎤⎢⎣⎡-⨯+---18.化简(每小题5分,共10分)(1)ab b a a ab 2)2(2)32(+--+-.(2)先化简,再求值:)35()(235222222b a b a b a ---++,其中a =-1,b =21. 19.(6分)已知a 、b 、c 在数轴上的位置如图所示,化简:b a b c a --+--+-12a .20.(6分)已知:关于x 、y 的多项式b y ax x +-+2 与多项式3632-+-y x bx 的差的值与字母x 的取值无关,求代数式)4()2(32222b ab a b ab a ++---的值.21.(6分)小虫从A 点出发,在一条直线上来回地爬行,假定向右爬行的路程记作正数,向左爬行记作负数,爬行的各段路程(单位:cm ),依次记为:+6,-4,+10,-8,-7,+13,-9.解答下列问题:(1)小虫在爬行过程中离A 点最远有多少距离?(2)小虫爬行到最后时距离A 点有多远?(3)小虫一共爬行了多少厘米?22.(8分)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a (a >10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a 的代数式表示)(2)假如这个单位现组织共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请通过计算说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a ,则这七天的日期之和为.(用含a 的代数式表示.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性)B 卷(共20分)一、填空:(其中23、24小题每题2分,25小题3分,共7分)23.计算:20152016)3()3(-+-=.24.已知当3-=x 时,代数式13++bx ax 的值为8,那么当3=x 时,代数式13++bx ax 的值为.25.小明有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是.(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是.(3)从中取出除0以外的4.张.卡片,用学过的运算方法,使结果为24,写出运算式子(一种即可).二、探究题26.(7分)根据下面给出的数轴,解答下面的问题:⑴请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A :, B :.⑵观察数轴,与点A 的距离为4的点表示的数是:.⑶若将数轴折叠,使得A 点与-2表示的点重合,则①B 点与哪个数表示的点重合?②若数轴上M 、N 两点之间的距离为2011 (M 在N 的左侧),且M 、N 两点经过折叠后互相重合,求M 、N 两点表示的数分别是多少。

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)

四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)1 / 12四川省成都七中2018-2019学年七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分) 1. 中国很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章在世界数学史首次正式引入负数,如果收入200元,记作: 元,那么 元表示 A. 支出140元 B. 收入140元 C. 支出60元 D. 收入60元 【答案】C【解析】解:如果收入200元,记作: 元,那么 元表示支出60元, 故选:C .首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2. 2018年9月20日至24日,第十七届中国西部国际博览会在四川成都举行,本次西博会上签约投资合作项目总投资约7900亿元,用科学记数法表示7900亿元为 元.A. B. C. D. 【答案】D【解析】解:将 用科学记数法表示为: . 故选:D .科学记数法的表示形式为 的形式,其中 ,n 为整数 确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同 当原数绝对值 时,n 是正数;当原数的绝对值 时,n 是负数.此题考查了科学记数法的表示方法 科学记数法的表示形式为 的形式,其中 ,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 如图所示的几何体的截面是A.B.C.D.【答案】B【解析】解:由图可得,截面的交线有4条,截面是四边形且邻边不相等,故选:B.根据截面与几何体的交线,即可得到截面的形状.本题考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.4.若a、b互为相反数,cd互为倒数,则的值是A. B. C. D. 1【答案】B【解析】解:、b互为相反数,cd互为倒数,,,,故选:B.根据a、b互为相反数,cd互为倒数,可以求得所求式子的值本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.5.点A在数轴上距原点3个单位长度,且位于原点左侧,若一个点从点A处左移4个单位长度,再右移1个单位长度,此时终点所表示的数是A. B. C. D. 0【答案】B【解析】解:点A在数轴上距离原点3个单位长度,且位于原点左侧若一个点从点A 处左移动4个单位长度,再右移1个单位长度,点A表示的数是,,即点A最终的位置在数轴上所表示的数是.故选:B.根据数轴上点的运动规律“左减右加”解答此题.本题考查数轴,解题的关键是能看懂题意,根据题意可以得到点A的运动路线.6.已知单项式与互为同类项,则为A. 1B. 2C. 3D. 4【答案】D【解析】解:单项式与互为同类项,,,,.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)则.故选:D.根据同类项的概念求解.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.7.下列各组运算中,运算中结果相同的是A. 和B. 和C. 和D. 和【答案】A【解析】解:,,此选项符合题意;B.,,此选项不符合题意;C.,,此选项不符合题意;D.,,此选项不符合题意;故选:A.根据有理数的乘方的运算法则逐一计算可得.本题主要考查有理数的乘方,解题的关键是熟练掌握有理数的乘方的运算法则.8.下列各式一定成立的是A. B.C. D.【答案】C【解析】解:A、原式,故本选项错误.B、原式,故本选项错误.C、原式,故本选项正确.D、原式,故本选项错误.故选:C.根据去括号与添括号的方法解答.考查了去括号与添括号去括号规律: ,括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项不变号; ,括号前是“”号,去括号时连同它前面的“”号一起去掉,括号内各项都要变号.9.已知,则代数式的值为A. 18B. 14C. 6D. 2【答案】A【解析】解:,原式,故选:A.原式变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.10.现有五种说法: 一个数,如果不是正数,必定是负数; 几个有理数相乘,当负因数有偶数个时,积的符号为正; 两数相减,差一定小于被减数;是5次单项式;是多项式其中错误的说法有3 / 12A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:一个数,如果不是正数,必定是负数和0,故 错误;几个不等于0有理数相乘,当负因数有偶数个时,积的符号为正,故 错误;如,所以两数相减,差不一定小于被减数,故 错误;是3次单项式,故 错误;是多项式,故 正确;即错误的个数是4个,故选:D.根据实数的分类、有理数的乘法法则、有理数的减法法则、单项式的次数、多项式的定义逐个判断即可.本题考查了实数的分类、有理数的乘法法则、有理数的减法法则、单项式的次数、多项式的定义等知识点,能熟记知识点的内容是解此题的关键.二、填空题(本大题共8小题,共32.0分)11.比较大小:______.【答案】【解析】解:,,,.故答案为:.根据两个负数相比较,绝对值大的反而小可得答案.此题主要考查了有理数的比较大小,关键是掌握有理数大小比较的法则: 正数都大于0; 负数都小于0; 正数大于一切负数; 两个负数,绝对值大的其值反而小.12.是一个______次二项式.【答案】五【解析】解:是一个五次二项式.故答案为:五.利用多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.此题主要考查了多项式的次数,正确把握相关定义是解题关键.13.绝对值大于1不大于4的所有负整数的积为______.【答案】【解析】解:绝对值大于1不大于4的所有负整数为,,,积为,故答案为:.先求出绝对值大于1不大于4的所有负整数,再求出积即可.本题考查了有理数的大小比较法则、绝对值和有理数的乘法,能求出绝对值大于1不大于4的所有负整数是解此题的关键.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)14.某果园去年的产值是x万元,今年的产值比去年增加,今年的产值是______万元.【答案】【解析】解:根据题意知,今年的产值是万元,故答案为:.今年的产值等于去年的产值加上增产的产值,由此列出代数式即可.此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.15.,,且有,则______.【答案】【解析】解:,,,,又,,或,;当,时,;当,时,;综上,,故答案为:.根据绝对值的定义,求出a,b的值,再由,得a,b异号,从而求得的值.本题考查了有理数的加法、乘法和绝对值运算,注互为相反数的两个数的绝对值相等.16.已知多项式是三次三项式,则m的值为______.【答案】【解析】解:由题意得:,且,解得:.故答案为:.根据多项式次数定义可得,再根据项数定义可得,再解即可.此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.17.定义:若,则称a与b是关于数n的“平衡数”比如3与是关于的“平衡数”,5与12是关于17的“平衡数”现有与为常数始终是数n的“平衡数”,则它们是关于______的“平衡数”.【答案】12【解析】解:与为常数始终是数n的“平衡数”,,即,解得:,即,故答案为:12利用“平衡数”的定义判断即可.此题考查了整式的加减,弄清题中的新定义是解本题的关键.5 / 1218.小明家有一个如图的无盖长方体纸盒,现沿着该纸盒的棱将纸盒剪开,得到其平面展开图若长方体纸盒的长、宽、高分别是a,b,单位:cm,则它的展开图周长最大时,用含a,b,c的代数式表示最大周长为______cm.【答案】【解析】解:如图:,这个平面图形的最大周长是.故答案为:.根据边长最长的都剪,边长最短的剪的最少,可得答案.此题主要考查了长方体的展开图的性质,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.三、计算题(本大题共3小题,共32.0分)19.计算:【答案】解:;;;.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)【解析】根据有理数的加法可以解答本题;根据有理数的乘除法可以解答本题;先算小括号里的,再根据有理数的除法即可解答本题;先算小括号里的,再算中括号里的,然后根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.20.已知,.求;现有,当,时,求C的值.【答案】解:,,;,,当,时,.【解析】将,整体代入后化简即可;由可得,将,整体代入并且化简,再把,代入计算即可.本题考查了整式的加减,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成半径相同请用代数式表示装饰物的面积:______,用代数式表示窗户能射进阳光的面积是______结果保留当,时,求窗户能射进阳光的面积是多少?取小亮又设计了如图2的窗帘由一个半圆和两个四分之一圆组成,半径相同,请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?7 / 12【答案】【解析】解:根据圆的面积公式:装饰物的面积是,窗户能射进阳光部分面积是窗户的面积减去装饰物的面积,窗户能射进阳光的面积是;当,时,;如图2,窗户能射进阳光的面积,,,此时,窗户能射进阳光的面积更大,,此时,窗户能射进阳光的面积比原来大.故答案为:,根据圆的面积公式求出即可;根据长方形的面积公式列出式子,再根据圆的面积公式求出阴影部分的面积,再相减即可;根据得出的式子,再把a、b的数值代入即可求出答案;利用的方法列出代数式,两者相比较即可.此题考查列代数式以及代数式求值,注意利用长方形和圆的面积解决问题.四、解答题(本大题共6小题,共52.0分)22.化简:.【答案】解:.【解析】直接去括号再合并同类项得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.23.如图是5块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面对应的位置分别画出你所看到的几何体的形状图.四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)【答案】解:三视图如图所示:【解析】根据主视图,左视图,俯视图的定义画出图形即可;本题考查作图三视图,解题的关键是理解主视图,左视图,俯视图的意义,属于中考常考题型.24.已知有理数a,b,c在数轴上对应位置如图所示:请用“”将a,b,c连接起来为______;试判断:______0,______0;化简:;【答案】【解析】解:由图可得:,;;;;故答案为:;;.根据有理数的大小比较即可;根据有理数的大小比较解答即可;根据绝对值化简解答即可.本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.25.为了鼓励居民节约用电,某市执行居民生活用电实行阶梯电价标准:每户每月用电量不超过180度的部分,每度电元,超过180度的部分,每度元;市民陈先生家7月份用电量为300度,陈先生7月份的电费应为多少元?陈先生8月份交了238元电费,请计算出陈先生8月份的用电量应为多少度?陈先生一家积极响应号召节约用电,9月份的一家用电量为x度取整数,请用含x的代数式表示陈先生一家9月份应交多少元电费?【答案】解:元.答:陈先生7月份的电费应为186元.设陈先生8月份的用电量为x度,,.根据题意得:,解得:.答:陈先生8月份的用电量应为380度.设陈先生一家9月份应交y元电费.根据题意得:当时,;9 / 12当时,.综上所述:陈先生一家9月份应交电费金额为.【解析】根据居民生活用电阶梯电价标准,即可求出陈先生7月份应交电费;设陈先生8月份的用电量为x度,结合可得出,由居民生活用电阶梯电价标准及陈先生8月份交了238元电费,即可得出关于x的一元一次方程,解之即可得出结论;设陈先生一家9月份应交y元电费,分及两种情况,找出y关于x的关系式,此题得解.本题考查了一元一次方程的应用、有理数的混合运算以及列代数式,解题的关键是:根据居民生活用电阶梯电价标准,列式计算;找准等量关系,正确列出一元一次方程;分及两种情况,找出y关于x的关系式.26.【情景背景】如图所示,将一个边长为1的正方形纸片分割成7个部分,部分 是边长为1的正方形纸片面积的一半,部分 是部分 面积的一半,部分 是部分 面积的一半,以此类推.如图中的阴影部分面积是______;受此启发,得到______;进而计算:______;【迁移应用】计算:______;【解决问题】计算;【答案】【解析】解:如图中的阴影部分面积是,故答案为:;受此启发,得到,故答案为:;,故答案为:;【迁移应用】设,则,,化简,得,四川省成都七中2018-2019年七年级(上)期中数学试卷(解析版)故答案为:;【解决问题】令,,,化简,得,原式.根据题意和图形可以解答本题;根据中的结果可以求得所求式子的值;根据题目中式子的特点可以求得所求式子的值;【迁移应用】根据题目中式子的特点可以求得所求式子的值;【解决问题】根据题目中式子的特点可以求得所求式子的值.本题考查数字的变化类、有理数的混合运算、列代数式,解答本题的关键是明确题意,求出所求式子的值.27.如图,在数轴上点A、B、C、D对应的数分别是a,b,c,d其中a,b满足.求A,B两点之间的距离;数轴上点A的左侧的点C,使,且满足,求数d.现在A、B两处分别放置一个小球,C、D两处分别放置一块挡板,已知小球以某一速度撞向另一静止小球时,这个小球停留在被撞小区的位置,被撞小球则以同样的速度向前运动,小球撞到左右挡板后以相同的速度反向运动,现A球以每秒1个单位长度的速度向右匀速运动,设运动的时间为秒;为何值时B球第二次撞向右侧挡板;在这段时间内,A、B两小球的距离为4时,请直接写出此时b的值.【答案】解:.,,,,;数轴上点A的左侧的点C,使,,,,11 / 12;根据题意可知,当B球第二次撞向右侧挡板时小球共行的路程为:,秒,故t为36秒时B球第二次撞向右侧挡板;,,在这段时间内,A、B两小球的距离为4时,此时或6.【解析】根据非负数的性质,求出a和b便可;先根据,列出c的方程求得c,再根据,求得结果;求出当B球第二次撞向右侧挡板时小球共行的路程便可;距原B球左右4个单位长度的点表示的数便是所求结果.本题主要考查了数轴的性质,涉及求数轴上两点的距离,非负数的性质,一元一次方程的应用,基础题,难度不大,关键是掌握两点距离公式体现数形结合的思想.。

成都七中初中初一上期数学试卷及详解

成都七中初中初一上期数学试卷及详解

2018-2019某七初初一(上)数学半期
匹配度分析
【某七初半期第3题】【秋季.勤思班.第一讲例题3;敏学班,第一讲例题
4】
【某七初半期第4题】【秋季.勤思班.第二讲.例题3(1)】
【某七初半期第5题】【秋季.敏学班.第二讲.例题6】
【某七初半期第9题】【秋季.勤思班.第五讲.例题6】
【某七初半期第17题】【秋季.勤思班.第一讲例题6】
【某七初半期第18题】【秋季.敏学班.第五讲.例题5】【某七初半期第19题】【秋季.敏学班.第四讲.例题1(1)】【某七初半期第23题】【秋季.勤思班.第五讲.例题4】【某七初半期第27题】【秋季.敏学班.第三讲.例题7】
【某七初半期第28题】【秋季.国庆短期班A班.第二讲.例题5】。

四川省成都七中2022-2023学年度上期初一半期数学试题及参考答案

四川省成都七中2022-2023学年度上期初一半期数学试题及参考答案

2022-2023学年度上期初2022级半期考试数学参考答案A卷(100分)一.选择题(共8小题,每题4分,满分32分)1.【解答】解:根据“点动成线,线动成面,面动成体”,将矩形纸片ABCD绕边CD所在直线旋转一周,所得到的立体图形是圆柱.故选:A.2.【解答】解:流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是点动成线.故选:A.3.【解答】解:如果运进粮食20t记作:+20t,那么运出粮食15t记作﹣15t,故选:C.4.【解答】解:将67000吨用科学记数法表示为:6.7×104吨.故选:B.5.【解答】解:从上面看的视图中可以看出最底层小正方体的个数为6,从正面看的视图可以看出小正方体的层数为1、2、1层,从左面看的视图可以看出小正方体的层数为1、2、1层,所以该几何体的正中间是两个小正方体.所以构成这个立体图形的小正方体的个数为6+1=7(个)故选:B.6.【解答】解:∵6+(﹣4)=6﹣4=2,∴A选项符合题意;∵﹣9﹣(﹣4)=﹣9+4=﹣5,∴B选项不符合题意;∵|﹣9|+4=9+4=13,∴C选项不符合题意;∵﹣9﹣4=﹣(9+4)=﹣13,∴D选项不符合题意;故选:A.7.【解答】解:由题意可知:x=±3,y=±6,∵x>y,∴x=3,y=﹣6或x=﹣3,y=﹣6,当x=3,y=﹣6时,x+y2=3+(-6)2=39,当x=﹣3,y=﹣6时,x+y2=﹣3+(﹣6)2=﹣33,故选:B.8.【解答】解:A、ab<0,故A符合题意;B、a+b>0,正确,故B不符合题意;C、a﹣b>0,正确,故C不符合题意;D、|a|﹣|b|>0,正确,故D不符合题意.故选:A.二.填空题(共5小题,每题4分,共20分)9.【解答】解:﹣3<;∵|﹣|=,|﹣|=,>,∴﹣>﹣.故答案为:<;>.10.【解答】解:由n棱柱有3n条棱,所以一个棱柱有18条棱,则它是18÷3=6,因此它是六棱柱,而六棱柱有6+2=8个面,故答案为:八.11.【解答】解:在图中添加一个小正方形,使它能折成一个正方体的情况如下:故答案为:4.12.【解答】解:当点B在A的左边时,﹣1﹣3=﹣4,当点B在A的右边时,﹣1+3=2,故答案为:2或﹣4.13.【解答】解:∵(a﹣3)4+|b+7|=0,∴a﹣3=0,b+7=0,∴a=3,b=﹣7,∴a+b=3﹣7=﹣4.故答案为:﹣4.三.解答题(共5小题,共48分)14.计算(20分,每小题4分):【解答】解:(1)原式=﹣2﹣3﹣1+5=﹣1;(2)原式=(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣4+15=29;(3)原式=﹣1×2+4÷4=﹣2+1=﹣1;(4)原式=﹣4﹣6+=﹣9;(5)原式=﹣9÷9+6+4=﹣1+6+4=9.15.(6分)【解答】解:如图所示:(各2分)从正面看从左面看从上面看16.(6分)【解答】解:∵a,b互为倒数,c,d互为相反数,x的平方是3∴ab=1,c+d=0,x=3或-3,(3分)则原式=9﹣(1+0)+1=9﹣1+1=9或原式=-9﹣(1+0)+1=-9.(2分)则原式的答案为9或-9.(1分)17.(8分)【解答】 ,,a b c 都是非零有理数,,a b c ∴均为正数或者均为负数或者有一个或两个数为负数因此,分以下四种情况:(1)当,,a b c 均为正数时,则0abc >,则|U +|U +|U +B |BU =+++B B =1+1+1+1=4;(2分)(2)当,,a b c 均为负数时,则0abc <,则|U +|U +|U +B |BU =−+−+−+B −B=-1+(-1)+(-1)+(-1)=-4;(2分)(3)当,,a b c 中有一个数为负数时,不妨设a 为负数,则0abc <,|U +|U +|U +B |BU =−+++B −B =-1+1+1+(-1)=0;(2分)(4)当,,a b c 中有两个数为负数时,不妨设a 和b 为负数,则0abc >,|U +|U+|U +B |BU =−+−++B B =-1+(-1)+1+1=0;(2分)综上,|U +|U +|U +B |BU 的值为0,-4或4.18.(8分)【解答】解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2分)(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3分)(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).(3分)故本周口罩加工厂应支付工人的工资总额是7120元.(不作答-1分)B 卷(50分)一.填空题(共5小题,每题4分,共20分)19.【解答】解:2021的相反数是﹣2021,|﹣2021|=2021.故答案为:2021.20.【解答】解:∵折成正方体后,x,y与其相对面上的数字相等,∴x=﹣2,y=3,∴x y=(﹣2)3=﹣8.故答案为:﹣8.21.【解答】解:|-1|+(-3)+|-5|+(-7)+···+|-97|+(-99)=-2+-2+···+-2两两组合,每一个组合的和为-2,一共有(99-1)/2+1=50个数,共25组,故答案为-50.22.【解答】解:|x+8|+|x−3|表示x到-8的距离与x到3的距离的和,由数形结合可知,x为4或-9.23.【解答】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.二.解答题(共3小题,共30分)24.(8分)【解答】解:(1)∵3>2>1>0>﹣1>﹣2,(不作答-1分)∴47+3=50(元),47﹣2=45(元),50﹣45=5(元),答:价格最高的一件比价格最低一件多5元;(2分)(2)7×3+6×2+3×1+5×0+4×(﹣1)+5×(﹣2)=22(元),答:总售价超过22元;(3分)(3)(47﹣32)×30=450(元),450+22=472(元),答:赚了472元.(3分)25.(10分)【解答】解:(不作答-1分)(1)V=8×5×6=240(立方厘米)(3分)(2)V=8×5×6﹣π×22×6=240﹣24π(立方厘米).(3分)(3)2×(5×6+5×8+6×8)﹣2π×22+6×2π×2=16π+236(平方厘米)表面积为16π+236平方厘米.(4分)26.(12分)【解答】解:(1)由题意知:OC=120,∴当P运动到点C时,t=120÷4=30(秒);(3分)(2)①当点P、Q还没有相遇时,4t+6t=120﹣60,解得:t=6,(2分)②当点P、Q相遇后,4t+6t=120+60,解得:t=18,(2分)综上所述,经过6秒或18秒P,Q两点相距60cm;(3)∵PA+PB=2|QB﹣QC|=48,∴PA+PB=48,|QB﹣QC|=24,∵在数轴上,点A对应的数为40,点B对应的数为80,点C对应的数为120,∴点P对应的数为36或84(1分),点Q对应的数为88或112,(1分)①点P对应的数为36时,OP=36,t=36÷4=9(s),若点Q对应的数为88时,CQ=120﹣88=32,a=32÷9=,(0.5分)若点Q对应的数为112时,CQ=120﹣112=8,a=8÷9=(舍弃),(0.5分)②点P对应的数为82时,OP=82,t=82÷4=21(s),若点Q对应的数为88时,CQ=120﹣88=32,a=32÷21=,(0.5分)若点Q对应的数为112时,CQ=120﹣112=8,a=8÷21=(舍弃),(0.5分)(舍弃给1分)综上所述,点Q的运动速度为:单位长度/秒或单位长度/秒.。

四川省成都七中初中学校2020届半期考试(数学)答案解析

四川省成都七中初中学校2020届半期考试(数学)答案解析

四川省成都七中初中学校2020届半期考试(数学)一、选择题(共10小题,共0分)1.如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是( )A:B:C:D:【考点】简单几何体的三视图【分析】本题主要考查简单几何体的三视图,解答本题的关键是熟练掌握几何体的三视图.【解答】解:主视图即从正看,本题几何体两层,上层两个小正方体,下层左对齐三个小正方体,所以主视图应两行,上面一行两个小正方形,下面一行左对齐三个小正方形.故选D.【答案】 D2.的倒数是( )A:B:C:D:【考点】【分析】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.根据乘积为1的两个数互为倒数,可得答案. 【解答】解:的倒数是,故选C.【答案】 C3.在-2,π,15,0,,六个数中,整数的个数为( )A:1B:2C:3D:4【考点】实数【分析】解:因为-2、15、0是整数,π是无理数,、是分数.所以整数共3个.故选C.先判断每个数是什么数,最后得到整数的个数.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.【答案】 C4.下列各数-2,,,中最大的是( )A:-2B:C:,D:【考点】绝对值(二),有理数的大小比较【分析】本题主要考查比较有理数的大小,解答本题的关键是熟练掌握比较有理数的大小的法则.【解答】解:所有正数大于负数,所以A、C排除,.【答案】 B5.作为世界文化遗产的长城,其总长大约为将用科学记数法表示为( )A:B:C:D:【考点】科学记数法与有效数字【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n是负数.【解答】解:,故选B.【答案】B6.下列关于单项式的说法中,正确的是( )A:系数是3,次数是2B:系数是,次数是2C:系数是,次数是2D:系数是,次数是3【考点】单项式【分析】本题主要考查单项式,解答本题的关键是熟练掌握单项式的系数和次数的定义.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是,次数是2,只有C正确.【答案】 C7.下列各式运算正确的是( )A:B:C:D:【考点】合并同类项,去括号与添括号【分析】解:A、,故此选项错误;B、,无法合并,故此选项错误;C、,故此选项错误;D、,正确.故选:D.直接利用合并同类项法则判断得出答案.此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.【答案】 D8.若与是同类项,则ab的值为( )A:1B:2C:3D:4【考点】代数式求值,合并同类项【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.根据同类项中相同字母的指数相同的概念求解.【解答】解:与是同类项,,b=1,则.故选B.【答案】 B9. 已知:,则( )A:0B:C:2D:4【考点】绝对值(二)【分析】本题考查的是非负数的性质,掌握有限个非负数的和为零,那么每一个加数也必为零是解题的关键.【解答】解:,,,解得a=1,..故选A.【答案】 A10.某企业去年产值p万元,今年比去年增产,今年产值是( ) A:万元B:万元C:万元D:万元【考点】列代数式【分析】本题考查了增长率的知识,增长后的收入增长前的收入,今年产值去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值万元,故选A.【答案】 A二、填空题(共10小题,共0分)1.一个直棱柱有12条棱,则它是______棱柱.【考点】点、线、面、体【分析】本题考查了棱柱的相关知识.由棱数除以3判断棱柱的名称是解题关键.【解答】解:一个棱柱有12条棱,这是一个四棱柱,它有6个面.故答案为四.【答案】四2.多项式是____次____项式.【考点】多项式【分析】此题考查了多项式的项和次数的定义.一个多项式含有几项,就叫几项式;多项式中次数最高的项的次数叫做多项式的次数;如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.根据多项式的项和次数的定义求解即可.【解答】解:是四次五项式.故答案为四;五.【答案】四;五3. 绝对值小于4.5的所有整数的和为_____.【考点】绝对值(二),有理数的加法【分析】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.找出绝对值小于4.5的所有负整数,求出之和即可.【解答】解:绝对值小于4.5的所有负整数为-4,-3,-2,-1,0、1、2、3、4 之和为.故答案为0.【答案】4.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则_____.【考点】代数式求值【分析】本题考查了正方体的展开图形,注意从相对面入手,分析解答问题.利用正方体及其表面展开图的特点,根据相对面上的两个数之和为0,也就是互为相反数,求出x、y的值,从而得到的值.【解答】解:解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之和为0,,,.故答案为-10.【答案】-105.当a=____时,有最小值,且最小值是_____.【考点】绝对值(二)【分析】本题考查的是绝对值的性质,掌握任意一个数的绝对值都是非负数是解题的关键.根据任意一个数的绝对值都是非负数进行解答.【解答】解:由于绝对值是非负数,那么取得最小值时,,由此可判断出最小值.,∴当时,即a=1时的值最小为2故答案为1,2.【答案】1,26.若单项式与的和仍是单项式,`则______.【考点】代数式求值,合并同类项,一元一次方程【分析】本题考查了同类项的知识,掌握同类项中的两个相同:(1)所含字母相同,(2)相同字母的指数相同,是解答本题的关键.先判断出-x y与 x y是同类项,然后根据同类项所含相同字母的指数相同可得出m、n的值,代入即可得出答案.【解答】解:∵单项式与 x y的和仍为单项式,∴单项式与 x y是同类项,,,故m =-2,∴ m (-2)故答案为 4.【答案】47.若关于x、y的多项式化简后不含二次项,则m=______ .【考点】多项式【分析】解:,因为化简后不含二次项,所以,解得.故答案为:.首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.此题考查并同类项的方法,明确没有某一项的含义,就是这一项的系数为0.【答案】8.已知,则代数式的值为 ______ .【考点】整式加减运算法则【分析】解:原式,故答案为:-10.把,代入代数式进行计算即可.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.【答案】 -109.已知,,且,求_____.【考点】绝对值(二)【分析】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,根据绝对值的性质求出a、b的值,再根据负数的绝对值等于它的相反数解答.【解答】解:,,,,,,即,或,b=2 ,或,综上所述,或-5.故答案为-1或-5.【答案】-1或-510.我们将记作读作n的阶乘),如:,,,若设,则S除以的余数是_____.【考点】有理数的除法【分析】本题考查规律型:数字的变化类,解答此类问题的关键是弄清新定义,得出的数据变化的规律是解题的关键.由知,可将原式两边都加上,即可得,所以S除以的余数是-1,再根据能被整除,求出S除以的余数是多少即可.【解答】解:,,即,则,能被整除,与1的和能被整除,除以的余数是:.故答案为.【答案】三、计算题(共3小题,共0分)1.计算题(1)(3)【考点】有理数的混合运算【分析】此题考查有理数的混合运算,先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的.(1)小数与小数相加减,分数与分数相加减,再计算即可;(2)先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的;(3)先算乘方,再算乘除,最后算加减,如果有括号,先算括号里的;(4)先利用乘法分配律计算,再相减.【答案】解:=-7;(2);=3;=25.2.化简(或求值)先化简,再求值:,其中,.【考点】代数式求值,合并同类项,去括号与添括号,整式加减运算法则【分析】本题主要考查整式的加减,解答本题的关键是熟练掌握去括号和合并同类项.(1)去括号、合并同类项即可;(2)去括号、合并同类项,注意第二个括号有两层,可由里向外去;(3)先去括号合并同类项把原式化简,再代入求值即可.【答案】(1)解:原式(2)原式(3)原式把,代入得:=4.3. 已知a、b互为相反数,c、d互为倒数,m的平方是4,求的值.【考点】相反数,有理数的乘方(二),平方根,代数式求值【分析】本题考查了代数式求值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.根据相反数、倒数和平方的意义得到,,,分别代入计算即可.【答案】解:、b互为相反数,c、d互为倒数,m的平方是4,,,,∴原式=,当m=2时,原式;当原式,即的值为5或-11.四、解答题(共6小题,共0分)1.画出如图所示几何体的主视图、左视图、俯视图.【考点】简单几何体的三视图【分析】此题考查几何体的三视图.分别找到从正面,左面,上面看得到的图形即可,看到的棱用实线表示,实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【答案】解:如图所示:2.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的-3-201 2.5差值(单位:千克)筐数142328筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?【考点】正数与负数,有理数的加法,有理数减法法则,有理数的乘法,有理数的混合运算【分析】本题考查的知识点有正数和负数、有理数加法、有理数减法、有理数乘法、有理数的混合运算.解题关键是读懂题意,分别列式计算.(1)把最重的一筐与最轻的一筐相减即可;(2)将20筐白菜的重量相加计算即可;(3)将总质量乘以每千克售价2.6元并计算即可.【答案】解:(1)千克).答:最重的一筐比最轻的一筐重5.5千克.=8(千克).答:20筐白菜总计超过8千克.元).答:出售这20筐白菜可卖元.3.周末小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元.两家都有优惠:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠.小明爸爸需茶壶5把,茶杯x只(x不小于5).(1)若在甲店购买,则总共需要付\_ 元;若在乙店购买,则总共需要付_______ 元.(用含x的代数式表示并化简.)(2)当需购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?【考点】一元一次方程的应用【分析】本题主要考查了一元一次方程的应用,根据题意先求出两家的收费表达式是关键.(1)设购买x只茶杯时,甲商场收费为30,在乙商场收费为;(2)把分别代入(1)中的两店表达式,款数较少的甲店为所选.【答案】解:(1)设购买x只茶杯时,在两家商店所需付款分别为:甲店:乙店:;(2)把分别代入(1)中得甲店为元,乙店为元,答:当需购买15只茶杯时,选择去甲店购买更合算.4. 已知数a、b、c在数轴上的位置如图所示,化简.【考点】绝对值(二),整式加减运算法则【分析】本题考查了整式的加减;熟练掌握绝对值的性质得出各式的绝对值是解决问题的关键.先根据题意得出a、b、c的取值范围,再得出a+b,,a+c的正负性,根据绝对值的性质求出各式的绝对值,化简合并即可.【解答】解:根据题意得:,,,,,,∴原式.故答案为-2c.【答案】-2c5. 已知,.(1)若与的和仍是单项式,求的值;(2)若的值与y的值无关,求x的值.【考点】非负数的性质:偶次方,合并同类项,去括号与添括号,整式加减运算法则,一元一次方程【分析】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.(1)先根据单项式的定义求出x、y的值,再求即可.(2)根据的值与y无关,令含y的项系数为0,解关于x的一元一次方程即可求得x的值.【答案】解:(1)由题意与的和仍是单项式得:x=2,,解得:y=3.所以:.将x=2,y=3,代入得:原式=26.(2)由(1)得,.由题得,,所以.6. 在数轴上,点M,N表示的数分别为,,我们把,之差的绝对值叫做点M,N之间的距离,即已知数轴上三点A,O,B表示的数分别为-3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)若,则x=________;(3)若,求x的取值范围?(4)若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,【考点】数轴,绝对值(二),一元一次方程【分析】本题考查了绝对值,数轴,主要利用了数轴上两点间的距离的表示方法,读懂题目信息,理解两点间的距离的表示方法是解题的关键.(1)根据数轴上两点间的距离的表示列出方程求解即可;(2)根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可;(3)根据点P在B点或B点右边,然后写出x的取值范围即可;(4)设运动时间为t,分别表示出点P、E、F所表示的数,然后根据两点间的距离的表示列出绝对值方程,然后求解即可.【解答】解:(1)由题意得,,解得;故答案为故答案为-1;,点P到点A,点B的距离之和是6,∴点P在点A的左边时,,解得,点P在点B的右边时,,解得x=2,综上所述,或2;故答案为故答案为-4或2;见答案.【答案】解:;或2;(3)根据题意得:,则点P在B点或B点右边,;(4)设运动时间为t,点P表示的数为-3t,点E表示的数为,点F表示的数为,∵点P到点E,点F的距离相等,,解得或t=2.。

2020-2021学年四川省成都七中嘉祥外国语学校七年级(上)期中数学试卷

2020-2021学年四川省成都七中嘉祥外国语学校七年级(上)期中数学试卷

2020-2021学年四川省成都七中嘉祥外国语学校七年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各组数中,互为相反数的是()A.﹣2和|﹣2|B.﹣2和﹣C.2和D.和﹣2.若3x n+5y与﹣x3y是同类项,则n=()A.2B.﹣5C.﹣2D.53.化简:(3a﹣b)﹣3(a+3b)=()A.8b B.﹣10b C.﹣2a D.﹣2a﹣10b4.在一条东西方向的跑道上,小亮先向西走了20米,记作“﹣20米”,接着又向东走了8米,此时小亮的位置可记作()A.+12米B.﹣12米C.+8米D.﹣28米5.用“<”号连接三个数:|﹣3.5|,﹣,0.75,正确的是()A.﹣<0.75<|﹣3.5|B.﹣<|﹣3.5|<0.75C.|﹣3.5|<﹣<0.75D.0.75<|﹣3.5|<﹣6.下面立体图形中,从正面、侧面、上面看,都不能看到长方形的是()A.长方体B.圆柱C.圆锥D.正四棱锥7.如图所示,三角尺阴影部分的面积为()A.ab﹣r2B.ab﹣r2C.ab﹣πr2D.ab8.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费12元;超过5千克的部分每千克收2元.圆圆在该快递公司寄一件8千克的物品,需要付费()A.17元B.18元C.21元D.23元9.在数轴上,点A,B在原点O的两侧,分别表示数a,3,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.﹣5B.﹣4C.﹣3D.﹣210.一个整数80160…0用科学记数法表示为8.016×1012,则原数中“0”的个数为()A.8B.9C.10D.1111.定义:若a+b=2n,则称a与b是关于数n的平均数.比如3与﹣4是关于﹣的平均数,7与13是关于10的平均数.现有a=3x2﹣10kx+13与b=﹣3x2+5x﹣2k(k为常数)始终是关于数n的平均数,则n =()A.9B.8C.7D.612.世界上最著名的数列之一﹣﹣斐波那契数列,是从兔子繁殖问题引申出的一个数学模型.兔子在出生两个月后就具有繁殖能力,一对兔子每个月能生出一对小兔子.如果所有兔子都不死,那么一年后可以繁殖的兔子的对数会成斐波那契数列.斐波那契数列1,1,2,3,5,8,13,21,…的排列规律是:从第3个数开始,每一个数都是它前面两个数的和.在斐波那契数列的前2021个数中,共出现的偶数的个数为()A.670B.671C.672D.673二、填空题(本大题共6小题,每小题4分共24分.把答案填在题中横线上)13.如图,斜四棱柱中,一共有条棱.14.若一个数比x的2倍小3,则这个数可表示为.15.当1<x<5时,化简|x﹣1|+|x﹣6|=.16.如图,某校礼堂的座位分为四个区域,前区一共有10排,其中第1排共有20个座位(含左,右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.17.当x=﹣1时,代数式2ax3﹣7bx﹣5的值为3,则21b﹣6a+10=.18.把四张大小相同的长方形卡片(如图①)按图②、图③两种放法放在一个底面为长方形(长为m,宽为n)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长为C1,图③中阴影部分的周长为C2,则C1﹣C2=.三、解答题(本大题共10小题解答应写出文字说明,证明过程或演算步骤,共90分)19.计算:(1)(﹣)﹣15+(﹣);(2)(﹣8.73)÷7.5.20.计算:(1)(﹣3)2×[﹣+(﹣)];(2)16÷(﹣2)3﹣(﹣)×(﹣4).21.9a2﹣[7a2﹣2a﹣2(a2﹣3a)]﹣3.22.先化简,再求值:,其中x=6,.23.计算:.24.生活中,我们常常见到一些精美的纸质包装盒,现有一正体形状的无盖纸盒,在盒底上印有一个兑奖的标志“囍”字,如图1所示.现请同学们用剪刀沿这个正方体纸盒的棱将这个纸盒剪开,使之展开成一平面图形,那么,能剪出许多种不同情况的展开图.图2是其中一种展开图,请把剪开后展成的平面图形再画出两种不情况,要求展开图中的标志“囍”字是正立着的.25.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.26.已知c<0<a,ab<0,|c|>|a|>|b|,化简:|b|﹣|a+b|﹣|c﹣a|+|b﹣c|.27.整除是指整数a除以自然数b除得的商正好是整数而余数是零,就说a能被b整除(或说b能整除a),记作b|a,读作“b整除a”或“a能被b整除”.已知a、b为整数,且n=10a+b.如果17|a﹣5b,试证明:17|n.28.某商店积压了100件某种商品,为让这批货尽快脱手,该商品采取了如下销售方案:将价格提高到原价的2.5倍,再作三次降价处理:第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.结果:第一次降价处理,仅售出10件;第二次降价处理,售出40件;第三次降价处理,剩下商品被一抢而空.问:(1)跳楼价占原价的百分比为多少?(2)该商品按新销售方案,相比按原价全部销售,哪一种方案更盈利?参考答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A;2.C;3.B;4.B;5.A;6.C;7.C;8.B;9.B;10.C;11.D;12.A;二、填空题(本大题共6小题,每小题4分共24分.把答案填在题中横线上)13.12;14.2x﹣3;15.5;16.;17.34;18.2m﹣2n;。

2020年成都七(上)半期数学考试试卷及答案

2020年成都七(上)半期数学考试试卷及答案

成都七中七上半期试卷A 卷一、填空题1、-2的相反数是( ) A.2 B.12 C. 1-2D.-2 2、10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为( )元A 、1.75810⨯ B 、1.75910⨯ C.1.751010⨯ D.1.751110⨯3、若单项式是同类项,则代数式的值是( )A 、B 、2C 、D 、-24、用一个平面去截一个几何体,如果截面形状是长方形(或正方形),那么该几何体不可能是( )A 、圆柱B 、直棱柱C 、圆锥D 、正方体 5、数轴上到的距离等于5的点表示的数是( )A 、5或-5B 、1C 、-9D 、1或-9 6、若满足,则的值等于( )A 、B 、C 、D 、0 7、下列(1)、(2)>0、(3)、(4),是一元一次方程的有( )个。

A 、1 B 、2 C 、3 D 、4 8、下列各组数据中,结果相等的是( )A 、()44-1-1与 B 、()--3--3与 C 、222233⎛⎫ ⎪⎝⎭与 D 、33-1-133⎛⎫⎪⎝⎭与9、下面是小玲同学做的合并同类项的题,正确的是( )A 、236a b ab +=B 、0ab ba -=C 、22541a a -= D 、0t t --=10、如图,正方形ABCD 的边长为3cm,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A 、92cm B 、9π2cm C 、218cm π D 、218cm二、填空题11、比较大小:-3______2; 8-9______9-8; -π______-3.1412、多项式2244-225xy x +-是______次______项式;13、如图是一个正方体盒子的展开图,在其中三个正方形A 、B 、C 内分别填上适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,填入正方形A 、B 、C 内的三个数中最小的是______面。

成都七中数学七年级试卷(含答案)

成都七中数学七年级试卷(含答案)

成都七中数学七试卷(含答案)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、- 2的相反数是( )A.1/2B.-2C.-1/2D.22.在数轴上距离原点2个单位长度的点所表示的数是 ( ) (A) 2 (B)2- (C)2或2- (D)1或1-3.如下图,下列图形属于柱体的有( )个A.4B.5C.2D.14.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A .2771×107B .2.771×107C .2.771×104D .2.771×1055.如果a >b ,下列各式中不正确...的是 ……………………………………………( ) A .-5a >-5b B .a +3>b +3 C .a 2>b2 D .a -b >06.若a 、b 互为相反数,c 、d 互为倒数,m 到原点的距离为2,则代数式|m |-cd +a+bm的值为…………………………………………………………………………………( ) A .-3 B .-3或1 C .-5 D .17.已知方程x 2k -1+k =0是关于x 的一元一次方程,则方程的解等于 ()A.-1 B.1 C.12D.-128.一根绳子弯曲成如图1的形状,用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪开的方向与a 平行),这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+59.下列各组数中,相等的是( )A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣1610.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有()A.有一种B.有二种C.有三种D.有四种第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,已知O是直线AB上一点,∠1=20°,OD平分∠BOC,则∠2的度数是__度.12.如果a-b=3,ab=-1,则代数式3ab-a+b-2的值是_________.13.在数轴上与-5表示的点相距2个单位长度的点表示的数为.14.已知:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是;15.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步,不断往返的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n表示21CD第n秒时机器人在数轴上的位置所对应的数.则下列结论:(1)x3=3;(2)x8=4;(3)x105<x104;(4)x2013<x2014中,正确结论的个数是_______________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算(1))(-12)-5+(-14)-(-39);(2)(3)17.计算(1))(-12)-5+(-14)-(-39);(2)(3)18.已知(x-1)5=ax5+bx4+cx3+dx2+ex+f.求:(1)a+b+c+d+e+f的值;(2)a+c+e的值.19.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用−1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(−2).请解答:(1)的整数部分是__________,小数部分是__________(2)如果的小数部分为a,的整数部分为b,求a+b−的值;20.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数): 星期 一 二 三 四 五 六 日增减/辆 ﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10 (1)生产量最多的一天比生产量最少的一天多生产多少辆? (2)本周总的生产量是多少辆?21 .如图,将连续的奇数1、3、5、7 …… ,排列成如下的数表,用十字框框出5个数。

四川省成都市第七中学2020-2021学年七年级上学期期中数学试题

四川省成都市第七中学2020-2021学年七年级上学期期中数学试题
A. B. C. D.
6.下列计算正确的是( )
A.23×22=26B.
C. D.﹣32=﹣9
7.数轴上点 表示的数是 ,将点 在数轴上平移 个单位长度得到点 .则点 表示的数是()
A. B. 或
C. D. 或
8.单项式 的系数是( )
A.3B.﹣3C.﹣3πD.3π
9.下列式子正确的是()
A. B.
(2)先化简后求值2(3a2b﹣ab2)﹣3(a2b+4ab2),其中a=﹣1,b= .
23.由8个边长为1的相同小立方块搭成的几何体如图所示:请画出它的三视图.
24.A=3x2﹣y2+2xy,B=xy﹣2y2+2x2.
(1)化简2A﹣B的值.
(2)x是最小的正整数,y=2,求2A﹣B的值.
25.图1由若干个小圆圈组成的一个形如正三角形的图案,第1层有1个圆圈,每一层都比上一层多1个圆圈,一共堆了n层.
C. D.
10.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )
A.(x﹣8%)(x+10%)B.(x﹣8%+10%)
C.(1﹣8%+10%)xD.(1﹣8%)(1+10%)x
二、填空题
11.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都是8,则x+y﹣z=_____.
3.如图是平面图形绕虚线l旋转一周得到的,则该旋转图形的是…()
A. B. C. D.
4.用一个平面去截一个圆锥,截面的形状不可能是( )
A.圆B.矩形C.椭圆D.三角形
5.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系 的中心,距离地球 万光年.将数据 万用科学计数法表示为()

四川省成都市第七中学初中学校2024-2025学年七年级上学期11月期中考试数学试题

四川省成都市第七中学初中学校2024-2025学年七年级上学期11月期中考试数学试题

四川省成都市第七中学初中学校2024-2025学年七年级上学期11月期中考试数学试题一、单选题1.有理数2024的相反数是()A .2024B .2024-C .12024D .12024-2.下列图形中可以作为一个正方体的展开图的是()A .B .C .D .3.单项式22x y -的系数和次数分别是()A .2、3B .2-、3C .2、2D .2-、24.2024年巴黎奥运会开幕式选择在塞纳河举行.塞纳河包括支流在内的流域总面积为78700平方公里.其中数据78700用科学记数法表示为()A .278710⨯B .37.8710⨯C .47.8710⨯D .50.78710⨯5.下列计算正确的是()A .2a a a +=B .3265x x x -=C .22234-=-ab ba a bD .235325x x x +=6.用一个平面去截下列几何体:①正方体;②圆柱;③圆锥;④三棱柱,截面形状可能是三角形的几何体有()A .1个B .2个C .3个D .4个7.有理数a 、b 在数轴上的位置如图所示,则下列式子正确的是()A .0a b ->B .10a +>C .0a b +<D .a b>-8.观察下面点阵图的规律,第9幅点阵图中有()个◯.A .18B .28C .32D .36二、填空题9.比较大小:23-35-.(填“<”、“>”或“=”)10.单项式13m x y -与4n xy 的和是单项式,则m n 的值为.11.如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B 内的数为.12.已知有理数a 、b 满足()2310a b -++=,则a b ÷=.13.三个连续偶数中,n 是最小的一个,这三个数的和为.三、解答题14.计算(1)12150.25123412⎛⎫⎛⎫++--+- ⎪ ⎪⎝⎭⎝⎭(2)()75336964⎛⎫-+-⨯- ⎪⎝⎭(3)()6536556-÷⨯÷-(4)()()241110.5153---⨯⨯--15.先化简,再求值:()()222212482352xy xy x y xy x y --+-其中13x =,3=-y .16.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,请你画出从正面和从左面看到的这个几何体的形状图.17.若5a =,3b =,(1)若0ab <,求a b +的值;(2)若a b a b +=+,求a b -的值.18.国庆期间,银行的储蓄员小张在办理业务时,约定存入为正,取出为负.某天上午8点他领取备用金40000元开始工作,接下来的两个小时,他先后办理了七笔存取业务:25000+元, 8100-元,4000+元,6700-元,14000+元,16000-元,1800+元.(1)10点时,小张手中的现金有多少元?(2)请判断在这七笔业务中,小张在第几笔业务办理后,手中的现金最少?(3)若每办一笔业务,银行发给业务员存取业务金额的0.2%作为奖励,则办理这七笔业务小张应得奖金多少元?四、填空题19.若323a b -=则代数式3124a b -+=.20.如图,已知四个有理数m 、n 、p 、q 在一条缺失了原点和刻度的数轴上对应的点分别为M 、N 、P 、Q ,且0m p +=,则在m ,n ,p ,q 四个有理数中,绝对值最小的一个是.21.已知长方形的长为4cm ,宽为3cm ,将其绕它的一边所在的直线旋转一周,得到一个立体图形,则该立体图形的体积为.(结果保留π)22.给出一列数:112123123,,,,,,,,,,,121321121kk k k -- ,在这列数中,记第40个值等于1的项的序号为m ,则m =.23.对任意一个三位数n ,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数和与111的商记为()F n ,例如:123n =,对调百位与十位上的数字得1213n =,对调百位与个位上的数字得2321n =,对调十位与个位上的数字得3132n =,这三个新三位数的和为213321132666++=,6661116÷=,所以()1236F =.①()261F =;②若,s t 都是“相异数”,其中10083,50210s x t y =+=+(19,19x y ≤≤≤≤,,x y 都是正整数),规定:()()F s k F t =,当()()29F s F t +=时,则k 的最大值为.五、解答题24.已知2331A a ab a =-+--,221B a ab =--+,(1)求3A B -;(2)若3A B -的值与a 的取值无关,求b 的值.25.有理数a b c 、、的位置如图所示,(1)比较大小∶a c -_______0,b c -_______0,a b -_______0;(2)化简式子∶b a c b c a b +-+---;(3)若1,a b c =-、为整数()0a c b <<<,x y 、为有理数,且()()15x a x b y a y c -+--+-=,求b 的最大值.26.如图,点O 为数轴上的原点,点,A B 分别为数轴上两点,对应的数分别为,a b ,已知10,a =3AB AO =,点A 与点B 的中点为点E .若动点P 从点O 出发,以1个单位长度/秒的速度沿数轴正方向匀速运动,同时动点Q 从点B 出发以v 个单位长度/秒的速度沿数轴负方向匀速运动,(1)填空:点B 表示的数为,点E 表示的数为;(2)经过8秒时,16PQ =,求v 的值;(3)当点P 运动到线段AB 上,74v =,取PQ 的中点F ,若32mOB nAPEF-是定值(其中m ,n 为常数),求m 与n 的等量关系.。

四川省成都市成都七中育才学校七年级上半期考试题数学试题

四川省成都市成都七中育才学校七年级上半期考试题数学试题

成都七中育才学校七年级上期数学期中考试试题(考试时间 120分钟,满分 150分)A卷(共100分)温馨提示:请将所有答案均写在答题卷上,交卷时只交答题卷.....。

注意所有解答题均要有完整过程,书写要工整,格式要规范。

相信你,你将取得理想的成绩!第Ⅰ卷(选择题共30分).一.选择题:(在每小题所给出的四个选项中,只有一个正确答案,请把正确答案选项前的字母代号填涂在机读卡中.每小题3分,共30分)1.13的相反数是( )A.13B.-13C.3 D.-32.下面几何体的截面不可能是圆的是 ( )A.圆柱B.圆锥C.球D.棱柱3.下面形状的四张纸板,按图中的线经过折叠可以围成一个直三棱柱的是( ).4.地球绕太阳每小时转动经过的路程约为110000千米,用科学记数法表示约为()A. 1.1×104千米 B. 1.1×105千米 C. 1.1×106千米 D. 11×104千米5.下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=16.下列整式中,多项式有()个.﹣a3b,,x2+y2﹣2,b,3x3﹣3xy3+x4﹣1,30t3,2x﹣y.A.2 B.3 C.4 D.57. 数轴上到原点的距离等于5的点表示的数是().A.5 B.-5 C.-5或5 D.不能确定8.下列图形是正方体展开图的是:().A.B.C.D.…9.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×94⎛⎫- ⎪⎝⎭÷(-1)=32;④(-4)÷12×(-2)=16. 其中正确的个数是( ). A .4B .3C .2D .110.如图,用三角形摆图案:摆第1层图需要1个三角形,摆第2层图需要3个三角形,摆第3层图需要7个三角形,摆4层图需要13个三角形,…,摆第100层图需要( )个三角形.A .10001B .9981C .9901D .9837第Ⅱ卷 (非选择题 共70分)二.填空题(12题4分,其余每题2分,共12分) 11.7-的绝对值是 ,21-的倒数是 . 12. 把下列各数填在相应的大括号里:1,45-,8.9,-7,0,56,-3.2,+1 008,-0.06,28,-9.正整数集合:{ …};负整数集合:{ …}; 正分数集合:{ …};负分数集合:{ …}. 13.右图是一数值转换机,若输入的x 为-5, 则输出的结果为__________。

成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案

成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案

成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.122.北京时间2022年11月21日0点,万众瞩目的卡塔尔世界杯全面打响,据统计在小组赛的赛程中,场均观看直播人数达到了70620000人,则70620000用科学记数法表示为( )A.7.062×104B.70.62×106C.0.7062×108D.7.062×1073.用一个平面去截一个正方体,截面的形状不可能是( )A.梯形B.五边形C.六边形D.七边形4.下列运算正确的是( )A.−5−5=0B.2×(−5)=−10C.(−13)2=−19D.(−2)÷12=−1 5.下列代数式:①a+1;②-3ab 7;③5;④−2a+5b ;⑤a ;⑥1a .其中单项式有( ) A.1个 B.2个 C.3个 D.4个6.已知2a x b 4与−a 2b y-1是同类项,则x y 的值为( )A.6B.−6C.−10D.107.下列变形,错误的是( )A.−(a −b)=−a+bB.−2(a+b)=−2a −2bC.−a −b=−(a −b)D.a −b=−(−a+b)8.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑩个图中棋子的颗数是( )A.84B.99C.103D.122二、填空题(每小题4分,共20分)9.比较大小:−37____−38(填“<”或“>”). 10.如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c=____.11.多项式x 3−2x 2y 2+3y 2是____次____项式.12.如果4a −9与3a −5互为相反数,那么a 2−a+1的值等于____.13.某种T 形零件尺寸如图所示.用含有x 、y 的代数式表示阴影部分的周长是____.(结果要化简)三、解答题(共48分)14.计算或化简(每小题4分,共20分)(1)(−65)−7−(−3.2)+(−1) (2)(−60)×(34+56−12) (3)−36÷65×56÷(−5) (4)12×|−3|+(−12)2−(−1) (5)−22×[(2−8)÷6]−18÷(−3)215.(6分)已知|a −2|+(b +12)2=0,求a 2b −(3ab 2−a 2b)+2(2ab 2−a 2b)的值. 10题图a 13 -2 1+b c+10.5x ① ② ③ ④16.(6分)如图1,是一个用小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你在如图2方格纸中画出它从正面和从左面看到的平面图形.17.(6分)已知|x |=3,|y|=7.(1)若x y <0,求x +y 的值;(2)若|x −y|=x −y ,求2x +y 的值.18.(10分)杭州亚运会的举办,不仅提升了杭州的国际影响力,也为杭州的旅游业带来了巨大的发展机遇.随着亚运会的到来,杭州每月的游客人数较往年同期有明显增长,已知杭州2023年1月的游客人数为17.0百万人次,接下来7个月的游客人数变化情况如表:注:表中的数据为当月的游客人数相比前一个月游客人数的变化量.(1)杭州2023年4月份的游客人数是多少百万人次?(2)杭州2023年2月到8月,哪个月游客人数最多?最多是多少百万人次?哪个月游客人数最少?最少是多少百万人次?(3)假设杭州市每个月为旅游业建设支出50亿元,2023年前4个月每百万人次的游客能为杭州市旅游业带来收入10亿元,而随着亚运会的临近,5月到8月每百万人次的游客为杭州市旅游业带来的收入提升至20亿元,则2023年1月到8月杭州市34 32 1 图1 图2 从正面看 从左面看旅游业的总利润是多少亿元?B 卷(满分50分)一、填空题(每小题4分,共20分)19.已知a 2−2a=1,则多项式2023−2a 2+4a 的值是______.20.计算12+14+…+12100=______.21.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字−4、−2、0、1、2、4,则三个小立方块的下底面所标字母代表的数字的和为______.22.已知n 为正整数,n(n+1)(n+2)的末位数字记为f(n).如n=2时,f(2)=4,则f(1)+f(2)+f(3)+…+f(2023)的值为______.23.对于一个四位正整数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“进步数”,如:1245就是一个进步数.对于一个“进步数”M 记为abcd̅̅̅̅̅̅,它的千位数字和百位数字组成的两位数为ab ̅̅̅,十位数字和个位数字组成的两位数为cd̅̅̅,将这两个两位数求和记作t ;它的千位数字和十位数字组成的两位数为ac ̅,它的百位数字和个位数字组成的两位数为bd̅̅̅̅,将这两个两位数求和记作s ,当s −t=36时,M 的最大值与最小值的和为______.二、解答题(共30分)24.(8分)已知A=3a 2−ab+2a+1,B=2a 2+ab −2.(1)若a=3,b=−1,求A −2B 的值.(2)若2A −3B 的值与a 无关,求b 的值.A B FA DE B D E25.(10分)请利用“数形结合”的数学方法解决下列问题.(1)有理数a 、b 、c 在数轴上的位置如图,化简:|b −c|−|a+b|+|c −a|.(2)请你找出所有符合条件的整数x ,使得|2+x |+|x −5|=11.(3)若m 、n 为非负整数,且(|m −2|+|m −6|)(|n −1|+|n+2|)=24,求m 、n 的值.26.(12分)如图,在数轴上点A 表示数a ,点B 表示b ,点C 表示数c.单项式−6x b y 次数是3,a 是这个单项式的系数,|c+1|=9.(1)a=______,b=______,c=________.(2)若点P 从点A 出发,以每秒2个单位的速度沿数轴向右运动,点Q 从点C 出发,以每秒1个单位的速度沿数轴向左运动.点P 与点Q 同时出发,经过多少秒后,线段PB 的中点M 到点Q 的距离为6.(3)在(2)的条件下,当点P 与点Q 相遇后,两点都立即掉头,速度不变,此时点N 开始从点B 出发,以每秒1个单位的速度向左运动,点P 运动的时间为t 秒,当PQ=4PN 时,求点P 在数轴上对应的数.成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.12xb1.解:负数的绝对值是正数,两者之和为0,故选A 。

四川省成都七中育才学校2018-2019学年七年级上学期半期考试数学试题(含答案)

四川省成都七中育才学校2018-2019学年七年级上学期半期考试数学试题(含答案)

成都七中育才学校初 2021 届七年级上期半期阶段性测试(题卷)数 学班级姓名学号(满分 150 分,时间 120 分钟,请.将.答.案.填.写.在.答.题.卡.上.)A 卷(100 分)一.选择题(每小题 3 分,共 30 分)1.3 的相反数是( )1 A .3B.3C. - 13D. -32.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不.可.能.是( ) A.圆柱B.五棱柱C.圆锥D.正方体3.2018 年国庆假期,各地旅游市场总体实现了“安全、有序、优质、高效、文明”目标。

经中国旅游研究院(文化和旅游部数据中心)测算,全国共接待国内游客约 7.26 亿人次。

数据 7.26 亿表示为科学记数法是( )A. 7.26⨯109B. 7.26⨯108C. 0.726⨯109D. 72.6⨯1084.以下各式不是代数式的是()A. π a + b 9B.xa 3bC. 5>3D. 05.单项式-的系数和次数分别是() 2A. - 1 、4B. 2 、4C. - 1、3D. -2 、326.下列各式中,去括号正确的是( )A. a + (b - c ) = a - b + c C. a + 2(b - c ) = a + 2b - c2B. a -(b - c ) = a - b - c D. a - 2(b - c ) = a - 2b + 2c7.如图是一个正方体的展开图,则“数”字的对面的字是() A.核B.心C.素D.养8.下列式子化简不.正.确.的是( ) A. +(-3) = -3B. -(-3) = 3C. -3 = -3D. - -3 = -39.下列合并同类项,正确的是 ()A. 2a +3b = 6abB. ab- ba = 0C. 5a 2 - 4a 2= 1 D. - t - t = 0 10.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是( )米.第 7 题图A.4a + 2bB.6a + 2bC.5a + 2bD.a2 +ab第 12 题图二.填空题(每小题 4 分,共 16 分) 11.多项式π a 2b + ab -1 是 次 项式.12.一个立体图形是由若干个小正方体堆积而成的,其三视图如图,则组成这个立体图形的小正方体有个.13. (- 2 )33的底数是,计算的结果是.14.观察下列单项式: x , 3x 2, 5x 3, 7x 4, 个单项式是 . 三.计算题(共 54 分)15.计算(每小题 4 分,共 16 分)(1) -9 + 5 -(-12) + (-3) ,按此规律,第 7(2 -6 +6 ⨯( 1 - 1)2 3(3) (-5) ⨯(- 7 ) + (-7) ⨯(- 7) - (-12) ⨯(- 7)88 816.化简下列代数式(每小题 4 分,共 8 分) (4) 2⨯(-3)2- 1⨯(-22) + 64(1) 2ax 2- 3ax 2- 5ax 217.先化简,再求值(本小题 6 分)(2) -(-2x 2y ) - (+3xy 2) + 2(-5x 2y + 2xy 2)- (2xy 2 + 3xy )+ 3(1 - xy 2 ) -1,其中x = 1, y = -15四.解答题(18 题 6 分,19 题 8 分,20 题 10 分,共 24 分)18.如图,用棱长为 1 的小立方体搭成几何体,请计算它的体积和表面积19.小明在对代数式-2x 2 + ax - y + 6 - bx 2+ 3x - 5y +1 化简后,没有含字母 x 的项,请求出代数式(a - b )2的值.20.半期后 2021 届将全面推进未来课堂学习方式,为保证同学们顺利学习,学校决定购买一批平板电脑和平板笔以作备用.据了解,平板电脑和平板笔的市场统一价分别为 3300 元和 160 元.现有甲、乙两家公司分别提出优惠方案:甲公司优惠方案为每购买一台平板电脑则赠送 10 支平板笔; 乙公司优惠方案为所有项目总价打八折.(1)若学校计划购买 10 台平板电脑,x 支平板笔(x>100),用含x 的代数式表示出甲公司的总费用为元;(2)若学校计划购买 10 台平板电脑,200 支平板笔: ①只能选择一家公司购买,则哪家更加合算?请通过计算说明; ②两家公司可以自由选择或组合,则怎样购买更合算?请通过计算说明.第 18 题图a +aB 卷(50 分)一、填空题(每小题 4 分,共 20 分)21.若(x - 2y - 2)2 + m -3 = 0 ,则m2x -4 y +1= .22. 已知a 、b互为相反数, c 、d 互为倒数, x 的绝对值是 1.则 x -(a + b + c d ) =.23.定义一种新运算.观察下列式子: 1*3=1×4﹣3=1 3*(﹣1)=3×4+1=13 4*6=4×4﹣6=10 5*(﹣2)=5×4+2=22 那么 7*5=,3*(-2)= .24.如图,一只甲虫在 5×5 的方格(每小格边长为 1)上沿着网格线运动.它从A 处出发去看望 B 、C 处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A 到 B 记为:A→B (+1,+4),从 B 到A 记为:B→A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向. 图中A→C (,);若图中另有两个格点 M 、N ,且 M→A (3 - a , b -4 ), M→N (5 - a , b - 2 ),则N→A 应记为 .25.如图,棱长为 5 的正方体 AEFB-DHGC ,可以看成由 125 个棱长为 1 的小正方体组成.M 、N 分别为棱 AD 、BC 的中点,若将大正方体按如图所示切割后,剩下部分为三棱柱NFG-MEH (右图阴影部分),那么此三棱柱还包括 个完整的棱长为 1 的小正方体.二、解答题(26 题 8 分,27 题 10 分,28 题 12 分,共 30 分) 26.已知:有理数a 、b 在数轴上对应的点如图,(1)化简:+ .7 3(2)化简: a + b - 1-a - b +1 .第 24 题图第 25 题图b + b 第 26 题图27.如图,A 在数轴上所对应的数为﹣2.(1)点 B 与点A 相距 4 个单位长度,则点B 所对应的数为.(2)在(1)的条件下,如图 1,点A 以每秒 2 个单位长度沿数轴向左运动,点 B 以每秒 2 个单位长度沿数轴向右运动,当点A 运动到﹣6 所在的点处时,求A ,B 两点间距离.(3)如图 2,若点 B 对应的数是 10.现有点P 从点 A 出发,以 4 个单位长度/秒的速度向右运动, 同时另一点Q 从点 B 出发,以 1 个单位长度/秒的速度向右运动,设运动时间为 t 秒.在运动过程中,P 到B 的距离、B 到Q 的距离以及P 到Q 的距离中,是否会有某两段距离相等的时候?若有,请求出此时 t 的值;若没有,请说明理由.图 1图228.把正整数 1,2,3,4,…,排列成如图 1 所示的一个表,从上到下分别称为第 1 行、第 2 行、…, 从左到右分别称为第 1 列、第 2 列、….用图 2 所示的方框在图 1 中框住 16 个数,把其中没有被阴影覆盖的四个数分别记为A 、B 、C 、D .设 A= x .(1)在图 1 中,2018 排在第行第列.(2)将图 1 中的奇数都改为原数的相反数,偶数不变.①设此时图 1 中排在第m 行第 n 列的数( m 、n 都是正整数)为 w ,请用含m 、n 的式子表示 w ; ②此时 A+B-C-D 的值能否为 2018?如果能,请求出A 所表示的数;如果不能,请说明理由.(3)任取上表中的一个数 y ,若它是奇数,则乘以 3 加上 1,若它是偶数,则除以 2,按此规则经过若干步的计算最终可得到 1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取数字 5,最少经过下面 5 步运算可得 1,即:5 −⨯−3+1−→16 −÷−2→8 −÷−2→4 −÷−2→2 −÷−2→1,如果 y 最少经过 7 步运算可得到 1,记 y 所在的位置为第m 行第n 列,计算m 与n 的乘积,所得乘积的最大值与最小值之差为多少?请.直.接.写.出.结.果.,不必书写计算过程.28.。

四川省成都市第七中学2020-2021学年七年级上学期期中数学试题

四川省成都市第七中学2020-2021学年七年级上学期期中数学试题
四川省成都市第七中学2020-2021学年七年级上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.2的相反数是()
A. B. C. D.
2.下列关于有理数的大小比较,正确的是().
A. B. C. D.
3.在国内疫情持续好转、旅游产业复工复产的当下,迎来了2020中秋国庆黄金周.据统计,本次黄金周全国出游人数约为637000000人次.把数据637000000用科学记数法表示为().
A.12cmB.8cmC.12cm或8cmD.以上均不对
8.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从 地到 地架设电线,总是尽可能沿若直线 架设;④把弯曲的公路改直,就能缩知路程.其中可用“两点确定一条直线”来解释的现象有()
【点睛】
此题主要考查有理数的大小判断,解题的关键是熟知有理数的性质.
3.B
【分析】
根据科学记数法的表示方法即可求解.
【详解】

故选B.
【点睛】
此题主要考查科学记数法的表示,解题的关键是熟知科学记数法的表示方法.
(1)数轴上表示2和5的两点之间的距离是______,数轴上表示 和 的两点之间的距离是______,数轴上表示1和 的两点之间的距是______.
(2)数轴上表示 和 的两点 , 之间的距离是______,若 ,则 为______.
(3)当 取最大值时,求 的取值范围.
(4)互不相等的有理数 , , 在数轴上的对应点分别为 , , .若 ,请分析判断在点 , , 中哪个点居中?

四川成都七中初中学校2024-2025学年七年级上学期入学分班考试数学试题(解析版)

四川成都七中初中学校2024-2025学年七年级上学期入学分班考试数学试题(解析版)

2023~2024学年成都七中初中学校新初一入学分班考试数学试题(卷)(满分:100分时间:90分钟)一、选择题(将正确答案的番号填在括号里.每小题4分,共20分)1要使四位数104□能同时被3和4整除,□里应填()..A. 1B. 2C. 3D. 4【答案】D【解析】【分析】该题主要考查了数的整除,解答此题应结合题意,根据能被3和4整除的数的特征进行解答即可.根据能被4整除的数的特征:即后两位数能被4整除;能被3整除的数的特征:各个数位上数的和能被3整除,进行解答即可.+++=能被3整除,不【详解】解:A:后两位数是41,不能被4整除,各个数位上数的和是10416,6符合题意;+++=不能被3整除,不符合题意;B:后两位数是42,不能被4整除,各个数位上数的和是10427,7+++=不能被3整除,不符合题意;C:后两位数是43,不能被4整除,各个数位上数的和是10438,8+++=能被3整除,符合题意.D:后两位数是44,能被4整除,各个数位上数的和是10449,9故选:D.2. 用一只平底锅煎饼,每次只能放两只饼,煎熟一只饼需要2分钟(正反两面各需1分钟),那么煎熟3只饼至少需要_____分钟.()A. 4B. 3C. 5D. 6【答案】B【解析】【分析】本题考查了推理与论证,在解答此类题目时要根据实际情况进行推论,既要节省时间又不能造成浪费.若先把两只饼煎熟,则在煎第三张饼时,锅中只有一只饼而造成浪费,所以应把两只饼的两面错开煎,进而求解即可.【详解】∵若先把两只饼煎至熟,势必在煎第三只饼时,锅中只有一只饼而造成浪费,∴应先往锅中放入两只饼,先煎熟一面后拿出一只,再放入另一只,当再煎熟一面时把熟的一只拿出来,再放入早拿出的那只,使两只饼同时熟, ∴煎熟3只饼至少需要3分钟. 故选:B .3. 投掷3次硬币,有2次正面朝上,1次反面朝上,那么第4次投掷硬币正面朝上的可能性是( ) A.12B.14C.13D.23【答案】A 【解析】【分析】本题主要考查可能性的大小,熟练根据概率的知识得出可能性的大小是解题的关键.根据每次投掷硬币正面朝上的可能性都一样得出结论即可. 【详解】解:每次投掷硬币正面朝上的可能性都为12. 故选:A .4. 一串珠子按照8个红色2个黑色依次串成一圈共40粒.一只蟋蟀从第二个黑珠子开始其跳,每次跳过6个珠子落在下一个珠子上,这只蟋蟀至少要( )次,才能又落在黑珠子上. A. 7 B. 8 C. 9 D. 10【答案】A 【解析】【分析】本题关键是理解这只蟋蟀跳跃的规律,难点是得出跳过的珠子数与循环周期之间的关系. 这是一个周期性的问题,蟋蟀每次跳过6粒珠子,则隔7个珠子,把珠子编上号码,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色;蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,因为周期是40,再根据周期性的知识解决即可. 【详解】解:观察可知,每次跳过6粒珠子,则隔7个珠子,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色.蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,即7的倍数; 周期应是40,4940−9=,就相当于一圈后落在“9”号黑珠子上; 即这只蟋蟀至少要7次,才能又落在黑珠子上;故选:A.5. 仓库里的水泥要全部运走,第一次运走了全部的12,第二次运走了余下的13,第三次运走了第二次余下的14,第四次运走了第三次余下的15,第五次运走了最后剩下的19吨.这个仓库原来共有水泥_____吨.()A. 78B. 56C. 95D. 135【答案】C【解析】【分析】本题考查分数除法的应用,此题应从后向前推算,分别求出第三,二,一次运过之后,还剩下的数量,即可求解.【详解】∵第五次只剩下19吨,∴第三次运过之后,还剩下195 19154÷−=吨,那么第二次运过之后,还剩下951951443÷−=吨,那么第一次运过之后,还剩951951332÷−=吨那么没经过运输之前,仓库中有9519522÷=吨,故选:C .二、填空题(每小题3分,共30分)6.132吨=()吨()千克.70分=()小时.【答案】①. 3 ②. 500 ③. 7 6【解析】【分析】根据1吨=1000千克、1小时=60分计算即可.【详解】解:∵11000=5002×千克,∴132吨=(3)吨(500)千克.∵70÷60=76小时,∴70分=(76)小时. 故答案为:3,500;76.【点睛】本题考查了单位换算,熟练掌握1吨=1000千克、1小时=60分是解答本题的关键. 7. 把0.45:0.9化成最简整数比是_____∶_____;11:812的比值是_____. 【答案】 ①. 1 ②. 2 ③. 1.5 【解析】【分析】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.用比的前项除以后项即可.详解】解:0.45:0.91:2=,11111:12 1.58128128=÷=×= 故答案为∶1,2,1.5. 8. 111112123123100+++++++++++ . 【答案】200101【解析】【分析】先确定,分数的变化规律,后整理计算即可. 【详解】∵12112()123n (1)1n n n n ==−++++++ ,∴111112123123100+++++++++++ =1111112()1223100101−+−++−=12(1)101−=200101. 【点睛】本题考查了分数中的规律问题,熟练掌握拆项法找规律计算是解题的关键. 9. 定义运算:35a b a ab kb =++ ,其中a 、b 为任意两个数, k 为常数.比如:27325277k =×+××+ ,若5273= ,则85= _____.【答案】244 【解析】【分析】此题考查了有理数的四则混合运算和解一元一次方程,根据5273= 得到方程,解方程得到4k =,【再计算85 即可.【详解】解:由5235552273k =×+××+= , 解得4k =,∴853*********=×+××+×= , 故答案为:24410. 某年的10月份有四个星期四、五个星期三,这年的10月8日是星期_____. 【答案】一 【解析】【分析】本题主要考查数字规律,有理数混合运算,根据题意,找出循环规律,是解题的关键. 【详解】解:10月有31天,四个星期四,五个星期三,∴31号是星期三,31823−=(天),2373÷=(周) 2(天),把星期三往前推2天,是星期一, ∴10月8号是星期一, 故答案为:一.11. 某小学举行数学、语文、科学三科竞赛,学生中至少参加一科的:数学203人,语文179人, 科学165人,参加两科的:数学、语文143人, 数学、科学116人,语文、科学97人.三科都参加的:89人,这个小学参加竞赛的总人数为_____人. 【答案】280 【解析】【分析】根据题意,至少参加一科的:数学203人,语文179人,常识165人.参加两科的:数学,语文143人,数学、常识116人,语文、常识97人,三科都参加的有89人.根据容斥问题,参加三科的人数为:(20317916514311697)++−−−人,由于三科都参加的有89人,所以这个小学参加竞赛的总人数为:(2031791651431169789)++−−−+.据此解答.本题考查了容斥问题的灵活运用,关键是明确它们之间的包含关系.【详解】解:2031791651431169789280++−−−+=(人) 答:这个小学参加竞赛的总人数有280人. 故答案为:280.12. 一个长方体的长、宽、高之比为3:2:1,若长方体的棱长总和等于正方体的棱长总和,则长方体的表面积与正方体的表面积之比为_____,长方体的体积与正方体的体积之比为_____. 【答案】 ①. 11:12 ②. 3:4【解析】【分析】此题主要考查了长方体和正方体的棱长总和、表面积、体积的计算,直接把数据代入公式解答即可.设长方体的长宽高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.根据长方体和正方体的表面积公式计算求得长方体表面积与正方体的表面积比;根据长方体和正方体的体积公式计算求得长方体体积与正方体的体积之比【详解】设长方体的长、宽、高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.长方体表面积为()22323222a a a a a a a ××+×+×=, 正方体表面积为()226224a a ×=,其比为2222:2411:12a a =.长方体体积为 3326a a a a ××=,正方体体积为()3328a a =,其比为336:83:4a a =. 故答案为:11:12; 3:4.13. 甲、乙两地相距300千米,客车和货车同时从两地相向开出,行驶2小时后,余下的路程与已行的路程之比是3:2,两车还需要经过_____小时才能相遇. 【答案】3 【解析】由于客车和货车的速度和一定,行驶的时间和路程成正比例,所以根据“余下的路程与已行的路程之比是3:2”可得:余下的路程需要的时间与已行的时间之比也是3:2,据此求解即可. 【详解】由题意得:2233÷=(小时) 故答案:3.14. 如图,长方形ABCD 中,12AB =厘米,8BC =厘米,平行四边形BCEF 的一边BF 交CD 于G ,若梯形CEFG 的面积为64平方厘米,则DG 长为_____.【答案】4厘米 【解析】为【分析】本题考查了梯形的面积公式,一元一次方程的实际运用,解题的关键是设未知数,找准等量关系,建立方程求解.根据图形可得=64ABGD CEFG S S =梯形梯形,设DG 的长度为x 厘米, 则有()1128642x +××=,解出方程即可. 【详解】解:由图可知:长方形ABCD 和平行四边形BCEF 底边和高相同,故它们面积相同,GCB ABCD ABGD S S S =− 矩形梯形,64BCEF GCB CEFG S S S =−= 梯形平方厘米,, =64ABGD CEFG S S ∴=梯形梯形,设DG 的长度为x 厘米, 则()1128642x +××= ()128642x +××896128x +=832x =4x =,即DG 长为4 厘米, 故答案为:4厘米.15. 自然数按一定的规律排列如下:从排列规律可知,99排第_____行第_____列. 【答案】 ①. 2 ②. 10 【解析】【分析】本题考查了规律问题的探究.通过观察知第1行中的每列中的数依次是1、2、3、4、5…的平方;在第2行中的每列中的数从第2列开始依次比相应的第1行每列中的数少1;据此规律第1行中的10列的数是10的平方,第2行中的10列的数是100199−=.【详解】解:由图表可得规律:每列的第1个数就是列的平方; 10的平方是100,99在100的下方, 所以99排在第2行第10列, 故答案为:2;10.三、计算题(能用简便方法计算的请用简便方法计算.共20分)16. (1) 计算:2255977979 +÷+ ;(2) 计算:121513563+++×; (3) 计算:47911131531220304256−+−+−; (4) 计算:11111155991313171721++++×××××. 【答案】(1)13;(2)136;(3)78;(4)521【解析】(1)将229779 + 变形为551379+,可进行简便运算;(2)利用乘法分配律,将原式变形为11525136353++×+×进行简便运算; (3)利用裂项相消法进行简便运算; (4)利用裂项相消法进行简便运算; 【详解】解 :(1)2255977979 +÷+6565557979+÷+5555137979=+÷+13=;(2)121513563+++× 11525136353=++×+× 35252353=×+× 5223=+ 136=;(3)47911131531220304256−+−+− 4111111111133445566778 =−+++−+++−+4111111111133445566778=−−++−−++−− 118=-78=; (4)11111155991313171721++++××××× 11111111111455991313171721 =×−+−+−+−+−111421 =×−120421=× 521=. 四、解答题(请写出必要的解题过程.每小题6分,共30分)17. 如图所示是两个正方形,大正方形边长为8,小正方形边长为4,求图中阴影部分的面积.(单位:厘米,π取3.14)【答案】20.56平方厘米 【解析】【分析】本题考查计算不规则图形的面积,BEF △的面积减去小正方形与扇形GAF 面积之差,即可求出阴影部分的面积. 【详解】解:()21184444π424 ×+×−×−××24164π=−+ 84 3.14=+×20.56=(平方厘米)答:阴影部分面积为20.56平方厘米.18. 学校计划用一批资金购置一批电脑,按原价可购置60台,现在这种电脑打折优惠,现价只是原价的75%,用这批资金现在可购买这种电脑多少台?【答案】用这批资金现在可购买这种电脑80台. 【解析】1,用1乘上60台,就是总钱数,然后用1乘上75%求出现在的单价,再用总钱数除以现在的单价即可. 【详解】设原来每台的单价是1(160)(175%)80×÷×=台答:用这批资金现在可购买这种电脑80台19. 在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和23.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达56%.那么,丙缸中纯酒精的量是多少千克?【答案】丙缸中纯酒精的量是12千克 【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =, ∴丙缸中纯酒精量218123=×=(千克), ∴丙缸中纯酒精的量是12千克. 20. 一家工厂里2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件.如果把单独让男工加工和单独让女工加工进行比较,要在一天内完成任务,女工要比男工多多少人?【答案】女工要比男工多18人.【解析】【分析】本题主要考查了二元一次方程组的应用——工程问题.解题的关键是熟练掌握工作量与工作效率和工作时间关系,列方程计算.设男工的工作效率为x ,女工的工作效率为y ,根据2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件,列出方程组,解方程组即可.【详解】设男工的工作效率为x ,女工的工作效率为y , 根据题意得,324108101x y x y += +=, 解得,112130x y = =, 如果单独让男工加工或单独让女工加工, 需要女工113030÷=(人), 需要男工111212÷=(人), 女工比男工多181230=−(人). 的故女工比男工要多18人.21. 如图,有一条三角形的环路,A 至B 段是上坡路,B 至C 段是下坡路,A 至C 段是平路,A 至B 、B 至C 、C 至A 三段距离的比是345::,小琼和小芳同时从A 出发,小琼按顺时针方向行走,小芳按逆时针方向行走,2个半小时后在BC 上的D 点相遇,已知两人上坡速度是4千米/小时,下坡速度是6千米/小时,在平路上的速度是5千米/小时.问C 至D 段是多少千米?【答案】2千米【解析】【分析】本题主要考查了二元一次方程组的实际应用,设3km 4km 5km km AB a BC a AC a CD x ====,,,,根据时间=路程÷速度,结合2个半小时后在BC 上的D 点相遇,列出方程组求解即可.【详解】解:设3km 4km 5km km AB a BC a AC a CD x ====,,,, 由题意得,34 2.5465 2.554a a x a x − += += 解得2x a ==,答:CD 的实际距离为2千米。

成都市温江区七中实验学校2019-2020学年七年级上期半期考试数学试题

成都市温江区七中实验学校2019-2020学年七年级上期半期考试数学试题

成都市温江区七中实验学校2019-2020学年七年级上期半期考试数学试题一、选择题(本大题共10小题,每小题3分,共30分)1.如果零上2C 记作2C +,那么零下3C 记作( )A. -3o CB. -2 o CC. +3 o CD. +2 o C 2.下列立体图形中,主视图是圆的是( )A. B. C. D. 3.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11000000吨,用科学记数法应记为( )A. 61110⨯吨B. 71.110⨯吨C. 71110⨯吨D. 81.110⨯吨 4.下列图形是正方体的展开图的是( )A. B. C. D.5.下列比较大小,正确的是( )A. -3<-4B. -(-3)<|-3|C. -12>-13D. 1||6- >-176.下列说法正确的是( ) ①有理数包括正有理数和负有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小;A. ②B. ①③C. ①②D. ②③④ 7.下列判断中错误的是( )A. 1a ab --是二次三项式B. 22a b c -是单项式C. 2a b +是多项式D. 234r π中,系数是348.已知整式22x x -的值为3,则2246x x -+的值为( )A. 7B. 9C. 12D. 18 9.若323m a b --与12n b a +是同类项,则m 、n 的值分别为( )A. 1,1B. 5,3C. 5,1D. -1,-110.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为( )A. 11B. 13C. 15D. 17二、填空题(本大题共4小题,每小题4分,共16分)11.计算:2223-+⨯=______.12.去括号合并:(3)3(3)a b a b --+=_________. 13.12-的相反数是________,-1.5的倒数是________. 14.在数轴上,与原点距离为6的点所表示的数是____.三、解答题(本大题共6小题,共54分)15.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.16.先化简,再求值:22362(42)31x y xy xy x y ⎡⎤---++⎣⎦,其中1,12x y =-=17.已知关于x 、y 的多项式x 2y m+1+xy 2–3x 3–6是六次四项式,单项式6x 2n y 5–m 的次数与这个多项式的次数相同,求m+n 的值.18.蜗牛从某点A 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):-6,+12,-10,+5,-3,+10,-8. (1)通过计算说明蜗牛是否回到起点A .(2)在爬行过程中,如果每爬1厘米奖励2粒芝麻,则蜗牛一共得到多少粒芝麻?19.在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,2--,132-20.已知22423A x xy x =+--,22B x xy =-++.(1)请求出36A B +的值.(2)若36A B +的值与x 无关,请求出y 的值.四、填空题(本大题共5小题,每小题4分,共20分)21.多项式12x |m|﹣(m ﹣3)x+6是关于x 的三次三项式,则m 的值是_____. 22.a 、b 互为相反数,c 、d 互为倒数,则()11323a b cd -+--=________. 23.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用___________个正方体.24.已知,,a b c 在数轴上对应点如图所示,化简a a b c a b c -++-++=__________.25.如图是一个运算程序的示意图,若开始输入x 的值为81,则第2019次输出的结果为 ______.五、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤)26.如图是由5个相同的小正方体搭成的几何体,已知小正方体的棱长为1.(1)画出它的三视图;(2)求出它的表面积(含底面积).27.分别用 a ,b ,c ,d 表示有理数,a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是数轴上到原点距离为3的点表示的数;(1)直接写出 a ,b ,c ,d 的值;(2)求4a 3b 2c d +++的倒数...28.某市居民使用自来水接如下标准收费(水费按月缴纳)(2)设某户月用水量为"n”立方米,当n>18时,求该用户应缴纳的水费(用含n的代数式表示);(3)甲、乙两用户一个月共用水36m3,已知甲用户缴纳的水费超过了20元.设甲用户这个月用水xm3,直接写出甲、乙两用户一个月共缴纳的水费(用含x的代数式表示).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中嘉祥外国语学校七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良温馨提示:亲爱的同学们,经过这段时间的学习,相信你已经拥有了许多知识财富!下面这套试卷是为了展示你最近的学习效果而设计的,只要你仔细审题,认真作答,遇到困难时不要轻易放弃,就一定会有出色的表现!注意:请将选择题和填空题的答案填在后面的表格中A 卷(100分)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1、12的相反数的绝对值是 ( )A .12- D. 122、下列语句中错误的是 ( ) A.数字0也是单项式 B.单项式-a 的系数与次数都是 121是二次单项式 D.-32ab 的系数是 -32 3、下列各式计算正确的是 ( ) A .2(4)16--=- B .826(16)(2)--⨯=-+⨯- C .6565445656⎛⎫÷⨯=÷⨯ ⎪⎝⎭D. 20032004(1)(1)11-+-=-+ 4、如果3,1,a b a b ==>且,那么b a +的值是 ( ) A . 4 B . 2 C . 4- D . 4或25、下列说法上正确的是 ( ) A .长方体的截面一定是长方形; B .正方体的截面一定是正方形; C .圆锥的截面一定是三角形; D .球体的截面一定是圆6、 如图,四条表示方向的射线中,表示北偏东60°的是 ( )7、若x-y 2(x y)4, -6 2(x y)x-yx y x y -+=+++则代数式的值是 ( ) 姓名_____________________ 班级_____________________ 学号____________________ …………………………………密………………………………………封……………………………………线……………………………………..A .4B .311 C -3 D 22..不能确定 8、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222 2123421y y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( ) A. xy 7- B. xy 7+ C. xy - D. xy + 9、 下列说法正确的个数为 ( ) (1)过两点有且只有一条直线 (2)连接两点的线段叫做两点间的距离 (3)两点之间的所有连线中,线段最短 (4)射线比直线段一半 (5)直线AB 和直线BA 表示同一条直线A .2B .3C .4D .5 10、某电影院共有座位n 排,已知第一排的座位为m 个,后一排总是比前一排多1个,则电影院中共有座位 ( )+22n B. (1)2n n mn -+ +n D. (1)2n n mn ++二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在题中横线上. 11、比较大小:–π________–(填=,>,<号).12、单项式2a b -的系数是___________,单项式2715x y π-的次数是________.13、在数轴上,点M 表示的数是-2,将它先向右移动个单位,再向左移5个单位到达点N ,则点N 表示的数是 .14、一桶油连桶的重量为a 千克,桶重量为b 千克,如果把油平均 分成3份,每份油的重量是____________.15、如图:三角形有___________个.15题16、为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米元收费,超过15立方米,则超过部分按每立方米元收费.小明家六月份交水费33. 6元,则小明家六月份实际用水______________立方米成都七中嘉祥外国语学校七年级(上)数学半期考试题(时间120分钟,满分150分) 命题人:何江 审题人:罗志良 注意:请将选择题和填空题的答案填在后面的表格中一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共10小题,每小题3分,共18分,把答案填写在横线上.11、 12、 13、14、 15、 16、三、图形题:本大题每小题5分,共10分.17、(本题5分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图主视图 左视图18、(本题5分)如图:正方形的边长为a 其中有一直径为a 的圆,阴影部分面积为S .(1)用含a 的代数式表示阴影面积S ;(2)当4a cm =时,求阴影部分面积S .( 3.14)π取姓名_____________________ 班级_____________________ 学号____________________ ………………………………密………………………………………封……………………………………线……………………………………..24132四、运算题:本大题共2小题,共9分,解答应写出必要的计算过程. 19、(1)(本题4分) (-61+43-125)⨯)12(-(2)(本题5分)()()[]2421315.011--⨯⨯---五、代数式运算题:本大题共2小题,每题5分,共15分,解答应写出必要的计算过程. 20、(1)(本题5分)化简 ]2)(5[)3(2222mn m mn m m mn +-----(2)(本题5分)先化简,再求值:22215{2[32(2)]}2abc a b abc ab a b ---- ,求当3,1,2=-==c b a 时的值.(3)(本题5分)若关于x y 、的代数式22(27)(291)x ax y bx x y +-+--+-的值与字母x 的取值无关,求a b -.六、解答题:本大题共3小题,每小题6分.共18分,解答应写出必要的计算过程或文字说明.21、(本题6分)如图,点P 在线段AB 上,点M N 、分别是线段AB AP 、的中点,若16AB =cm ,6BP =cm ,求线段NP 和线段MN 的长.22、(本题6分)如图,OE 为∠AOD 的角平分线,∠COD=41∠EOC ,∠COD=15°, 求:①∠EOC 的大小; ②∠AOD 的大小.C D EO AABN M P23、(本题6分)“十·一”黄金周期间,上海世博园风景区7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化+++--+-单位:万人(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数:万人.(2)请判断七天内游客人数最多的是日,最少的是日.(3)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:人数变化(万人)0 51 2 3 4 6 7日期(日)B 卷(50分)一、填空.(共5小题,每题4分,共20分)24、如果522)3(5x m y x n-+是关于x,y 的六次二项式,则m 、n 应满足条件____________. 25、7点20分,钟表上时针与分针所成的角是______________度26、已知多项式281468ax bx cx -+-,当3x =时值为2010,当3x =-时281468ax bx cx -++ 的值为 .27、点,A B 在直线l 上,5AB =cm ,画点C ,使点C 是在直线l 上到点A 的距离是3的点,则点C 到点B 的距离是____________cm .28、如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见...的小立方体有______个.二、解答题(共30分)29、 (本题5分)已知a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()cda b m m m ++-的值是多少?30、(本题6分)数a ,b ,c 在数轴上的位置如图所示且c a =; (1)化简2a c b b a c b a b ++----++; (2)用“<”把a ,b ,b -,c 连接起来;31、(本题9分)全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已成为一项十分紧① ② ③ab c迫的任务,某地区沙漠原有面积100万公倾.为了解该地区沙漠面积的变化情况,进行了连续3年的观察,并将每年年底的观察结果,记录如下表:观察时间x该地区沙漠面积y (万公顷) 第一年底 第二年底 第三年底预计该地区沙漠的面积将继续按此趋势扩大.(1)如果不采取措施,第4年底,该地区沙漠化面积将变成多少万公顷?(2)如果不采取措施,那么到第m 年底,该地区沙漠面积将变为多少万公顷?(3)如果第5年后采取措施,每年改造万公倾沙漠,那么到第n 年该地区沙漠的面积为多少万公顷(5 n )?32、(本题10分)如图,有一个形如六边形的点阵,它的中心是一个点,算第一层,第二层每边有两个点,第三层每边有三个点,依次类推.(1)填写下表:层数 1 2 3 4 5 6 该层对应的点数 所有层的总点数(2)写出第n 层所对应的点数.(3)如果某一层共96个点,你知道它是第几层吗? (4)有没有一层,它的点数为100点? (5)写出n 层的六边形点阵的总点数.。

相关文档
最新文档