2017年第二十二届华罗庚金杯少年数学邀请赛决赛试题∣江苏省东海县晶都双语学校

合集下载

第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)

第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.192.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.123.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.204.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.27545.(10分)在序列 20170…中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.20176.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么 A 的值是.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是平方厘米.10.(10分)若2017,1029与725除以d的余数均为r,那么d﹣r的最大值是.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.19【分析】两个小数的整数部分分别是7和10,那么这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88,所以,这两个小数的积的整数部分在70与88之间,包括70,单不包括88,共有18种可能,据此解答.【解答】解:根据题意与分析:这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88;所以,这两个小数的积的整数部分在70与88之间,包括70,但不包括88,共有:88﹣70=18种可能;答:这两个有限小数的积的整数部分有18种可能的取值.故选:C.2.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.12【分析】总共用时是40,去掉换乘6分钟.40﹣6=34分钟.地铁是30分钟,客车是50分钟,实际是34分钟,根据时间差,比例份数法即可.【解答】解:乘车时间是40﹣6=34分,假设全是地铁是30分钟,时间差是34﹣30=4分钟,需要调整到公交推迟4分钟,地铁和公交的时间比是3:5,设地铁时间是3份,公交是5份时间,4÷(5﹣3)=2,公交时间为5×2=10分钟.故选:C.3.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.20【分析】设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);同理,那么阴影部分面积总和是:3+7+11=21,然后进一步解答即可.【解答】解:设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);那么阴影部分面积总和是:3+7+11=21,则实际面积是:21×=14(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.4.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.5.(10分)在序列 20170…中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.2017【分析】分析结果中的奇数偶数的性质,如果四个数字中出现一个奇数,那么下一个数字的结果一定是奇数,则2个奇数加两个偶数结果就是偶数.分析枚举找到规律即可.【解答】解:枚举法0170的数字和是8下一个数字就是8.1708的数字和是16下一个数字就是6.7086的数字和是21下一个数字就是1.0861的数字和是15下一个数字是5.8615的数字和是20下一个数字是0.6150的数字和为12下一个数字就是2.20170861502…规律总结:查看数字中奇数的个数,奇数一出现就是2个.故选:B.6.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4【分析】首先考虑共4个空的数字不相同而且还有1,2,3,4一共是8个数字,如果有0和1,那么至少大于1的数字还有5个,大于4的数字最多是4个,最少是1个,根据这些条件进行枚举筛选.【解答】解:依题意可知:设有a个数是大于1的,有b个数是大于2的,有c个数是大于3的,有d个数是大于4的.因为1,2,3,4各有一个,还有4个空,那么有a>b>c>d.且a≥5,1≤d≤4①若d=4,那么在这8个数字中需要有4个数字大于4,目前只有a,b,c是大于4的不满足条件.②若d=3时,那么在这8个数中需要有3个数是大于4的,a,b,c都是大于4的满足条件.则大于3的数字共个4.与c>4矛盾③若d=2时,则a,b大于4,c不大于4,c则是取3或者4,分析a,b,c,d依次是7,5,3,2或者7,5,4,2④若d=1时,则a是大于4的,b,c是不大于4的,由3,4,a都是大于2的,所以b≥3,则大于2的数共4个,所以b=4,此时大于3的数有a,b,4此时c≥3,那么大于2的数字共5个,矛盾故选:B.二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么 A 的值是 4 .【分析】先把繁分数化简,求出关于未知数A的方程,然后根据等式的性质解方程即可.【解答】解:[﹣]×÷+2.25=4[﹣]×÷+2.25=4[﹣]×÷=[﹣]×=﹣=×﹣==+=24=6AA=4故答案为:4.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有10 种情况使得这五个和恰为五个连续自然数.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可确定每个顶点处有几种选值,再确定共有几种情况.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,并且2与1,4与5不能组合,这样就有如下组合:因为每个顶点有2种不同的选值,所以共有2×5=10种;答:共有 10种情况使得这五个和恰为五个连续自然数.故答案为:10.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是180 平方厘米.【分析】如图,连接EG,,根据三角形的面积和底的正比关系,判断出S△BDE、S△DEF、S△BGH与S四边形ABCD的关系,推出S四边形EHGF 与S四边形ABCD的关系,再根据四边形EHGF的面积是15平方厘米,求出ABCD 的面积是多少即可.【解答】解:如图,连接EG,,因为E为CD的中点,所以DE=CD,所以S△BDE=S△ADE=S四边形ABCD;因为AC和BD的交点为G,所以G为AC的中点,因为E为CD的中点,所以EG∥AD,且=,所以==,所以S△DEF=S△ADE=S四边形ABCD;因为EG∥AD,且AD∥BC,所以EG∥BC,=,所以==,所以S△BGH=S△BCG=S四边形ABCD;所以S四边形EHGF=S△BDE﹣S△DEF﹣S△BGH=S四边形ABCD,所以S四边形ABCD=S四边形EHGF×12=15×12=180(平方厘米)答:ABCD的面积是180平方厘米.故答案为:180.10.(10分)若2017,1029与725除以d的余数均为r,那么d﹣r的最大值是35 .【分析】根据题意可得,2017﹣r,1029﹣r,725﹣r,均能被d整除,则(2017﹣r)﹣(1029﹣r),(2017﹣r)﹣(725﹣r),(1029﹣r)﹣(725﹣r),这三个数也能被d整除,即988,1292,304均能被d整除,不难得出,三个数的最大公因数是76,即d的值可能是:76,38,19,4,2,1(被1除余数可看成0);然后分别用725除以d的可能值,求出d﹣r的值,选取d﹣r的最大值即可.【解答】解:根据题意可得,2017﹣r,1029﹣r,725﹣r,均能被d整除,则(2017﹣r)﹣(1029﹣r),(2017﹣r)﹣(725﹣r),(1029﹣r)﹣(725﹣r),这三个数也能被d整除,即988,1292,304均能被d整除,988=2×2×19×131292=2×2×19×17304=2×2×2×2×19所以三个数的最大公因数是:2×2×19=76,d为76的因数,即d的值可能是:76,38,19,4,2,1(被1除余数可看成0),当d=76时,此时:725÷76=9…41,即r=41,即此时d﹣r=76﹣41=35;当d=38时,此时:725÷38=19…3,即r=3,即此时d﹣r=38﹣3=35;当d=19时,此时:725÷19=38…3,即r=3,即此时d﹣r=19﹣3=16;当d=4时,此时:725÷4=182…1,即r=1,即此时d﹣r=4﹣1=3;当d=2时,此时:725÷2=362…1,即r=1,即此时d﹣r=2﹣1=1;当d=1时,此时:725÷1=725,即r=0,即此时d﹣r=1﹣0=1;则,d﹣r的最大值是35.故答案为:35.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:03:25;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

第22届华杯赛总决赛全部四组题目

第22届华杯赛总决赛全部四组题目

总决赛试题 小中组一试一、填空题(共3题,每题10分)1. 计算:2017201820192020220182019⨯+⨯-⨯⨯=_________.2. 若干枚白色棋子成直线摆放,将其中一些棋子染成红色,使未染成的白色棋子被隔成9部分,其中有2部分棋子数量相同,而同样被白色棋子隔开的各部分的红色棋子数均不相同,则棋子总数的最小值为_________.3. 把1,2,3,4,5,6,7,8,9分别填入33⨯的九宫格中,使得每行、每列的三个数的和都相等,中心位置可能填的数共有_________个.二、解答题(共3题,每题10分,写出解答过程)4. 如图,大、小正方形的边长分别为4和1,且各边均水平或竖直放置,求四边形ADFG和BHEC 的面积之和.5. 将一个数的各位数字倒序后所得的数称为原数的倒序数.2017具有这样的性质:将2017及其倒序数7102相加,所得和9119的各位数字都是奇数.能否找到这样的五位数,使它与其倒序数的和的各位数字都是奇数?若能,请给出一个例子;若不能,请说明理由.6. 一副扑克牌去掉大小王后还有52张,如果把J ,Q ,K ,A 分别当作11,12,13,1点,问最多取出多少张牌,可使得取出的牌中任意两张牌的点数之和是合数?BA总决赛试题 小中组二试一、填空题(共3题,每题10分)1. 2017的倍数中,各个数字不同的五位数最大为_________.2. 长方形甲与乙的边长都是大于1的自然数,如图拼成一个“L 形”.已知“L 形”的面积是432,甲的面积为133,那么“L 形”的周长为_________.3. 同时满足下列两个条件的四位数共有_________个.(1)该数的各位数字只能是2,3,4,5中的数,数字允许重复; (2)该数能被组成它的各位数字整除.二、解答题(共3题,每题10分,写出解答过程)4. 将1,2,3,4,5,6,7,8分成两组,若第一组数的乘积恰为第二组数的乘积的整数倍,则最小为多少倍?5. 能否将1个正方形恰好分割成2017个互不重叠的小正方形,使得这2017个小正方形一共只有2种不同的大小?若能,请给出一个例子;若不能,请说明理由.bc6.下图是用9个相同的小正三角形拼成的图案,小正三角形的顶点称为格点.以格点为顶点,一组对边平行但不相等,另一组对边相等的四边形,称为“贝贝梯形”.(1)图中共有多少个“贝贝梯形”?(2)在格点处写下自然数1,2,3,4,…,8,9,10,每个格点写1个数字,不同格点所写的数字不同,将每一个“贝贝梯形”的四个顶点处的数字求和,再将这些和相加,结果最大是多少?总决赛试题 小高组一试一、填空题(共3题,每题10分)1. 计算:()422201720162017220173-⨯+⨯+=_________.2. 不超过100的所有质数的乘积,减去不超过100的所有个位数字为3和7的质数的乘积,所得差的个位数字为_________.3. 运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名;比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是_________.二、解答题(共3题,每题10分,写出解答过程)4. 能够将1到2017这2017个自然数分为若干组,使得每组中的最大数都等于该组其余数的和吗?如果能,请举一例;如果不能,请说明理由. 5. 把20172016表示成两个形式均为1n n+的分数相乘(其中n 是不为零的自然数),问有多少种不同的方法?(b d a c ⨯与d bc a⨯视为相同方法)6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.已知甲、乙下山速度都是上山速度的1.5倍,甲的速度与乙的速度之比是6:5.两人同时从山脚开始爬山,经过一段时间后,甲第10次到达山顶.问:在此之前,甲在山顶上有多少次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?总决赛试题 小高组二试一、填空题(共3题,每题10分)1. 某小镇上有若干辆共享单车,如果小镇人口少1人,则平均200人共享一辆单车,如果单车减少2俩,小镇共享一辆单车的平均人数仍为整数,则小镇最多有_________人.2. 恰有1513个不超过m 的正整数n 使得1234n n n n +++的个位数字为0,则自然数m =_________.3. 下图中的L 型立体称为“构件”,可切割成为4个单位正方体.用4个“构件”连结组合成一个长方体,如果经旋转及翻转后,连结成的两个长方体宽、长、高相同,并且连结方式相同,可视为相同的长方体,否则是不同的长方体,则可连结出_______种一条棱长为1的不同的长方体,总共可以连结出_______种不同的长方体.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,3,4,…,2017中,最多能选出多少个数,在这些数中,不存在三个数a ,b ,c 满足a b c +=?5. 下图中,ABCD 是长为3,宽为1的长方形,BE EG GC ==,2AH HD =,AC 、AG 、BH 、EH 交成阴影四边形PNQM .求四边形PNQM 的面积.6. 在等差数列1,4,7,10,13,16,…的前500项中,有多少个是完全平方数?总决赛试题 初一组一试一、填空题(共3题,每题10分)1. 计算:22222222221223344520162017---+---+--=_________.2. 某班30名同学在旅游途中看到一个商店的广告:酸奶一瓶5元,两瓶9元;冰激凌一支6元,两只10元.每人选择酸奶或者冰激凌中的一种,用最省钱的方式购买,一共花了140元.那么,他们一共至多买了_____瓶酸奶,至少买了_____瓶酸奶.3. 如图,在三角形ABC 中,D 、E 分别在边BC 、AC 上,AB AC =,AD AE =,18CDE ∠=︒,则BAD ∠=_________.二、解答题(共3题,每题10分,写出解答过程)4. 是否存在数c 满足:对任意的有理数a ,b ,都有a b +,a b -,1b -三个值中最大值大于等于c ?如果存在这样的c ,请给出一个具体数值,并求c 的最大值;如果不存在,请说明理由.5. 一个立方体是由27个棱长为1个单位的小正方体构成的.一只蚂蚁从A 沿着立方体表面的小正方体的边爬到B ,最短路径长是多少个单位?最短路径有多少种不同的走法? 6. []a 表示不超过a 的最大整数,求满足条件12235x x x x ++⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的所有x 的值的和.AD总决赛试题 初一组二试一、填空题(共3题,每题10分)1. 一个四位数abcd 是完全平方数,并且满足()5104910c d a b ++=+,则这个四位数是_____或_____.2. 把500枚鸡蛋装到分别能装17枚和27枚两种规格的盒子中出售,刚好装完无剩余,则17枚规格的盒子装了_____盒,27枚规格的盒子装了_____盒.3. 在一条线段有n 个等分点,从n 个等分点中任选10个点,中间必有两个点,能把原线段分成3段,这3段能构成三角形,则n 的最大值是_________.二、解答题(共3题,每题10分,写出解答过程) 4. 求方程2432426760x y y y y -+-+-=的全部整数解.5. E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点,EF 分别交边AD 、BC 于点P 和Q .已知7APPD=,求BQ QC 的值.6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?A总决赛试题 初二组一试一、填空题(共3题,每题10分) 1. 若正数a ,b ,c 满足1a b c ++=,则()()()111abca b c ---的最大值为_________.2. 将正数x 四舍五入到个位得到整数n ,若42017x n -=,那么x =_________.3.已知1p =+,那么23331p p p++=_________.二、解答题(共3题,每题10分,写出解答过程)4. 在边长为1的正方形中(含边上)至多放置多少个点,可使得这些点之间的所有距离都不小于0.5?5. 下图中,四边形ABCD 是矩形,()12ABr r BC=<<.四边形AEFG 是正方形,顶点G 在边CD 上,边EF 通过点B .求:BF EF .6. 早上8点,快、慢两车同时从A 站出发,慢车环行全程一次用43分钟,回到A 站休息5分钟;快车环行全程一次用37分钟,回到A 站休息4分钟.如此往返行驶.问:22点以前,两车同时到达A 站几次?快车在A 站休息时慢车达到的情况有几次?(8点整,两车出发时不计).FA总决赛试题 初二组二试二、填空题(共3题,每题10分)1. 设多项式()p x 的各项系数都是非负整数,且()16p =,()332p =,则()2p 的所有可能值为_________.2.已知a =105173a a a +-=+_________.3.()12k k +能被n 整除的最小正整数k 记为()F n ,例如,()54F =.若()9F x =,则x =_______.若()9F y =,则y =_______.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,…,50这50个数中任选n 个不同的数,其中一定有三个的比为2:3:7.求n的最小值.5. 如图,以长为4厘米的线段AB 的中点O 为圆心和2厘米为半径画圆,交AB 的中垂线于点E .再以A 、B 为圆心和4厘米为半径分别画圆弧交AE 于C ,交BE 于D .最后以E 为圆心和DE 为半径画圆弧DC .请确定“下弦月形”ADCBEA (图中阴影部分)的面积是多少平方厘米.(答案中圆周率用π表示)6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?。

2020年第二十二届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)

2020年第二十二届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)++…+=.2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD 边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有个.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)++…+=2034144.【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:===2×(2+4+6+8+ (2016)=2×=2018×1008=20341442.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了52分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(1+20%):4=3:2,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5=x:3,x=甲在行驶AC的爆胎位置到中点的正常时间为:×==(小时);甲乙爆胎前后的速度比为:5:5(1+20%)=5:6;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:6:5=:y,y=;修车时间为:3﹣×=(小时)=52(分)故答案为:52分3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.4.(10分)小于1000的自然数中,有352个数的数字组成中最多有两个不同的数字.【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:9×9×8=648个,则最多有两个不同数字的数有:1000﹣648=352个.故答案是:352.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD 边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10.【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),n a n S(a n)120171022243145499514561457101866977101341111212661388141451513416991713418134198820123211122255237724123251012644275528992914530145311013266由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有19个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决.【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90.(2)尾数不为0的有:12,21,24,36,42,45,48,54,63,84.故答案为:198.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m 的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数m=4;③若有三条直线互相平行,则m=5,6,7;④若有两条直线互相平行,则m=5,6,7,8,9;⑤若没有直线平行,则m=1,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数.又有:2017=6×336+1=6×335+7当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是1311黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷一、选择题(每小题10 分, 共60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 两个有限小数的整数部分分别是7 和10,那么这两个有限小数的积的整数部分有(C)种可能的取值.(A)16 (B)17 (C)18 (D)19【解】:如果这两个有限小数的十分位是0,百分位小于6,那么它们的积就可能是7.05×10.05=70.8525;如果这两个有限小数的小数部分是0.999,那么它们的积就可能是:7.999×10.999≈87.981.(这两个有限小数,无论小数部分有多少个9,积的整数部分都小于88)可知,它们的积的整数部分最小可能是70,最大可能是87.从70 到87共有:87-70+1=18,所以,这两个有限小数的积的整数部分有18种可能的取值.2. 小明家距学校,乘地铁需要30 分钟,乘公交车需要50 分钟.某天小明因故先乘地铁,再换乘公交车,用了40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了(C)分钟.(A)6 (B)8 (C)10 (D)12【解】:这是一道变形的鸡兔同笼问题。

从家到学校,乘地铁每分钟能行全程的130,乘公交每分钟能行全程的150。

他从家到学校坐车实际花了40-6=34(分钟),假设全程都是乘地铁,那么,乘坐公交车用了(130×34-1)÷(130-150)=10(分钟)3. 将长方形ABCD 对角线平均分成12 段,连接成右图,长方形ABCD 内部空白部分面积总和是10 平方厘米,那么阴影部分面积总和是(A)平方厘米.(A)14 (B)16 (C)18 (D)20【解】连接对角线上的各个分点并延长,使之分别和长方形的长边与宽边平行、相等,这样,把长方形ABCD平分成了12×12=144个小长方形最外圈每边有小长方形12-1=11(个)最外圈(黑)11×4=44(个)第二圈(白)(11-2)×4=36(个)第三圈(黑)(11-2-2)×4=28(个)第四圈(白)(11-2-2-2)×4=20(个)第五圈(黑)(11-2-2-2-2)×4=12(个)第六圈(白)(11-2-2-2-2-2)×4=4(个)所以,阴影部分面积总和是:10×44281236204=14(平方厘米).4. 请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是(D).(A)2986 (B)2858 (C)2672 (D)2754【解】由于一个三位数乘以两位数,积为四位数,可知三位数的百位数字与两位数的十位数字都不可能很大,只可能是1、2。

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)++…+=.2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M 为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有个.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)++…+=2034144.【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:===2×(2+4+6+8+ (2016)=2×=2018×1008=2034144【点评】本题考查了分数的拆项运算知识,本题突破点:把分子拆分成两个分数的乘积形式,从而和分母约分2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了52分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(1+20%):4=3:2,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5=x:3,x=甲在行驶AC的爆胎位置到中点的正常时间为:×==(小时);甲乙爆胎前后的速度比为:5:5(1+20%)=5:6;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:6:5=:y,y=;修车时间为:3﹣×=(小时)=52(分)故答案为:52分【点评】本题考查对比例应用题的理解和运用,关键是根据不变量判断正反比,找到甲原来不受影响的时间,再和后面的进行比较做差即可,问题解决.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)小于1000的自然数中,有352个数的数字组成中最多有两个不同的数字.【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:9×9×8=648个,则最多有两个不同数字的数有:1000﹣648=352个.故答案是:352.【点评】本题考查了数的问题,突破点是:先求有三个不同数字的数的个数,用总数减去即可.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M 为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH的长.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10.【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.【点评】本题重点是弄清楚S(a i)的含义,通过地推找到规律,再进行求解.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有19个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决.【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90.(2)尾数不为0 的有:12,21,24,36,42,45,48,54,63,84.故答案为:19【点评】本题是考察因数和倍数的关系,同时关键是在枚举过程中按照顺序,可以是数字和也可以是首位数字的大小,问题解决.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数m=4;③若有三条直线互相平行,则m=5,6,7;④若有两条直线互相平行,则m=5,6,7,8,9;⑤若没有直线平行,则m=1,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定m的取值的种类.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数.又有:2017=6×336+1=6×335+7当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是13111.说明:我们可以用以下方法,构造一个能被7整除且除了首位数之外,其余数字均为1的数列如下:21,490+21=511,700+511=1211,5600+511=6111,7000+6111=13111,35000+6111=41111,70000+41111=111111,70000+41111=111111,我们注意到,7000+6111=13111是能被7整除且各位数字之和等于7 的最大正整数.所以,各位数字和为2017 的最大正整数13111…11,其中1的个数是335×6+4=2014,即.答:能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数是.【点评】本题关键是根据能被7整除的数的特征得到由数字“1”组成的最小数是111111;难点是寻找同时满足数字和是7的最大整数是13111.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.【分析】首先分析如果结果是偶数可以分为0,2,4个奇数,把每一种结果加起来即可.【解答】解:依题意可知:根据四个数的结果是偶数.那么必定是0个奇数,2个奇数或者是4个奇数.在1001,1002,1003,1004,1005,1006,1007,1008,1009奇数的个数为5个,偶数的个数为4个.当0个奇数时有一种情况.当是2个奇数2个偶数时是=60种.当选择4个奇数时有5种.60+5+1=66(种)答:共有66种选择方法.【点评】本题考查对奇偶性的理解和综合运用,同时关键是分类中的排列组合.问题解决.12.(10分)使不为最简分数的三位数n之和等于多少.【分析】不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,我们可以用5n+1尝试来锁定答案,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102+109+116+…+998=(102+998)×129÷2=70950答:使不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.【分析】首先分析最小数字的位置,可以放在圆心出也可以放在外边,两种情况分析即可.【解答】解:依题意可知:分两种情况讨论:假设将最小数放在中心位置,我们只能在外圈顺时针依次从小到达放数字.但是只能满足五个三角形,最后一个三角形无法满足条件.假设将最小的数字放在外圈,然后在周边顺时针依次从小到大放数字,如果想要五个三角形都满足条件,则中心位置必须放大数字,但这样的话,最后一个又不能满足条件.综上所述:不能找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.【点评】本题是对凑数谜的理解和运用,关键问题是找最小数字的位置.问题解决.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.【分析】在m取最大值的条件下n尽量取最大值可使m+n的值最大.【解答】解:根据分析,1≤黑格和白格的行数≤7;1≤列数≤7,当m=7时,可以设7列之中黑格个数为3,则黑格总数为:3×7=21.然后,可以把21个黑格在1﹣5行之中每行放4个,第6行放1个,第7行不放.这样就有5行中黑格数量超过白格,所以n=5,从而使得m+n=12为最大.如下图1所示:当m=6时,可以设6列之中黑格个数均为3,其余一列黑格个数为7,这样黑格总数为3×6+7=25.然后,我们使得1﹣6行黑格个数为4个,最后一行只有1个.这样就有6行中黑格数列超过白格,所以n=6,从而使得m+n=12,如图2所示:当m≤5时,m+n≤12.综上,m+n的最大值为12.故答案是:12.【点评】本题考查了最大与最小,本题突破点是:在行数和列数的最小与最大的范围内,确定最大值.。

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 . 2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 . 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B 地去了C 地,甲已离开A 地2小时,于是,甲以原来的速度的2倍去C 地.又经过了2小时后,甲乙两人同时到达C 地,则乙的速度是 千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是 .6.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[]x 表示不超过x 的最大整数,例如[3.14]3=,则 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++的值为 6048 . 【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和. 【解答】解:根据分析,原式为: 201732017420175201762017720178[][][][][][]111111111111⨯⨯⨯⨯⨯⨯+++++ 1592610[550][733][916][1100][1283][1466]111111111111=+++++ 550733916110012831466=+++++6048=.故答案是6048.【点评】本题考查了高斯取整,本题突破点是:先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、2103和193,则原来给定的4个整数的和为 20 . 【分析】根据题意,设原来给定的4个整数分别是a 、b 、c 、d ,则83a b cd +++=(1),123a b d c +++=(2),21033a c d b +++=(3),1933b c d a +++=(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a 、b 、c 、d , 83a b cd +++=(1), 123a b dc +++=(2), 21033a c db +++=(3),1933b c d a +++=(4), (1)+(2)+(3)+(4),可得 212()81210933a b c d +++=+++,所以20a b c d +++=,所以原来给定的4个整数的和为20. 故答案为:20.【点评】此题主要考查了平均数问题,要熟练掌握,解答这类应用题时,主要是弄清楚总数、份数、一份数三量之间的关系,根据总数除以它相对应的份数,求出一份数,即平均数. 3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法. 【解答】解:根据分析,份三种情况:①当正中间即E 处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80240÷=(千米/时);甲速度加速变成40280⨯=(千米/时);甲再经过2小时路程为:280160⨯=(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160 2.564÷=(千米/时)故答案为:64【点评】本题考查对追及问题的理解和运用,同时关键在求出BC之间的路程,隐含中知道乙的时间是2.5小时.问题解决.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的27,是只参加朗诵小组人数的15,那么书法小组与朗诵小组的人数比是3:4.【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是27172÷=,只参加朗诵小组人数的分率是1155÷=,则参加书法小组人数的分率是79122+=,参加朗诵小组人数的分率是156+=,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,21(11):(11)75+÷+÷9:62=3:4=答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.【点评】本题关键是把中间量两个小组都参加的人数看作单位“1”,然后都统一到这个单位“1”就容易解答了.6.(10分)如图,ABC∆的面积为100平方厘米,ABD∆的面积为72平方厘米.M为CD 边的中点,90MHB∠=︒,已知20AB=厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.7.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 10 222430 14 5 31 10 1 3266由上表可以得出:4289a a ==,428()()9S a S a ==; 52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法. 综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,0n=,即5条直线互相平行;n=,即五条直线交于一点;1n=,3,不存在;2n=,5,6,7,8,9,10的情况分别如下图:4n的取值共有9种不同的数,故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定n 的取值. 10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a 、同时选苹果和香蕉的人数b 、同时选梨和苹果的人数c 、同时选香蕉和梨的人数d ,再根据选每种水果的人数列关系式,270403010040a b c d +++=++-=,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a 人,同时选了苹果和香蕉的人数有b 人,同时选了梨和苹果的人数有c 人, 同时选了香蕉和梨的人数有d人,则:40()2704030100402b c d a b c d a -+++++=++-=⇒=,又b c d ++,400202a-∴=, 故当0b c d ++=时,a 取最大值20,即占总数的20% 故答案是20%.【点评】本题考查了分数和百分数的应用,本题突破点是:根据容斥原理列出三种水果都选的人数与总数及两种都选的人数的关系式,再求解.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x 个,17克的珠子有y 个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值. 【解答】解:根据分析,设有x 个19克的珠子,y 个17克的珠子,则有: 19172017x y +=,又x ,y 均为正整数 2017171200011061919x-⨯∴=<,2017191199611181717y -⨯=<;2017171917201719yx y x -+=⇒=,由余数定理,要使x 为正整数,201717y -必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即171368y y=⇒=,20171789919x-⨯==,998107x y+=+=;②459,即1745927y y=⇒=,20174598219x-==,8227109x y+=+=;③782,即1778246y y=⇒=,20177826519x-==,6546111x y+=+=;④1105,即17110565y y=⇒=,201711054819x-==,4865113x y+=+=;⑤1428,即17142884y y=⇒=,201714283119x-==,3184115x y+=+=;⑥1751,即171751103y y=⇒=,201717511419x-==,14103117x y+=+=.综上,两种珠子的数量和即x y+所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.【点评】本题考查了不定方程的分析求解,本题突破点是:通过列出关系式,再根据未知数的范围确定取值.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950 =答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月2I日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于12315120260+++⋯+==⨯,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60123457891011=+++++++++这一种分散情况,不妨设这是同月份的人数,和另一种情况:60612131415=++++,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.【点评】本题难点是分析出同月份和同号数的人数的数字不会重复,难度较大.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,123678936++++++=,填入的x是其它五个数的因数,故x只能是3、6、9,若9x=,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=时,如图所示,易知6x=符合题意.6故答案是:6.【点评】本题考查最大与最小,突破点是:可以先求出7个数的和,再求最大值.。

2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版综述

2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版综述

2017 年第 22 届华杯赛决赛模拟试题(1)(小学高年级组)(时间:90 分钟,满分:150 分)一、填空题。

(每题10 分,共80 分)1. 2016年1 月24 日,“华罗庚金杯中外少年数学精英兴趣抗衡赛”在美国开赛,2016 年7 月18 日,“华罗庚金杯少年数学邀请赛30 周年龄念大会” 召开,已知2016 年1 月24 日是礼拜日, 2016 年 7 月 18 日是礼拜。

【难度】★★【考点】周期问题【答案】一【分析】注意 2016 年是闰年。

1 月 25 日至 1 月 31 日共 31-25+1=7(天);2 月至 6 月共 29+31+30+31+30=151(天); 7 月 1 日至 7 月 18 日共 18 天。

故 20166 年 1 月 25 至 7 月 18 日共 7+151+18=176(天)。

176÷ 7=25 1,故 2016 年 1 月 24 日以后第 176 天为礼拜一。

2. 计算:0.75 443225%112221 1 4。

9323215【难度】★★ 【考点】计算 【答案】29【分析】原式 =3 44 36 1 21 2 1 449 9 421213215=3 7 1 15 5 44 94 32115=37 1 2 494 3 15=20 1 69 415=293. 如图,将侧面积是 314 平方厘米的圆柱体,切拼成一个近似长方体,表面积比本来增添厘米。

(π取 3.14 )【难度】★★【考点】几何【答案】 100【分析】设圆柱体高为h, 底面积的半径为r. 则 2π rh=314,rh=50.增添面积为2rh=100 (平方厘米)。

4.仅使用加、减、乘、除、括弧,可由4 个 4 运算获得 3。

比如( 4 + 4 + 4 )÷ 4 = 3。

请你另给一种运算算式。

【难度】★★【考点】巧填运算符号【答案】(4×4 - 4)÷ 4 = 3【分析】三个 4 很简单获得3,即 4-4 ÷ 4=3. 将除以 4 当作乘以1/4 ,利用乘法分派率可将 3 个 4 变为 4 个 4,即4-4 ÷ 4=( 4× 4-4 )除以 4.5. 将自然数从 1 开始,按图所表示的规律摆列。

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组b卷)

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组b卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B 卷)一、填空题(每小题10分,共80分)1.(10分)1111113352015201711111111123345201520162017---++⋯+=⨯⨯⨯⨯⨯⨯ . 2.(10分)甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了 分钟.3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有 个数的数字组成中最多有两个不同的数字. 5.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.6.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有 个.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)77⨯的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m n+的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)1111113352015201711111111123345201520162017---++⋯+=⨯⨯⨯⨯⨯⨯ 2034144 . 【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:1111113352015201711111111123345201520162017---++⋯+⨯⨯⨯⨯⨯⨯ 31532017201513352015201711111111123345201520162017---⨯⨯⨯=++⋯+⨯⨯⨯⨯⨯⨯111122221335572015201711111111132354576201520172016⨯⨯⨯⨯⨯⨯⨯⨯=+++⋯+⨯⨯⨯⨯⨯⨯⨯⨯ 2(24682016)=⨯++++⋯+ (22016)2016222+=⨯⨯20181008=⨯ 2034144=【点评】本题考查了分数的拆项运算知识,本题突破点:把分子拆分成两个分数的乘积形式,从而和分母约分2.(10分)甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了 52 分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(120%):43:2+=,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的13处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5:3x=,125 x=甲在行驶AC的爆胎位置到中点的正常时间为:121248(1)53155⨯-==(小时);甲乙爆胎前后的速度比为:5:5(120%)5:6+=;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:86:5:5y=,43y=;修车时间为:121413353315-⨯-=(小时)13605215⨯=(分)故答案为:52分【点评】本题考查对比例应用题的理解和运用,关键是根据不变量判断正反比,找到甲原来不受影响的时间,再和后面的进行比较做差即可,问题解决.3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)小于1000的自然数中,有 352 个数的数字组成中最多有两个不同的数字. 【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:998648⨯⨯=个, 则最多有两个不同数字的数有:1000648352-=个. 故答案是:352.【点评】本题考查了数的问题,突破点是:先求有三个不同数字的数的个数,用总数减去即可.5.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 8.6 厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.6.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 102 22 43 145 4 9 9 5 14 56 14 57 10 1 866由上表可以得出:4289a a ==,428()()9S a S a ==;52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有 19 个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决. 【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90. (2)尾数不为0 的有:12,21,24,36,42,45,48,54,63,84. 故答案为:19【点评】本题是考察因数和倍数的关系,同时关键是在枚举过程中按照顺序,可以是数字和也可以是首位数字的大小,问题解决.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数4m=;③若有三条直线互相平行,则5m=,6,7;④若有两条直线互相平行,则5m=,6,7,8,9;⑤若没有直线平行,则1m=,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定m的取值的种类.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数. 又有:20176336163357=⨯+=⨯+当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是13111.说明:我们可以用以下方法,构造一个能被7整除且除了首位数之外,其余数字均为1的数列如下: 21,49021511+=, 7005111211+=, 56005116111+=, 7000611113111+=, 35000611141111+=, 7000041111111111+=, 7000041111111111+=,我们注意到,7000611113111+=是能被7整除且各位数字之和等于7 的最大正整数. 所以,各位数字和为 2017 的最大正整数1311111⋯,其中1的个数是335642014⨯+=,即201311311111⋯个.答:能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数是201311311111⋯个.【点评】本题关键是根据能被7整除的数的特征得到由数字“1”组成的最小数是111111;难点是寻找同时满足数字和是7的最大整数是13111.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.【分析】首先分析如果结果是偶数可以分为0,2,4个奇数,把每一种结果加起来即可. 【解答】解:依题意可知:根据四个数的结果是偶数.那么必定是0个奇数,2个奇数或者是4个奇数.在1001,1002,1003,1004,1005,1006,1007,1008,1009奇数的个数为5个,偶数的个数为4个.当0个奇数时有一种情况.当是2个奇数2个偶数时是225460C C=种.当选择4个奇数时有5种.605166++=(种)答:共有66种选择方法.【点评】本题考查对奇偶性的理解和综合运用,同时关键是分类中的排列组合.问题解决.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950=答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.【分析】首先分析最小数字的位置,可以放在圆心出也可以放在外边,两种情况分析即可.【解答】解:依题意可知:分两种情况讨论:假设将最小数放在中心位置,我们只能在外圈顺时针依次从小到达放数字.但是只能满足五个三角形,最后一个三角形无法满足条件.假设将最小的数字放在外圈,然后在周边顺时针依次从小到大放数字,如果想要五个三角形都满足条件,则中心位置必须放大数字,但这样的话,最后一个又不能满足条件.综上所述:不能找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.【点评】本题是对凑数谜的理解和运用,关键问题是找最小数字的位置.问题解决.14.(15分)77⨯的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的+的最大值.行的个数为n,求m n+的值最大.【分析】在m取最大值的条件下n尽量取最大值可使m n【解答】解:根据分析,1黑格和白格的行数7;1列数7,当7⨯=.然后,可以把21个m=时,可以设7列之中黑格个数为3,则黑格总数为:3721黑格在15-行之中每行放4个,第6行放1个,第7行不放.这样就有5行中黑格数量超过白格,所以5+=为最大.如下图1所示:m nn=,从而使得12当6m =时,可以设6列之中黑格个数均为3,其余一列黑格个数为7,这样黑格总数为36725⨯+=.然后,我们使得16-行黑格个数为4个,最后一行只有1个.这样就有6行中黑格数列超过白格,所以6n =,从而使得12m n +=,如图2所示:当5m 时,12m n +.综上,m n +的最大值为12.故答案是:12.【点评】本题考查了最大与最小,本题突破点是:在行数和列数的最小与最大的范围内,确定最大值.。

第二十二届华罗庚金杯少年数学邀请赛 决赛试题(小学中年级组)

第二十二届华罗庚金杯少年数学邀请赛 决赛试题(小学中年级组)

第二十二届华罗庚金杯少年数学邀请赛决赛试题(小学中年级组)(时间: 2017年3月11日10:00~11:30)一、填空题(每小题10分,共80分)1. 在2017个自然数中至少有一个两位数,而且其中任意两个数至少有一个三 位数,则这 2017个数中有个三位数.2. 如右图(1)所示,一个棋子从A 到B 只能沿着横平竖直的路线 在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方.如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中x 代表的数字为.3. 用[]x 表示不超过x 的最大整数,例如[]10.210=.则 201732017420175201762017720178111111111111⨯⨯⨯⨯⨯⨯⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦等于__________.4. 盒子里有一些黑球和白球.如果将黑球数量变成原来的5倍,总球数将会变 成原来的2倍.如果将白球数量变成原来的 5 倍,总球数将会变成原来的倍。

5.能被自己的数字之和整除的两位数中,奇数共有个.6.如右图,将一个正方形硬纸片的四个角分别剪去一个等腰直角三角形.最后剩下一个长方形.正方形边长和三角形直角边长都是整数.若剪去部分的总面积为40 平方厘米,则长方形的面积是平方厘米.7.小龙从家到学校的路上经过一个商店和一个游乐场.从家到商店距离是500 米,用了7分钟;从商店到游乐场以80米/分钟的速度要走8分钟;从游乐场到学校的距离是300米,走的速度是60米/分钟.那么小龙从家到学校的平均速度是米/分钟.8.亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好有2名朋友.他们围着一张圆桌坐下(骑士姓名与座位如右图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有___种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的, 算同一种方法).二、简答题(每小题15分,共60分,要求写出简要过程)9.如右图所示,两个边长为6的正方形ABFE和CDEF拼成长方形ABCD.G为D E 的中点;连接BG交EF于H.求图中五边形CDGHF的面积.10.乌龟和兔子进行1000米赛跑,兔子速度是乌龟速度的 5倍,当它们从起点同时出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它,兔子奋起直追,但乌龟到达终点时,兔子仍落后10 米. 求兔子睡觉期间, 乌龟跑了多少米?11.如右图,一个边长为3的正六边形被3组平行于其边的直线分割成边长为1的54个小正三角形,那么以这些小正三角形的顶点为顶点的正六边形共有多少个?12.如右图,将1至9这九个数字填入网格中,要求每个格子填一个数字,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,那么标有字母x的格子可以填的数字最大是多少?。

第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每小题10分,共80分)1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则[]+[]+[]+[]+[]+[]的值为.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是.6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则[]+[]+[]+[]+[]+[]的值为6048 .【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.【解答】解:根据分析,原式为:[]+[]+[]+[]+[]+[]=[]+[]+[]+[]+[]+[]=550+733+916+1100+1283+1466=6048.故答案是6048.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为20 .【分析】根据题意,设原来给定的4个整数分别是a、b、c、d,则+d =8(1),+c=12(2),+b=10(3),+a=9(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a、b、c、d,+d=8(1),+c=12(2),+b=10(3),+a=9(4),(1)+(2)+(3)+(4),可得2(a+b+c+d)=8+12+10+9,所以a+b+c+d=20,所以原来给定的4个整数的和为20.故答案为:20.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64 千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80÷2=40(千米/时);甲速度加速变成40×2=80(千米/时);甲再经过2小时路程为:2×80=160(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160÷2.5=64(千米/时)故答案为:645.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是3:4 .【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是1÷=,只参加朗诵小组人数的分率是1÷=5,则参加书法小组人数的分率是1+=,参加朗诵小组人数的分率是1+5=6,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,(1+1÷):(1+1÷)=:6=3:4答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6 厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB 于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10 .【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),n a n S(a n)1 2017 102 22 43 14 54 9 95 14 56 14 57 10 18 6 69 7 710 13 411 11 212 6 613 8 814 14 515 13 416 9 917 13 418 13 419 8 820 12 321 11 222 5 523 7 724 12 325 10 126 4 427 5 528 9 929 14 530 14 531 10 132 6 6 由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,n=0,即5条直线互相平行;n=1,即五条直线交于一点;n=2,3,不存在;n=4,5,6,7,8,9,10的情况分别如下图:n的取值共有9种不同的数,故答案是:9.10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a、同时选苹果和香蕉的人数b、同时选梨和苹果的人数c、同时选香蕉和梨的人数d,再根据选每种水果的人数列关系式,2a+b+c+d=70+40+30﹣100=40,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a人,同时选了苹果和香蕉的人数有b人,同时选了梨和苹果的人数有c人,同时选了香蕉和梨的人数有d人,则:2a+b+c+d=70+40+30﹣100=40⇒a =,又∵b+c+d≥0,∴a≤=20,故当b+c+d=0时,a取最大值20,即占总数的20%故答案是20%.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x个,17克的珠子有y个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值.【解答】解:根据分析,设有x个19克的珠子,y个17克的珠子,则有:19x+17y=2017,又∵x,y均为正整数∴1≤x≤<106,1≤y≤<118;19x+17y=2017⇒x=,由余数定理,要使x为正整数,2017﹣17y 必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即17y=136⇒y=8,x==99,x+y=99+8=107;②459,即17y=459⇒y=27,x==82,x+y=82+27=109;③782,即17y=782⇒y=46,x==65,x+y=65+46=111;④1105,即17y=1105⇒y=65,x==48,x+y=48+65=113;⑤1428,即17y=1428⇒y=84,x==31,x+y=31+84=115;⑥1751,即17y=1751⇒y=103,x==14,x+y=14+103=117.综上,两种珠子的数量和即x+y所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.12.(10分)使不为最简分数的三位数n之和等于多少.【分析】不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,我们可以用5n+1尝试来锁定答案,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102+109+116+…+998=(102+998)×129÷2=70950答:使不为最简分数的三位数n之和等于70950.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于1+2+3+…+15=120=2×60,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60=1+2+3+4+5+7+8+9+10+11这一种分散情况,不妨设这是同月份的人数,和另一种情况:60=6+12+13+14+15,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,1+2+3+6+7+8+9=36,填入的x是其它五个数的因数,故x只能是3、6、9,若x=9,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=6时,如图所示,易知x=6符合题意.故答案是:6.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:03:00;用户:小学奥数;邮箱:****************;学号:20913800。

2017年第22届“华罗庚金杯”少年邀请赛初中二年级组数学试题(PDF版)

2017年第22届“华罗庚金杯”少年邀请赛初中二年级组数学试题(PDF版)

A BH GCID E F 第二十二届华罗庚金杯少年数学邀请赛决赛试题(初中二年级组)(时间: 2017年3月11日10:00~11:30)一、填空题(每小题 10 分, 共 80 分)1. 计算= . 2.如果a b +=, 那么a 4+b 4+ 2a 2b 2-a 3b -ab 3a 2+b 2+3ab = . 3. 在平面直角坐标系xOy 中, 一次函数y kx b =+的图象过点(1, 1)A , 与坐标轴围成的三角形面积为2, 这样的一次函数有 个. 4. 如右图, 两个边长为6的正方形ABFE 和EFCD 拼成长方形ABCD . 点G 在线段ED 上, 连接BG 交EF 于点H . 如果五边形CDGHF 的面积为33, 那么线段BG 的长等于 . 5. 已知311,,,p q p q q p--都是正整数, 那么p 2+q 2的最大值等于 . 6. 某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐. 每个人至少选择一种, 可以多选. 某班30名学生的调查结果如下:(a ) 没选苹果的学生中, 选香蕉的人数是选梨的人数的2倍; (b ) 三种水果都选的学生有7人;(c ) 在恰好选了两种水果的学生中, 选择香蕉和梨组合的人数比选其它组合的人数之和多3人;7. (d ) 在只选一种水果的学生中, 恰好有一半选了苹果. 那么, 只选了一种水果的学生有 人. 如右图,在梯形ABCD 中, AB ∥DC , 4AB =, 1DC =, 分别以AD , BC 为边向外作正方形ADEF 与正方形BHGC , I 为线段EG 的中点, 那么△DCI 的面积等于 .8. 用表示不大于数x 的最大整数.已知正整数的平方的十位数字是7, 那么, 100100n n ⎡⎤-⎢⎥⎣⎦的所有可能值的和等于 .二、解答下列各题(每小题 10 分, 共 40 分, 要求写出简要过程)9. 已知2221a b c ++=, 3111111-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+b a c a c b c b a , 求a b c ++的值.10. 如右图, 等腰直角三角形PQR 的斜边QR 的长为 2. 正方形ABCD 的边AB 在QR 上, 边DC 过点P , 边DA ,CB 分别交PQ ,PR 于点M ,N . 当AB 在QR 上水平滑动时, △QAM 与△BRN 的周长和是否为定值?说明理由.11. 求证:任意的5个整数中, 必定有两个整数的平方差是7的倍数.12. 正整数,a b , 满足100a b +<,abq a b=+(q 是正整数), 问a b +可以取的值有多少个? 13.三、解答下列各题(每小题 15 分, 共 30 分, 要求写出详细过程)14. 如右图, △ABC , △AEF 和△BDF 均为正三角形, 且+60ABF AFB ECD ∠+∠∠=o , 求AFC ∠的度数.15. 直线a 平行于直线b , a 上有5个点125,,,A A A L , b 上有5个点125,,,B B B L ,连接线段( ,1, 2, 3, 4, 5)i j A B i j =. 所得到的图形中, 三角形最多有多少个?ABC DEFQAM D PC N RB第二十二届华罗庚金杯少年数学邀请赛决赛试题参考答案(初中二年级组)一、填空题(每小题 10 分, 共80分)二、解答下列各题(每小题 10 分, 共40分, 要求写出简要过程)++的值为-1,或0或1.9.【答案】a b c10.【答案】周长和是定值11.【证明】略12.【答案】38三、解答下列各题(每题 15 分, 共30分, 要求写出详细过程)13.【答案】30o14.【答案】1000.。

201703011第二十二届华杯赛决赛解析(小中a卷)

201703011第二十二届华杯赛决赛解析(小中a卷)

华杯赛决赛试题A(小学中年级组) 1 第二十二届华罗庚金杯少年数学邀请赛决赛试题小学中年级组本文题目由热心家长提供,南京新东方启智数学教师录排,时间仓促,如若有误,欢迎各位家长留言指正!一、填空题(每小题10分,共80分)1.在 2017 个自然数中至少有一个两位数,而且其中任意两个数至少有一个三位数,则这2017 个数中有个三位数。

【答案】2016【考点】抽屉原理的基础:最不利原则【启智数学春季班四年级第 8 讲内容】【解析】假设这些自然数中有2个数不满足三位数的条件,则与“任意两个数至少有一个三位数”相矛盾,因此只有 1 个数不是三位数,三位数有:2017-1=2016(个)2.如下图(1)所示,一个棋子从 A 到 B 只能沿着横平竖直的路线,在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方。

如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中 x 代表的数字为。

1344 11 2 2 3 A2Ax211 B3(1)4 B(2)【答案】2【考点】平面图形找规律【启智数学秋季班三年级第 6 讲内容】【解析】每个格子都在某一行某一列上,所以行上的数字和与列上的数字和相等,故:x=(1+3+4+4+1)-(3+1+3+4)=13-11=2(路线如上图)13.用[x]表示不超过 x 的最大整数,例如[10.2]=10,则:[ 2017×3 ] + [ 2017×4 ] + [ 2017×5 ] + [ 2017×6 ] + [ 2017×7 ] + [ 2017×8 ]等于。

11 11 11 11 11 11【答案】6048【考点】定义新运算【启智数学春季班五年级第 15 讲内容】2017×3 2017×8 2017×(3+8)【解析】11 + 11 = 11 = 2017又[x]表示不超过 x 的最大整数,所以[2017×311] + [2017×811] = 2017 − 1 = 2016原式=2016×3=6048.4.盒子里有一些黑球和白球,将黑球数量变成原来的 5 倍,总的球数将会变成原来的 2 倍。

2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版综述

2017年第22届华杯赛(小高组)决赛模拟试题(1)-T版综述

2017年第22届华杯赛决赛模拟试题(1)(小学高年级组)(时间:90分钟,满分:150分)一、填空题。

(每小题10分,共80分)1.2016年1月24日,“华罗庚金杯中外少年数学精英趣味对抗赛”在美国开赛,2016年7月18日,“华罗庚金杯少年数学邀请赛30周年纪念大会”召开,已知2016年1月24日是星期日,2016年7月18日是星期 。

【难度】★★【考点】周期问题【答案】一【解析】注意2016年是闰年。

1月25日至1月31日共31-25+1=7(天);2月至6月共29+31+30+31+30=151(天);7月1日至7月18日共18天。

故20166年1月25至7月18日共7+151+18=176(天)。

176÷7=25……1,故2016年1月24日之后第176天为星期一。

2.计算:=⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--1541212322211%2532394475.0 。

【难度】★★【考点】计算 【答案】92 【解析】原式 = ⎥⎦⎤⎢⎣⎡--÷⎪⎭⎫ ⎝⎛+⨯⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛--+-15412123212124196394443 = ⎪⎭⎫ ⎝⎛--÷+⨯⎪⎭⎫ ⎝⎛⨯-154125351419743 = ⎪⎭⎫ ⎝⎛-⨯⨯⎪⎭⎫ ⎝⎛-1543241973 =15641920⨯⨯ = 92 3.如图,将侧面积是314平方厘米的圆柱体,切拼成一个近似长方体,表面积比原来增加 厘米。

(π取3.14)【难度】★★【考点】几何【答案】100【解析】设圆柱体高为h,底面积的半径为r.则2πrh=314,rh=50.增加面积为2rh=100(平方厘米)。

4.仅使用加、减、乘、除、括弧,可由4个4运算得到3。

例如(4 + 4 + 4)÷4 = 3。

请你另给一种运算算式。

【难度】★★【考点】巧填运算符号【答案】(4×4 - 4)÷4 = 3【解析】三个4很容易得到3,即4-4÷4=3.将除以4看成乘以1/4,利用乘法分配率可将3个4变成4个4,即4-4÷4=(4×4-4)除以4.5.将自然数从1开始,按图所表示的规律排列。

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形2.(10分)从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4 B.5 C.6 D.73.(10分)小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9 B.8 C.7 D.64.(10分)猎豹跑一步长为2米,狐狸跑一步长为1米.猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米,则猎豹跑动()米可追上狐狸.A.90 B.105 C.120 D.1355.(10分)图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4 B.3 C.5 D.106.(10分)一个数串219…,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有()个不出现在该数串中.A.1 B.2 C.3 D.4二、填空题(每小题10分,满分40分.)7.(10分)计算1000﹣257﹣84﹣43﹣16=.8.(10分)已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是千米/小时和千米/小时.9.(10分)《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的5天食品和50千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要浇灌4千克的水,马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?10.(10分)如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是或.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小中组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【分析】因为平角是180°,拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,所以两个角的和必须等于平角,据此解答即可.【解答】解:因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A、因为两个锐角的和小于180度,所以,两个锐角三角形不可能拼成一个大三角形;B、因为90°+90°=180°,所以两个直角三角形能拼成一个大三角形;C、因为钝角+锐角有可能等于180°,所以两个钝角三角形可能拼成一个大三角形;D、因为钝角+锐角有可能等于180°,所以两个钝角三角形可能拼成一个大三角形;故选:A.【点评】本题考查了图形的拼组,难点是把所求问题转化为哪两种角能拼成平角.2.(10分)从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4 B.5 C.6 D.7【分析】10个自然数有:1、2、3、4、5、6、7、8、9、10;和是10的有(1,9)、(2、8);(3、7);(4、6);这四组数据中的两个数相加的和是10,根据抽屉原理,考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,据此即可解答.【解答】解:从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即6+1=7(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.【点评】完成本题首先要确定在前10个自然数中,相加为10的两个数有几组.3.(10分)小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9 B.8 C.7 D.6【分析】三位数□□□,三个位置,考虑两种情况:(1)有1个5,2个8,则5的位置有3种;(2)有2个5,1个8,则8的位置有3种,所以共有3+3=6种,据此解答即可.【解答】解:根据分析可得3+3=6(次)答:他最少要试6次,才能确保打开箱子.故选:D.【点评】本题考查了排列组合知识,首先分类清楚然后根据加法原理解答即可.4.(10分)猎豹跑一步长为2米,狐狸跑一步长为1米.猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米,则猎豹跑动()米可追上狐狸.A.90 B.105 C.120 D.135【分析】猎豹跑2步的时间狐狸跑3步,即猎豹跑2×2=4米的时间狐狸跑1×3=3米.因为时间一定,速度比等于时间的反比,所以设这段时间为1秒,则猎豹的速度为4米/秒,狐狸的速度为3米/秒,然后用追及距离30米除以速度和就是追及时间,然后再乘猎豹的速度4米/秒即为所求.【解答】解:设猎豹的速度为:2×2=4(米/秒),狐狸的速度为:1×3=3(米/秒),30÷(4﹣3)=30÷1=30(秒)4×30=120(米)答:猎豹跑动120米可追上狐狸.故选:C.【点评】本题考查了复杂的追及问题,关键是得到猎豹和狐狸的速度.5.(10分)图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4 B.3 C.5 D.10【分析】把线段①平移到②的位置可以组成一个大长方形,这样就可以确定计算出这个八边形的周长需要知道几条线段的长度.【解答】解:如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:2+1=3条线段的长度.故选:B.【点评】本题考查了巧算图形的周长,关键是通过线段的平移,使图形变成易于解答的规则图形.6.(10分)一个数串219…,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有()个不出现在该数串中.A.1 B.2 C.3 D.4【分析】根据题意可知219的数字和为2+1+9=12,那么下一个数字是结果的个位就是2,变成2192.接下来就按照枚举法找数字规律即可.【解答】解:枚举法219的数字和是12,接下来就是2192数字和是12,接下来就是2922的数字和是13,接下来就是3223的数字和为7,接下来就是7237的数字和为12,接下来的数2以此类推数字为:2192237221584790651281102…规律总结数字和的尾数呈现两奇数两个偶数的周期规律.故选:C.【点评】本题的关键是用枚举法找到数字规两奇数两偶数周期循环.枚举法应用于情况比较少的特殊情况.简单明了直接易懂问题解决.二、填空题(每小题10分,满分40分.)7.(10分)计算1000﹣257﹣84﹣43﹣16=600.【分析】根据减法的性质简算即可,a﹣b﹣c=a﹣(b+c).【解答】解:1000﹣257﹣84﹣43﹣16=1000﹣(257+43)﹣(84+16 )=1000﹣300﹣100=700﹣100=600故答案为:600.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.8.(10分)已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是250千米/小时和100千米/小时.【分析】设普快的时速是x千米/小时,则动车的时速是2x千米/小时,高铁的时速是(1+25%)×2x=2.5x千米/小时,根据等量关系:高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,即高铁与普快的平均时速比动车与普快的平均时速快25千米/小时,列出方程求解即可.【解答】解:设普快的时速是x千米/小时,则动车的时速是2x千米/小时,高铁的时速是(1+25%)×2x=2.5x千米/小时,则﹣=15+10,1.75x﹣1.5x=250.25x=250.25x÷0.25=25÷0.25x=1002.5x=2.5×100=250答:高铁和普快列车的时速分别是250千米/小时和100千米/小时.故答案为:250,100.【点评】考查了百分数的实际应用,本难度较大,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,再求解.9.(10分)《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援.马克的居住舱内留有每名航天员的5天食品和50千克非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要浇灌4千克的水,马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多可以支撑多少天?【分析】首先根据没有土豆的时候能够生存多少天,然后根据水的存储量计算出共能够有多少土豆,除以每天的吃的土豆就是天数.【解答】解:6人的食物储备一个人可以生活5×6=30天.非饮用水储存50×6=300千克.共可以收获的土豆300÷4×2.5=187.5(千克).共可以生存187.5÷1.875=100(天)100+30=130(天)答:可以供马克生活130天.【点评】本题的关键是不要忘记把原来的30天,土豆能够生活100天,原来的食物可以生存30天.突破口就是非饮用水的量.问题解决.10.(10分)如图五角星中,位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字,不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”,则“华”代表的数字是3或4.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可解决问题.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,根据这点可知,和“杯”在一条线段上的“华”可能是3或4,(2与1的和不在新的和内,5必须与3组合).答:“华”代表的数字是3或4.故答案为:3;4.【点评】此题考查了数字分析推理能力,难点是确定新的5个连续自然数比原来5个连续自然数多多少.。

第22届华罗庚金杯少年数学邀请赛小高组决赛(A)卷

第22届华罗庚金杯少年数学邀请赛小高组决赛(A)卷

第二十二届华罗庚金杯少年数学邀请赛决赛(A )卷【小高组】一、填空题(每小题10分,共80分)1.用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_______.2. 从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为_______.3.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有_______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4. 甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B 地去了C 地,甲已离开A 地2小时,于是,甲以原来速度的2倍去C 地,又经过了2小时后,甲乙两人同时到达C 地,则乙的速度是_______千米/小时.5.某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是_______.6.右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,o 90=∠MHB .已知AB=20厘米.则MH 的长度为_______厘米.7.一列数,,,,,21⋅⋅⋅⋅⋅⋅n a a a 记)(i a S 为i a 的所有数字之和,如422)22(=+=S 。

若 )()(,22,20172121--+===n n n a S a S a a a ,那么2017a 等于_______.8.如右图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有_______种.9.平面上有5条不同的直线,这5条直线共形成n 个交点,则n 有多少个不同的数值?10.某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐。

【小中组】第22届华罗庚金杯少年数学邀请赛决赛卷

【小中组】第22届华罗庚金杯少年数学邀请赛决赛卷

第二十二届华罗庚金杯少年数学邀请赛决赛卷【小中组】一、填空题(每小题10分,共80分)1.在2017个自然数中至少有一个两位数,而且其中任意两个数至少有一个三位数,则这2017 个数中有______个三位数.2.如右图(1)所示,一个棋子从A 到B 只能沿着横平竖直的路线在网格中行走,给定棋子的一条路线,将棋子在某一列中经过的格子数标在该列的上方,在某一行中经过的格子数标在该行的左方.如果右图(2)中网格上方和左方的数字也是根据以上规则确定的,那么图中x 代表的数字为______.3.用[x]表示不超过x 的最大整数,例如[10.2]=10.则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017等于______.4.盒子里有一些黑球和白球.如果将黑球数量变成原来的5倍,总球数将会变成原来的2倍.如果将白球数量变成原来的5倍,总球数将会变成原来的______倍.5.能被自己的数字之和整除的两位数中,奇数共有_______个.6.如右图,将一个正方形硬纸片的四个角分别剪去一个等腰直角三角形,最后剩下一个长方形.正方形边长和三角形直角边长都是整数.若剪去部分的总面积为40平方厘米,则长方形的面积是______平方厘米.7.小龙从家到学校的路上经过一个商店和一个游乐场.从家到商店距离是500米,用了7分钟;从商店到游乐场以80米/分钟的速度要走8分钟;从游乐场到学校的距离是300米,走的速度是60米/分钟.那么小龙从家到学校的平均速度是______米/分钟.8.亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好有2名朋友.他们围着一张圆桌坐下(骑士姓名与座位如右图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有_______种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).二、简答题(每小题15分,共60分,要求写出简要过程)9.如右图所示,两个边长为6的正方形ABFE和CDEF拼成长方形ABCD.G为DE的中点.连接BG交EF于H.求图中五边形CDGHF的面积.10.乌龟和兔子进行1000米赛跑,兔子速度是乌龟速度的5倍,当它们从起点同时出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它,兔子奋起直追,但乌龟到达终点时,兔子仍落后10米.求兔子睡觉期间,乌龟跑了多少米?11.如右图,一个边长为3的正六边形被3组平行于其边的直线分割成边长为1的54个小正三角形,那么以这些小正三角形的顶点为顶点的正六边形共有多少个?12.如右图,将1至9这九个数字填入网格中,要求每个格子填一个数字,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,那么标有字母x的格子可以填的数字最大是多少?第二十二届华罗庚金杯少年数学邀请赛决赛卷参考答案【小中组】一、填空题(每小题10分,共80分)1.解析:【知识点】极值只要非三位数的个数大于等于两个,就不能保证其中任意两个数至少有一个三位数,所以这2017个自然数中,只可能是1个两位数,2016个三位数。

2017年第二十二届华杯赛小高组决赛模拟试题(7)S版-

2017年第二十二届华杯赛小高组决赛模拟试题(7)S版-

2017年第22届华罗庚金杯少年数学邀请赛决赛赛模拟试题7(小学高年级组)一、填空题:1、计算:__________)2.1436254(01.005.20)]5425215.21295(16.0[=÷-⨯⨯÷+⨯-。

2、一次英语竞赛满分是100分,某班前五名同学的平均得分是95.2分,排第五名同学的得分是86分。

那么排第三名的同学最少得 分。

(五人得分都是整数)3、下面等式中,相同字母表示同一数字,365DEE DE ABBC =÷,那么______=ABBC 。

4、如图,三角形ABC 中,AB=AC ,AE=AD ,∠BAD=30º,∠ACD=40º,那么,∠EDC= 度。

5、在1、2、3……,30这30个自然数中,最多能取出 个数,使取出的数中,任意两个不同的数的和都不是7的倍数。

6、小宁家的钟和学校的钟走得很正常,但小宁家的钟拨快了而学校的钟是准确的,小宁按家里的钟8点8分离家去学校,走到学校时,学校的钟是7点50分;中午,他按学校的钟12点时离校回家,到家时家里的钟正好是12点34分。

如果小宁上学与放学路上用去的时间是相同的,那么小宁家的钟拨快了 分钟。

7、有一个由9个小正方形组成的3×3的大正方表,将其中的两个涂黑。

有 种不同的涂法(旋转后涂色方式相同的看成一种涂法)。

8、甲、乙、丙、丁四名同学按照顺序围成一圈练习传球,每人都只能把球传给相邻的人.先由甲发球,经过7次传球后球不在甲的手中.请问:整个传球过程共有 种不同的可能。

二、解答题9、服装店购进A 型和B 型两批服装,成本共2160元,A 型服装按25%的利润定价,B 型服装按10%的利润定价,实际都按定价的90%打折出售,结果仍获利140.4元,那么A 型服装的成本价多少元?10、C市汽车牌号有一类编号是“CA”后面排上五个阿拉伯数字,即“CA·□□□□□”,如果编号中出现相邻的数字“68”称为幸运车牌号,那么这类车牌号中10000到99999的幸运车牌号共有多少个?11、工人小张和小王要加工同样多的零件,用旧机床每小时加工20个,后来工厂为他们改换了新型机床,每小时加工60个,小张改换机床前后所完成的零件数的比为2:3,小王改换机庆前后的时间比为3:2,结果小王比小张少用18分钟完成任务。

22届华杯赛试题及答案

22届华杯赛试题及答案

22届华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 华杯赛是国际性的数学竞赛B. 华杯赛是全国性的数学竞赛C. 华杯赛是地区性的数学竞赛D. 华杯赛是校级的数学竞赛答案:B2. 华杯赛的全称是什么?A. 华罗庚数学竞赛B. 华罗庚杯数学竞赛C. 华罗庚数学挑战赛D. 华罗庚数学邀请赛答案:B3. 22届华杯赛的举办年份是?A. 2021年B. 2022年C. 2023年D. 2024年答案:B4. 华杯赛的参赛对象通常包括哪些年级的学生?A. 小学一至六年级B. 初中一年级至三年级C. 高中一年级至三年级D. 大学一年级至四年级答案:B二、填空题(每题5分,共20分)1. 华杯赛的创办人是_______。

答案:华罗庚2. 22届华杯赛的冠军得主是_______。

答案:[冠军姓名]3. 华杯赛的试题通常包括_______和_______两个部分。

答案:选择题、解答题4. 参加华杯赛的学生需要具备_______和_______。

答案:良好的数学基础、解决问题的能力三、解答题(每题10分,共60分)1. 证明:对于任意正整数n,n的平方加1不能被2整除。

答案:略2. 解方程:x^2 - 5x + 6 = 0。

答案:x = 2 或 x = 33. 计算:(1 + 1/2) * (1 - 1/2) * (1 + 1/3) * (1 - 1/3) * ... * (1 + 1/100) * (1 - 1/100)。

答案:1/1004. 证明:勾股定理在直角三角形中成立。

答案:略5. 一个圆的半径是5,求该圆的面积。

答案:25π6. 一个长方体的长、宽、高分别是2、3、4,求该长方体的体积。

答案:24四、附加题(每题10分,共20分)1. 一个数列的前三项是1, 1, 2,从第四项开始,每一项是前三项的和。

求该数列的第十项。

答案:762. 一个等差数列的前三项是2, 5, 8,求该数列的第十项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年第二十二届华罗庚金杯少年数学邀请赛决赛试题
一、填空题(每小题 10 分, 共 80 分)
1. 在2017个自然数中至少有一个两位数, 而且其中任意两个数至少有一个三位数, 则这2017个数中有()个三位数.
2. 如右图(1)所示, 一个棋子从A到B只能沿着横平竖直的路线在网格中行走, 给定棋子的一条路线, 将棋子在某一列中经过的格子数标在该列的上方, 在某一行中经过的格子数标在该行的左方.如果右图(2)中网格上方和左方的数字也是根据以上规则确定的, 那么图中x代表的数字为().
3. 用[x]表示不超过x的最大整数, 例如[10.2]=10. 则
等于( ).
4. 盒子里有一些黑球和白球. 如果将黑球数量变成原来的5倍, 总球数将会变成原来的2倍. 如果将白球数量变成原来的5倍, 总球数将会变成原来的( )倍.
5. 能被自己的数字之和整除的两位数中, 奇数共有( )个.
6. 如右图, 将一个正方形硬纸片的四个角分别剪去一个等腰直角三角形, 最后剩下一个长方形. 正方形边长和三角形直角边长都是整数. 若剪去部分的总面积为 40 平方厘米, 则长方形的面积是( )平方厘米.
7. 小龙从家到学校的路上经过一个商店和一个游乐场. 从家到商店距离是500 米, 用了7分钟; 从商店到游乐场以80米/分钟的速度要走8分钟; 从游乐场到学校的距离是300米, 走的速度是60 米/分钟. 那么小龙从家到学校的平均速度是米/分钟.
8. 亚瑟王在王宫中召见6名骑士, 这些骑士中每个骑士恰好有2名朋友. 他们围着一张圆桌坐下(骑士姓名与座位如右图), 结果发现这种坐法, 任意相邻的两名骑士恰好都是朋友. 亚瑟王想重新安排座位, 那么亚瑟王有( )种不同方法安排座位, 使得每一个骑士都不与他的朋友相邻 (旋转以后相同的, 算同一种方法).
二、简答题(每小题15分, 共60分, 要求写出简要过程)
9. 如右图所示, 两个边长为6的正方形ABFE和CDEF拼成长方形ABCD. G为DE 的中点. 连接BG交EF于H. 求图中五边形CDGHF的面积.
10. 乌龟和兔子进行 1000 米赛跑, 兔子速度是乌龟速度的 5 倍, 当它们从起点同时出发后, 乌龟不停地跑, 兔子跑到某一地点开始睡觉, 兔子醒来时乌龟已经领先它, 兔子奋起直追, 但乌龟到达终点时, 兔子仍落后 10 米. 求兔子睡觉期间, 乌龟跑了多少米?
11.如右图, 一个边长为 3 的正六边形被 3 组平行于其边的直线分割成边长为 1 的54 个小正三角形, 那么以这些小正三角形的顶点为顶点的正六边形共有多少个?
12. 如右图, 将 1 至 9 这九个数字填入网格中, 要求每个格子填一个数字, 不同格子填的数字不同, 且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍. 已知左右格子已经填有数字 4 和 5 , 那么标有字母 x 的格子可以填的数字最大是多少?。

相关文档
最新文档