含氨废气吸收塔的工艺设计

含氨废气吸收塔的工艺设计
含氨废气吸收塔的工艺设计

精细化工废气处理实用工艺

8.1 废气防治措施评述 8.1.1 有组织排放废气防治措施及评述 拟建项目有组织废气主要包括工艺废气(G1~G6),溶剂回收车间生产过程产生的废气(G7),废水处理废气(G8、G9),危废暂存库收集的无组织废气(G10)。 拟建项目还在各生产车间及溶剂回收车间建有完善的无组织废气收集系统,干燥、离心等生产过程产生的无组织废气经集气罩收集后,送往相应的处理设施处理;将危废暂存库中能密封的设备和空间尽量密闭,减少废气产量,拟采取各项措施减少危险废物暴露面,从而减少废气扩散空间,对已产生的废气采用负压收集并通过“碱喷淋洗涤+活性炭吸附”处理后排放;废水处理站的收集池、中间水池、混凝沉淀池、厌氧水解池、A/O生化池、二沉池等大部分构筑物均加盖并进行废气收集,与废水蒸发产生的不凝气,通过“碱喷淋洗涤+活性炭吸附”处理后排放;易挥发液体储罐均采用氮封,罐区槽车装卸过程加装气相平衡管,密闭装车,在天气炎热时对储罐进行喷淋降温,有效减少储罐的“呼吸排放”。以上措施最大程度上将厂无组织废气收集后转变成有组织废气进行处理。 上述废气中成分复杂,有乙酸、环己酮、环己醇、甲苯、二乙二醇单乙醚、氯戊烯、丙酮、丙酮聚合物、四氢呋喃、噻吩、石油醚、乙酸乙酯、甲醇、二氯甲烷、乙腈、羟基丙酮、丙酮基磷酸甲酯、氯乙酸甲酯、亚磷酸二甲酯、甲醇、三氟化硼乙醚、乙醚、乙醛、HCl、三聚乙醛二氯亚砜等有机组分污染物,还有HCl、氨、SO2、氯气等无机组分污染物,治理难度大。 8.1.1.1 废气处理措施选择 目前,工业有机废气的处理技术主要有冷凝法、吸收法(水法、有机溶剂法)、吸附法(活性炭颗粒吸附法、活性炭纤维吸附法)、燃烧法(催化燃烧法、蓄热燃烧法、焚烧法)等,相关技术要点比较见表8.1-1。 表8.1-1 有机废气常见处理技术比较

化工原理课程设计---水吸收氨气-资料

《化工原理》课程设计水吸收氨气填料塔设计 学院医药化工学院 专业化学工程与工艺 班级 姓名姚 学号 090350== 指导教师蒋赣、严明芳 2011年12月25日

目录 前言 (1) 1. 水吸收氨气填料塔工艺设计方案简介 (4) 1.1任务及操作条件 (4) 1.2设计案的确定 (4) 1.3填料的选择 (4) 2. 工艺计算 (6) 2.1 基础物性数据 (6) 2.1.1液相物性的数据 (6) 2.1.2气相物性的数据 (6) 2.1.3气液相平衡数据 (6) 2.1.4 物料衡算 (7) 2.2 填料塔的工艺尺寸的计算 (7) 2.2.1 塔径的计算 (7) 2.2.2 填料层高度计算 (9) 2.2.3 填料层压降计算 (12) 2.2.4 液体分布器简要设计 (13) 3. 辅助设备的计算及选型 (15) 3.1 填料支承设备 (15) 3.2填料压紧装置 (16) 3.3液体再分布装置 (16) 4. 设计一览表 (17) 5. 后记 (18) 6. 参考文献 (10) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。 塔设备按其结构形式基本上可分为两类;板式塔和填料塔。以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。 综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。 过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。为了使1填料塔的设计获得满足分离要

填料吸收塔课程设计

一设计任务书 (一)设计题目 过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧水吸收SO 2 炉送出的混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。 (二)操作条件 (1)操作压力常压 (2)操作温度25℃ (三)设计内容 (1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)吸收塔接管尺寸计算; (6)绘制吸收塔设计条件图; (7)对设计过程的评述和有关问题的讨论。 二设计方案简介 2.1方案的确定 用水吸收SO 属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流 2 不作为产品,故采用纯溶剂。 程。因用水作为吸收剂,且SO 2 2.2填料的类型与选择 的过程,操作温度及操作压力较低,工业上通常选用塑料散对于水吸收SO 2 装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。

阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 2.3设计步骤 本课程设计从以下几个方面的内容来进行设计 (一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。 三、工艺计算 3.1基础物性数据 3.1.1 液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下: 密度为ρ L =997.1 kg/m3 粘度为μ L =0.0008937 Pa·s=3.2173kg/(m·h) 表面张力为σ L =71.97 dyn/cm=932731 kg/h2 SO 2在水中的扩散系数为 D L =1.724×10-9m2/s=6.206×10-6m2/h (依Wilke-Chang 0.5 18r 0.6 () 1.85910 M T D V φ μ - =?计算,查《化学工程基础》) 3.1.2 气相物性数据 设进塔混合气体温度为25℃, 混合气体的平均摩尔质量为 M Vm=Σy i M i=0.1×64.06+0.9×29=32.506g/mol 混合气体的平均密度为

废气处理办法

精心整理江苏某某实业股份有限公司 车间生产废气处理工程

目录 第一章项目概况.............................................................................................. 错误!未指定书签。第二章工程设计内容...................................................................................... 错误!未指定书签。 2.1工程范围........................................................................................... 错误!未指定书签。 2.2 技术规范.......................................................................................... 错误!未指定书签。 2.3 设计依据.......................................................................................... 错误!未指定书签。 2.4 设计原则.......................................................................................... 错误!未指定书签。 第八章质量保证计划与措施.......................................................................... 错误!未指定书签。 8.1 质量保证计划.................................................................................. 错误!未指定书签。 8.2 质量保证措施.................................................................................. 错误!未指定书签。

水吸收氨气填料塔设计概述

化工原理课程设计 课程名称: _ 化工原理 设计题目: __水吸收空气中氨填料塔的工艺设计____ 院系: ___化学与生物工程学院__________ 学生姓名: _____王永奇__________ 学号: ____200907117________ 专业班级: __化学工程与工艺093_ 指导教师: ______张玉洁_________

化工原理课程设计任务书 一、设计题目:水吸收空气中的氨填料塔的工艺设计 二、设计条件 1.生产能力:每小时处理混合气体4500Nm/h; 2.设备型式:填料塔 3.操作压力:101.3KPa 4.操作温度:298K 5.进塔混合气中含氨8%(体积比) 6.氨的回收率为99% 7.每年按330天计,每天24小时连续生产 8.建厂地址:兰州地区 9.要求每米填料的压降都不大于103Pa 三、设计步骤及要求 1. 确定设计方案 (1)流程的选择 (2)初选填料类型 (3)吸收剂的选择 2.查阅物料的物性数据 (1)溶液的密度、粘度、表面张力、氨在水中的扩散系数 (2)气相密度、粘度、表面张力、氨在空气中的扩散系数 (3)氨在水中溶解的相平衡数据 3.物料衡算 (1)确定塔顶、塔底的气液流量和组成 (2)确定泛点气速和塔径 (3)校核D/d>8~10 (4)液体喷淋密度校核:实际的喷淋密度要大于最小的喷淋密度。 4.填料层高度计算 5.填料层压降校核

如果不符合上述要求重新进行以上计算 6.填料塔附件的选择 (1)液体分布装置 (2)液体在分布装置 (3)填料支撑装置 (4)气体的入塔分布 7.计算结果列表(见下表) 四、设计成果 1. 设计说明书(A4) (1)内容包括封面、任务书、目录、正文、参考文献、附录 (2)格式必须严格按照兰州交通大学毕业设计的格式打印。 2.精馏塔工艺条件图(2号图纸)(手绘) 五、时间安排 (1)第十九周---第二十二周 (2)第二十二周的星期五(7月20日)下午两点本人亲自到指定地点交设计成果,最迟不得晚于星期五的十八点钟。 六、设计考核 (1)设计是否独立完成; (2)设计说明书的编写是否规范 (3)工艺计算与图纸正确与否以及是否符合规范 (4)答辩 七、参考资料 1.《化工原理课程设计》贾绍义柴成敬天津科学技术出版社 2.《现代填料塔技术》王树盈中国石化出版社 3.化工原理夏清天津科学技术出版社

35种废气处理工艺流程图要点

35种废气处理工艺流程图 简介 废气处理设备,主要是运用不同工艺技术,通过回收或去除减少排放尾气的有害成分,达到保护环境、净化空气的一种环保设备。 处理原理:

稀释扩散法 原理:将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味。适用范围:适用于处理中、低浓度的有组织排放的恶臭气体。优点:费用低、设备简单。缺点:易受气象条件限制,恶臭物质依然存在。 水吸收法 原理:利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的。适用范围:水溶性、有组织排放源的恶臭气体。优点:工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理。缺点:净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差。 曝气式活性污泥脱臭法 原理:将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广。适用范围:截至2013年,日本已用于粪便处理场、污水处理厂的臭气处理。优点:活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。缺点:受到曝气强度的限制,该法的应用还有一定局限。

多介质催化氧化工艺 原理:反应塔内装填特制的固态填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。适用范围:适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。优点:占地小,投资低,运行成本低;管理方便,即开即用。缺点:耐冲击负荷,不易污染物浓度及温度变化影响,需消耗一定量的药剂。 低温等离子体 低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的着火电压时,气体分子被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

化工原理课程设计 吸收塔汇总

《化工原理》课程设计 课题: 设计水吸收半水煤气体混合物中的二氧化碳的填料吸收塔设计者:王涛 学号:1043082002 指导老师:曹丽淑

目录 第一章设计任务????????????????????????????????????????????????????????????????????????????????????????????3 1.1设计题目????????????????????????????????????????????????????????????????????????????????????????????3 1.2设计任务及操作条件???????????????????????????????????????????????????????????????????????????3 1.3设计内容???????????????????????????????????????????????????????????????????????????????????????????????3 第二章设计方案???????????????????????????????????????????????????????????????????????????????????????????4 2.1设计流程的选择及流程图??????????????????????????????????????????????????????????????????????4 第三章填料塔的工艺设计??????????????????????????????????????????????????????????????????????????????4 3.1气液平衡关系????????????????????????????????????????????????????????????????????????????????????????4 3.2吸收剂用量???????????????????????????????????????????????????????????????????????????????????????????5 3.3计算热效应???????????????????????????????????????????????????????????????????????????????????????????5 3.4定塔径??????????????????????????????????????????????????????????????????????????????????????????????????6 3.5喷淋密度的校核?????????????????????????????????????????????????????????????????????????????????????6 3.6体积传质系数的计算??????????????????????????????????????????????????????????????????????????????7 3.7填料层高度的计算??????????????????????????????????????????????????????????????????????????????????8 3.8附属设备的选择???????????????????????????????????????????????????????????????????????????????????9第四章设计结果概要??????????????????????????????????????????????????????????????????????????????????15第五章设计评价 ?????????????????????????????????????????????????????????????????????????????????? 17

水吸收氨气过程填料吸收塔的设计说明

课程设计任务书 一、设计题目:水吸收氨气过程填料吸收塔的设计; 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为2600m3/h,其中含氨为7%(体积分数),混合气体的进料温度为25℃。要求:氨气的回收率达到98%。(20℃氨在水中的溶解度系数为H=0.725kmol/(m3.kPa) 二、工艺操作条件: (1)操作平均压力常压 (2)操作温度 : t=20℃ (3)吸收剂用量为最小用量的倍数自己确定 (4)选用填料类型及规格自选。 三、设计容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A4号图纸); (10)绘制吸收塔设计条件图(A4号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2填料的选择 (1) 2. 工艺计算 (1) 2.1 基础物性数据 (1) 2.1.1液相物性的数据 (1) 2.1.2气相物性的数据 (1) 2.1.3气液相平衡数据 (1) 2.1.4 物料衡算 (1) 2.2 填料塔的工艺尺寸的计算 (2) 2.2.1 塔径的计算 (2) 2.2.2 填料层高度计算 (3) 2.2.3 填料层压降计算 (6) 2.2.4 液体分布器简要设计 (7) 3. 辅助设备的计算及选型 (8) 3.1 填料支承设备 (8) 3.2填料压紧装置 (8) 3.3液体再分布装置 (8) 4. 设计一览表 (9) 5. 后记 (9) 6. 参考文献 (9) 7. 主要符号说明 (10) 8. 附图(工艺流程简图、主体设备设计条件图)

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

化工原理课程设计水吸收氨气填料塔设计

《化工原理》课程设计 ——水吸收氨气填料塔设计学院 专业 班级 姓名 学号 指导教师 2012年12月11 日

设计任务书 水吸收氨气填料塔设计 (一)设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。混合气体的处理量为____3200____m3/h,其中含氨为____8%____(体积分数),混合气体的进料温度为25℃。要求: ①塔顶排放气体中含氨低于____0.04%____(体积分数); (二)操作条件 (1)操作压力:常压 (2)操作温度:20℃ (3)吸收剂用量为最小用量的倍数自己确定 (三)填料类型 聚丙烯阶梯环吸收填料塔 (四)设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算; (5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A3号图纸); (10)绘制吸收塔设计条件图(A3号图纸); (11)对设计过程的评述和有关问题的讨论。

目录 前言 ............................................................................................................. 错误!未定义书签。第一节填料塔主体设计方案的确定.................................................. 错误!未定义书签。 1.1装置流程的确定 .................................................................................. 错误!未定义书签。 1.2 吸收剂的选择.................................................................................. 错误!未定义书签。 1.3 课程设计任务 .................................................................................... 错误!未定义书签。 1.4 填料的类型与选择 ............................................................................. 错误!未定义书签。 1.4.1 填料种类的选择 .............................................................................. 错误!未定义书签。 1.4.2 填料规格的选择 .............................................................................. 错误!未定义书签。 1.4.3 填料材质的选择 .............................................................................. 错误!未定义书签。 1.5 基础物性数据....................................................................................... 错误!未定义书签。 1.5.1 液相物性数据................................................................................. 错误!未定义书签。 1.5.2 气相物性数据 .............................................................................. 错误!未定义书签。 1.5.3 气液相平衡数据............................................................................ 错误!未定义书签。 1.5.4 物料横算............................................................................................. 错误!未定义书签。第二节填料塔工艺尺寸的计算 ........................................................... 错误!未定义书签。 2.1 塔径的计算 ........................................................................................... 错误!未定义书签。 2.2 填料层高度的计算及分段............................................................... 错误!未定义书签。 2.3填料层压降计算: .............................................................................. 错误!未定义书签。第三节填料塔内件的类型及设计 .................................................. 错误!未定义书签。

VOCs常见废气处理工艺方案

1.生物除臭工艺 BCE系列生物除臭设备适用行业 海德利尔HB系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。 生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等)。 生物净化工艺介绍 各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。 含硫系列臭气被氧化分解成S、SO32—、SO42—。硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。含氮系列臭气被氧化分解成NH4+、NO2—、NO3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。当恶臭气体为H2S时,专性的自养型硫氧化菌会在一定的条件下将H2S氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H2S,然后H2S再由自养型微生物氧化成硫酸根。H2S+O2+自养硫化细菌+CO2→合成细胞物质+SO42—+H2O CH3SH→CH4+H2S→CO2+H2O+SO42— 当恶臭气体为NH3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细

菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。 硝化:NH3+O2→HNO2+H2O HNO2+O2→HNO3+H2O 反硝化:HNO3→HNO2→HNO→N2O→N2 后段过滤床根据废气源条件可选配,以强化处理。(如活性炭吸附除臭、植物液除臭等) BCE系列生物净化装置性能特点 微生物活性强生物填料寿命长 表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8-10年。 设备操作简单实现自动控制 工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。 运行能耗少 由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。填料本身耐生物腐蚀,填料本身没有损耗,可长期稳定运行。 除臭工艺先进、合理无二次污染 有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95%以上,任何季节、气候条件下都能满足各地最严格的除臭环保要求。排放产物人畜无害,属环境友好性技术,无二次污染。 2.低温等离子体技术 低温等离子体除臭设备适用行业

SO2填料吸收塔课程设计论文

SO2填料吸收塔課程設計 專業班級:化工0803班 姓名:*** 學號:****** 指導老師:*****

目錄 一·目的和要求 二·設計任務 三·設計方案 1.吸收劑的選擇 2.塔內氣液流向的選擇 3.吸收系統工藝流程(工藝流程圖及說明) 4.填料的選擇 四·工藝計算 1.物料衡算,吸收劑用量,塔底吸收液濃度 2.塔徑計算 3.填料層高度計算 4.填料層壓降計算 5.填料吸收塔的主要附屬構件簡要設計 6.動力消耗的計算與運輸機械的選擇(對吸收劑)五·設備零部件管口的設計計算及選型 六·填料塔工藝數據表 填料塔結構數據表 物性數據表 七·對本設計的討論 八·主要符號說明 九·參考文獻

一·目的和要求 1.進行查閱專業資料、篩選整理數據及化工設計的基本訓練; 2.進行過程計算及主要設備的工藝設計計算,獨立完成吸收單元的設計;用簡潔的文字和圖表清晰地表達自己的設計思想和計算結果; 3.建立和培養工程技術觀點; 4.初步具備從事化工工程設計的能力,掌握化工設計的基本程式和方法。 5.獨立完成課程設計任務。 二·設計任務 1.題目:SO2填料吸收塔 2 生產能力:SO2爐氣的處理能力為1500 m3/h(1atm,30℃時的體積) 3 爐氣組成:原料氣中含SO2為9%(v),其餘為空氣 4 操作條件: P=1atm(絕壓) t=30 ℃ 5 操作方式:連續操作 6 爐氣中SO2的回收率為95% 三·設計方案 1.吸收劑的選擇 用水做吸收劑。水對SO2有較大的溶解度,有較好的化學穩定性,有較低的粘度,廉價、易得、無毒、不易燃燒 2.塔內氣液流向的選擇 在填料塔中,SO2從填料塔塔底進入,清水從塔頂由液體噴淋裝置均勻淋下。 3.吸收系統工藝流程(工藝流程圖及說明) 二氧化硫爐氣經由風機從塔底鼓入填料塔中,與由離心泵送至塔頂的清水逆流接觸,在填料的作用下進行吸收。經吸收後的尾氣由塔頂排除,吸收了SO2的廢水由填料塔的下端流出。 4.填料的選擇 可選擇(直徑)25mm塑膠鮑爾環填料(亂堆)。特性數據如下: 比表面積α:209 m2/m3

氨气填料吸收塔课程设计

氨气填料吸收塔课程设计 设计任务书 1.设计题目 试设计一座填料吸收塔采用清水吸收混于空气中的氨气。混合气体的处理量为2000m3/h,其中含氨为8%(体积分数),混合气体的进料温度为25℃。要求: ①塔顶排放气体中含氨低于0.05%(体积分数); 2. 操作条件 (1)操作压力:常压 (2)操作温度:20℃ (3)吸收剂用量为最小用量的1.8倍。 3. 填料类型 填料类型选用聚丙烯阶梯环填料。 4. 设计内容 (1)设计方案的确定和说明 (2)吸收塔的物料衡算; (3)吸收塔的工艺尺寸计算; (4)填料层压降的计算;

(5)液体分布器简要设计; (6)绘制液体分布器施工图 (7)吸收塔接管尺寸计算; (8)设计参数一览表; (9)绘制生产工艺流程图(A3号图纸); (10)绘制吸收塔设计条件图(A3号图纸); (11)对设计过程的评述和有关问题的讨论。 目录 前言 (1) 1. 水吸收氨气填料塔工艺设计方案简介 (4) 1.1任务及操作条件 (4) 1.2设计案的确定 (4) 1.3填料的选择 (5) 2. 工艺计算 (6) 2.1 基础物性数据 (6) 2.1.1液相物性的数据 (6) 2.1.2气相物性的数据 (6) 2.1.3气液相平衡数据 (6)

2.1.4 物料衡算 (7) 2.2 填料塔的工艺尺寸的计算 (8) 2.2.1 塔径的计算 (8) 2.2.2 填料层高度计算 (9) 2.2.3 填料层压降计算 (12) 2.2.4 液体分布器简要设计 (13) 3. 辅助设备的计算及选型 (15) 3.1填料支承设备 (15) 3.2填料压紧装置 (16) 3.3液体再分布装置 (16) 4. 设计一览表 (17) 5. 后记 (18) 6. 参考文献 (19) 7. 主要符号说明 (20) 8. 附图(工艺流程简图、主体设备设计条件图) 前言 在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。所以塔设备的研究一直是国内外学者普遍关注的重要课题。 在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

废气处理工艺设计方案

综合废气工艺设计 编制依据 公司有关领导的情况介绍和我方技术人员实地考察。 《中华人民共和国环境保护法》。 《中华人民共和国大气污染防治法》。 《环境空气质量标准》(GB3095-1996)。 《大气污染物排放标准》(GB16297-1996)。 《建筑结构荷载规范》(GBJ9-87)。 《通用设备安装工程质量检验评定标准》(TJ305-79) 工艺流程选择 针对废气排放所含物质,治理方案考虑采用填料喷淋塔进行处理。喷淋塔是利用吸收的原理来达到处理废气的目的。吸收法处理是利用液态吸收剂处理气体混合物以除去其中某一种或几种气体的过程。在这过程中会发生某些气体在溶液中溶解的物理作用,这是物理吸收。也有气液中化学物质之间发生化学反应,这是化学吸收。吸收作用常用于气体污染物的处理与回收。 吸收法的特点是既能吸收有害气体,又能除掉排气中的粉尘,吸收法分为物理吸收和化学吸收两种。物理吸收是用液体吸收有害气体和蒸气时纯物理溶解过程。它适用于在水中溶解度比较大的有害气体和蒸气,一般吸收效率较低。化学吸收是在吸收过程中伴有明显的化学反应,不是纯溶解过程。化学吸收效率较高,是目前应用较多的有害气体处理方法。本工艺采用的方法就是利用物理与化学的

方法处理废气的,化学吸收过程采用NaOH 溶液做吸收剂。 反应原理: 吸收是中和反应,尾气中的二氧化硫被氢氧化钠溶液吸收.在吸收塔内化学反应方程为: SO2+2NaOH=Na2SO3+H2O SO3+2NaOH=Na2SO4+H2O 应用碱液吸收有害气体时,碱液浓度的高低对化学吸收的传质速度有很大的影响。当碱液的浓度较低时,化学传质的速度较低;当提高碱液浓度时,传质速度也随之增大;当碱液浓度提高到某一值时,传质速度达到最大值,此时碱液的浓度称为临界浓度;当碱液浓度高于临界浓度时传质速度并不增大。 工艺流程的说明 用吸收法处理有害气体在真空泵房上设密闭罩,密闭罩上部设排风口将房内产生的废气排出,保持房内一定负压,废气排出后进入填料喷淋吸收塔。废气进入吸收塔,塔体上部喷淋碱性吸收液,下部进入塔体的有害气体与喷淋液呈逆流流动,废气由风机压入净化塔内的匀压室,经过不等速迂回式的二道喷雾处理,进入净化塔内筒处理器,废气穿过有填料组成的填料层,再经过二道喷雾处理,使气液两相充分接触发生吸收反应,达到高效净化之目的。经处理后的废气再经过脱水器脱液处理,然后排入大气。净化后的废气达到排放标准。吸收了废气后的吸收液流入塔底循环碱液槽中,用耐腐蚀的碱液泵抽出重新送进吸收塔,这样循环往复,不断地对废气

化工原理 水吸收氨填料塔设计

广东石油化工学院化工原理课程设计 题目: 水吸收氨填料塔的设计 指导教师: 李燕 成绩评阅教师

目录 第一节前言 (4) 1.1 填料塔的主体结构与特点 (4) 1.2 填料塔的设计任务及步骤 (4) 1.3 填料塔设计条件及操作条件 (4) 第二节填料塔主体设计方案的确定 (5) 2.1 装置流程的确定 (5) 2.2 吸收剂的选择 (5) 2.3填料的类型与选择 (5) 2.3.1 填料种类的选择 (5) 2.3.2 填料规格的选择 (5) 2.3.3 填料材质的选择 (6) 2.4 基础物性数据 (6) 2.4.1 液相物性数据 (6) 2.4.2 气相物性数据 (6) 2.4.3 气液相平衡数据 (7) 2.4.4 物料横算 (7) 第三节填料塔工艺尺寸的计算 (8) 3.1 塔径的计算 (8) 3.2 填料层高度的计算及分段 (9) 3.2.1 传质单元数的计算 (9) 3.2.3 填料层的分段 (11) 3.3 填料层压降的计算 (12) 第四节填料塔内件的类型及设计 (12) 4.1 塔内件类型 (12) 4.2 塔内件的设计 (12) 4.2.1 液体分布器设计的基本要求: (12) 4.2.2 液体分布器布液能力的计算 (13) 注: 1填料塔设计结果一览表 (13) 2 填料塔设计数据一览 (13)

3 参考文献 (15) 4 对本设计的评述或有关问题的分析讨论 (15)

第一节 前言 1.1 填料塔的主体结构与特点 结构: 图1-1 填料塔结构图 填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量肖,有腐蚀性的物料及要求压降小的场合。液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。 1.2 填料塔的设计任务及步骤 设计任务:用水吸收空气中混有的氨气。 设计步骤:(1)根据设计任务和工艺要求,确定设计方案; (2)针对物系及分离要求,选择适宜填料; (3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度); (4)计算塔高、及填料层的压降; (5)塔内件设计。 1.3 填料塔设计条件及操作条件 1. 气体混合物成分:空气和氨 2. 空气中氨的含量: 5.0% (体积含量即为摩尔含量) 液体 捕沫器 填料压板 塔壳填料 填料支承板液体再分布器填料压板填料支承板气体 气体 液体

填料吸收塔课程设计

填料吸收塔课程设计

一设计任务书 (一)设计题目 过程填料吸收塔的设计:试设计一座填料吸收塔,用于脱除焙烧水吸收SO 2 炉送出的混合气体(先冷却)中的SO2,其余为惰性组分,采用清水进行吸收。混合气体的处理量m3/h 2000 含量(体积分数)10% 混合气体SO 2 的回收率不低于97% SO 2 吸收剂的用量与最小用量之比 1.3 (二)操作条件 (1)操作压力常压 (2)操作温度25℃ (三)设计内容 (1)吸收塔的物料衡算; (2)吸收塔的工艺尺寸计算; (3)填料层压降的计算; (4)液体分布器简要设计; (5)吸收塔接管尺寸计算; (6)绘制吸收塔设计条件图; (7)对设计过程的评述和有关问题的讨论。 二设计方案简介 2.1方案的确定 属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流用水吸收SO 2 不作为产品,故采用纯溶剂。 程。因用水作为吸收剂,且SO 2 2.2填料的类型与选择 对于水吸收SO 的过程,操作温度及操作压力较低,工业上通常选用塑料散 2 装填料。在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。

阶梯环是对鲍尔环的改进。与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 2.3设计步骤 本课程设计从以下几个方面的内容来进行设计 (一)吸收塔的物料衡算;(二)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降;(三)设计液体分布器及辅助设备的选型;(四)绘制有关吸收操作图纸。 三、工艺计算 3.1基础物性数据 3.1.1 液相物性数据 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,25℃时水的有关物性数据如下: 密度为ρ L =997.1 kg/m3 粘度为μ L =0.0008937 Pa·s=3.2173kg/(m·h) 表面张力为σ L =71.97 dyn/cm=932731 kg/h2 SO 2在水中的扩散系数为 D L =1.724×10-9m2/s=6.206×10-6m2/h (依Wilke-Chang 0.5 18r 0.6 () 1.85910 M T D V φ μ - =?计算,查《化学工程基础》) 3.1.2 气相物性数据 设进塔混合气体温度为25℃, 混合气体的平均摩尔质量为 M Vm=Σy i M i=0.1×64.06+0.9×29=32.506g/mol 混合气体的平均密度为

相关文档
最新文档