理论力学第三版 (洪嘉振) 答案第4章
理论力学第三版 (洪嘉振) 答案第1章
![理论力学第三版 (洪嘉振) 答案第1章](https://img.taocdn.com/s3/m/4eadf052be23482fb4da4c78.png)
1⎞ ⎟ 4⎟ ∈ R 4×3 ⎟ 0 ⎟ 2⎟ ⎠
⎛2⎞ ⎜ ⎟ T a = ⎜ − 1⎟ = (2 − 1 1) ∈ R1×3 , ⎜1⎟ ⎝ ⎠ ⎛1 0 0⎞ ⎛1 0 0⎞ ⎜ ⎟ ⎜ ⎟ T E = ⎜ 0 1 0 ⎟ = ⎜ 0 1 0 ⎟ ∈ R 3×3 ⎜0 0 1⎟ ⎜0 0 1⎟ ⎝ ⎠ ⎝ ⎠ ⎛ 0 ⎜ T B =⎜ 1 ⎜ 2 ⎝ ⎛ 1 ⎜ T C =⎜ 1 ⎜ 2 ⎝ −1 − 2⎞ ⎛ 0 ⎟ ⎜ 0 3 ⎟ = ⎜ −1 ⎜− 2 −3 0 ⎟ ⎠ ⎝ −1 − 2⎞ ⎛ 1 ⎟ ⎜ 1 3 ⎟ = ⎜ −1 ⎜− 2 −3 1 ⎟ ⎠ ⎝
⎛ 0 −1 − 2⎞ ⎛ 1 ⎟ ⎜ ⎜ B = ⎜1 0 3 ⎟,C = ⎜ 1 ⎜2 − 3 0 ⎟ ⎜ 2 ⎠ ⎝ ⎝
−1 − 2⎞ ⎛ 0 −1 − 2⎞ ⎟ ⎟ ⎜ 1 3 ⎟ , D = ⎜ −1 0 3 ⎟ ⎜− 2 3 −3 1 ⎟ 0 ⎟ ⎠ ⎠ ⎝
(1) 计算 2 D ; (2) 计算 A + E 与 A − E ;验证 A + E = E + A ; (3) 计算 B + B ;由此可得到什么结论;
⎛ 0 −1 − 2⎞ ⎛ 0 −1 − 2⎞ ⎛ 0 −1 − 2⎞ ⎛ 0 1 2 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3 ⎟ + ⎜ − 1 0 − 3⎟ = 0 。 3 ⎟ = ⎜1 0 B + BT = ⎜ 1 0 3 ⎟ + ⎜1 0 ⎜2 − 3 0 ⎟ ⎜2 − 3 0 ⎟ ⎜2 − 3 0 ⎟ ⎜− 2 3 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(1)写出它的分块列矩阵aj(j=1,…,4); (2)写出它的转置矩阵,验证
(完整word版)理论力学教程思考题答案第三版.doc
![(完整word版)理论力学教程思考题答案第三版.doc](https://img.taocdn.com/s3/m/30544b7b6bec0975f565e200.png)
第一章思考题解答1。
1答:平均速度是运动质点在某一时间间隔t t t ∆+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ∆对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。
在0→∆t 的极限情况,二者一致,在匀速直线运动中二者也一致的.1。
2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθr r +只是θV 本身大小的改变.事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度r V 的方向改变也引起θV 的大小改变,另一个θr 即为反映这种改变的加速度分量,故2θr r a r -=,.2θθθ r r a +=。
这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向.质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。
因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。
有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。
有人也许还会问:某时刻若b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。
这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变.1.4答:质点在直线运动中只有n a a 而无τ,质点的匀速曲线运动中只有τa a n 而无;质点作变速运动时即有n t a a 又有。
周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答
![周衍柏《理论力学教程(第三版)》电子教案 3-4章作业解答](https://img.taocdn.com/s3/m/5cd17ab1f524ccbff12184e5.png)
T
N
T
物体 : ma2 mg T 圆柱 : Ma1 T f d 1 T f R, I 0 MR 2 dt 2 xC a1 d xC R , dt R R a A 2a1 a2 I0
M
r
f Mg
m
mg
4mg 8mg a1 , a2 3M 8m 3M 8m 3Mmg T 3M 8m
4.10) 质量为m的小环M, 套在半径为a的光滑圆圈上, 并可沿着圆 圈滑动. 如圆圈在水平面内以匀角速绕圈上某点O转动, 试求小 y 环沿圆圈切线方向的运动微分方程. 解: 设坐标系如图, oxy为水平面,它绕z轴转 动,即圆圈为转动参照系 受力分析,重力和约束反力都在z轴方向, 没 有画出. 惯性离心力m2r , 科里奥利力为 FC= -2m×v
b2 tan (a 2b)a
3.5)一均质的梯子, 一端置于摩擦系数为1/2的地板上, 另一端 则斜靠在摩擦系数为1/3的高墙上,一人的体重为梯子的三倍, 爬到 梯的顶端时, 梯尚未开始滑动, 则梯与地面的倾角,最小当为若干? 解: 研究对象为梯子, 人在顶端时,梯子与地面的夹角为, 梯子 y 重量p, 人重3p. 平衡时:
B x b C
a b
2
2
a
解2:用寻找瞬心法,过A做vA垂线,瞬心在O点,距离A为vA/. 连OB, 因角+=90o, 所以
OB OA 2 AB 2 2OA AB cos 1
v 2 2v
ab a 2 b2
2a 2
vB OB v 2 2v
2y sin C1 x 2my sin x m 2 z cos x sin C2 2m z sin y cos x y m m gt 2y cos C3 z cos mg 2my z 2y sin x y 0, z v0 , 在t =0, x 2 z cos x sin y x y z0 z v0 gt 2y cos
理论力学第三版 (洪嘉振) 答案第9章
![理论力学第三版 (洪嘉振) 答案第9章](https://img.taocdn.com/s3/m/de8ea54f69eae009581bec8e.png)
1
9-1C 如图所示,均质摆杆的质量为 m,杆长为 2l。摆杆的铰 O 上有一驱动约束,驱动规律为 ϕ1 = θ − ω t ,θ为常数。试 (1)建立系统带拉格朗日乘子的封闭的动力学方程; (2)解出拉格朗日乘子。
r y O r y1
φ1
x
洪嘉振等《理论力学》第 3 版习题详解
2
&12 cos ϕ1 ⎞ & ⎞ ⎛ − lϕ x ⎛ 1 0 l sin ϕ1 ⎞⎛ & ⎟ ⎜ ⎟⎜ 1 ⎟ ⎜ &12 sin ϕ1 ⎟ &1 ⎟ = ⎜ − lϕ y ⎜ 0 1 − l cos ϕ1 ⎟⎜ & ⎟ ⎜0 0 ⎟⎜ ϕ ⎟ ⎜ ⎜ ⎟ 1 0 ⎝ ⎠⎝ &&1 ⎠ ⎝ ⎠
系统带拉格朗日乘子的动力学方程
⎛ ⎜m 0 ⎜ ⎜0 m ⎜0 0 ⎜ ⎝ ⎞ &⎞ ⎛ 0 ⎟⎛ & 1 0 0 ⎞⎛ λ1 ⎞ ⎛ 0 ⎞ x ⎟⎜ ⎟ ⎜ ⎟ ⎟⎜ ⎟ ⎜ &⎟+⎜ y 0 ⎟⎜ & 0 1 0 ⎟⎜ λ2 ⎟ = ⎜ − mg ⎟ ml 2 ⎟⎜ ϕ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎟⎝ &&1 ⎠ ⎝ − l cos ϕ1 l sin ϕ1 1 ⎠⎝ λ3 ⎠ ⎝ 0 ⎠ 3 ⎠
得拉格朗日乘子 λ 的表达式
⎛ ⎜ m ⎛ λ1 ⎞ ⎜ ⎟ ⎜ = − λ 0 ⎜ 2⎟ ⎜ ⎜λ ⎟ ⎜ lm cos ϕ ⎝ 3⎠ ⎜ 1 ⎝
0 m 0 0 ml 2 3
− lm sin ϕ1
⎞ &⎞ ⎛ ⎟⎛ & 0 x ⎞ ⎟ ⎟⎜ ⎟ ⎜ & & + − y mg ⎟ ⎟⎜ ⎟ ⎜ ⎟ ⎜ mgl sin ϕ ⎟ ⎟⎜ & & ϕ 1⎠ ⎟⎝ ⎠ ⎝ ⎠
理论力学第三版 (洪嘉振) 答案第2章
![理论力学第三版 (洪嘉振) 答案第2章](https://img.taocdn.com/s3/m/377a57ce6137ee06eff91878.png)
r z
O
r y
r rOC
A
(
0 sin 30o
)
T
= 25 − 3 0 1 N
(
)
T
r x
B
r rAC r rBC
r F
30 °
(2) 由式(1)与(2)该力分别对点 O、A、B 的矩分别 为:
− 3⎞ ⎛ 4 ⎞ ⎛ 100 ⎞ ⎛ 0 3 4 ⎞⎛ ⎟ r ~ ⎟ ⎟ ⎜ ⎜ ⎟⎜ ⎜ MO (F ) = rOCF = ⎜ − 3 0 − 2⎟⎜ 0 ⎟25 = 25⎜ 3 3 − 2⎟ = ⎜ 79.9 ⎟ N⋅ m ⎟ ⎜ 4 3 ⎟ ⎜173.2⎟ ⎜ − 4 2 0 ⎟⎜ 1 ⎟ ⎠ ⎠ ⎝ ⎝ ⎠⎜ ⎝ ⎝ ⎠
r1′ = (2b a ) , r2′ = (b a )
T T
r y
r yb
r r2
r F1
两力对点 A 的矩 r r r r M Az ( F1 ) = M Az′ ( F1 ) = M Az′ ( F1x′ ) + M Az′ ( F1 y′ )
′F1x′ + x1 ′ F1 y′ = − y1 = − aF1 cos(α − β ) + 2bF1 sin(α − β ) r r r r M Az ( F2 ) = M Az′ ( F2 ) = M Az′ ( F2 x′ ) + M Az′ ( F2 y′ ) ′ = − y′ 2 F2 x′ + x2 F2 y′ = aF2 sin β − bF2 cos β
= − F1 cos α (− 2b sin β + a cos β ) + F1 sin α (2b cos β − a sin β ) = − aF1 cos(α − β ) + 2bF1 sin(α − β )
理论力学第三版 (洪嘉振) 答案第6章
![理论力学第三版 (洪嘉振) 答案第6章](https://img.taocdn.com/s3/m/3331de17b7360b4c2e3f64c9.png)
C
r x1 r x2
r x
4r 2 1 16 ) = ( − 2 )mr 2 3π 4 9π
A
题解 6-4C
由于 AC = r −
4r , ,由平行轴定理可得 3π 4r 2 5 8 ) = ( − 2 )mr 2 3π 4 3π
J x = J C x + m( r −
题 6-10C
解: 对于喷气机,吸入的空气相对于飞机的速度为
vr = 660 = 185 m/s 3.6
质量的变化而引起的作用于质点的附加推力为 r rr d m F P = vP dt 则向后的推力为:
FAP = dm r v A = 70 × 185 ≈ 13000 N = 13kN dt dm r v B = (70 + 1.35) × 1800 = 128400N = 128.4kN dt
mB =
4 ⋅ 146.41 − 2 ⋅ 200 = 0.93 kg 200
洪嘉振等《理论力学》第 3 版习题详解
1
6-10C 喷气式飞机的发动机从前端每秒吸入 空气的质量为 70 kg, 燃料的消耗率为每秒 1.35kg, 尾部喷出的燃气相对于飞机的速度是 1800m/s, 求 当飞机速度是 660km/h 时推力的大小。
r z A
C
r x
题 6-1C
B
r y
解:
3 (1)对于题图给出的连体基,考虑到 AB = b 2 与质心 C 在几何形心,三质点的坐标分别为(见图
r z′
r z
E
6-1C)
⎛ ⎞ 3 rA = ⎜ 0 − b 0⎟ ⎜ ⎟ 3 ⎝ ⎠ ⎛1 rD = ⎜ b ⎜2 ⎝ ⎛ 1 rE = ⎜ − b ⎜ 2 ⎝
理论力学第三版课后习题答案
![理论力学第三版课后习题答案](https://img.taocdn.com/s3/m/48e970fd18e8b8f67c1cfad6195f312b3169ebd7.png)
目录第一章质点力学 (2)第二章质点组力学 (56)第三章刚体力学 (74)第四章转动参考系 (105)第五章分析力学 (115)第一章 质点力学1.1 由题可知示意图如题1.1.1图:{{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a . 则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210211021221t t a t t v s at t v s 由以上两式得11021at t s v +=再由此式得()()2121122t t t t t t s a +-=证明完毕.1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题1.2.1图.题1.2.1图设A 船经过0t 小时向东经过灯塔,则向北行驶的B 船经过⎪⎭⎫ ⎝⎛+2110t 小时经过灯塔任意时刻A 船的坐标()t t x A 15150--=,0=A yB 船坐标0=B x ,⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛+-=t t y B 15211150则AB 船间距离的平方()()222B A B A y y x x d -+-=即()2021515t t d -=201521115⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++t t()20202211225225675900450⎪⎭⎫ ⎝⎛++++-=t t tt t2d 对时间t 求导()()67590090002+-=t t dtd d AB 船相距最近,即()02=dtdd ,所以h t t 430=- 即午后45分钟时两船相距最近最近距离22min231543154315⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫ ⎝⎛⨯=s km1.3 解 ()1如题1.3.2图第1.3题图y题1.3.2图由题分析可知,点C 的坐标为⎩⎨⎧=+=ψψϕsin cos cos a y a r x 又由于在∆AOB 中,有ϕψsin 2sin ar =(正弦定理)所以ry r a 2sin 2sin ==ψϕ联立以上各式运用1cos sin 22=+ϕϕ由此可得rya x r a x 22cos cos --=-=ψϕ得12422222222=---++r y a x y a x r y 得22222223y a x r a x y -=-++化简整理可得()()2222222234r a y x y a x -++=-此即为C 点的轨道方程.(2)要求C 点的速度,分别求导⎪⎪⎩⎪⎪⎨⎧=--=2cos sin cos 2cos sin ϕωψψϕωϕωr y r r x 其中ϕω = 又因为ψϕsin 2sin a r =对两边分别求导 故有ψϕωψcos 2cos a r =所以22y x V +=4cos sin cos 2cos sin 2222ϕωψψϕωϕωr r r +⎪⎪⎭⎫ ⎝⎛--= ()ψϕψϕϕψω++=sin cos sin 4cos cos 22r1.4 解 如题1.4.1图所示,A BOCLxθd 第1.4题图OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量22x d OC v +=⨯=⊥ωωC 点速度dx d d v v v 222sec sec cos +====⊥⊥ωθωθθ 又因为ωθ= 所以C点加速度 θθθω ⋅⋅⋅⋅==tan sec sec 2d dt dv a ()2222222tan sec 2d x d x d +==ωθθω1.5 解 由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π 由加速度的微分形式我们可知dtdv a =代入得dtT t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫ ⎝⎛-=002sin 1π可得 :D Ttc Tct v ++=2cos2ππ(D 为常数)代入初始条件:0=t 时,0=v ,故c TD π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos2T t T t c v ππ 又因为dtds v =所以=ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+12cos2ππ 对等式两边同时积分,可得:⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ1.6 解 由题可知质点的位矢速度r λ=//v ①沿垂直于位矢速度μθ=⊥v又因为 r r λ== //v , 即r rλ=μθθ==⊥r v 即rμθθ= ()()j i v a θ r dtd r dt d dt d +==(取位矢方向i ,垂直位矢方向j ) 所以()j i i i θ r rdtd r i dt r d r dt d +=+=()dtd r dt d r dt dr r dt d j j j j θθθθ ++=i j j 2r r r θθθ -+= 故()()j i a θθθ r r r r22++-= 即 沿位矢方向加速度()2θ r ra -= 垂直位矢方向加速度()θθr r a 2+=⊥ 对③求导r rr 2λλ== 对④求导θμμθθr rr +-=2⎪⎭⎫⎝⎛+=λμμθr 把③④⑦⑧代入⑤⑥式中可得rr a 222//θμλ-= ⎪⎭⎫ ⎝⎛+=⊥r a μλμθ1.7 解 由题可知⎩⎨⎧==θθsin cos r y r x ①②对①求导θθθ sin cos r r x-= ③ 对③求导2 ④对②求导θθθcos sin r r y+=⑤ 对⑤求导θθθθθθθsin cos cos 2sin 2 r r r ry -++=⑥ 对于加速度a ,我们有如下关系见题1.7.1图题1.7.1图即⎩⎨⎧+=+=θθθθθθcos sin sin cos a a y a a x r r⑦--⑧ 对⑦⑧俩式分别作如下处理:⑦θcos ⨯,⑧θsin ⨯ 即得⎩⎨⎧+=-=θθθθθθθθθθcos sin sin sin cos sin cos cos a a y a a x r r⑨--⑩ ⑨+⑩得θθsin cos yx a r += ⑾ 把④⑥代入 ⑾得2θr r a r -= 同理可得θθθ r r a 2+= 1.8解 以焦点F 为坐标原点,运动如题1.8.1图所示]题1.8.1图则M 点坐标⎩⎨⎧==θθsin cos r y r x 对y x ,两式分别求导⎪⎩⎪⎨⎧+=-=θθθθθθcos sin sin cos r r yr r x 故()()22222cos sin sin cos θθθθθθ r r r r y xv ++-=+=222ωr r+= 如图所示的椭圆的极坐标表示法为()θcos 112e e a r +-=对r 求导可得(利用ωθ= )又因为()()221cos 111e a e e a r -+-=θ即()rer e a --=21cos θ 所以()()2222222221211cos 1sin e r e ar r e a --+--=-=θθ故有()2222224222sin 1ωθωr e a r e v +-=()2224221ea r e -=ω()()]1211[2222222e r e ar r ea --+--22ωr +()()⎥⎦⎤⎢⎣⎡--+-⋅-=2222222221121e e ar r r e e a r ω()r r a b r -=2222ω 即()r a r br v -=2ω(其中()b a e b ,1222-=为椭圆的半短轴)1.9证 质点作平面运动,设速度表达式为j i v y x v v +=令为位矢与轴正向的夹角,所以dt d v dt dv dt d v dt dv dt d y y x x j j i i v a +++==j i ⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x y y x v dt dv v dt dv 所以[]j i a ⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x yy x v dt dv v dt dv ()j i y x v v +⋅ θθ y x y y y x x x v v dt dv v v v dt dv v ++-=dtdv v dt dv v y yxx += 又因为速率保持为常数,即C C v v y x ,22=+为常数对等式两边求导022=+dtdv v dt dv v y y xx所以0=⋅v a即速度矢量与加速度矢量正交.1.10解 由题可知运动轨迹如题1.10.1图所示,题1.10.1图则质点切向加速度dtdv a t =法向加速度ρ2n v a =,而且有关系式ρ2v 2k dt dv -= ①又因为()232y 1y 1'+''=ρ②2px y 2=所以yp y =' ③ 32yp y -='' ④ 联立①②③④2322322y p 1y p 2kv dtdv⎪⎪⎭⎫ ⎝⎛+-= ⑤又dydv ydt dy dy dv dt dv =⋅=把2px y 2=两边对时间求导得pyy x= 又因为222y xv += 所以22221py v y+= ⑥ 把⑥代入⑤23223222122121⎪⎪⎭⎫ ⎝⎛+⋅-=⋅⎪⎪⎭⎫ ⎝⎛+y p y p kv dydvp y v既可化为222py dykp v dv +-= 对等式两边积分222py dykp v dv p p vu+-=⎰⎰- 所以πk ue v -=1.11解 由题可知速度和加速度有关系如图1.11.1所示题1.11.1图⎪⎪⎩⎪⎪⎨⎧====ααcos sin 2a dt dv a a r v a t n 两式相比得dtdvr v ⋅=ααcos 1sin 2 即2cot 1vdv dt r =α 对等式两边分别积分200cot 1v dv dt rv v t⎰⎰=α 即αcot 11rtv v -=此即质点的速度随时间而变化的规律.1.12证 由题1.11可知质点运动有关系式⎪⎪⎩⎪⎪⎨⎧==ααcos sin 2a dtdv a r v ①② 所以 ωθθθd dv dt d d dv dt dv =⋅=,联立①②,有ααωθcos sin 2r v d dv = 又因为r v ω=所以 θαd vdv cot =,对等式两边分别积分,利用初始条件0=t 时,0θθ=()αθθcot 00-=e v v1.13 证(a )当00=v ,即空气相对地面上静止的,有牵相绝v v v +=.式中绝v 质点相对静止参考系的绝对速度, 相v 指向点运动参考系的速度, 牵v 指运动参考系相对静止参考系的速度.可知飞机相对地面参考系速度:绝v =v ',即飞机在舰作匀速直线运动.所以飞机来回飞行的总时间v l t '=20. (b )假定空气速度向东,则当飞机向东飞行时速度01v v v +'=飞行时间1v v lt +'=当飞机向西飞行时速度0v v v v v -'=+=牵相飞行时间2v v lt -'=故来回飞行时间021v v l t t t +'=+=0v v l -'+222v v lv -''= 即2200220112v v t v v v lt '-='-'= 同理可证,当空气速度向西时,来回飞行时间2201v v t t '-=(c )假定空气速度向北.由速度矢量关系如题1.13.1图v 题1.13.1图v v v '+=0绝202v v v -'= 所以来回飞行的总时间222vv l t -'=2200220112v vt v v v l '-='-'=同理可证空气速度向南时,来回飞行总时间仍为2201v v t t '-=1.14解 正方形如题1.14.1图。
理论力学第三版 (洪嘉振) 答案第8章
![理论力学第三版 (洪嘉振) 答案第8章](https://img.taocdn.com/s3/m/c4ca54d984254b35eefd34c9.png)
aB 为正,表明原假定正确,端 B 的确向左滑动。
洪嘉振等《理论力学》第 3 版习题详解
1
8-4C 如图所示,匀质杆 AB 质量为 m,长 2 l,一 端用长 l 的软绳 OA 拉住,一端 B 置于地面上,可以无 摩擦地滑动。开始时,绳子位于水平位置,点 O 与 B 在同一铅垂线上, 初速为零。 当 OA 运动到铅垂位置时, 求点 B 的速度以及此瞬时绳子的拉力和地面对杆的约 束力。
(5)
题解 8-1Cb
r 由式(4)在基 e 1 的坐标式可得到质心 C 的绝对加速度在该 基上的坐标
′ = aO − a1eωC = αR − ω 2 e = αR − ω 2 aCx ′ = − a1eαC = −αe = − aCy R⎫ ⎪ 4⎪ ⎬ ⎪ ⎪ ⎭
αR
4
(6)
r r r r 在运动过程中,系统惯性力系的主矢 F * = −ms aC 的两个分矢量 Fx′* 与 Fy′* 方向如图
8-1Cb 所示,其大小分别为
′ = Fx′* = ms aCx
1 mR 4α − ω 2 2
(
)
1 ′ = − mαR Fy′* = ms aCy 2
系统对质心的转动惯量为
洪嘉振等《理论力学》第 3 版习题详解
2
1 R 5 R R J C = mR 2 + m( ) 2 + m( ) 2 + m( ) 2 = mR 2 4 2 2 4 4
ix
∑M
C
将式(1)与(2)代入以上三式,有 maCx = f s FN
maCy = FN − mg
1 l π π ml 2α = ( FN cos − f s FN sin ) 12 2 6 6
理论力学教程思考题第三版.doc
![理论力学教程思考题第三版.doc](https://img.taocdn.com/s3/m/8623e17e4b73f242336c5fb0.png)
第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。
在的极限情况,二者一致,在匀速直线运动中二者也一致的。
1.2答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映了本身大小的改变,中的只是本身大小的改变。
事实上,横向速度方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故,。
这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法线方向。
质点沿空间曲线运动时,z 何与牛顿运动定律不矛盾。
因质点除受作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,故符合牛顿运动率。
有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。
有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法线,在新的副法线上仍满足。
这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
1.4答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作变速运动时即有。
1.5答:即反应位矢大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,而只表示大小的改变。
如在极坐标系中,而。
在直线运动中,规定了直线的正方向后,。
且的正负可表示的指向,二者都可表示质点t t t ∆+→t ∆0→∆t r V θV r a r r V θa θθ r r +θV θV r V 2θr -r V θV θr 2θr r a r -=.2θθθ r r a +=n a a v n a v n a 0,0≠=b b F a F R 0=+b b R F 0=b a b b R F 与b a b a 00==+b b b a R F 即n a a 而无ττa a n 而无n t a a 又有dt d r r dtdr r j i r θ r r dt d +=r dt dr =dt d dt dr r =dt dr dt d r的运动速度;在曲线运动中,且也表示不了的指向,二者完全不同。
《理论力学》(范钦珊)习题解答第2篇第4-6章
![《理论力学》(范钦珊)习题解答第2篇第4-6章](https://img.taocdn.com/s3/m/30ed9b3bc281e53a5802ffe6.png)
(b)υ(a)第2篇 工程运动学基础第4章 运动分析基础4-1 小环A 套在光滑的钢丝圈上运动,钢丝圈半径为R (如图所示)。
已知小环的初速度为v 0,并且在运动过程中小环的速度和加速度成定角θ,且 0 < θ <2π,试确定小环 A 的运动规律。
解:Rv a a 2nsin ==θ,θsin 2R v a =θθtan cos d d 2tR v a tv a ===,⎰⎰=t v v t R v v 02d tan 1d 0θ t v R R v t s v 00tan tan d d -==θθ⎰⎰-=t s t t v R R v s 0000d tan tan d θθtv R R R s 0tan tan ln tan -=θθθ4-2 质。
1.⎪⎩⎪⎨⎧-=-=225.1324tt y tt x , 2.⎩⎨⎧==t y t x 2cos 2sin 3解:1.由已知得 3x = 4y (1)⎩⎨⎧-=-=t y t x 3344 t v 55-=⎩⎨⎧-=-=34y x5-=a为匀减速直线运动,轨迹如图(a ),其v 、a 图像从略。
2.由已知,得 2arccos 213arcsin y x= 化简得轨迹方程:2942x y -= (2)轨迹如图(b ),其v 、a 图像从略。
4-3点作圆周运动,孤坐标的原点在O 点,顺钟向为孤坐标的正方向,运动方程为221Rt s π=,式中s 以厘米计,t 以秒计。
轨迹图形和直角坐标的关系如右图所示。
当点第一次到达y 坐标值最大的位置时,求点的加速度在x 和y 轴上的投影。
解:Rt s v π== ,R v a π== t ,222n Rt Rv a π==y 坐标值最大的位置时:R Rt s 2212ππ== ,12=∴tA习题4-1图习题4-2图习题4-3图e e -t(c)e e -t(b)R tR(a)习题4-6图R a a x π==t ,R a y 2π-=4-4 滑块A ,用绳索牵引沿水平导轨滑动,绳的另一端绕在半径为r 的鼓轮上,鼓轮以匀角速度ω转动,如图所示。
理论力学(周衍柏第三版)思考题习题答案
![理论力学(周衍柏第三版)思考题习题答案](https://img.taocdn.com/s3/m/edd5803ffad6195f312ba642.png)
阿第一章思考题解答1.1答:平均速度是运动质点在某一时间间隔t t t ∆+→内位矢大小和方向改变的平均快慢速度,其方向沿位移的方向即沿t ∆对应的轨迹割线方向;瞬时速度是运动质点在某时刻或某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。
在0→∆t 的极限情况,二者一致,在匀速直线运动中二者也一致的。
1.2答:质点运动时,径向速度r V 和横向速度θV 的大小、方向都改变,而r a 中的r 只反映了r V 本身大小的改变,θa 中的θθ r r +只是θV 本身大小的改变。
事实上,横向速度θV 方向的改变会引起径向速度r V 大小大改变,2θ r -就是反映这种改变的加速度分量;经向速度rV 的方向改变也引起θV 的大小改变,另一个θr 即为反映这种改变的加速度分量,故2θ r r a r -=,.2θθθr r a +=。
这表示质点的径向与横向运动在相互影响,它们一起才能完整地描述质点的运动变化情况1.3答:内禀方程中,n a 是由于速度方向的改变产生的,在空间曲线中,由于a 恒位于密切面内,速度v 总是沿轨迹的切线方向,而n a 垂直于v 指向曲线凹陷一方,故n a 总是沿助法线方向。
质点沿空间曲线运动时,0,0≠=b b F a z 何与牛顿运动定律不矛盾。
因质点除受作用力F ,还受到被动的约反作用力R ,二者在副法线方向的分量成平衡力0=+b b R F ,故0=b a 符合牛顿运动率。
有人会问:约束反作用力靠谁施加,当然是与质点接触的周围其他物体由于受到质点的作用而对质点产生的反作用力。
有人也许还会问:某时刻若b b R F 与大小不等,b a 就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,质点的位置也在改变,副法线在空间中方位也不再是原来b a 所在的方位,又有了新的副法线,在新的副法线上仍满足00==+b b b a R F 即。
这反映了牛顿定律得瞬时性和矢量性,也反映了自然坐标系的方向虽质点的运动而变。
理论力学第三版课后答案第3章
![理论力学第三版课后答案第3章](https://img.taocdn.com/s3/m/c86735165f0e7cd184253672.png)
r 由式(1)在 τ 向的坐标式,可得点 B 的速度 r τ : vB = vO + rω = 2rω
aw .
re vω B r vO
r n
(1)
co
τ
r
m
固定圆弧纯滚动由点 O′ 到点O,有 AD = AD′ ,即 r (φ + θ ) = Rθ ,得 rφ = (R − r )θ ,两边对时
∩
∩
题解 3-3Ca
课
r 平动参考基 e s 。 由图可知, 当连杆 B3 转过角 φ 3 ,齿轮 B2 转过角ψ 2 。
后 答
r r 基为动基 e 3 ,齿轮 B2 的连体基为动基 e 2 。过O2建立一
r x3
r x2
r y3
O1
r xs
根据啮合条件有 ψ 2 R2 = φ3 R1 。由图可知,齿轮 B2 的相
φ3
r x
得
q1 = (x A
课
y A = l sin (α − φ1 ) + l cos α sin φ1 = l sin α cos φ1 r1 连体基 e 的位形坐标阵为 y A φ1 ) = (l cos α cos φ1 l sin α cos φ1 φ1 )
T T
x A = l cos α cos φ1
r (2)对于公共基 e ,以三个连体基分别写出刚
r r r
B
r x1
α
r x2 r x3
r y3
C
体的位形坐标阵。 解:
r x
r 基 e 1 的位形为
r (1)如图 3-2Ca 所示,连体基 e 2 相对于与连体
T ρ1 0 ) , θ 2 = 2π − α B = (− l cos α
洪嘉振《理论力学》第3版习题详解第4章
![洪嘉振《理论力学》第3版习题详解第4章](https://img.taocdn.com/s3/m/fcf779ee951ea76e58fafab069dc5022aaea4675.png)
4-1C 图示长方形,OA =1,2=OB ,OC =3。
初始其连体基b e r 与参考基r e r平行。
在某瞬时矩形的姿态坐标(欧拉角)为T2π2π2π⎟⎠⎞⎜⎝⎛−=q 。
试ry r 题4-1C (1)写出该瞬时连体基b e r关于参考基r e r 的方向余弦阵;(2)画出矩形的姿态图;(3)通过欧拉角的三次转动验证结果的正确性。
解:(1)根据方向余弦阵与欧拉角姿态坐标的关系,直接可得该瞬时的长方体的方向余弦阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=001010100rb A (2)以上方向余弦阵的第1、2和3列分别为基b e r 的基矢量b x r 、b y r 和b z r在基r e r 上的坐标阵可知,b x r 与r z r 同向,与同向,b y r r y r b z r与r x r 反向。
根据题图中长方体顶点A 、B 与C在连体基上b e r的位置,在题解图4-1Ca-c 中找到相应的位置,构成长方体的姿态坐标为T2π2π2π⎟⎠⎞⎜⎝⎛−=q 的当前姿态。
另一种方法是直接确定长方体顶点A 、B 与C 在参考基re r 上的当前位置。
根据已知条件可以定义给定点A 、B 与C 的矢径分别为A r r 、B r r 与C r r 。
在连体基b e r上的坐标阵分别为 ()T 001=′Ar ,,()T 020=′B r ()T 300=′C r 这些点在参考基r e r上的当前瞬时坐标阵为:,,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100001001010100A A A z y x ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛020020001010100B B B z y x ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛003300001010100C C C z y x直接根据上式给出的长方体顶点A 、B 与C 在基r e r 上的坐标阵,在基r e r上确定它的位置。
理论力学习题答案-第三版
![理论力学习题答案-第三版](https://img.taocdn.com/s3/m/8e2e6d7c3c1ec5da50e2704b.png)
a=
2 2 2 dv & = 2 dω 2 sec 2 θ tan θ = 2ω x d + x = ωd ⋅ 2 sec θ ⋅ sec θ ⋅ tan ⋅ θ dt d2
(
)
1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:
πt ⎞ a = c⎛ ⎜1 − sin ⎟ 2T ⎠ ⎝
-5-
y A r ϕ
a
ψ
C
a
B x
O
第 1 .3 题 图
y
A
•
ω ϕ O
r
C •
a
ψ B
x
题1.3.2图
由题分析可知,点 C 的坐标为 ⎧ x = r cos ϕ + a cos ψ ⎨ ⎩ y = a sin ψ 又由于在 ∆ AOB 中,有
r 2a = sin ψ sin ϕ
sin ϕ =
(正弦定理)所以
L
A d θ Oห้องสมุดไป่ตู้
第1.4题 图
x C
B
OL 绕 O 点以匀角速度转动, C 在 AB 上滑动,因此 C 点有一个垂直杆的速度分
量
v ⊥ = ω × OC = ω d 2 + x 2 C 点速度 v= v⊥ d 2 + x2 = v ⊥ sec θ = ωd sec 2 θ = ω cos θ d
& = ω 所以 C 点加速度 又因为 θ
(
) (
)
2
rω cos ϕ ⎧& x = − r ω sin ϕ − sin ψ ⎪ ⎪ 2 cos ψ ⎨ rω cos ϕ ⎪y &= ⎪ ⎩ 2
其中
ω =ϕ &
理论力学静力学第四章习题答案
![理论力学静力学第四章习题答案](https://img.taocdn.com/s3/m/724cd919c281e53a5802ff27.png)
a tan
zC
3.在平衡位置,不破坏约束的前提下,假定杆 AB 逆时针旋转一个微小的角度 ,则质心 C 的虚位移:
a l cos tan 2
zC
4.由虚位移原理
a sin
2
l sin 2
W ( Fi ) 0 有:
a sin
2
W ( Fi ) 0 有:
(1)
FB rB cos 450 M F2 y2 cos 1500 F3 y3 0
各点的虚位移如下:
rB 6 2
代入(1)式整理可得:
y2 9
y3 3
(6 FB M
9 3 F2 3F3 ) 0 2
δθ δ rA δ rD δ rE δ rB δ rC
rA O A , rB O B , rC O1C
rD O1D , rB rC , rD rE
代入可得: rA 30rE 4.由虚位移原理
W ( Fi ) 0 有:
3.在不破坏约束的前提下给定一组虚位移 x A 0, y A 0, 0 ,如上图所示。 由虚位移原理
W ( Fi ) 0 有:
(2)
M A F 1 y1 F2 y2 F3 y3 M 0
有几何关系可得各点的虚位移如下:
R sin R l cos 杆的质心坐标可表示为: zC sin 2
坐标。由几何关系可知: z A 3.在平衡位置,不破坏约束的前提下,假定杆 AB 顺时针旋转一个微小的角度 ,则质心 C 的虚位移:
zC
4.由虚位移原理
理论力学习题册答案精品
![理论力学习题册答案精品](https://img.taocdn.com/s3/m/b908ffd3e87101f69f319524.png)
【关键字】活动、情况、方法、条件、动力、空间、质量、地方、问题、系统、密切、主动、整体、平衡、保持、提升、合力、规律、位置、支撑、作用、结构、水平、速度、关系、分析、简化、倾斜、满足、带动、支持、方向、推动、推进、中心第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
a(球A )b(杆AB)d(杆AB、CD、整体)c(杆AB、CD、整体)f(杆AC、CD、整体)e(杆AC、CB、整体)四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
a(球A、球B、整体)b(杆BC、杆AC、整体)第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体 )e (杆CE 、AH 、整体)f (杆AD 、杆DB 、整体 )g (杆AB 带轮及较A 、整体)h (杆AB 、AC 、AD 、整体 第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = - F ’,所以力偶的合力等于零。
( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
理论力学常见问题及解答
![理论力学常见问题及解答](https://img.taocdn.com/s3/m/4a2053100640be1e650e52ea551810a6f524c862.png)
理论⼒学常见问题及解答绪论1.按照定义:“理论⼒学”是研究物体机械运动⼀般规律的科学。
定义中为何没有“⼒”?解答:定义中“机械运动⼀般规律”指物体“运动和⼒”的关系,“⼒”是隐含在定义表述中的,理论⼒学与⼒⼀定有关系。
参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版萧龙翔等.《理论⼒学》,天津⼤学出版社1995范钦珊. 《理论⼒学》,清华⼤学出版社2004关键词:理论⼒学定义,运动,⼒2.①什么是参考系?②⼒与参考系有关吗?解答:①为了表述物体的运动,必须选定⼀个坐标系,在该坐标系中,能够⽤坐标唯⼀确定物体的位置,这样的坐标系称为运动参考系。
②⼒与参考系⽆关。
参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版萧龙翔等.《理论⼒学》,天津⼤学出版社1995洪嘉振,杨长俊. 《理论⼒学》,⾼等教育出版社2008(第3版)关键词:参考系,⼒,运动第1单元:静⼒学基础1.①把⼈看作刚体,汽车中的⼈是平衡的吗?②地球同步通讯卫星是平衡的吗?解答:①如果汽车作匀速直线运动,则汽车中的⼈是平衡的;否则不是。
②同步卫星不是平衡的,因为将地球作为参考系,在该参考系中,虽然卫星不动,但地球这样的参考系不是惯性参考系。
参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版范钦珊. 《理论⼒学》,清华⼤学出版社2004洪嘉振,杨长俊. 《理论⼒学》,⾼等教育出版社2008(第3版)关键词:物体平衡,惯性参考系,⼈,汽车,同步卫星2.物体平衡与⼒系平衡完全等价吗?举例说明。
解答:物体平衡,其上作⽤的⼒系⼀定平衡;反过来,⼒系平衡,⼒学作⽤的物体不⼀定平衡,如绕对称轴匀速旋转的轮⼦,其上⼒系平衡,但物体不平衡。
参考资料:贾启芬,刘习军. 《理论⼒学》,机械⼯业出版社2011第2版萧龙翔等.《理论⼒学》,天津⼤学出版社1995关键词:物体平衡,⼒系平衡,等价关系3.如何理解⼆⼒杆?解答:刚体受⼆⼒作⽤平衡,且重⼒不考虑,则该刚体是“⼆⼒杆”。
理论力学(周衍柏)习题答案,第四章
![理论力学(周衍柏)习题答案,第四章](https://img.taocdn.com/s3/m/2a3eecd2360cba1aa811da52.png)
第四章习题解答4.1解如题4.1.1图所示.坐标系的原点位于转动的固定点,轴沿轴与角速度的方向一致,即设点沿运动的相对速度为则有题意得:故在点时的绝对速度设与轴的夹角为,则故与边的夹角为,且指向左上方。
点时绝对速度设的夹角为,则,故与边的夹角为,且指向左下方。
4.2解如题4.2.1图所示,以转动的方向为极角方向建立坐标系。
轴垂直纸面向外,设点相对速度①设绝对速度的量值为常数,则:②对②式两边同时球时间导数得:依题意故解得通解当时,,将其带入①式游客的知:时,即最后有4.3解如题4.3.1图所示,直角坐标的原点位于圆锥顶点轴过圆锥的对称轴.点在轴上对应的一点,且有,所以点的绝对加速度:最后有4.4解如题4.4.1图所示,题4.4.1图坐标系是以轴转动的坐标系.图中画出的是曲线的一段,在任意一点处,假设某质点在此处静止,则该质点除了受重力、钢丝的约束力之外,还会受惯性离心力的作用,,方向沿轴正向,在作用下,致信处于平衡状态,则有①②有①得③又因为过原点.对上式积分得抛物线有③得将代入②的反作用力4.5以直管为参照系,方向沿管,沿竖直轴建立坐标系,则小球受力为:故沿方向运动的微分方程为:①有初始条件:可得①式解为故当邱刚离开管口时,即时.则得所以此时:故当球刚要离开管口时的相对速度为,绝对速度为,小球从开始运动到离开管口所需时间为4.6解以光滑细管为参考系,沿管,沿水平轴建立坐标系,如题4.6.1图所示,则小球受力为:故沿方向运动的微分方程为:①方程的通解而方程①的特解为:故方程①的通解为:初始条件为当时,故可得所以质点相对于管的运动规律为:4.7解以水平细管为参考系,沿管,沿竖直转动轴向上建立坐标系,如题图4.7.1图所示则易得质点反方向的运动微分方程为:①②将方程①②作简单变换可得:化简得其通解为:初始条件为:故可得:故4.8解以抛物线形金属丝为参照物沿抛物线在顶点的切线方向,沿竖直轴建立坐标系,则小环的运动微分方程为:①②故代入①②得化简即得4.9解一当小环相对平衡时,由上题可知即要求为常数,故故解二以地面为参照系,则小球受力,如图4-8所示.其中为固定地面的坐标系,故平衡时有:4.10解以地面为参考系,则小环的运动微分方程为:其中为与圆心的连线和通过点的直径间所夹的角化简得4.11解以地面为非惯性参考系,建立坐标系,指正南,竖直向上,发射点为原点,炮弹的运动微分方程为:①②③初始条件为故将①②③积分一次代入初始条件后得:④⑤⑥有⑥可得落地时间:⑦其中所以将展开可得由式及初始条件可得所以炮弹落地时的横向偏离为4.1 解以地面为非惯性,建立坐标系指向正南,竖直向上,上抛点为原点,质点的运动微分方程为:①初始条件为:如上题同理可得②③④代入①式得有④式求出落地时间为:有③式得:将代入得复落至地面时:。