四年级数学 巧填数阵图讲解学习

合集下载

小学四年级逻辑思维学习—数阵图与幻方

小学四年级逻辑思维学习—数阵图与幻方

小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从如何来填好数阵图开始。

如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。

四年级奥数:数阵图

四年级奥数:数阵图

四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。

本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。

也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。

同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。

经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。

例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。

又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。

所以,这八个图本质上是相同的,可以看作是一种填法。

例1中的数阵图,我国古代称为“纵横图”、“九宫算”。

一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。

2020-4年级秋季-第6讲-数阵图

2020-4年级秋季-第6讲-数阵图

QS(4)第六讲数阵图数阵图根据图形的形状可分为辐射型、闭合型、复合型三类;通常情况下,数阵图中给出的数比较多,如果采用逐一尝试去解决,则会使得题目异常复杂,所以我们就需要利用一定的方法来解决。

解决数阵图的一般步骤:第一步:确定重叠部分;第二步:求出所有数的总和;第三步:求出规定区域的总和;第四步:确定重叠部分的数;第五步:试填。

1、将1~7这七个数填入下图中,使每条直线上的三个数的和为10。

2、将1~10这10个自然数填入下图中的○内,使图中每条线段上的数之和为23。

3、将1、2、3、5、6、7、8、9这八个数分别填入右图的○中,使两个大圆上的五个数之和都等于29。

4、把4~9填入下图中,使每条线上三个数的和相等,都是18。

5、将1、3、5、7、9、11、13、15、17这九个数分别填入图中的九个圆圈中,使得每个大圆上的三个数的和都相等。

6、将2、4、6、8、10、12、14这七个数填入下图中,使每个三角形顶点的三个数的和为28。

7、将2-11这10个自然数填入下图中的○内,使图中每个正方形顶点上的数之和为27。

8、把1~6这六个数填入图中的○里,使每个大圆上的四个数之和为16。

9、将1~9这九个数字填入下图,使每条边上的和为17。

10、把1~16这16个数,填入图中的16个○内,使五个正方形的四个顶点上○内数的和相等。

11、将1~6这八个数填在○里,使每个小三角形三个顶点数字之和都等于9。

QS(4)第六讲回家作业1、将4~10七个数字,填入下图各○中,使每条线段上的数字和为23。

2、将1~7这七个数填入下图的圈内,使每一个正方形的四个数的和相等。

3、将1-6这六个数字填入下图中的圆圈里使每个正方形上的四个数的和都是12。

4、将1-9这9个数分别填入下图中,使4个三角形的顶点上的数的和相等。

5、把1~6这6个数填入下图的○内,使每条直线上3个数的和为9。

6、将2~9这8个数字,分别填入下图中,使每条边上的三个数的和都是15。

四年级奥数基础教程第17讲 数阵图(二)

四年级奥数基础教程第17讲 数阵图(二)

第17讲数阵图(二)例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。

解:由上一讲例4知中间方格中的数为7。

再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。

因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。

考虑到5,7,9已填好,所以x只能取4,6,8或10。

经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。

这两个解实际上一样,只是方向不同而已。

例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有证明:设中心数为d。

由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。

由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。

根据第一行和第三列都可以求出上图中★处的数由此得到3d-c-(2d-b)=3d-a-(2d-c),3d-c-2d+b=3d-a-2d+c,d——c+b=d——a+c,2c=a+b,a+bc=2。

值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。

例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。

解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。

其它数依次可填(见右下图)。

例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。

解:由例2知,右下角的数为(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。

四年级奥数教程第7讲:有趣的数阵图

四年级奥数教程第7讲:有趣的数阵图

第七讲有趣的数阵图(二)例1将1~7这七个自然数分别填入右图的7个小圆圈中,使三个大圆圆周上及内部的四个数之和都等于定数S,并指出这个定数S的取值范围,最小是多少,最大是多少?并对S最小值填出数阵.分析为了叙述方便,用字母表示圆圈中的数.通过观察,我们发现,三个大圆上,每个大圆上都有4个小圆,由题设每个大圆上的4个小圆之和为S.从图中不难看出:B是三个圆的公共部分,A、C、D分别是两个圆的公共部分而E、F、G仅各自属于一个圆.这样三个大圆的数字和为:3S=3B+2A+2C+2D+E+F+G,而A、B、…、F、G这7个数的全体恰好是1、2、…、6、7.∴3S=1+2+3+4+5+6+7+2B+A+C+D.3S=28+2B+A+C+D.如果设2B+A+C+D=W,要使S等于定数即W最小发生于B=1、A=2、C=3、D=4W最大发生于B=7、A=6、C=5、D=4,综上所述,得出:13≤S≤19即定数可以取13~19中间的整数.本题要求S=13,那么A=2、B=1、C=3、D=4、E=5、 F=6、 G=7.注意:解答这类问题常常抓两个要点,一是某种共同的“和数” S.(同一条边上各数和,同一三角形上各数和,同一圆上各数和等等).二是全局考虑数阵的各数被相加的“次”数.主要突破口是估算或确定出S的值.从“中心数”B处考虑.(B是三个大圆的公共部分,常根据S来设定B的可能值.这里重视B不是简单地看到B处于几何中心,主要因为B参与相加的次数最多)此处因为定数是13,中心数可从1开始考虑.确定了S和中心数B,其他问题就容易解决了.解:例2把20以内的质数分别填入右图的八个圆圈中,使圈中用箭头连接起来的每条路上的四个数之和都相等.分析观察右图,我们发现:①有3条路,每条路上有4个数,且4个数相加的和要相等.②图形两端的两个数是三条路的公共起点和终点.因此只要使三条路上其余两个数的和相等,就可以确保每条路上的四个数的和相等.③20以内的质数共有8个,依次是2、3、5、7、11、13、17、19.如果能从这八个数中选出六个数凑成相等的三对数,问题就可迎刃而解.如要分析,设起点数为X,终点数为y,每条路上4个数之和为S,显然有:3S=2x+2y+2+3+5+7+11+13+17+19=2x+2y+77.即S最小=29,此时x=2,y=3但这时,中间二个质数之和为47-(19+13)=15,但17>15,17无处填.所以S=47是无法实现的.这题还另有一个独特的分析推理.即惟一的偶质数必处于起点或终点位上.不然,其他路上为4个质数之和,2处于中间位的路上.这条路为3奇1偶相加,另两条路上为4个奇相加,形成矛盾.再进一步分析,(终点,始点地位对称)始点放上2,终点放上另一个质数,其他6个质数之和必为3的倍数.而经试算,只有终点放上3,而可满足的解法只有一种(已在下图中表出).解:这样,轻而举地可得到:5+19=24,7+17=24,11+13=24.例3 把1、2、3、4、5、6、7、8这八个数分别填入右图中的正方形的各个圆圈中,使得正方形每边上的三个数的和相等.分析和解假设每边上的三数之和为S,四边上中间圆圈内所填数分别为a、b、c、d,那么:a+c=b+d=(1+2+…+8)-2S=36-2S∴2S=36-(a+C)=36-(b+d)①若S=15,则a+c=b+d=6,又1+5=2+4=6,试验可得下图②若S=14,则a+c=b+d=8,又1+7=2+6=3+5=8,试验可得下两图③若S=13,则a+c=b+d=10,又2+8=3+7=4+610,试验可得下两图④若S=12,则a+c=b+d=12,又4+8=5+7=12,试验可得下图例4在一个立方体各个顶点上分别填入1~9这九个数中的八个数,使得每个面上四个顶点所填数字之和彼此相等,并且这个和数不能被那个没有被标上的数字整除.试求:没有被标上的数字是多少?并给出一种填数的方法.分析为了叙述方便,设没有被标上的数字为a,S是每个面上的四个顶点上的数字之和.由于每个顶点数都属于3个面,所以得到:6S=3×(1+2+3+4+5+6+7+8+9)-3a6S=3×45-3a2S=45-a (1)根据(1)式可看出:因为左边2S是偶数,所以右边45-a也必须是偶数,故a必须是奇数.又因为根据题意,S不能被a整除,而2与a互质,所以2S不能被a整除,45也一定不能被a整除.”在奇数数字1、3、5、7、9中,只有7不能整除45,所以可以确定a=7.这就证明正方体每个面上四个顶点所填数字之和是19,解法如图.例5 将1~8这八个数标在立方体的八个顶点上,使得每个面的四个顶点所标数字之和都相等.分析观察下图,知道每个顶点属于三个面,正方体有6个面,所以每个面的数字之和为:(1+2+3+4+5+6+7+8)×3÷6=18.这就是说明正方体每个面上四个顶点所填数字之和是18.下面有3种填法的提示,作为练习,请读者补充完整.解:例6在下左图中,将1~9这九个数,填人圆圈内,使每个三角形三个顶点的数字之和都相等.分析为了便于叙述说明,圆圈内应填的数,先由字母代替.设每个三角形三个顶点圆圈内的数字和为S.即:A+B+C=S、D+E+F=S、G+H+I=S、C+G+E=S、A+G+D=S、B+H+E=S、C+I+F=S.将上面七个等式相加得到:2(A+B+C+D+E+F+G+H+I)+C+G+E=7S.即:A+B+C+D+E+F+G+H+I=3S又∵A、B、C、D、E、F、G、H、I,分别代表1~9这九个数.即:1+2+3+4+5+6+7+8+9=45.3S=45S=15.这15就说明每个三角形三个顶点的数字之和是15.在1~9九个数中,三个数的和等于15的组合情况有以下8种即:(1、9、5);(1、8、6);(2、9、4);(2、8、5);(3、7、5);(2、7、6);(3、8、4);(4、5、6);观察九个数字在上述8种情况下出现的次数看,数字2、4、5、6、8都均出现了三次,其他数字均只出现两次,所以,符合题意的组合中的2、8、5和4、5、6可填入图中的圆圈内,这样就得到本题的两个解.解:例7在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.分析为了叙述方便,我们将各个圆圈内填入字母,如上右图所示.如果设每个正方形角上四个数字之和为S,那么图中六个正方形可得到:a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S.9S=4×45S=20.这就说明每个正方形角上四个数字之和为20.所以:b2=5.从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数.这样,就比较容易找到此解.解:注:也可以这样想:因为1+2+3+4+5+6+7+8+9=45,中心数用5试填后,余下40,那么大正方形、中正方形对角数字之和一定为10,比如:2+8=10、3+7=10、1+9=10、4+6=10.再利用小正方形调整一下,便可以凑出结果了.习题十1.将1~6六个自然数字分别填入下图的圆圈内,使三角形每边上的三数之和都等于定数S,指出这个定数S的取值范围.并对S=11时给出一种填法.2.将1~10这十个自然数分别填入下左图中的10个圆圈内,使五边形每条边上的三数之和都相等,并使值尽可能大.3.将1~8填入上右图中圆圈内,使每个大圆周上的五个数之和为21.习题十解答1.分析设三个顶点为x、y、Z,三条边中点处放置a、b、c,每边三数之和为S.则有2(x+y+z)+a+b+c=3S.对 x+y+z+a+b+c=1+2+…+6=21∴定数S可取 9、10、11、12.经过试探、搜索知道:顶点放2、4、6,而2、4之间放5,2、6之间放上3,4、6之间放上1,即可.2.3.。

四年级奥数第4讲数阵图

四年级奥数第4讲数阵图

第4讲数阵图一.常识要点在平庸的数学王国中,有一类异常有味的数学问题,它变更多端,惹人入胜,奥妙无限.它就是数阵,一座真正的数字迷宫,它对爱好探讨数字纪律的人有着极大的吸引力,以至有些人留连个中,用平生的精神来研讨它的变更.那么,到底什么是数阵呢?我们先不雅察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13.右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,是不是很奥妙!上面两个图就是数阵图.一些数按照必定的规矩,填在某一特定图形的划定地位上,这种图形,我们称它为“数阵图”,数阵图的种类繁多,壮丽多彩,这里只介绍两种数阵图,即凋谢型数阵图和关闭型数阵图.二.精讲精练例1:把1~5这五个数分离填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9.解析:中央方格中的数很特别,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”.也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次.因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3.重叠数求出来了,其余各数就好填了(见右图).演习1:1.把1~5这五个数分离填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于8和10.2.将1~7这七个天然数填入左下图的七个○内,使得每条边上的三个数之和都等于10.例2:把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等.解析:与例1不合之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数.所以,必须先求出这个“和”.依据例1的剖析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10.是以,两条直线上另两个数(非“重叠数”)的和等于10-5=5.在剩下的四个数1, 2, 3, 4中,只有1+4=2+ 3=5.故有右图的填法.演习2:1.将 10~20填入左下图的○内,个中15已填好,使得每条边上的三个数字之和都相等.例3:把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等.解析:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样都不知道.但由例1.例2的剖析知道,(1+2+3+4+5)+重叠数=每条直线上三数之和×2,所以,每条直线上三数之和等于(15+重叠数)÷2.因为每条直线上的三数之和是整数,所以重叠数只可能是1,3或5.若“重叠数”=1,则两条直线上三数之和为(15+1)÷2=8.若“重叠数”=3,则两条直线上三数之和为(15+3)÷2=9.若“重叠数”=5,则两条直线上三数之和为(15+5)÷2=10.填法见右下图.由以上几例看出,求出重叠数是解决数阵问题的症结.(1)若已知每条直线上各数之和,则重叠数等于(直线上各数之和×直线条数-已知各数之和)÷重叠次数.如例1.(2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数.如例2.(3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值剖析评论辩论,如例3. 演习3:1、将3~9这七个数分离填入下图的○里,使每条直线上的三个数之和等于20.2.将1~11这十一个数分离填入右上图的○里,使每条直线上的三个数之和相等,并且尽可能大. :例4:将1~6,使每条边上的三个○内的数的和都等于9.解析:因为1+2+39,则三条边上的和为9×3 = 27, 27-21 = 6,这个6就是因为三个极点都被反复算了一次.所以三个极点的和为6,在1-6中,只能选1.2.3 填入三个极点中,再将4.5.6填入别的的三个圈即可.a .b .c .d f .演习4:1.把1-8个数分离填入○中,使每条边上三个数的和相等.例5:把20以内的质数分离填入下图的一个○中,使得图顶用箭头衔接起来的四个数之和都相等.解析:由上图看出,三组数都包含左.右两头的数,所以每组数的中央两数之和必定相等.20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有5+19=7+17=11+13,于是得到下图的填法.演习5:1.将1~8个数分离填入图中,使每个圆圈上五个数和分离为20,21,22.例6:在右图的六个○内各填入一个质数(可取雷同的质数),使它们的和等于20,并且每个三角形(共5个)极点上的数字之和都相等.解析:因为大三角形的三个极点与中央倒三角形的三个极点正好是图中的六个○,又因为每个三角形极点上的数字之和相等,所以每个三角形极点上的数字之和为20÷2=10.10分为三个质数之和只能是2+3+5,由此得到右图的填法.演习6:1.把1~9,填入下图中,使每条线段三个数和及四个极点的和也相等.2.把1~12这十二个数,填入下图中的12个○内,使每条线段上四个数的和相等,两个齐心圆上的数的和也相等.三、课后巩固1.把1~8这8个数,分离填入图中的方格内(每个数必须用一次),使“十一”三笔中每三个方格内数的和都相等.2.把1~9个数分离填入○中,使每条边上四个数的和相等.3.把1~10填入图中,使五条边上三个○内的数的和相等.4.把4~9填入下图中,使每条线上三个数的和相等,都是18.5.将1~9这九个数分离填入图中○内,使每条线段三个数相等.6. 把1~8这8个数填入下图,使每边上的加.减.乘.除成立.7.把0~9填入104个小三角形构成的大三角形的和相等.8.图有五个圆,它们订交互相分成9个区域,如今两个区域里已经填上10与6,请在别的七个区域里分离填进2.3.4.5.6.7.9七个数,使每圆内的和都等于15.9.把1~8,.10.将1-12这十二个数分离填入图中的十二个小圆圈里,使每条直线上的四个小圆圈中的数字之和26.11.将1~10这十个数分离填入下图中的十个○内,使每条线段上四个○内数的和相等,每个三角形三个极点上○内数的和也相等.。

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)

四年级奥数讲义:有趣的数阵图(一)大家都知道了历史悠久的三阶幻方.再推广一些,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,习惯上称为“数阵图”.幻方是特殊的数阵图,幻方发展较快,因为它后来与试验方案设计及一些高深数学分支有关,成为数阵图中最重要课题.本讲主要介绍一般数阵图及解此类题的推理思考方法,由于它既有数字之间运算,又要结合图形,对开发学生综合思考和形象思维很有益.先看例题.例 1 下面图形包括六个加法算式,要在圆圈里填上不同的自然数,使六个算式都成立,那么最右边圆圈中的数最少是几?分析为便于说理,各圆圈内欲填的数依次用字母A、B、C、D、E、F、G、H、I代替(上右图).经观察,I=A+B+C+D.题目要I尽可能小,最极端的想法,希望A、B、C、D只占用1、2、3、4.但这会产生矛盾.因为1总要和2、3、4中的某两个实施加法,但1+2给予G、H、E、F中某值为3与A、B、C、D中已有的3冲突;同样1+3给于G、H、E、F中某值为4又与A、B、C、D中已有的4冲突;所以A、B、C、D不能是1、2、3、4.那么退而求之,不妨先设A=1.如先考虑B,B尽可能小,最好,B=2,从而决定了E=3,C≠3,D≠3.这样一来,C,D只能取4和5.但如C=4导致G=5和D=5冲突,而C=5,D=4,又导致G=A+C=6和H=B+D=2+4=6冲突.在碰了钉子后,回看在A=1设定后,不应随随便便先填B的值.从结构上看,因为B,C地位对称,不妨先考虑D.D尽可能小,最好设D=2,B、C至少取3、5,若如此,由B+D或C+D产生的5会与B、C中已有的5矛盾.所以,B、C可能取3、6.从而形成了:A=1、D=2、B、C取3、6(B,C地位对称).这样一来其他字母所代表的值就立即推出,不妨设B=3,C=6,A+B=E=4,C+D=6+2=8=F;A+C=1+6=7=G,B+D=3+2=5=H,恰好满足E+F=4+8=12=I;G+H=7+5=12=I;综上所述:A=1,D=2,B=3,C=6决定了其他值,且决定了I=12.是一个较小的I的值,自然要问I 值还可能比12小吗?分析I的值有三种不同的获得方式:I=A+B+C+D=E+F=G+H.3I=A+B+C+D+E+F+G+H,而8个字母最少是代表1、2、…、7、8的情况.3I≥(1+2+…+7+8)=36,I≥12.现已推出了使I=12的一种填法,所以是最佳方案了.例2 如右图,五圆相连,每个位置的数字都是按一定规律填写的,请找出规律,并求出x所代表的数.分析经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.解: x+18=17×2x=16.经检验,16和24相加除以2,也恰好等于20.例3 在下图中的各题中,将从1开始的连续自然数填入各题的圆圈中,要使每边上的数字之和都相等,中心处各有几种填法?(每小题请给出一个解)分析1 图(A)中的中心圆填入的数设为x,x参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S即28+2x=3S或28+2x≡0(mod 3)借用同余工具,是在两个未知数的不定方程中先缩小x应该取值的范围.在mod3情况下,只要试探x≡0,1,2三个值,很轻松地解出:x≡1(mod3),回复到x取值范围为1,2,…,7.有x1=1,x2=4,x3=7,得到:x1=1,S1=10;x2=4,S2=12;x3=7,S3=14;由此看出关键在求S(公共和)及x(参与相加次数最多的圆中值).此方法对下面解(B)、(C)、(D).都适用.注意:每条线上的数字之和随着中心数的变化而变化.分析2 我们分析图(B),首先应该考虑中心数,(B)题共10个数,由于中心数比其他数多使用了二次(总共使用三次).如果中心数用x表示,三条边的数码总和应为:1+2+3+4+5+6+7+8+9+10+2x=55+2x同理,因为是3条边,所以55+2x应是3的倍数55+2x≡0(mod 3),把x≡0、1、2代入试验,得x≡1(mod 3),即x=1、4、7、10.四种解.①当x=1时,55+2x=57,57÷3=19②当x=4时,55+2x=63,63÷3=21③当x=7时,55+2x=69,69÷3=23④当x=10时,55+2x=75,75÷3=25读者可按照上面相似的规律自己去分析一下图中(C)、(D)两题.解:(A)图:中心数可以为1、4、7,有三种填法,请读者补充其他两种解法.(B)图:中心数可以为1、4、7、10.有四种填法,请你补充其他三种填法.(C)图:中心数可以为1、5、9.有三种填法,请你补充其他两种填法.(D)图:中心数可以为1、6、11.有3种填法,请你补充其他两种填法.例 4 在下左图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x是多少?分析为了便于说明问题,我们用字母表示各个圆圈内所表示的数,如上右图所示:根据题意,我们观察:因为每一条直线上的三个数中,当中的数是两边的两个数的平均数.所以可以得出:D=(13+17)÷2=15.还可以得出以下三式:C=(B+15)÷2 (1)A=(13+B)÷2 (2)C=(A+17)÷2 (3)将上述三个算式进行变形,成下面三个算式:2C=B+15 (4)2A=13+B (5)2C=A+17 (6)用(4)式减去(5)式得出:2C-2A=2C-A=1C=A+1将C=A+1代入(6)式得到:2(A+1)=A+17,A=15.x=19.即:解:(略)例5 如下左图有5个圆,它们相交后相互分成几个区域,现在两个区域里已分别填上数字10、6,请在另外七个区域里分别填进2、3、4、5、6、7、9七个数字,使每个圈内的数的和都是15.分析为了便于说明,我们用字母表示其他的7个区域.如上右图.根据题意可以得出:A=5、G=9,九个区域中数的总和为:(2+3+4+5+6+7+9)+10+6=52,而每个圆圈内数的和是15,五个圆圈内数的总和为:15×5=75,又75-52=23,由此得出重叠的部分的四个数A、C、E、G的和是23.由于A=5和G=9已经填好,因此,余下的两个部分C+E的和是:23-5-9=9,此时9只有两种分解的可能:2+7=9、3+6=9.在E、F、G这个圆圈内,∵G=9,∴E不能填6、7.也不能填3(否则F也等于3),只能填2,这样,E=2,C=7.解:例6 如下左图所示4个小三角形的顶点处共有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形三顶点上的数之和相等,问这6个质数的积是多少?分析为了叙述方便,我们用字母表示图中圆圈里的数.如上右图所示.通过观察,我们不难发现,小三角形A1B2C2和小三角形A2B2C2有两个共同的顶点B2,C2,而这两个小三角形顶点上数字的和相等.因此A1=A2.同理有B1=B2,C1=C2,所以,此图只能填A、B、C三个质数(两个A、两个B、两个C.以下:A1=A2记为A,B1=B2记为B,C1=C2记为C)∵6个圆圈中的6个质数之和为20,即:2×(A+B+C)=20A+B+C=10.∴10分成三个质数之和只能是10=2+3+5.这样,A、B、C分别是2、3、5.这时所填6个数的积是:2×2×3×3×5×5=900.解:例7 能否将自然数1~10填入五角星各交点的“○”内使每条直线上的4个数字之和都相等?分析与解答不能,用反证法.假设可以填成数阵图,观察发现:十个点中的每一个点恰好是两条直线的公共点.因而全部直线(共5条)上数字总和,应该等于全部点上数字总和的2倍.记每条直线上数字和为S,则有5S=(1+2+3+…+10)×2,从而解出S=22.10和1必同在某一直线上.不然,如含有10的两条直线都不含有1,这样,这两条线上8个数字(10自然被计上两次)之和(本应为2S)大于等于2×10+2+3+4+5+6+7=47>44=2S.形成矛盾.所以10、1必处同一直线.此外,有三个数字与10不同线,不妨记为x、y、z.显然x+y+z={10数总和}-{其余七个数和}而这{其余七个数和}恰好为2S-10.所以x+y+z=55-2×22+10=21.已推出10,1共线.进一步看出,1无论在什么位置都与x、y、z三数中的两个共线.设1与x、y共线,此线上另一数设为v.则有1+x+y+v=22,从而x+y+v=21.前已证x+y+z=21,因而导致v=z的矛盾.其他情况推证类似,所以没有题设的填法.习题九1.将1~9这九个数字分别填入右图中的九个圆圈中,使各条边上的四个圆圈内的数的和相等.2.将0.01、0.02、…、0.09这九个数分别填入右图九个圆圈内,使每条边上的四个圆圈内的数之和都等于0.2.(此题与题1共用一图)3.在右图的空白的区域内分别填上1、2、4、6四个数,使每个圆中的四个数的和都是15.。

四年级奥数详解答案-第3讲-数阵图

四年级奥数详解答案-第3讲-数阵图

四年级奥数详解答案 第3讲第三讲 数阵图一、知识概要1. 数阵图就是把一些数字填入图形的某种位置上,并使数字满足一定的条件。

2. 数阵图的种类,大致分为三种:①封闭型数阵图;②开放型数阵图;③复合型数阵图3. 解数阵图的一般方法:(1) 分析隐含的数量关系和数字的位置关系,以特殊的位置为突破口,一般选用使用次数多的数作为关健数。

(2) 依据图中条件,建立所求的和与关健数的关系式,并通过讨论最大值与最小值,以及试验的方法确定关键数的数值及相等的和。

(3) 对其他部位上的数字一般都是作尝试选填,直至符合题为止二、典型例题精讲 1. 把1~6这6个数分别填在图中的○内,使每多边上三个○内的数字和相等。

分析指导: 21654321=+++++∴21+(a+b+c)=(a+d+b)+(b+f+c)+(a+e+c)a+d+b=b+f+c=a+e+c,且设a+d+b=k∴有:21+(a+b+c)=3k当a+b+c 为最小值,即1+2+3=6时,k=9当a+b+c 为最大值,即6+5+4=15时,k=12这样就可以确定,三角形每边上的三个○内的数字和在9~12之间解:(1)当k=9时,a+b+c=6,令a=1,b=2,c=3则:d=9-(2+1)=6 e=9-1-3=5 f=9-2-3=4其结果如以下图所示:(2)当k=10时,a+b+c=9, 则:a.b.c 的取值有三种可能:①a=1,b=2,c=6 ②a=1,b=3,c=5 ③a=2,b=3,c=4-----①种情况,a=1,b=2,c=6,则d=10-1-2=7 (不合题意,舍去)-----②种情况,a=1,b=3,c=5,则d=10-1-3=6,e=10-1-5=4;f=10-3-5=2,所以结果如下图。

------③种情况,a=2,b=3,c=4,则d=10-2-3=5,e=10-2-4=6, f=10-3-4=3, 与b=3重复,不合题意,舍去。

四年级数学 巧填数阵图

四年级数学   巧填数阵图

巧填数阵图课前练习:1、用0、2、5、8、9可以组成多少个不同数字的三位数2、大小两个正方形对应边的距离为4厘米,两个正方形之间的部分面积为160平方厘米,求小正方形的面积?3、在420为的环形跑道上,甲、乙两人同时同地起跑,如果同向而行1分钟10秒相遇,如果背向而行30秒相遇,已知甲比乙快,求甲乙的速度?4、哥哥和弟弟在同一所学校读书,哥哥每分钟走80米,弟弟每分钟走50米,有一天,弟弟先走12分钟,哥哥才出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?学习新知例1、把1—7这七个数分别填入下图的圆圈中,使得每条边上的三个数的和都等于12。

例2、把数字1——8分别地填入下图中的小圆圈内,使每个圆上的五个数的和都等于20。

例3、将1—6这六个数填入图中的圆圈中,要求四条直线上的数字之和都等于10,那么a是多少?例4、下图中有5个圆,它们相交后分成9个区域,现在两个区域里已经填上了11与7,请在另外的七个区域里分别填入2、3、4、5、6、9、10这七个数,使每个圈内的和都等于17。

课堂练习1、把1—7这七个数分别填入下图的圆圈中,使得每条边上的三个数的和都等于14。

2、把数字1—8分别填入下图中的小圆圈内,使得每个圆上五个数的和都等于22。

3、把5—14这十个自然数分别填入下图中的圆圈中,使每个大圆上的六个数的和等于55,求a+b等于多少?例1、4、下图中有5个圆,它们相交后分成9个区域,现在两个区域里已经填上了10与6,请在另外的七个区域里分别填入2、3、4、5、6、7、9这七个数,使每个圈内的和都等于15。

四、勇攀高峰。

例1、把2、3、5、7、11、13、17、19分别填入下图的每个圆圈中,使得图中用箭头连接起来的四个数的和都等于29。

例2、图中有10个小三角形和4个大三角形,将1——10填入每个小三角形,使每个大三角形内的数字之和都等于25,(已填好三个数)家庭作业1、将1——11这十一个数分别填入下图中的圆圈中,使每条线上3个圆圈中的数的和相等。

《巧填数阵图》教学案例

《巧填数阵图》教学案例

《巧填数阵图》教学案例【教学目标】1.在填数游戏活动中,培养学生的计算能力和推理能力。

2.在对填数问题的观察和分析中,培养学生语言表达和总结归纳的能力。

3.在探索、尝试、交流等活动中,体会填数游戏的乐趣,激发学习兴趣。

【教学重点】学会观察,理清题意,积累推理经验,提高推理能力【教学过程】一、图片导入,激发兴趣师:同学们,这是什么地方?生:糖果城堡师:你们真聪明,糖果城堡的小精灵有话对你们说,我们一起来听一听吧。

播放一段语音师:小精灵送给小朋友们一些糖果卡牌,但是现在糖果卡牌被坏人抢走了,我们一起去看看吧。

师生观看小视频师:今天我们的任务就是巧填数阵图,制作糖果卡牌,打败坏人。

板书巧填数阵图二、授入新课1.合作闯关师:我们来看看第一关。

〔课件出示空白数阵)在每个方格中填入适当的数,使每一横行、竖行以及两斜行的三个数的和都是15。

师:谁来读一下游戏规则?生:在每个方格中填入适当的数,使每一横行、竖行以及两斜行的三个数的和都是15。

师:谁能上来指一指什么是横行、竖行以及斜行?学生上来指出横行、竖行以及斜行(没有指全时说提醒还有吗)师:在填数前你有什么要提醒大家的吗?生:每一横行、竖行以及两斜行的三个数的和都是15。

师:好,既然游戏规则已经清楚了,那我们可以开始填了!但是,现在有这么多空,你想最先填哪一个?为什么?生1:先填6、5这一斜行,填4.因为这里只有一个空生2:填6、2这里,填7。

因为这里已经有两个数,生3:填2、5这一斜行,填8.因为好填一些师:原来你们都是从缺数最少的一条线开始填的,这个方法不错。

那剩下空的你是怎么填的?生:第一行中间填1,第二行最后一个写3,第三行是9和4师:我们填的对吗?怎么检查?生:加一加是不是15。

师:解决像这种的填数游戏有什么秘诀吗?1读,2找:寻找缺数最少的一条线,3查师:同学们太聪明了,我们就带着这个秘诀制作糖果卡牌吧,请翻到糖果卡牌1。

师:接下来运用你们的秘诀,自己填一填把数字1,3,5,8分别填入○内,使每条线上3个数的和等于14.〔教师巡视,让学生上台填一填并说一说自己的填法】(组织学生认真看黑板,仔细听)学生:红色圆圈填5,因为14-9=5,绿色填3,剩下两个1和8位置可以随便写。

四年级数学数阵图讲解一

四年级数学数阵图讲解一

四年级数学数阵图讲解(一)我们在三年级已经学习过辐射型和封闭型数阵.其解题的关键在于“重叠数”。

本讲和下一讲.我们学习三阶方阵.就是将九个数按照某种要求排列成三行三列的数阵图.解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中.使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45.正好是三个横行数字之和.所以每一横行的数字之和等于45÷3=15。

也就是说.每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中.三个不同的数相加等于15的有:9+5+1.9+4+2.8+6+1.8+5+2.8+4+3.7+6+2.7+5+3.6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中.又在一个竖列中.还在两对角线上.所以它应同时出现在上述的四个算式中.只有5符合条件.因此应将5填在中心方格中。

同理.四个角上的数既在一个横行中.又在一个竖列中.还在一条对角线上.所以它应同时出现在上述的三个算式中.符合条件的有2.4.6.8.因此应将2.4.6.8填在四个角的方格中.同时应保证对角线两数的和相等。

经试验.有下面八种不同填法:4/ 1上面的八个图.都可以通过一个图的旋转和翻转得到。

例如.第一行的后三个图.依次由第一个图顺时针旋转90°.180°.270°得到。

又如.第二行的各图.都是由它上面的图沿竖轴翻转得到。

所以.这八个图本质上是相同的.可以看作是一种填法。

例1中的数阵图.我国古代称为“纵横图”、“九宫算”。

一般地.将九个不同的数填在3×3(三行三列)的方格中.如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等.那么这样的图称为三阶幻方。

小五奥数-填数阵图

小五奥数-填数阵图

一个大家都很熟悉而又古老的问题:怎样将1、2、3、4、5、6、7、8、9填入3X3的方格正方形(称九宫)的九个小方格中,使得每行、每列、两条对角线上的三个数和相等.这个我们古人已能解决的问题一直流传至今,成为开启儿童智慧的“经典”,绝非偶然.因为在这个问题本身很简洁、有趣的解决过程中,既需要我们具体通过严格的逻辑推理来获得某些必然的结果的能力,而且也需要对某些不确定的因素进行灵活的选择,并加以排除、确认的能力.这种严密性与灵活性的思考,正是思维能力“魅力”之所在.【例1】 如图14-1,内分别填入1,2,...,7这七个数,如果6个三角形的顶点处内的数之和是64,那么,中间内填入的数是_____.【例2】 请在如图14-2所示的8x8表格的每个格子中填入1或2或3,使得每行、每列所填数的和各不相同.随堂练习1请在如图14-4所示的4x4的正方形每个格子中填入1、2、3,使得每个2x2的正方形所填的4个数的和各不相同.O O O【例3】 请将1个1、2个2、3个3......8个8、9个9填入如图14-5所示的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格的数,并且知道A 、B 、C 、E 、F 、G 各不相同,那么五位数CDEFG 是_____.【例4】 如图14-7的第一行的五个内填上五个不同的自然数,然后从第二行开始每个内的数都是上一行与它相邻的两个数之和,一直计算到最后一个数恰好是50,且满足14个内的数也各不相同.随堂练习2仿例4,填下面数阵图,解与例4不同.O O O【例5】 将1~10这10个数填入如图14-12的10个内,要求任意两个相邻的数之差不少于3.随堂练习3从1~9这9个数字中挑出6个不同的数字填入图14-17的六个内,使任意相邻的两个内的数字之和都是质数,那么,最多能找出____种不同的填法.(6个数字相同,排列次序不同的都算作同一种填法)【例6】 如图14-18中有十三个空白圆圈,要求吧1~13这十三个数填入各空白圆圈内(其中3、4已经填好),使得上面两个圆圈内数之和,等于和它相连的下面圆圈内的数,并且最下面四个圆圈中的数之和等于O O O随堂练习4请把1~11这十一个数分别填入如图14-21所示的“王”字中,使三行、一列所填的数之和都等于18.课后作业1.如图,3x3的正方形每一个方格内的字母都代表某一个数,已知其每行、每列以及两条对角线上的三个数之和都相等.若a=4,d=19,l=22.那么b=___,h=____.2.如图,3x3的正方形每一个方格内的字母都代表某一个数.已知其每行、每列及两条对角线上三个数和都相等.若f=19,g=96,那么b=____.3.如图,在每个方格中填入9个不同的自然数,使得每一行、每一列及两条对角线上的三个数的乘积都相等.4.如图,将1、2、3、4、5、6、7、8这八个数分别填入图中的8个圆圈中(每个数只用一次).如果两个大圆上的5个小圆圈内的数字和都是22.那么,A、B两个圆内不能填的数是____.(1)1和7;(2)4和3;(3)3和5;(4)2和6.5.10个连续自然数,9是其中第三大的数.把这10个数分别填到如图所示的十个方格中,每格填一个数.要使图中三个2x2的正方形中四数之和相等.那么,这个和的最小值是___.6.将1~9这九个数分别填入如图所示的9个中,使得每条线段两端上的两个数字和各不相同,即可得到12个不同的和.7.如图,在5x5方格的空白处填入适当的自然数,使得每行、每列、两条对角线上的三个数的和都是30.要求:填入的数只有两种不同的大小,且一种是另一种的2倍.8.在如图所示的每个圆圈中填上一个数,互不相等.每个圆圈有3个相邻(即有线段连结)的圆圈,将图(1)的每个圆圈中的数改为3个相邻圆圈所填数的平均值,得到图(2).图(1)中已有一个数1,请填出图(1)中的其他数,使得图(2)中的数都是自然数.9.如图所示的10条线分别连结着九个圆圈,其中一个圆里的数是6.请你选九个连续自然数(其中6已选好)填入圆圈内,使每条线上各数之和等于23.10.将1,2,...,13这十三个数分别填入如图所示的三个圆圈.现已知1、4、7这三个数已填入第一个圆圈;3已填入第三个圆圈.请把余下的数也填入圆圈,使得同一个圆圈中每两个数相减所得差不在这个圆圈内.11.如图所示,将1、2、3、4、5、6、7这七个数分别填入图中的椭圆内,使得每条直线上的数之和为11.那么右下角“NT”处填的数是____.12.请在如图所示的立方体的8个顶点上标出1~9中的八个数,使得每个面上4个顶点所标的四个数之和都等于数k,并且k不能被未标出的数整除.k=____.。

四年级奥数思维训练第23讲 数阵图(一)

四年级奥数思维训练第23讲  数阵图(一)

第九讲数阵图(一)
专题简析:填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

例1.把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。

先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习九
1.把1~10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2.把1~9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3.将1~7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

数阵图(一)(含详细解析)

数阵图(一)(含详细解析)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

第9讲:巧填数阵(最新数学课件)

第9讲:巧填数阵(最新数学课件)

总和:2+3+4+5+6+7+a+b+c =27+a+b+c
总和为3的倍数
3个数被重复的 加了一次。
a+b+c的最小取值: =2+3+4=9
总和最小为:27+9=36
假设3个数的和是a+b+c
a+b+c的最大取值: 36到45之间能被3整除的数有:
=5+6+7=18 总和最大为:27+18=45
36 39 42 45
练习三
将1、2、3、4、5五个数填入下面的方格里,使横行 与竖行上的三个数的和相等。
中间数为1时:
中间数为3时:
(15+1×1)÷2=8 (15+1×3)÷2=9
5
2
中间数为5时:
(15+1×5) ÷2=10
2
314
1 35
15 4
2
4
3
例题四
将1到11这十一个数填入“六一”中的方框内,使相邻两个或 三个方框内数的和都等于15。
中间数多加2次:
1+2+3+4+5+6+7+2x
总和为3的倍数
28+2x
x
28+2×1=30 28+2×4=36 28+2×7=42
x 可以为: x=1、4、7
例题三
将1、2、3、4、5、6、7这七个数字填入小圆圈内, 使每条线上的三个数的和相等。
一条直线上3个数的和为:
中间数为1时: (28+2×1)÷3=10

四年级数学数阵图讲解(一)

四年级数学数阵图讲解(一)

四年级数学数阵图讲解(一)我们在三年级已经学习过辐射型和封闭型数阵.其解题的关键在于“重叠数”。

本讲和下一讲.我们学习三阶方阵.就是将九个数按照某种要求排列成三行三列的数阵图.解题的关键仍然是“重叠数”。

我们先从一道典型的例题开始。

例1把1~9这九个数字填写在右图正方形的九个方格中.使得每一横行、每一竖列和每条对角线上的三个数之和都相等。

分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。

我们可以这样去想:因为1~9这九个数字之和是45.正好是三个横行数字之和.所以每一横行的数字之和等于45÷3=15。

也就是说.每一横行、每一竖列以及每条对角线上三个数字之和都等于15。

在1~9这九个数字中.三个不同的数相加等于15的有:9+5+1.9+4+2.8+6+1.8+5+2.8+4+3.7+6+2.7+5+3.6+5+4。

因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。

因为中心方格中的数既在一个横行中.又在一个竖列中.还在两对角线上.所以它应同时出现在上述的四个算式中.只有5符合条件.因此应将5填在中心方格中。

同理.四个角上的数既在一个横行中.又在一个竖列中.还在一条对角线上.所以它应同时出现在上述的三个算式中.符合条件的有2.4.6.8.因此应将2.4.6.8填在四个角的方格中.同时应保证对角线两数的和相等。

经试验.有下面八种不同填法:上面的八个图.都可以通过一个图的旋转和翻转得到。

例如.第一行的后三个图.依次由第一个图顺时针旋转90°.180°.270°得到。

又如.第二行的各图.都是由它上面的图沿竖轴翻转得到。

所以.这八个图本质上是相同的.可以看作是一种填法。

例1中的数阵图.我国古代称为“纵横图”、“九宫算”。

一般地.将九个不同的数填在3×3(三行三列)的方格中.如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等.那么这样的图称为三阶幻方。

四年级奥数教程第7讲有趣的数阵图ppt课件

四年级奥数教程第7讲有趣的数阵图ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
随堂练习2
如下图, 将数字1~6填入图中的小圆圈内,使每 个大圆上4个数字和都是16.
开放型(辐射型)数阵图
例4:把1-7这7个数分别填入下图中的7个圆圈内, 使每条线段上的三个圆圈内各数之和都相等。
数学游戏千姿百态,种类很多。在前面我们
已经学习了找规律、魔牌二十四、算式谜等。下 面我们再来学习一种很有趣的填数游戏—数阵图。 它的特点是把一些数字按照一定的要求,填入各 种各样的图形中。数阵图主要有封闭型、开放型 (也称辐射型)和复合型。它的填写需要有一定 的技巧,要求同学们必须有敏锐的观察能力,灵 活的思维能力才能找到答案。
解:此题解答的关键是确定正方形4个顶点上的数。
1 11 6 4
12
5
7
10
2983
像以上介绍的各条边相互连接的数阵图叫做封闭
型数阵图。对于封闭型数阵图,解题的关键是先确定 顶点处的数字,然后再根据条件要求试验找出正确的 解。另外,数阵的解,多数都是不唯一的,如果题目 没有特别要求,只要求出一个基本解即可。
使竖列和横行口内数的和相等。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
(2)如下图,把数字1,3,4,5,6分别填入图中 三角形3条边上的5个○内,使每条边上3个○内 数的和等于9.
例3:把1-12这12个数,分别填在下图正方形的四条 边上的12个 内,使每条边上4个 内数的和都等于 22,试求出一个基本解。
解:解答本题的关键是确定中心 内的数,另外 还知道每条线段上3个数的和是几?经试验,可 得出3个基本解。

四下第六讲 有趣的数阵图

四下第六讲  有趣的数阵图

第六讲有趣的数阵图一、知识要点数阵图是将一些数字按照一定的要求,排列成某些图形。

幻方就是一种特殊的数阵图。

常见的数阵图有三种形式;辐射型数阵图(如例1)、封闭型数阵图(如例2)和复合型数阵图(如例3)。

探究要点:1.仔细观察所要填数的图形,虽然要填的数有很多,但往往最关键的位置只有一两个,要抓住图形的关键位置。

如:三角形的顶点,长方形、正方形的顶点,某些不规则图形的的中间位置等;2.要善于把图形和题中的数字联系起来思考;3.需要计算和尝试,有时有多种满足数阵图的填法。

二、自我探究【例1】把1~5这五个数分别填在下图的方格中,使得横行三数之和与竖列三数之和都等于8。

【例2】把1、2、3、4、5、6填在图5-1的6个○中,使每条边上的三个数之和都等于9。

【例3】把1~7这七个数分别填入图中,使每条线段上三个○内数的和相等。

【例4】在下图中,有三个正的“品”字,请将1~6分别填入六个□中,使得三个“品”字中的数字之和都相等。

三、自我挑战第一关:1.将数字1~5分别填在下图中的○内,使每条线段上3个○内的数的和相等。

2.把1~9这九个数分别填在下图的方格中,使得横行三数之和与竖列三数之和都等于27。

3.将1~6填入下面各○里,使得每条线上的和相等。

4.将1~6这六个数填入下图的○里,使得每条直线上的三个数的和都为9。

第二关:1.把1~8这八个数分别填在下图的方格中,使每一横行、每一竖列相邻3个□内的数字和相等。

2.把1~12这十二个数,分别填在下图正方形四条边上的十二个○内,使每条边上的四个○内数的和都等于22,试求出一个基本解。

3.将数字1~8这八个数分别填入下图的8个○内,使每个圆圈上的五个数的和都是21。

第三关:下图球体有3个圆周,在6个○里分别填上1,2,3,4,5,6,使得每一个圆周上四个数相加的和都是14。

奥数巧填数阵图

奥数巧填数阵图

第十二讲巧填数阵图晶晶和莹莹来到了雪精灵国,天空中到处飘着洁白剔透的雪花,就像下面图中的样子. 一个雪精灵告诉她们:“你们只要能够把1~7 这七个数填在雪花的七个花瓣上,使每三个位于同一直线上的花瓣上的数之和都相等,你们就能见到雪精灵国的女王了. ”你能帮她们填一填吗是一件容易的事,这就要我们小朋友们认真去观察图,观察数字的排列规律,这样才能找到填图的方法下面我们就一起来学习吧!小朋友们,你喜欢这样的填数字游戏吗?要想准确的填出图中的每个数,可不15.拓展练习填数,使横行、竖行的三个数相加都得11. (2)使每横行、竖行的和以及两斜行的三个数之和都是18.要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?在下列两图的空格中填上数,使横行和竖行或每条对角线上的三个数相加都等于15.把2,3,4,5,6 这五个数分别填入圆圈中,使每条线上三个数相加的和都等于把1,2,3,4,5,6 六个数,分别填入○内,使每条线上 3 个数的和相等提高篇把3,4,5,6,7 这五个数分别填入下面的空格里,使横行、竖行的三个数相加都得15.1 2.13.拓展练习19拓展:如果使两个正方形中四个数之和相等 等于 1521,又应该怎样填? 1~ 9 这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都 把 2,3,4,5,6,7,8 这七个数分别填入圆圈中,使两个正方形中四个数之和相等把 把 1,2, 3,4,5,6, 7 这七个数分别填入 ○里,使每条直线上的三个数相加的和都为 12把1,2,3,4,5,6,7这7个数分别填入右图中,使得每条直线上的3. 把1,2,3,4,5 这五个数分别填入下面的○里,使横行、竖行的三个数相加都得3 个数的和相等练习十1. 在下面的○ 里填上适当的数,使每条线上的三个数之和都是2.把3~8这6个数,填在下图中使得每行、每列和两条对角线上的三个数的和都为18.10.4. 把 3,4,5,7,9,11,13 这七个数分别填入 ○里,使每条直线上的三个数相加的和都为 20.小朋友,你在少年宫里走过“勇敢者的道路”吗?道路崎岖,充满艰难险阻.但是,它能培养小朋友的 勇敢精神和不怕困难的毅力 .这里有两幅图,也叫“勇敢者的道路”.图中的道路狭窄、曲折,不易通过,需要小朋友细心和有耐心 . 现在请小朋友用一枝铅笔,按照图中箭头的方向画出通行路线,而且线条不能碰到两边的“围墙” 小朋友,这可真不容易哦!5. 将 1,2,3,4,5,6 这 6 个数分别填入下图中,使两个大圆上 4 个数的和都等于 14.3,5,6,7,9 填在下面的○里,使每边上的和为15.O。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧填数阵图
课前练习:
1、用0、
2、5、8、9可以组成多少个不同数字的三位数
2、大小两个正方形对应边的距离为4厘米,两个正方形之间的部分面积为160平方
厘米,求小正方形的面积?
3、在420为的环形跑道上,甲、乙两人同时同地起跑,如果同向而行1分钟10秒相遇,如果背向而行30秒相遇,已知甲比乙快,求甲乙的速度?
4、哥哥和弟弟在同一所学校读书,哥哥每分钟走80米,弟弟每分钟走50米,有一天,弟弟先走12分钟,哥哥才出发,当弟弟到达学校时哥哥正好追上弟弟也到达学校,问他们家离学校有多远?
学习新知
例1、把1—7这七个数分别填入下图的圆圈中,使得每条边上的三个数的和都等于12。

例2、把数字1——8分别地填入下图中的小圆圈内,使每个圆上的五个数的和都等于20。

例3、将1—6这六个数填入图中的圆圈中,要求四条直线上的数字之和都等于10,那么a是多少?
例4、下图中有5个圆,它们相交后分成9个区域,现在两个区域里已经填上了11与7,请在另外的七个区域里分别填入2、3、4、5、6、9、10这七个数,使每个圈内的和都等于17。

课堂练习
1、把1—7这七个数分别填入下图的圆圈中,使得每条边上的三个数的和都等于14。

2、把数字1—8分别填入下图中的小圆圈内,使得每个圆上五个数的和都等于22。

3、把5—14这十个自然数分别填入下图中的圆圈中,使每个大圆上的六个数的和等
于55,求a+b等于多少?
例1、4、下图中有5个圆,它们相交后分成9个区域,现在两个区域里已经填上了10与6,请在另外的七个区域里分别填入2、3、4、5、6、
7、9这七个数,使每个圈内的和都等于15。

四、勇攀高峰。

例1、把2、3、5、7、11、13、17、19分别填入下图的每个圆圈中,使得图中用箭头连接起来的四个数的和都等于29。

例2、图中有10个小三角形和4个大三角形,将1——10填入每个小三角形,使每个大三角形内的数字之和都等于25,(已填好三个数)
家庭作业
1、将1——11这十一个数分别填入下图中的圆圈中,使每条线上3个圆圈中的数的
和相等。

2、请将1、2、
3、
4、
5、
6、
7、这七个数发别填入下图中的小圆圈里,使每条直线
上的三个数之和都相等。

3、把数字1——8分别填入下图中的小圆圈内,使每个圆上五个数的和都等于21。

4、把数字5—14分别填入下图中的小圆圈内,使每个圆上六个数的和都等于55。

5、把数字10—80分别填入下图中的小圆圈内,使每个圆上五个数的和都等于210。

6、把数字1—8分别填入下图中的8个小圆圈内,使每个小正方形四个顶点之和等于大正方形四个顶点之和。

6、将1—10这十个数分别填入下图中的小圆圈中,使每个圆周上六个数的和是29。

7、在下面坚式的方框中填入合适的数字,使得坚式成立。

相关文档
最新文档