回归分析练习题(有标准答案)

合集下载

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

第一章回归分析概述1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。

区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。

在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。

b.相关分析中所涉及的变量y与变量x全是随机变量。

而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。

C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。

而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。

1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

回归分析考试试题及答案

回归分析考试试题及答案

回归分析考试试题及答案一、单项选择题(每题2分,共20分)1. 回归分析中,自变量和因变量之间的关系是()。

A. 确定性关系B. 函数关系C. 相关关系D. 因果关系答案:C2. 简单线性回归模型中,回归系数的估计值是通过()方法得到的。

A. 最小二乘法B. 最大似然法C. 贝叶斯方法D. 决策树方法答案:A3. 在多元线性回归分析中,如果自变量之间存在完全相关关系,则会导致()。

A. 多重共线性B. 异方差性C. 自相关D. 非线性答案:A4. 回归分析中,残差平方和(SSE)是用来衡量()的。

A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D5. 回归方程的显著性检验中,F检验的零假设是()。

A. 所有回归系数都等于0B. 所有回归系数都不等于0C. 至少有一个回归系数等于0D. 至少有一个回归系数不等于0答案:A6. 回归分析中,调整后的R平方(Adjusted R-squared)用于()。

A. 调整模型的复杂性B. 调整样本量的大小C. 调整自变量的数量D. 调整因变量的范围答案:C7. 在回归分析中,如果自变量的增加导致因变量的增加,则称自变量和因变量之间存在()。

A. 正相关B. 负相关C. 无相关D. 完全相关答案:A8. 回归分析中,残差的标准差(S)是用来衡量()的。

A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D9. 在多元线性回归中,如果一个自变量的t统计量显著,那么我们可以得出结论()。

A. 该自变量对因变量有显著影响B. 该自变量对因变量没有显著影响C. 该自变量对因变量的影响不明确D. 该自变量对因变量的影响是正的答案:A10. 回归分析中,Durbin-Watson统计量用于检测()。

A. 多重共线性B. 异方差性C. 自相关D. 非线性答案:C二、多项选择题(每题3分,共15分)11. 以下哪些因素可能导致回归模型中的异方差性?()A. 模型中遗漏了重要的解释变量B. 模型中包含了不应该包含的变量C. 模型中的误差项不是独立同分布的D. 模型中的误差项具有非恒定的方差答案:CD12. 在回归分析中,以下哪些方法可以用来处理多重共线性问题?()A. 增加样本量B. 移除相关性高的自变量C. 使用岭回归D. 增加更多的自变量答案:BC13. 以下哪些是回归分析中常用的诊断图?()A. 残差图B. 正态Q-Q图C. 散点图D. 杠杆值图答案:ABD14. 在回归分析中,以下哪些因素可能导致模型的预测能力下降?()A. 模型过拟合B. 模型欠拟合C. 模型中的误差项具有自相关性D. 模型中的误差项具有异方差性答案:ABCD15. 以下哪些是回归分析中常用的模型选择标准?()A. AIC(赤池信息准则)B. BIC(贝叶斯信息准则)C. R平方D. 调整后的R平方答案:ABCD三、简答题(每题10分,共30分)16. 简述简单线性回归模型的基本形式。

第七章回归与相关分析练习及答案

第七章回归与相关分析练习及答案

第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值X围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

12.判断一条回归直线与样本观测值拟合程度好坏的指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。

(完整版)数学必修三回归分析经典题型(带答案)

(完整版)数学必修三回归分析经典题型(带答案)

数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。

选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。

回归分析时间序列分析答案

回归分析时间序列分析答案

回归分析时间序列分析答案一、单项选择题1、下面的关系中不是相关关系的是(D )A、身高与体重之间的关系B、工资水平与工龄之间的关系C、农作物的单位面积产量与降雨量之间的关系D、圆的面积与半径之间的关系2、具有相关关系的两个变量的特点是(A )A、一个变量的取值不能由另一个变量唯一确定B、一个变量的取值由另一个变量唯一确定C、一个变量的取值增大时另一个变量的取值也一定增大D、一个变量的取值增大时另一个变量的取值肯定变小3、下面的假定中,哪个属于相关分析中的假定(B)A、两个变量之间是非线性关系B、两个变量都是随机变量C、自变量是随机变量,因变量不是随机变量D、一个变量的数值增大,另一个变量的数值也应增大4、如果一个变量的取值完全依赖于另一个变量,各观测点落在一条直线上,则称这两个变量之间为(A )A、完全相关关系B、正线性相关关系C、非线性相关关系D、负线性相关关系 5、根据你的判断,下面的相关系数取值哪一个是错误的( C )A、–0.86B、0.78C、1.25D、0x6、某校经济管理类的学生学习统计学的时间()与考试成绩(y)之间建立线性回归方程yx=a+b。

经计算,方程为y =200—0.8x,该方程参数的计算(C) ccA a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的 7、在回归分析中,描述因变量y如何依赖于自变量x和误差项ε的方程称为(B)A、回归方程B、回归模型C、估计回归方程D、经验回归方程,,,x,,8、在回归模型y=中,ε反映的是(C ) 01A、由于x的变化引起的y的线性变化部分B、由于y的变化引起的x的线性变化部分C、除x和y的线性关系之外的随机因素对y的影响D、由于x和y的线性关系对y的影响9、如果两个变量之间存在负相关关系,下列回归方程中哪个肯定有误(B),,A、=25–0.75xB、= –120+ 0.86x yy,,C、=200–2.5xD、= –34–0.74x yy10、说明回归方程拟合优度的统计量是(C )A、相关系数B、回归系数C、判定系数D、估计标准误差211、判定系数R是说明回归方程拟合度的一个统计量,它的计算公式为(A ) SSRSSRSSESSTA、 B、 C、 D、 SSTSSESSTSSR12、为了研究居民消费(C)与可支配收入(Y)之间的关系,有人运用回归分析的方法,得到以下方程:在该方程中0.76的含义是(B ) LnC,2.36,0.76LnY,A、可支配收入每增加1元,消费支出增加0.76元B、可支配收入每增加1%,消费支出增加0.76%C、可支配收入每增加1元,消费支出增加76%D、可支配收入每增加1%,消费支出增加76%13、年劳动生产率z(千元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均(A)A增加70元 B减少70元 C增加80元 D减少80元14、下列回归方程中哪个肯定有误(A),,A、y=15–0.48x,r=0.65B、y= –15 - 1.35x,r=-0.81,,C、yy=-25+0.85x,r=0.42D、=120–3.56x,r=-0.96215、若变量x与y之间的相关系数r=0.8,则回归方程的判定系数R为(C )A、0.8B、0.89C、0.64D、0.40 16、对具有因果关系的现象进行回归分析时(A)A、只能将原因作为自变量B、只能将结果作为自变量C、二者均可作为自变量D、没有必要区分自变量二、多项选择题1(下列哪些现象之间的关系为相关关系(ACD)A家庭收入与消费支出关系 B圆的面积与它的半径关系C广告支出与商品销售额关系 D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2(相关系数表明两个变量之间的(DE)A线性关系 B因果关系 C变异程度 D相关方向 E相关的密切程度3、如下的现象属于负相关的有(BCD)。

第11章多重线性回归分析思考与练习参考答案

第11章多重线性回归分析思考与练习参考答案
0.706
0.674
5
0.795
0.809
1.734
1.715
0.549
0.654
6
0.787
0.779
1.509
1.474
0.782
0.571
7
0.933
0.880
1.695
1.656
0.737
0.803
8
0.799
0.851
1.740
1.777
0.618
0.682
9
0.945
0.876
1.811
三、计算题
为确定老年妇女进行体育锻炼还是增加营养会减缓骨骼损伤,一名研究者用光子吸收法测量了骨骼中无机物含量,对三根骨头主侧和非主侧记录了测量值,结果见教材表11-20。分别用两种桡骨测量结果作为反应变量对其他骨骼测量结果作多重线性回归分析,提出并拟合适当的回归模型,分析残差。
解:答案提示,需要对自变量进行筛选,而且要考虑是否存在多重共线性,如果存在,应进行适当的处理。
5.如何判断、分析自变量间的交互作用?
答:基于专业背景知识,构造可能的交互作用项,并检验交互作用项是否有统计学意义。
6.多重线性回归模型的基本假定有哪些?如何判断资料是否满足这些假定?如果资料不满足假定条件,常用的处理方法有哪些?
答:多重线性回归的前提条件是线性、独立性、正态性和等方差性,可以借助残差分析等方法判断资料是否满足条件。如果资料不满足前提条件,可以采用变量变换和非线性回归等方法处理。
19
0.856
0.786
1.390
1.324
0.578
0.610
20
0.890
0.950
2.187

应用回归分析整理课后习题参考答案

应用回归分析整理课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

第七章相关与回归分析习题答案.doc

第七章相关与回归分析习题答案.doc

334229.09425053.730.7863334229.0922.0889V425053.73=0.003204 245.4120第七章相关与回归分析习题答案一、填空题1.完全相关、不完全相关、不相关2. —iWrWl3.函数、|r| = l4.无线性相关、完全正相关、完全负相关5.密切程度6.正相关、负相关7.直线相关、曲线相关8.回归系数9.随机的、给定的10.最小二乘法,残差平方和二、 单项选择题I. B 2. B 3. A 4. A 5. B 6. C 7. D 8. B9. A 10. CII. C 12. B 13. D 14. B 15. C三、 多项选择题1. BCD2. ACD3. ABD4. ABCD5. ACE四、 计算题1解:B\=V - p 2x = 549.8 - 0.7863 * 647.88 = 40.37202 _ [£ (匕顼(X,侦)]2 '"£(x,-x )2£(y,-y )20.999834425053.73*262855.25 ;2=(1-产切 _y )2 =43.6340= 2.0889 n — 2(3) H°:”2=0,H I :”2 邳腐 _ 0.7863~S~ ~ 0.003204〃2券(〃-2)=诲(10) = 2.228t 值远大于临界值2.228,故拒绝零假设,说明月在5%的显著性水平下通过了显著性 检验。

(4) Y f =40.3720 + 0.7863*800 = 669.41 (万元)0.0273 S' =S l + 厂 Xf =2.0089」1 + 土 +华°「647・88)2 = 2 1429 所以,Yf 的置信度为 7V n Z (X,-X )2 V 12 425053.73 95 %的预测区间为:Y f ±t a/2(n-2)S ef = 669.41 ±2.228* 1.0667 = 669.41 ±2.3767 所以,区间预测为: 664.64 < Y f <674.182解:A _ £(匕一双%一灭)—N £X ,E —£x,£匕) 乃一 Z (x,一文尸一 (£x )9*803.02-13.54*472 八= ------------------------------------ =0.02739*28158-472*472& = Y-$2X =13.54/9-0.0273 * 472/9 = 0.0727(2)决定系数: , [y (y-F )(x-%)]2 r 2 =¥,_ 盘——;=0.9723Z (x,-x )Na-V )-残差平方和^<=(l-r 2)^(y-y )2 =0.0722 (3)身高与体重的相关系数: r =序=J0.9723 = 0.9861H O :A = A = O ,H 1:A W 2不同时为零厂。

回归分析习题及答案

回归分析习题及答案

回归分析习题及答案回归分析习题及答案回归分析是统计学中一种常用的分析方法,用于研究变量之间的关系。

它可以帮助我们了解变量之间的相关性,并预测未来的趋势。

在本文中,我们将提供一些回归分析的习题及其详细解答,帮助读者更好地理解和应用这一方法。

习题一:某公司想要了解其销售额与广告投入之间的关系。

公司收集了过去12个月的数据,包括每个月的广告投入(单位:万元)和当月的销售额(单位:万元)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答一:首先,我们需要将数据导入统计软件,比如SPSS或Excel。

然后,我们可以使用线性回归模型来分析销售额与广告投入之间的关系。

在SPSS中,可以选择“回归”分析,将销售额作为因变量,广告投入作为自变量,进行线性回归分析。

回归分析的结果包括回归方程、相关系数、显著性检验等。

回归方程可以用来描述销售额与广告投入之间的关系。

相关系数可以告诉我们这两个变量之间的相关程度,取值范围为-1到1,越接近1表示相关性越强。

显著性检验可以告诉我们回归方程是否显著,即广告投入是否对销售额有显著影响。

习题二:某研究人员想要了解学生的考试成绩与他们的学习时间之间的关系。

研究人员随机选择了100名学生,记录了他们的学习时间(单位:小时)和考试成绩(百分制)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答二:同样地,我们需要将数据导入统计软件,然后进行回归分析。

这次,我们将考试成绩作为因变量,学习时间作为自变量。

除了之前提到的回归方程、相关系数和显著性检验之外,我们还可以通过回归分析的结果来进行预测。

例如,我们可以利用回归方程来预测一个学生在给定学习时间下的考试成绩。

习题三:某研究人员想要了解一个人的身高与体重之间的关系。

研究人员随机选择了200名成年人,记录了他们的身高(单位:厘米)和体重(单位:千克)。

请利用这些数据进行回归分析,并给出相关的统计结果。

解答三:同样地,我们将数据导入统计软件,然后进行回归分析。

回归分析练习题及参考答案

回归分析练习题及参考答案

求:(1)人均GDP 作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。

(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。

(3)求出估计的回归方程,并解释回归系数的实际意义。

(4)计算判定系数,并解释其意义。

(5)检验回归方程线性关系的显著性(0.05α=)。

(6)如果某地区的人均GDP 为5000元,预测其人均消费水平。

(7)求人均GDP 为5000元时,人均消费水平95%的置信区间和预测区间。

解:(1)可能存在线性关系。

(2)相关系数:(3)回归方程:734.6930.309y x=+回归系数的含义:人均GDP没增加1元,人均消费增加0.309元。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型非标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003人均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%人均GDP对人均消费的影响达到99.6%。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

模型摘要模型R R 方调整的R 方估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), 人均GDP(元)。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。

系数(a)模型 非标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 人均GDP (元)0.3090.0080.99836.4920.000a. 因变量: 人均消费水平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的人均GDP 为5000元,预测其人均消费水平为 734.6930.30950002278.693y =+⨯=(元)。

回归分析习题答案

回归分析习题答案

回归分析习题答案回归分析习题答案回归分析作为一种常用的统计方法,被广泛应用于各个领域。

它能够帮助研究者理解变量之间的关系,并预测未来的趋势。

在回归分析的学习过程中,习题是不可或缺的一部分,通过解答习题,我们可以更好地掌握回归分析的原理和应用。

本文将回答一些常见的回归分析习题,帮助读者更好地理解回归分析的概念和方法。

1. 问题:某公司想要预测销售额与广告投入之间的关系,他们收集了过去12个月的数据,包括每个月的广告投入和销售额。

请用简单线性回归模型拟合数据,并预测下个月的销售额。

答案:简单线性回归模型可以表示为:销售额= β0 + β1 * 广告投入。

通过最小二乘法估计参数,可以得到回归方程。

使用软件或计算器进行计算,得到β0和β1的估计值。

然后,将下个月的广告投入代入回归方程,即可得到预测的销售额。

2. 问题:某研究人员想要研究学生的考试成绩与学习时间之间的关系。

他们随机选择了100名学生,记录了他们的学习时间和考试成绩。

请用多元线性回归模型拟合数据,并解释模型中的系数。

答案:多元线性回归模型可以表示为:考试成绩= β0 + β1 * 学习时间+ β2 *年级+ ε。

其中,学习时间和年级是自变量,考试成绩是因变量。

通过最小二乘法估计参数,可以得到回归方程。

系数β1表示学习时间对考试成绩的影响,系数β2表示年级对考试成绩的影响。

如果β1和β2的估计值显著不为零,说明学习时间和年级对考试成绩有显著影响。

3. 问题:某研究人员想要研究气温对冰淇淋销量的影响。

他们收集了每天的气温和冰淇淋销量数据,发现两者呈现正相关关系。

请用非线性回归模型拟合数据,并解释模型中的参数。

答案:非线性回归模型可以表示为:冰淇淋销量= β0 + β1 * 气温+ β2 * 气温^2 + ε。

其中,气温是自变量,冰淇淋销量是因变量。

通过最小二乘法估计参数,可以得到回归方程。

系数β1表示气温对冰淇淋销量的线性影响,系数β2表示气温对冰淇淋销量的非线性影响。

第七章 习题及答案

第七章 习题及答案

第七章 相关与回归分析一、单项选题题1、当自变量X 减少时,因变量Y 随之增加,则X 和Y 之间存在着( ) A 、线性相关关系 B 、非线性相关关系 C 、正相关关系 D 、负相关关系2、下列属于函数关系的有( )A 、身高与体重之间B 、广告费用支出与商品销售额之间C 、圆面积与半径之间D 、施肥量与粮食产量之间 3、下列相关程度最高的是( )A 、r=0.89B 、r=-0.93C 、r=0.928D 、r=0.8 4、两变量x 与y 的相关系数为0.8,则其回归直线的判定系数为( ) A 、0.80 B 、0.90 C 、0.64 D 、0.50 5、在线性回归模型中,随机误差项被假定服从( )A 、二项分布B 、t 分布C 、指数分布D 、正态分布6、物价上涨,销售量下降,则物价与销售量之间的相关属于( ) A 、无相关 B 、负相关 C 、正相关 D 、无法判断7、相关分析中所涉及的两个变量( )A 、必须确定哪个是自变量、哪个是因变量B 、都不能为随机变量C 、都可以是随机变量D 、不是对等关系 8、单位产品成本y (元)对产量x (千件)的回归方程为:t t x y 2.0100-=∧,其中“—0.2”的含义是( )A 、产量每增加1件,单位成本下降0.2元B 、产量每增加1件,单位成本下降20%C 、产量每增加1000件,单位成本下降20%D 、产量每增加1000件,单位成本平均下降0.2元E 、产量每增加1000件,单位成本平均下降20% 二、多项选择题1、下列说法正确的有( )A 、相关分析和回归分析是研究现象之间相关关系的两种基本方法B 、相关分析不能指出变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况 C、回归分析可以不必确定变量中哪个是自变量,哪个是因变量 D、相关分析必须事先研究确定具有相关关系的变量中哪个为自变量,哪个为因变量 E、相关分析中所涉及的变量可以都是随机变量,而回归分析中因变量是随机的,自变量是非随机的2、判定现象之间有无相关关系的方法有()A、计算回归系数B、编制相关表C、绘制相关图D、计算相关系数E、计算中位数3、相关关系按相关的形式可分为()A、正相关B、负相关C、线性相关D、非线性相关E、复相关4、在直线回归方程∧yt=∧β1+∧β2Xt中,回归系数∧β2的数值()A、表明两变量之间的平衡关系B、其正、负号表明两变量之间的相关方向C、表明两变量之间的密切程度D、表明两变量之间的变动比例E、在数学上称为斜率5、下列那些项目属于现象完全相关()A、r=0B、r= —1C、r= +1D、y的数量变化完全由X的数量变化所确定E、r=0.986、在回归分析中,要求所涉及的两个变量x和y()A、必须确定哪个是自变量、哪个是因变量B、不是对等关系C、是对等关系D、一般来说因变量是随机的,自变量是非随机变量E、y对x的回归方程与x对y的回归方程是一回事7、下列有相关关系的是()A、居民家庭的收入与支出B、广告费用与商品销售额C、产量与单位产品成本D、学生学习的时间与学习成绩E、学生的身高与学习成绩8、可决系数2r=86.49%时,意味着()A 、自变量与因变量之间的相关关系密切B 、因变量的总变差中,有80%可通过回归直线来解释 C 、因变量的总变差中,有20%可由回归直线来解释 D 、相关系数绝对值一定是0.93 E 、相关系数绝对值一定是0.8649 三、填空题1、相关系数r 的取值范围为 。

回归因素试题解析及答案

回归因素试题解析及答案

回归因素试题解析及答案一、单项选择题1. 回归分析中,自变量X对因变量Y的影响程度是通过()来衡量的。

A. 相关系数B. 回归系数C. 标准差D. 方差答案:B2. 在简单线性回归模型中,回归系数β1表示()。

A. 自变量X每增加一个单位,因变量Y平均增加β1个单位B. 自变量X每增加一个单位,因变量Y平均减少β1个单位C. 自变量X每减少一个单位,因变量Y平均增加β1个单位D. 自变量X每减少一个单位,因变量Y平均减少β1个单位答案:A3. 多元线性回归模型中,如果某个自变量的系数不显著,可能的原因是()。

A. 该自变量与因变量无关B. 该自变量与其他自变量高度相关C. 样本量太小D. 所有上述情况都可能答案:D4. 回归分析中,残差平方和(SSE)是用来衡量()的。

A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D5. 回归分析中,决定系数(R²)的值范围是()。

A. 0到1之间B. 负无穷到正无穷之间C. 0到正无穷之间D. 负无穷到1之间答案:A二、多项选择题6. 在回归分析中,以下哪些因素可能导致自变量和因变量之间的相关性被高估()。

A. 样本选择偏差B. 测量误差C. 多重共线性D. 异方差性答案:A|B|C|D7. 多元回归分析中,以下哪些方法可以用来诊断多重共线性问题()。

A. 方差膨胀因子(VIF)B. 相关系数矩阵C. 标准化回归系数D. 残差图答案:A|B8. 以下哪些因素可能影响回归模型的稳定性()。

A. 异常值B. 杠杆值C. 模型设定误差D. 自变量的多重共线性答案:A|B|C|D9. 回归分析中,以下哪些指标可以用来衡量模型的拟合优度()。

A. R²B. 调整R²C. AICD. BIC答案:A|B|C|D10. 在回归分析中,以下哪些方法可以用来处理异方差性()。

A. 加权最小二乘法B. 稳健标准误C. 变换因变量D. 增加样本量答案:A|B|C三、判断题11. 回归系数的符号和大小完全决定了自变量对因变量的影响方向和强度。

相关分析与回归分析同步练习试卷2(题后含答案及解析)

相关分析与回归分析同步练习试卷2(题后含答案及解析)

相关分析与回归分析同步练习试卷2(题后含答案及解析)题型有:1. 单项选择题 3. 名词解释题 4. 简答题 5. 计算分析题单项选择题每小题1分,在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

多选无分。

1.总体总量指标的点估计值是()A.平均数乘以样本成数B.样本容量乘以样本成数C.样本指标值乘以总体单位数D.样本指标的区间估计值乘以总体单位数正确答案:C 涉及知识点:相关分析与回归分析2.理论上最符合抽样调查随机原则的形式是()A.整群抽样B.类型抽样C.阶段抽样D.简单随机抽样正确答案:D 涉及知识点:相关分析与回归分析3.()是其他抽样方式的基础,也是衡量其他抽样方式抽样效果的标准。

()A.简单随机抽样B.等距抽样C.类型抽样D.整群抽样正确答案:A 涉及知识点:相关分析与回归分析4.为了解职工家庭生活水平状况,决定采用等距抽样进行调查,首先把职工按工资水平的高低进行排队,此种排队方法属于A.按无关标志排队B.按有关标志排队C.按简单标志排队D.按复杂标志排队正确答案:B 涉及知识点:相关分析与回归分析5.产品的单位成本随着劳动生产率的不断提高而下降,此种现象属于()A.完全相关B.不完全相关C.正相关D.负相关正确答案:D 涉及知识点:相关分析与回归分析6.只反映一个自变量和一个因变量韵相关关系是()A.正相关B.负相关C.单相关D.复相关正确答案:C 涉及知识点:相关分析与回归分析7.当相关关系的—个变量变动时,另—变量也相应地发生大致均等的变动,这种相关关系称为()A.线性相关B.非线性相关C.单相关D.完全相关正确答案:A 涉及知识点:相关分析与回归分析8.完全相关关系就是()A.函数关系B.因果关系C.狭义的相关关系D.广义的相关关系正确答案:A 涉及知识点:相关分析与回归分析9.大多数相关关系属于()A.不相关B.完全相关C.不完全相关D.无法判断正确答案:C 涉及知识点:相关分析与回归分析10.制作双变量分组相关表,应将自变量放在()A.横栏B.纵栏C.中间栏D.任意一栏正确答案:A 涉及知识点:相关分析与回归分析11.相关系数的取值范围是()A.-1≤r≤lB.-1≤r≤lC.-1&lt;r&lt;lD.-1≤r&lt;1正确答案:B 涉及知识点:相关分析与回归分析12.两个变量问的相互依存程度越高,则二者之间的相关系数值越接近于()A.1B.-1C.0D.1或-1正确答案:D 涉及知识点:相关分析与回归分析13.两个现象之间相互依存关系程度越弱,则相关系数r()A.越接近于0B.越接近于-1C.越接近于1D.越接近于0.5正确答案:A 涉及知识点:相关分析与回归分析14.在相关分析中,要求相关的两个变量()A.至少有一个是随机变量B.因变量是随机变量C.都不是随机变量D.自变量是随机变量正确答案:A 涉及知识点:相关分析与回归分析名词解释题每小题3分15.一元线性回归模型正确答案:一元线性回归模型又称简单直线回归模型,它是根据两个变量的成对数据,配合直线方程式,再根据自变量的变动值,来推算因变量的估计值的一种统计分析方法。

回归分析练习题(有答案)(同名7277)

回归分析练习题(有答案)(同名7277)

回归分析练习题(有答案)(同名7277)1.1回归分析的基本思想及其初步应用二、填空题16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数2R 的值分别约为0.96和0.85,则拟合效果好的模型是 .17. 在回归分析中残差的计算公式为 .18. 线性回归模型y bx a e =++(a 和b 为模型的未知参数)中,e 称为 .19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为_____三、解答题20. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下: 使用年限x2 3 4 5 6 维修费用y2.23.85.56.57.0(1) 求线性回归方程;(2)由(1)中结论预测第10年所支出的维修费用.(121()()()ni i i ni i x x y y b x x a y bx==⎧-⋅-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑)21. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格. (4)求第2个点的残差。

二、填空题 16. 甲17. 列联表、三维柱形图、二维条形图 18. 随机误差19.解析: e i 恒为0,说明随机误差对y i 贡献为0.答案:1.三、解答题 20.解析: (1)列表如下:于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xx yx yx b i i i ii ,08.0423.15=⨯-=-=bx y a∴线性回归方程为:08.023.1^+=+=x a bx y (2)当x=10时,38.1208.01023.1^=+⨯=y (万元)即估计使用10年时维修费用是1238万元回归方程为: 1.230.08y x =+(2) 预计第10年需要支出维修费用12.38万元.21.解析:(1)数据对应的散点图如图所示:(2)1095151==∑=i ix x ,1570)(251=-=∑=x x l i ixx,308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y+=, 则1962.01570308≈==xxxyll b8166.115703081092.23≈⨯-=-=x b y a故所求回归直线方程为8166.11962.0+=x y(3)据(2),当2150x m =时,销售价格的估计值为:2466.318166.11501962.0=+⨯=y(万元)1、对于一元线性回归01(1,2,...,)ii i yx i n ββε=++=,()0iE ε=,2var()i εσ=,cov(,)0()i j i j εε=≠,下列说法错误的是(A)0β,1β的最小二乘估计0ˆβ,1ˆβ 都是无偏估计;(B)0β,1β的最小二乘估计0ˆβ,1ˆβ对1y ,2y ,...,ny是线性的;2、在回归分析中若诊断出异方差,常通过方差稳定化变化对因变量进行变换. 如果误差方差与因变量y 的期望成正比,则可通过下列哪种变换将方差常数化 (A) 1y ;(C) ln(1)y +;(D)ln y .3、下列说法错误的是(A)强影响点不一定是异常值;(B)在多元回归中,回归系数显著性的t 检验与回归方程显著性的F 检验是等价的;(C)一般情况下,一个定性变量有k 类可能的取值时,需要引入k-1个0-1型自变量; (D)异常值的识别与特定的模型有关.4、下面给出了4个残差图,哪个图形表示误差序列是自相关的(C)0β,1β的最小二乘估计0ˆβ,1ˆβ之间是相关的;(D)若误差服从正态分布,0β,1β的最小二乘估计和极大似然估计是不一样的.(C)(D)二、填空题(每空2分,共20分)1、考虑模型y Xβε=+,2var()nIεσ=,其中:X n p'⨯,秩为p',20σ>不一定已知,则ˆβ=__________________,ˆvar()β=___________,若ε服从正态分布,则22ˆ()n pσσ'-___________,其中2ˆσ是2σ的无偏估计.2、下表给出了四变量模型的回归结果:则残差平方和=_________,总的观察值个数=__ _______,回归平方和的自由度=________.3、已知因变量y与自变量1x,2x,3x,4x,下表给出了所有可能回归模型的AIC值,则最优子集是_____________________.4、在诊断自相关现象时,若0.66DW =,则误差序列的自相关系数ρ的估计值=_____ ,若存在自相关现象,常用的处理方法有迭代法、_____________、科克伦-奥克特迭代法.5、设因变量y 与自变量x 的观察值分别为12,,...,ny y y和12,,...,nx x x ,则以*x 为折点的折线模型可表示为_____________________.三、(共45分)研究货运总量y (万吨)与工业总产值1x (亿元)、农业总产值2x (亿元)、居民非商品支出3x (亿元)的线性回归关系.观察数据及残差值ie 、学生化残差iSRE 、删除学生化残差()i SRE 、库克距离iD 、杠杆值iich 见表一表一表二参数估计表已知0.025(6) 2.447t=,0.025(7) 2.365t=,0.05(3,6) 4.76F=,0.05(4,7) 4.12F=,根据上述结果,解答如下问题:1、计算误差方差2σ的无偏估计及判定系数2R.(8分)2、对1x,2x,3x的回归系数进行显著性检验.(显著性水平0.05α=)(12分)3、对回归方程进行显著性检验.(显著性水平α=)(8分)0.054、诊断数据是否存在异常值,若存在,是关于自变量还是关于因变量的异常值?(10分)5、写出y关于x,2x,3x的回归方程,并结合实1际对问题作一些基本分析(7分)四、(共8分)某种合金中的主要成分为金属A 与金属B ,研究者经过13次试验,发现这两种金属成分之和x 与膨胀系数y 之间有一定的数量关系,但对这两种金属成分之和x 是否对膨胀系数y 有二次效应没有把握,经计算得y 与x 的回归的残差平方和为3.7,y 与x 、2x 的回归的残差平方和为0.252,试在0.05的显著性水平下检验x 对y 是否有二次效应? (参考数据0.050.05(1,10) 4.96,(2,10) 4.1F F ==)五、(共12分)(1)简单描述一下自变量12,,...,px x x之间存在多重共线性的定义;(2分) (2)多重共线性的诊断方法主要有哪两种?(4分)(3)消除多重共线性的方法主要有哪几种?(6分)应用回归分析试题(二)二、填空题16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数2R 的值分别约为0.96和0.85,则拟合效果好的模型是 甲 . 17. 在回归分析中残差的计算公式为列联表、三维柱形图、二维条形图 .18. 线性回归模型y bx a e =++(a 和b 为模型的未知参数)中,e 称为 随机误差 . 19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为___e i恒为0,说明随机误差对y i 贡献为0.三、解答题20. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:(2)由(1)中结论预测第10年所支出的维修费用.(121()()()ni i i ni i x x y y b x x a y bx==⎧-⋅-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑) 20.解析: (1)列表如下:4=x ,5=y , 90512=∑=i ix,3.11251=∑=i ii yx于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xxy x yx b i ii ii ,08.0423.15=⨯-=-=bx y a∴线性回归方程为:08.023.1^+=+=x a bx y (2)当x=10时,38.1208.01023.1^=+⨯=y (万元)即估计使用10年时维修费用是1238万元回归方程为: 1.230.08y x =+(2) 预计第10年需要支出维修费用12.38万元.21. 以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格. (4)求第2个点的残差。

回归分析练习题(有答案)

回归分析练习题(有答案)

回归分析的基本思想及其初步应用一、选择题 1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平均值为2,数据y 的平均值为3,则 ( )A .回归直线必过点(2,3)B .回归直线一定不过点(2,3)C .点(2,3)在回归直线上方D .点(2,3)在回归直线下方2. 在一次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则Y 与X 之间的回归直线方程为( )A .yx 1=+ B .y x 2=+ C .y 2x 1=+ D.y x 1=-3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ),1,2i =,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③①4. 下列说法中正确的是( )A .任何两个变量都具有相关关系B .人的知识与其年龄具有相关关系C .散点图中的各点是分散的没有规律D .根据散点图求得的回归直线方程都是有意义的5. 给出下列结论:(1)在回归分析中,可用指数系数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好; (3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好; (4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有( )个.A .1B .2C .3D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时()A.y 平均增加1.5个单位B.y 平均增加2个单位C.y 平均减少1.5个单位D.y 平均减少2个单位7. 下面的各图中,散点图与相关系数r 不符合的是( )8. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93yx =+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( )A .身高一定是145.83cmB .身高超过146.00cmC .身高低于145.00cmD .身高在145.83cm 左右9. 在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上(C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上10. 两个变量y 与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( )A. 2R 越小,残差平方和小B. 2R 越大,残差平方和大C. 2R 于残差平方和无关 D. 2R 越小,残差平方和大 11. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A.模型1的相关指数2R 为B.模型2的相关指数2R 为C.模型3的相关指数2R 为 D.模型4的相关指数2R 为12. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 213.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090y x =+,下列判断正确的是( ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90元14. 下列结论正确的是( )①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A.①② B.①②③ C.①②④ D.①②③④15. 已知回归直线的斜率的估计值为,样本点的中心为(4,5),则回归直线方程为( ) A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+二、填空题16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数2R 的值分别约为和,则拟合效果好的模型是 .17. 在回归分析中残差的计算公式为 .18. 线性回归模型y bx a e =++(a 和b 为模型的未知参数)中,e 称为 .19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2为_____三、解答题20. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:(2)由(1)中结论预测第10年所支出的维修费用.(121()()()ni i i ni i x x y y b x x a y bx==⎧-⋅-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑)21. 以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;150m时的销售价格.(3)据(2)的结果估计当房屋面积为2(4)求第2个点的残差。

应用回归分析课后习题答案部分-实用回归分析

应用回归分析课后习题答案部分-实用回归分析

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑2n01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75))[]1169049363110/3=++++=6.1σ∧= (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)22001()(,())xxx N n L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

回归分析参考答案

回归分析参考答案

回归分析参考答案回归分析参考答案回归分析是一种常用的统计方法,用于研究变量之间的关系。

它可以帮助我们理解和预测变量之间的依赖关系,并且在实际应用中具有广泛的应用场景。

本文将介绍回归分析的基本概念、方法和应用,并提供一些参考答案,以帮助读者更好地理解和运用回归分析。

一、回归分析的基本概念回归分析是一种用于研究因变量和自变量之间关系的统计方法。

它基于一组观测数据,通过建立数学模型来描述因变量与自变量之间的关系,并用统计方法对模型进行估计和推断。

回归分析的目标是通过自变量的变化来预测因变量的值。

在回归分析中,因变量是我们想要预测或解释的变量,而自变量是我们用来解释因变量变化的变量。

回归分析可以分为简单线性回归和多元回归两种类型。

简单线性回归是指只有一个自变量和一个因变量的情况,而多元回归则是指有多个自变量和一个因变量的情况。

二、回归分析的方法回归分析的方法主要包括建模、参数估计和模型评估三个步骤。

1. 建模:在回归分析中,我们需要选择适当的模型来描述因变量和自变量之间的关系。

常见的模型包括线性模型、非线性模型和广义线性模型等。

选择合适的模型需要根据具体问题和数据特点来决定。

2. 参数估计:在建立模型之后,我们需要对模型的参数进行估计。

参数估计的方法有最小二乘法、最大似然估计和贝叶斯估计等。

最小二乘法是一种常用的参数估计方法,它通过最小化观测值与模型预测值之间的差异来估计参数。

3. 模型评估:在参数估计之后,我们需要对模型进行评估,以确定模型的拟合程度和预测能力。

模型评估的指标包括残差分析、方差分析和回归系数的显著性检验等。

通过这些指标,我们可以判断模型是否合理,并对模型进行改进。

三、回归分析的应用回归分析在实际应用中具有广泛的应用场景。

下面将介绍一些常见的应用领域和相应的参考答案。

1. 经济学:回归分析在经济学中常用于研究经济变量之间的关系。

例如,我们可以使用回归分析来研究收入和消费之间的关系,以及利率和投资之间的关系。

【分析】应用回归分析整理课后习题参考答案

【分析】应用回归分析整理课后习题参考答案

【关键字】分析第二章一元线性回归分析思考与练习参考答案2.1 一元线性返回有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)= 2 i=1,2, …,nCov(εi, εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(Xi, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, 2 ) i=1,2, …,n2.2 考虑过原点的线性返回模型Yi=β1Xi+εi i=1,2, …,n误差εi(i=1,2, …,n)仍满足基本假定。

求β1的最小二乘估计解:得:2.3 证明(2.27式),ei =0 ,eiXi=0 。

证明:其中:即:ei =0 ,eiXi=02.4返回方程E(Y)=β0+β1X的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi~N(0, 2 ) i=1,2, …,n所以Yi=β0 + β1Xi + εi~N(β0+β1Xi , 2 )最大似然函数:使得Ln(L)最大的,就是β0,β1的最大似然估计值。

同时发现使得Ln(L)最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。

值得注意的是:最大似然估计是在εi~N(0, 2 )的假设下求得,最小二乘估计则不要求分布假设。

所以在εi~N(0, 2 ) 的条件下,参数β0,β1的最小二乘估计与最大似然估计等价。

2.5 证明是β0的无偏估计。

证明:2.6 证明证明:2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证:(1);(2)证明:(1)(2)2.9 验证(2.63)式:证明:其中:2.10 用第9题证明是2的无偏估计量证明:2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y(万元)和广告费用x(万元),数据见表2.6,要求用手工计算:表2.6月份 1 2 3 4 5X 1 2 3 4 5Y 10 10 20 20 40 (1)画散点图(略)(2)X与Y是否大致呈线性关系?答:从散点图看,X与Y大致呈线性关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回归分析练习题(有答案)
————————————————————————————————作者:————————————————————————————————日期:
1.1回归分析的基本思想及其初步应用
一、选择题 1. 某同学由x 与y 之间的一组数据求得两个变量间的线性回归方程为y bx a =+,已知:数据x 的平
均值为2,数据
y 的平均值为3,则 ( )
A .回归直线必过点(2,3)
B .回归直线一定不过点(2,3)
C .点(2,3)在回归直线上方
D .点(2,3)在回归直线下方
2. 在一次试验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则Y 与X 之间的回归直线方程为( )
A .$y
x 1=+
B .$y x 2=+
C .$y 2x 1=+ D.$y
x 1=-
3. 在对两个变量x ,y 进行线性回归分析时,有下列步骤:
①对所求出的回归直线方程作出解释; ②收集数据(i x 、
i y ),1,2i =,…,n ;
③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图
如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤ D .②⑤④③①
4. 下列说法中正确的是( )
A .任何两个变量都具有相关关系
B .人的知识与其年龄具有相关关系
C .散点图中的各点是分散的没有规律
D .根据散点图求得的回归直线方程都是有意义的
5. 给出下列结论:
(1)在回归分析中,可用指数系数2
R 的值判断模型的拟合效果,2
R 越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好; (3)在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好;
(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. 以上结论中,正确的有( )个.
A .1
B .2
C .3
D .4 6. 已知直线回归方程为2 1.5y x =-,则变量x 增加一个单位时(

A.y 平均增加1.5个单位
B.y 平均增加2个单位
C.y 平均减少1.5个单位
D.
y 平均减少2个单位
7. 下面的各图中,散点图与相关系数r 不符合的是( )
8. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93y
x =+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( )
A .身高一定是145.83cm
B .身高超过146.00cm
C .身高低于145.00cm
D .身高在145.83cm 左右
9. 在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在
y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上 (D)可以选择两个变量中任意一个变量在y 轴上
10. 两个变量
y 与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( )
A. 2R 越小,残差平方和小
B. 2R 越大,残差平方和大
C. 2
R 于残差平方和无关 D. 2
R 越小,残差平方和大 11. 两个变量
y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果
最好的模型是( )
A.模型1的相关指数2R 为0.98
B.模型2的相关指数2R 为0.80
C.模型3的相关指数2
R 为0.50 D.模型4的相关指数2
R 为0.25
12. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 2
13.工人月工资(元)依劳动生产率(千元)变化的回归直线方程为ˆ6090y x =+,下列判断正确的是( ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资为90元
14. 下列结论正确的是( )
①函数关系是一种确定性关系;②相关关系是一种非确定性关系;③回归分析是对具有函数关系的两个变量进行统计分析的一种方法;④回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. A.①② B.①②③
C.①②④
D.①②③④
15. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )
A.$1.234y x =+
B.$1.235y x =+ C.$1.230.08y x =+ D.$0.08 1.23y x =+ 二、填空题
16. 在比较两个模型的拟合效果时,甲、乙两个模型的相关指数2
R 的值分别约为0.96和0.85,则拟合效果好的模型是 .
17. 在回归分析中残差的计算公式为 .
18. 线性回归模型y bx a e =++(a 和b 为模型的未知参数)中,e 称为 .
19. 若一组观测值(x 1,y 1)(x 2,y 2)…(x n ,y n )之间满足y i =bx i +a+e i (i=1、2.…n)若e i 恒为0,则R 2
为_____
三、解答题
20.
调查某市出租车使用年限x 和该年支出维修费用
y (万元)
,得到数据如下: 使用年限x 2 3 4 5 6 维修费用y
2.2
3.8
5.5
6.5
7.0
(1) 求线性回归方程;
(2)由(1)中结论预测第10年所支出的维修费用.(1
21()()()n
i i i n
i i x x y y b x x a y bx
==⎧
-⋅-⎪
⎪=⎨-⎪⎪=-⎪⎩∑∑)
21. 以下是某地搜集到的新房屋的销售价格
y 和房屋的面积x 的数据:
(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2
150m 时的销售价格. (4)求第2个点的残差。

答案
一、选择题 1. A 2. A 3. D 4. B 5. B 6. C 7. B 8. D
9. 解析:通常把自变量x 称为解析变量,因变量y 称为预报变量.选B
10. D 11. A 12. B 13. C 14. C 15. C
二、填空题 16. 甲
17. 列联表、三维柱形图、二维条形图 18. 随机误差
19. 解析: e i 恒为0,说明随机误差对y i 贡献为0.
答案:1.
三、解答题
20. 解析: (1)列表如下:
i 1 2 3 4 5 i x
2 3 4 5 6 i y 22
38
55
65
70
i i y x 44
114
220
325
420
2i x
4 9
16
25 36
4=x , 5=y , 905
1
2=∑=i i
x , 3.1125
1
=∑=i i i y x
于是23.14
5905
453.112552
2
51
25
1=⨯-⨯⨯-=
--=
∑∑==x
x y
x y
x b i i i i
i , 08.0423.15=⨯-=-=bx y a
∴线性回归方程为:08
.023.1^
+=+=x a bx y (2)当x=10时,
38.1208.01023.1^=+⨯=y (万元)
即估计使用10年时维修费用是1238万元 回归方程为: 1.230.08y x =+
(2) 预计第10年需要支出维修费用12.38 万元.
21. 解析:(1)数据对应的散点图如图所示:
(2)1095151==∑=i i x x ,1570)(2
5
1
=-=∑=x x l i i xx ,
308))((,2.235
1
=--==∑=y y x x l y i i i xy
设所求回归直线方程为a bx y +=)

则1962.01570
308
≈=
=
xx
xy l l b 8166.11570
308
1092.23≈⨯
-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y )
(3)据(2),当2
150x m =时,销售价格的估计值为:
2466.318166.11501962.0=+⨯=y )
(万元)。

相关文档
最新文档