简单的三角恒等变换(教案)
第二节简单的三角恒等变换(第二课时)示范教
的三角函数表达式化简为基本的三角函数形式。
学生自我评价报告
1 2
知识掌握程度
大部分学生表示能够理解和掌握本节课所学的三 角恒等变换公式,并能够运用它们解决一些实际 问题。
学习方法
学生认为通过推导公式、举例验证以及大量练习 的方式,有助于加深对知识点的理解和记忆。
3
学习态度
学生表示在学习过程中保持积极的学习态度,认 真听讲、思考并积极参与课堂讨论。
02
实例2
证明$tanalpha = frac{sinalpha}{cosalpha}$。该恒等式可通过三角函
数的定义和商数关系式进行证明,也可通过几何意义进行解释。
03
实例3
证明$sin(alpha + beta) = sinalphacosbeta + cosalphasinbeta$。
该恒等式是三角函数和差化积公式的基础,可通过向量的数量积或复数
方法三
利用三角恒等式。通过已知的三角恒等式,如正弦、余弦定理等,推导出三角形内角和定 理。
三角形外角定理证明
方法一
利用平行线的性质。通过延长三角形的一条边,并在延长线上取一点,连接该点与三角形的另外两个顶点,形成新的 三角形。根据平行线的性质,可以证明原三角形的外角等于新三角形的两个内角之和。
方法二
分析法
从已知条件出发,逐步推导出结论 ,证明过程中需注意逻辑严密性。
综合法
将归纳法和分析法相结合,既考虑 特殊情况,又考虑一般情况,从而 证明恒等式的正确性。
实例分析与讨论
01
实例1
证明$sin^2alpha + cos^2alpha = 1$。该恒等式是三角函数的基本
恒等式之一,可通过勾股定理或三角函数定义进行证明。
简单的三角恒等变换(教学设计)
第四章 第二讲 简单的三角恒等变换(第一课时)【目标分解】1、诱导公式;2、同角三角函数的基本关系;1、同角三角函数的基本关系:平方关系: ;商数关系: ;倒数关系: .若α是三角形的一个内角,53cos =α,则sin _______, tan ______αα==.2、诱导公式:记忆方法(口诀): .由 ()2k k Z πα⋅±∈中k 是奇数还是偶数,确定__________是否改变;由该角所在的象限确定______.用诱导时先将α看作锐角. 如:计算 tan 600︒=_________; 17cos()3π=__________.3、 两角和与两角差公式:()βα±cos= ;()βα±sin = ;()βα±tan = .4、 二倍角公式及其变式:升幂公式:α2cos = = = ;α2sin = ; α2tan =降幂公式:sin cos αα=____________, 2cos α=______________, 2sin α=______________. 【考点剖析】考点1:诱导公式1.已知α是第三象限角,且)sin()cot()23tan()2cos()sin()(αππαπααπαπα----+---=f 。
(1)化简)(αf ; (2)若51)23cos(=-πα,求)(αf 的值;化简:sin()2 ()cos()2n n Z n παπα+∈+=________ 分类讨论要做到不重不漏. 考点2:同角三角函数的基本关系2. 见《备考指南》P.42例23.已知αsin 和αcos 是方程052=+-m x x 的两实根,求:(1)m 的值; (2)当),0(πα∈时,)3tan(απ-的值;已知sin cos sin -cos sin cos αααααα+、、中的一个值,可求另两个的值, 运用的公式是:_________________________________.”.【课后巩固练习】温故知新,请完成《备考指南》练习册 P.67 ~P.68 【课后提高练习】 1、)619sin(π-的值等于( )A 、21 B 、21-C 、23 D 、23-2、如果A 为锐角,21)sin(-=+A π,那么=-)cos(A π_______.3、已知a = 200sin ,则160t a n等于( ) A 、21aa --B 、21aa - C 、aa 21--D 、aa 21-4.若α是三角形的一个内角,且21)23cos(=+απ,则α=_______.5、已知x x f 3cos )(cos =,则)30(sin f 的值为_______. 答案:1、C 2、D 3、C 4、54-;5.1003-.一、教学整体把握上的反思:通过对近三年高考试题的分析可以看出,对于诱导公式和同角三角关系知识点的考查一般是以基础题为主,难度不会太大,属于低、中档题目,整个命题过程主要是侧重以三角函数的定义为载体,求三角函数值。
321简单的三角恒等变换教学设计
根据角度在直角三角形中的对边、邻边和斜边的比值,定义了正弦、余弦和正 切等三角函数。
三角函数的性质
包括周期性、奇偶性、增减性、最值等。例如,正弦函数和余弦函数具有周期 性,周期为2π;正切函数具有周期性,周期为π,并且在每一个周期内是增函 数。
三角函数图像与变换
三角函数图像
正弦函数、余弦函数和正切函数的图像分别是正弦曲线、余 弦曲线和正切曲线。这些图像具有特定的形状和性质,如振 幅、周期、相位等。
三角函数问题具有重要意义。
通过本课程的学习,学生将掌握 三角恒等变换的基本方法和技巧 ,提高数学素养和解决问题的能
力。
教学目标与要求
知识目标
掌握基本的三角恒等变换公式, 如和差化积、积化和差、倍角公
式等。
能力目标
能够运用三角恒等变换解决简单的 三角函数问题,如求值、化简、证 明等。
情感目标
培养学生对数学的兴趣和热爱,提 高学生的数学素养和审美能力。
角的变换法
通过角的变换,将所求角用已知角表示,然后代 入公式计算。
3
公式变形法
将公式进行变形,使得所求值能够直接代入计算 。
证明类问题解决方法
分析法
从结论出发,逆向思维, 寻找使结论成立的条件, 逐步推导至已知条件。
综合法
从已知条件出发,通过逐 步推导,得出结论。
比较法
通过比较两个表达式之间 的差异,寻找联系,从而 证明结论。
题目二
化简 $sin^2alpha cos^2beta + cos^2alpha sin^2beta$。
题目三
求 $sin 2alpha cos 2beta + cos 2alpha sin 2beta$ 的值。
简单的三角恒等变换教案
06
三角恒等变换在实际问题中的 应用
在几何问题中的应用
角度和长度的计算
利用三角恒等变换,可以解决几何图 形中角度和长度的计算问题,如求三 角形的内角和、外角和、边长等。
几何图形的证明
在几何证明题中,三角恒等变换可以 作为证明工具,通过变换公式将复杂 的几何问题转化为简单的三角问题, 从而简化证明过程。
sin^2α + cos^2α = 1, 1 + tan^2α = sec^2α, 1 + cot^2α = csc^2α。
商数关系
tanα = sinα / cosα, cotα = cosα / sinα。
互余角关系
sin(90° - α) = cosα, cos(90° - α) = sinα, tan(90° - α) = cotα。
查表或使用计算器得出结果。
两角和与差的正弦公式
01
公式表述
$sin(alpha pm beta) = sin alpha cos beta pm cos alpha sin beta$
02
公式理解
该公式表达了两个角的和或差的正弦值可以通过这两个角的正弦值和余
弦值计算得出。
03
应用举例
计算 $sin(30^circ - 15^circ)$,可以使用该公式将表达式转换为 $sin
过程与方法
通过推导和证明三角恒等 变换公式,培养学生的逻 辑思维能力和数学推理能 力。
情感态度与价值观
让学生感受到数学公式的 对称美和简洁美,激发学 生学习数学的兴趣和热情 。
教学内容
三角恒等变换的基本公式
包括正弦、余弦、正切的加法公式、 减法公式、倍角公式、半角公式等。
23《简单的三角恒等变换》教案2024新版
已知条件的利用
充分利用已知三角函数值
根据题目中给出的三角函数值,可以 直接代入到恒等式中,简化计算过程 。
已知条件的变形
通过对已知条件进行变形,可以得到 一些有用的中间结果,为后续的推导 打下基础。
挖掘隐含条件
有些题目中的已知条件可能不是直接 给出的,需要通过观察和分析挖掘出 隐含的条件,进一步简化计算。
通过三角恒等变换,可以将三角形的三个内角表 示为两个直角,从而证明三角形内角和定理。
计算三角形面积
在已知三角形三边长度的情况下,可以利用三角 恒等变换求出三角形的高,进而计算三角形的面 积。
解决几何作图问题
在几何作图中,有时需要利用三角恒等变换来构 造特定的角度或长度,从而解决作图问题。
在三角函数中的应用
感受数学的美妙和实用性 ,提高对数学的兴趣和热 爱。
教学方法与手段
采用讲授法、讨论法、练习法等 多种教学方法,使学生全面深入 地理解三角恒等变换的知识和技
能。
利用多媒体教学手段,如PPT、 视频、动画等,使教学更加生动
形象和有趣。
组织学生进行小组讨论和合作学 习,培养学生的合作精神和交流
能力。
02
基础知识回顾
三角函数的基本性质
01
02
03
04
周期性
三角函数具有周期性,例如正 弦函数和余弦函数的周期为
2π。
奇偶性
正弦函数为奇函数,余弦函数 为偶函数,即sin(-x) = -
sin(x),cos(-x) = cos(x)。
值域
正弦函数和余弦函数的值域为 [-1,1]。
特殊角三角函数值
例如30°、45°、60°等特殊角 度的三角函数值需要熟记。
三角恒等变换教案
三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察和分析,培养学生的逻辑思维能力;(2)通过练习和应用,提高学生解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生的团队合作意识和解决问题的自信心。
二、教学内容1. 三角恒等变换的概念和意义(1)引入三角函数的定义和图像;(2)解释三角恒等变换的含义和作用。
2. 三角恒等变换的基本公式(1)sin(α±β)的公式;(2)cos(α±β)的公式;(3)tan(α±β)的公式。
三、教学过程1. 导入(1)复习相关三角函数的定义和图像;(2)提出问题,引导学生思考三角恒等变换的必要性。
2. 新课讲解(1)讲解三角恒等变换的概念和意义;(2)引导学生推导三角恒等变换的基本公式。
3. 练习与应用(1)布置相关的练习题,巩固学生对三角恒等变换的理解;(2)引导学生运用三角恒等变换解决实际问题。
四、教学评价1. 课堂讲解的评价:(1)观察学生在课堂上的参与度和理解程度;(2)通过提问和回答,检查学生对三角恒等变换的理解。
2. 练习题的评价:(1)检查学生完成练习题的情况和答案的正确性;(2)分析学生在解题过程中存在的问题和错误,及时进行反馈和指导。
五、教学资源1. 教学PPT:包含三角恒等变换的概念、意义和基本公式的讲解;2. 练习题:提供相关的练习题,供学生巩固和应用所学知识;3. 教学参考书:提供详细的三角恒等变换的讲解和例题。
六、教学策略1. 案例分析:通过分析具体的三角函数例子,让学生理解恒等变换的应用。
2. 小组讨论:让学生分组讨论三角恒等变换的性质,促进学生之间的交流和合作。
3. 问题解决:设计一些实际问题,让学生运用所学的三角恒等变换知识去解决,提高学生的应用能力。
2.3《简单的三角恒等变换》教学设计
2.3简单的三角恒等变换【教学目标】1.能运用两角差的余弦公式推导出两角差与和的正弦、正切公式和二倍角的正弦、余弦、正切公式.2.通过二倍角的正弦、余弦、正切公式推导出半角公式,万能公式以及积化和差与和差化积公式,了解它们的内在联系.3.能运用上述公式进行简单的恒等变换,增强学习的积极性,避免对公式的生搬硬套,培养学生的探究意识和严谨的思维品质.【教学重点】推导出半角公式,万能公式以及积化和差与和差化积公式.【教学难点】灵活运用上述公式进行简单的恒等变换.【教学方法】教师启发讲授,学生探究学习.【教学手段】多媒体平台.【核心素养】数学抽象,数学运算,逻辑推理.【教学过程】一、创设情境,引入课题复习回顾:我们刚刚学习了两角差与和的正弦、正切公式和二倍角的正弦、余弦、正切公式,同学们还能回顾一些这些公式的源头是谁吗?我们从哪个公式作为逻辑推理的起点的呢?没错,就是从向量的数量积推导出两角差的余弦公式,进而一步步得到了后续的公式,我们今天要学习的内容也是建立在前面内容的基础上,进行新的探究和推导.将一个三角函数式变为与之恒等的其他三角函数式的变换过程,称为三角恒等变换. 进行三角恒等变换时,一般要使用三角函数间的关系式,除了我们刚刚学过的那些公式,还有下面要推导的半角公式:二、归纳探索,形成概念半角公式首先提问同学,上节课学习的二倍角公式:再由老师板书:二倍角公式:αααcos sin 22sin =;ααα2tan 1tan 22tan -=ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=在数学研究中,公式经常要灵活理解和运用,比如我们这两节课的学习内容:倍角公式和半角公式,“倍”与“半”都是相对而言的。
结合刚刚复习的倍角公式,你能由αcos 推导出2tan ,2cos ,2sin ααα的数值吗?给同学们一点的时间思考,提问:运用倍角公式,看看能不能得出什么新的关系式?请一位学生回答,由老师板书推导过程:我们从余弦的倍角公式入手,很容易得到正弦的半角公式.下面再给同学们1分钟的时间思考,提问:能不能仿照这个推导过程,得到余弦的半角公式呢?请一位学生回答,由老师板书推导过程:而根据同角三角函数关系,正切的半角公式是不是也就水到渠成了呢?再请一位学生回答,由老师板书推导过程:同学们都应该已经完成了,我们现在得到了正弦、余弦和正切的半角关系式,只不过它们还是平方的形式,我们将上面的三个等式左右两端分别开平方,可得由老师板书:我们就得到了三组半角公式.由于是开平方,具体的正负号,要根据半角所在的象限来判断.我们除了学习数学知识,更要学会通过现象看本质.相信细心的同学不难发现,半角公式和倍角公式实质上是对同一公式的不同变形.三、运用公式,适当延展例1.如果|cos θ|=,<θ<3π,求sin 的值? 解: 根据<θ<3π可知角θ是第二象限角,其余弦值为负,即cos θ=-,而<<,是为第三象限角,正弦值为负,于是利用半角公式即得结果-.这道题就是要求同学们注意半角的范围,进而确定所求三角函数值的符号.例2已知α∈(−π2,0),cosα=45,求tan α2的值? 解:由α∈(−π2,0)及cosα=45,得到sinα=−35, 故tan α2=sinα1+cosα=−351+45=−13. 可以在讲解时,引出这个解法,呼应教材中的例25125π2θ25π5145π2θ23π515积化和差与和差化积公式在求解三角函数的有关问题时,有时需要把三角函数的积化为和或者差的形式,有时又需要把和或差化为积的形式,这应如何转化呢?借鉴前面通过两个单位向量的数量积得出差角余弦公式的思路,我们继续尝试用向量的方法来探讨如何将三角函数的和或差转化为积的形式:我们下来就用和角与差角公式来证明.请一位学生回答,由老师板书推导过程:我们通过设两个参数来帮助我们的推导:由老师板书推导过程:类似地我们还可以证明:将上述四个公式称为和差化积的公式.例3:给同学们1分钟的时间思考,类比我们刚刚推导和差化积公式的思路,利用和角与差角公式能不能得到证明过程呢?提问同学,由老师板书推导过程:刚刚例题的结论实质上就是积化和差公式中的两个,剩下的两个同学们自己证明,给大家一点提升:将sin(α+ β)和sin(α-β)两组公式分别相加减,你还能得出哪些结论呢?下面,我们利用这节课所学的公式,证明下面这个问题:例4:观察一下等式两段,右边式子式三次的,我们一时间不好寻找突破口;所以我们从等式左边入手,发现了两个余弦之和的形式,可以尝试运用和差化积的公式进行推导:同时我们也利用三角形内角和的关系,将C转化为A+B的形式:四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.总结:1.半角公式:2.积化和差公式:cos αcos β=12[cos(α+β)+cos(α-β)]; sin αsin β=-12[cos(α+β)-cos(α-β)]; sin αcos β=12[sin(α+β)+sin(α-β)]; cos αsin β=12[sin(α+β)-sin(α-β)]. 3.和差化积公式:设α+β=x ,α-β=y ,则α=x +y 2,β=x -y 2.上面的四个式子可以写成,sin x +sin y =2sin x +y 2cos x -y 2; sin x -sin y =2cos x +y 2sin x -y 2; cos x +cos y =2cos x +y 2cos x -y 2; cos x -cos y =-2sin x +y 2sin x -y 2. 在这一节课中,主要学习了半角公式,积化和差与和差化积公式,学习了它们的推导过程.对于我们所学的这些三角公式,同学们一定要在理解的基础上去记忆,多在课下进行推导,才能熟练运用这些公式解决问题.作业。
高中数学教案《三角恒等变换》
教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。
学生能够熟练运用三角恒等变换公式进行化简、求值及证明。
培养学生的逻辑推理能力和代数运算能力。
过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。
采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。
鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。
情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。
培养学生的耐心和细心,养成严谨的科学态度。
引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。
难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。
三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。
复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。
明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。
2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。
强调公式的推导过程,帮助学生理解公式的来源和含义。
积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。
鼓励学生提出疑问和见解,促进课堂互动。
二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。
强调公式的记忆方法和应用技巧。
3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。
三角恒等变换教案
三角恒等变换教案三角恒等变换教案一、教学目标:1.能够掌握三角恒等变换的概念和基本性质;2.能够灵活运用三角恒等变换求解简单的三角函数值;3.能够理解三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
二、教学内容:1.三角恒等变换的定义和基本性质;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系;3.使用三角恒等变换求解简单的三角函数值。
三、教学重难点:1.三角恒等变换的基本性质的理解和运用;2.三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
四、教学方法:1.讲授结合练习,理论与实际相结合;2.举例分析和解题演练。
五、教学过程:第一步:引入新知识(10分钟)向学生简单介绍三角恒等变换的概念,并与他们讨论三角函数的图像、周期、奇偶性。
通过讨论的方法,激发学生的兴趣,引导学生主动思考。
第二步:讲解三角恒等变换的基本性质(15分钟)1.角的关系:讲解正弦、余弦、正切函数之间的关系,以及正角、负角之间的关系。
2.平方关系:讲解正弦、余弦、正切函数的平方和、平方差以及积与商之间的关系。
3.倒数关系:讲解正弦、余弦、正切函数的倒数之间的关系。
第三步:练习应用(20分钟)1.通过示例的方式,向学生展示如何使用三角恒等变换求解简单的三角函数值。
2.组织学生进行练习,让学生分小组进行解题,及时给予指导和反馈。
第四步:总结归纳(10分钟)请学生总结三角恒等变换的基本性质,并与他们讨论三角恒等变换与三角函数的图像、周期、奇偶性之间的关系。
第五步:小结(5分钟)对本节课学习的内容进行小结,并激发学生对三角函数的兴趣,鼓励他们进一步实践和研究。
六、教学反思本节课采用了理论与实际相结合的教学方法,通过讨论、演示和练习,使学生能够深入理解三角恒等变换的基本性质,并能够熟练灵活地应用。
课堂上,我积极引导学生思考和互动,激发了学生的学习兴趣和积极性。
但是,部分学生在练习环节遇到了一些困难,建议将练习题目难易程度适当调整,以使学生在解题过程中能够灵活运用所学知识。
高二数学简单的三角恒等变换教案(通用11篇)
高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。
2、能够运用三角恒等式进行简单的三角恒等变换。
3、培养学生的逻辑推理能力和数学运算能力。
教学重点1、三角恒等式的理解和记忆。
2、三角恒等变换的方法和步骤。
教学难点三角恒等式的灵活运用和复杂三角表达式的化简。
教学准备1、多媒体课件,包含三角恒等式、例题和练习题。
2、黑板和粉笔。
教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。
提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。
2、通过实例演示如何使用三角恒等式进行三角恒等变换。
3、引导学生总结三角恒等变换的.一般方法和步骤。
三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。
教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。
四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。
鼓励学生相互讨论,分享解题思路和方法。
五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。
布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。
教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。
但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。
在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。
同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。
高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。
能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。
《简单的三角恒等变换》教案与导学案
《简单的三角恒等变换》教案与导学案导学案(简单的三角恒等变换)一、知识导入1.请同学们回忆一下三角函数的定义及其在单位圆中的几何意义。
2.提问:在任意角A上可以建立正弦、余弦、正切的函数关系。
那么这些函数关系是否有规律可循呢?二、概念引入1.引入三角恒等变换的概念,即正弦、余弦、正切之间存在一些特定关系,这些关系称为三角恒等变换。
三、常见的三角恒等变换公式1.正弦函数的恒等变换:(1) 正弦函数的余角关系:sin(π/2 - A) = cosA(2) 正弦函数的余弦关系:sinA = cos(π/2 - A)(3) 正弦函数的补角关系:sin(π - A) = sinA(4) 正弦函数的周期性关系:sin(A + 2πn) = sinA,其中n为整数2.余弦函数的恒等变换:(1) 余弦函数的余角关系:cos(π/2 - A) = sinA(2) 余弦函数的正弦关系:cosA = sin(π/2 - A)(3) 余弦函数的补角关系:cos(π - A) = -cosA(4) 余弦函数的周期性关系:cos(A + 2πn) = cosA,其中n为整数3.正切函数的恒等变换:(1) 正切函数的余角关系:tan(π/2 - A) = 1/tanA(2) 正切函数的倒数关系:tanA = 1/tan(π/2 - A)(3) 正切函数的补角关系:tan(π - A) = -tanA(4) 正切函数的周期性关系:tan(A + πn) = tanA,其中n为整数四、常见的三角恒等变换推导1.根据角和差公式,推导正弦、余弦函数的恒等变换公式。
2.根据正切函数的定义,推导正切函数的恒等变换公式。
五、例题解析1. 求证:sinA + cosA = 1解析:根据余弦函数的余角关系cos(π/2 - A) = sinA,原式可写为sinA + cos(π/2 - A) = 1、因此,根据三角恒等变换公式,原式成立。
2. 求证:1 + tan^2A = sec^2A解析:根据正切函数的余角关系tan(π/2 - A) = 1/tanA,原式可写为 1/tan^2A + 1 = 1/cos^2A。
32简单的三角恒等变换(教学案)
3. 2 简单的三角恒等变换【教学目标】会用已学公式进行三角函数式的化简、求值和证明,引导学生推导半角公式,积化和差、 和差化积公式〔公式不要求记忆〕,使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力。
【教学重点、难点】教学重点:引导学生以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为根本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【教学过程】复习引入:复习倍角公式2S α、2C α、2Tα先让学生默写三个倍角公式,注意等号两边角的关系,特别注意2C α。
既然能用单角表示倍角,那么能否用倍角表示单角呢? 半角公式的推导及理解 :例1、 试以cos α表示222sin,cos ,tan 222ααα.解析:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.〔二倍角公式中以α代2α,2α代α〕 解:因为2cos 12sin 2αα=-,可以得到21cos sin22αα-=; 因为2cos 2cos12αα=-,可以得到21cos cos 22αα+=. 两式相除可以得到222sin 1cos 2tan 21cos cos 2ααααα-==+. 点评:⑴以上结果还可以表示为:sin2cos 2αα==并称之为半角公式〔不要求记忆〕,符号由2α角的象限决定。
⑵降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明。
变式训练1:求证sin tan21cos 1cos tan 2sin αααααα=+-=积化和差、和差化积公式的推导〔公式不要求记忆〕: 例2:求证: 〔1〕()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; 〔2〕sin sin 2sin cos22θϕθϕθϕ+-+=.证明:〔1〕因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; 〔2〕由〔1〕得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos22θϕθϕθϕ+-+=.点评:在例2证明中用到了换元思想,〔1〕式是积化和差的形式,〔2〕式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式. 变式训练2:课本p142 2〔2〕、3〔3〕例3、求函数sin y x x =的周期,最大值和最小值. 解析:利用三角恒等变换,先把函数式化简,再求相应的值。
简单的三角恒等变换教案
简单的三角恒等变换教案(一)一.教学目标1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。
2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。
3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.二、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.三、教学设想:(一)复习:三角函数的和(差)公式,倍角公式(二)新课讲授:1、由二倍角公式引导学生思考:2αα与有什么样的关系?学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2.已知135sin =α,且α在第三象限,求2tan α的值。
简单的三角恒等变换教学设计
简单的三角恒等变换高一备课组一、教课内容及其分析(1)教课内容:简单的三角恒等变换(2)分析:本节课选自人教版 . 必修四第三章第二节,是学习了两角和与差的正弦、余弦、正切公式及二倍角公式后的内容,本节主要包含利用已有的十一个公式进行简单的恒等变换 , 以及三角恒等变换在数学中的应用 . 本节的内容都是用例题来显现的 , 经过例题的解答 , 指引学生对变换对象和变换目标进行对照、剖析 ,促进学生形成对解题过程中如何选择公式, 如何依据问题的条件进行公式变形,以及变换过程中表现的换元、逆向使用公式等数学思想方法的认识, 进而加深理解变换思想 , 提升学生的推理能力 .二、教课目的及其分析(一)教课目的:1、会利用已有的十一个公式进行简单的恒等变换;2、能依据问题的条件进行公式变形,领会在变换过程中表现的换元、逆向使用公式等数学思想方法 .(二)分析:1、经过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式, 领会化归、换元、方程、逆向使用公式等数学思想,提升学生的推理能力.2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形 , 领会三角恒等变换在数学中的应用.3、经过例题的解答,指引学生对变换对象目标进行对照、剖析,促进学生形成对解题过程中如何选择公式,如何依据问题的条件进行公式变形,以及变换过程中表现的换元、逆向使用公式等数学思想方法的认识,进而加深理解变换思想,提升学生的推理能力 .三、学生学习况情剖析本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上 , 进而使三角函数性质的研究获得延长 . 三角恒等变换不一样于代数变换,后者常常着眼于式子构造形式的变换,变换内容比较单调 . 而对于三角变换,不单要考虑三角函数是构造方面的差别,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差别,它是一种立体的综合性变换 . 从函数式构造、函数种类、角与角之间的联系等方面找一个切入点,并以此为依照选择能够联系它们的适合公式进行转变变形,是三角恒等变换的重要特色 . 所以学生对三角变换与代数变换的划分理解会比较困难, 在教课中教师应增强对这两者的内在联系和差别加以剖析。
2.3《简单的三角恒等变换》教案
2.3《简单的三角恒等变换》所以OC 是∠AOB 的平分线, 因而θ=α+β−α2=α+β2。
故OC=(rcos α+β2,rsinα+β2).又r=|OC|=2|OB|cos ∠COB =2cosβ−α2=2cosα−β2所以OC=(2cosα−β2cos α+β2,2cosα−β2sinα+β2)于是,根据平面向量基本定理可得 cos α+cos β=2cos α−β2cos α+β2 sin α+sin β=2cosα−β2sinα+β2这个公式是否对任意角α,β都成立? 除了通过几何图形可以得到公式, 你还有其他方法吗? 方法二:我们用字母A,B 来表示α+β2,α−β2.设A=α+β2,B=α−β2.则A+B=α,A-B=β.于是cos α+cos β=cos(A+B)+cos(A-B)=cosAcosB-sinAsinB+cosAcosB+sinAsinB=2cosAcosB =2cosα−β2cosα+β2cos α-cos β=cos(A+B)-cos(A-B)左右两边分别相减,得cos(α+β)-cos(α-β)=-2sinαsinβ.将上式两边同除以-2,得[cos(α+β)-cos(α-β)].s inαs inβ=-12前面学习的和差化积公式,均是cosα±cosβ以及sinα±sinβ的形式,现在我们来学习如何对sin x+ cos x这种形式进行三角恒等变换。
为了找到变换思路,我们先借助计算机画出函数y= sin x+cos x的部分图象,如图。
通过观察,可以发现图与正弦函数y=Asin(w x+φ)的图象很相似。
于是,我们可以猜测:是否存在某个正数A和角φ,使得y= sin x+cos x可化为y=Asin(w x+φ)的形式,即能否找到某个正数A和角φ,使sin x+cos x=Asin(w x+φ)成立?由和角公式可得Asin(x+φ)=A(sin x cosφ+cos x sinφ)。
简单的三角恒等变换教案教学设计精品
简单的三角恒等变换教案教学设计精品一、教学内容本节课的教学内容来自于人教版数学教材六年级下册第117页的第一课时“简单的三角恒等变换”。
这部分内容主要包括:1. 了解三角恒等变换的概念;2. 学习三角恒等变换的基本公式;3. 学会运用三角恒等变换解决实际问题。
二、教学目标1. 让学生掌握三角恒等变换的基本公式,并能灵活运用解决实际问题;2. 培养学生的逻辑思维能力和转化能力;3. 提高学生运用数学知识解决生活问题的能力。
三、教学难点与重点重点:掌握三角恒等变换的基本公式;难点:灵活运用三角恒等变换解决实际问题。
四、教具与学具准备教具:黑板、粉笔、多媒体课件;学具:教材、练习本、三角板。
五、教学过程1. 实践情景引入:教师展示一个实际问题:一个正三角形分成两个等腰三角形,求分割后的三角形的面积。
引导学生思考如何运用三角恒等变换解决此问题。
2. 知识讲解:(1)教师引导学生回顾三角形的基本知识,如三角形的内角和、三角形的面积公式等;(2)教师讲解三角恒等变换的概念,并展示三角恒等变换的基本公式;(3)教师通过例题讲解,让学生理解并掌握三角恒等变换的运用方法。
3. 随堂练习:(1)教师给出几个简单的三角恒等变换题目,让学生独立完成;(2)教师选取部分学生的作业进行点评,指出优点和不足;(3)教师针对学生的错误,进行讲解和辅导。
4. 课堂小结:六、板书设计三角恒等变换:1. 三角形的内角和等于180度;2. 三角形的面积公式:S = 1/2 base height;3. 三角恒等变换的基本公式:sinα = sin(π/2 α),cosα = cos(π/2 α),tanα = tan(π/2 α)。
七、作业设计α = 120°,β = 150°,γ = 210°。
答案:α' = 60°,β' = 30°,γ' = 30°。
简单的三角恒等变换(教案)
简单的三角恒等变换(一)张掖中学 宋娟一、教学目标知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用;过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力;情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点教学重点:利用公式进行简单的恒等变换;教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容复习引入(学生组织完成)问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解思考1(学生组织完成):如何用cos α表示222sin cos tan 222ααα、、?分析:观察α与2α的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式.解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α代替α,即得2cos 12sin 2αα=-,所以21cos sin 22αα-=; ①在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2α代替α,即得2cos 2cos 12αα=-,所以21cos cos 22αα+=. ②将①②两个等式的左右两边分别相除,即得21cos tan 21cos ααα-=+.思考2:若已知cos α,如何计算sincos tan 222ααα、、?sincos tan 222ααα=== (半角公式) 强调:“±”号由2α所在象限决定. 例1:已知5sin 13α=,且2παπ<<,求tan 2α的值.解512sin cos 13213,tan24222tan tan 522πααπαππαπααπαα=<<∴=-<<∴<<∴>=====因为且又由公式例2 求证sin 1cos tan 21cos sin ααααα-==+ 证明22sin sin2cossin sin 222tan21cos cos cos 2cos 2cos 2222sin sin 2sin 2sin1cos 2222tan2sin sin coscos2sin222αααααααααααααααααααααα⋅====+⋅⋅-====⋅利用例2的结论,再做一下例1,比较两种方法.例3 已知3sin 25θ=,022πθ<<,求22cos sin 12)4θθπθ--+.分析:由降幂公式知22cos 1cos 2αα=+,故有cos sin cos sin θθθθ-=+原式 ﹡ 此处有两种处理方法:方法一、由已知求出cos sin θθ、的值,带入﹡式计算,即可得到结果; 方法二、由﹡继续变形,将半角化为倍角进行计算. 解法一22cos sin......cos sin020cos0,sin02434sin2,02cos2525cos212sin2cos1sin121010θθθθππθθθθπθθθθθθθθ-=*+<<∴<<∴>>=<<==-=-∴==**==原式由由得又带入式得解法二222cos sincos sin(cos sin)(cos sin)(cos sin)12sin cos1sin2......cos sin cos234sin2,02cos252532115544255θθθθθθθθθθθθθθθθπθθθ-=+-=+---==*-=<<=*-*==原式由得带入式得=小结:对于例3,我们从不同角度出发,解法一先利用倍角计算半角,再带入求值,解法二先利用半角化为倍角,再带入求值.在三角恒等变换中,正所谓“条条大路通罗马”.在以后的学习当中,此类问题是三角恒等变换中常见的问题.万丈高楼平地起,在此告诫同学们,基础知识的理解和必要的记忆是很重要的,所以在以后的学习中,不管题目如何变化,都有一个固定的解题理论,那就是我们的倍角公式,及其逆用,掌握好了基础的理论知识,不管题目如何变化,我们都能将他们各个击破.所谓“咬定青山不放松,任尔东南西北风”.下面我们来分小组讨论一下这一个问题:(练一练)化简22221sin sin cos cos cos2cos22αβαβαβ⋅+⋅-⋅.分析:1.从“角”入手,倍角化半角;2.从“幂”入手,利用降幂公式将次;3.从“形”入手,利用配方法.本题目至少有6种解法,请同学们讨论完成.课堂小结三个数学方法1.从“角”入手,倍角化半角(半角化倍角);2.从“幂”入手,利用降幂公式将次(利用升幂公式升次);3.从“形”入手,利用配方法(分母有理化、分子有理化).两个人生哲理1.条条大路通罗马;2.咬定青山不放松,任尔东南西北风.布置作业习题3.2A组1(1)、(2)、(4)、(5)课后反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的三角恒等变换(一)
张掖中学 宋娟
一、教学目标
知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用;
过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力;
情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点
教学重点:利用公式进行简单的恒等变换;
教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、] 五、 教学类型:新授课. 六、教学内容
复习引入(学生组织完成)
问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解
思考1(学生组织完成):如何用cos α表示22
2
sin cos tan 2
2
2
α
α
α
、、
分析:观察α与
2
α
的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的变形公式.
解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2α
代
替α,即得2
cos 12sin 2
α
α=-,
|
所以2
1cos sin 22
α
α
-=
; ①
在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2
α
代替α,即得
2
cos 2cos 12
α
α=-,
所以2
1cos cos 22
α
α
+=
. ②
将①②两个等式的左右两边分别相除,即得
21cos tan 21cos αα
α
-=
+.
思考2:若已知cos α,如何计算sin
cos tan 222
α
αα
、、
sin
cos tan 2
22α
αα=== (半角公式) 强调:“±”号由
2α
所在象限决定. 例1:已知5sin 13α=,且2παπ<<,求tan 2
α
的值.
解
,
512
sin cos 13213
,tan
2
4
2
2
2
tan tan 522πααπαπ
π
α
π
α
απαα=<<∴=-<<∴
<
<
∴>===
==因为且又
由公式
例2 求证sin 1cos tan 2
1cos sin α
αα
αα
-=
=
+ 证明
2
2sin sin
2cos
sin sin 222tan
2
1cos cos cos 2cos 2cos 2
222
sin sin 2sin 2sin
1cos 22
22tan
2
sin sin cos
cos
2sin
222
αα
α
α
αα
ααααααααα
α
α
α
α
α
αα
⋅====+⋅⋅-===
=⋅
利用例2的结论,再做一下例1,比较两种方法.
例3 已知3sin 25θ=,022
π
θ<<
,求
2
2cos sin 1
2
)
4
θ
θπ
θ--+.
分析:由降幂公式知2
2cos 1cos 2
α
α=+,故有
cos sin cos sin θθ
θθ-=+原式 ﹡ 此处有两种处理方法:
方法一、由已知求出cos sin θθ、的值,带入﹡式计算,即可得到结果; `
方法二、由﹡继续变形,将半角化为倍角进行计算.解法一
22
cos sin
......
cos sin
020cos0,sin0
24
34
sin2,02cos2
525
cos212sin2cos1
sin
1
2
θθ
θθ
ππ
θθθθ
π
θθθ
θθθ
θθ
-
=*
+
<<∴<<∴>>
=<<=
=-=-
∴==
*
*==
原式
由
由得
又
带入式得
解法二
2
22
cos sin
cos sin
(cos sin)
(cos sin)(cos sin)
12sin cos1sin2
......
cos sin cos2
34
sin2,02cos2
525
32
11
55
442
55
θθ
θθ
θθ
θθθθ
θθθ
θθθ
π
θθθ
-
=
+
-
=
+-
--
==*
-
=<<=
*
-
*==
原式
由得
带入式得
=
小结:对于例3,我们从不同角度出发,解法一先利用倍角计算半角,再带入求值,解法二先利用半角化为倍角,再带入求值.在三角恒等变换中,正所谓“条条大路通罗马”.在以后的学习当中,此类问题是三角恒等变换中常见的问题.
万丈高楼平地起,在此告诫同学们,基础知识的理解和必要的记忆是很重要的,所以在以后的学习中,不管题目如何变化,都有一个固定的解题理论,那就是我们的倍角公式,及其逆用,掌握好了基础的理论知识,不管题目如何变化,我们都能将他们各个击破.所谓“咬定青山不放松,任尔东南西北风”.
下面我们来分小组讨论一下这一个问题:
(练一练) 化简22221
sin sin cos cos cos 2cos 22
αβαβαβ⋅+⋅-⋅.
分析: 1. #
2.
从“角”入手,倍角化半角;
3. 从“幂”入手,利用降幂公式将次;
4. 从“形”入手,利用配方法.
本题目至少有6种解法,请同学们讨论完成. 课堂小结
三个数学方法
1.从“角”入手,倍角化半角(半角化倍角);
2.从“幂”入手,利用降幂公式将次(利用升幂公式升次);
3.从“形”入手,利用配方法(分母有理化、分子有理化). 两个人生哲理 1. }
2.
条条大路通罗马;
3. 咬定青山不放松,任尔东南西北风. 布置作业
习题组1(1)、(2)、(4)、(5) 课后反思。