高分子材料冲击性能测试
高分子材料性能测试力学性能
3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。
高分子材料三大测试标准介绍与性能分析
•比重
•收缩率 •吸水率
•含水率
•硬度
物理性能
标准:ASTM D792/ISO1183-3 塑料的比重即塑料的密度, 单位为g/cm3。 常用的两种方法:浸渍法(成型 塑料),比重瓶法(粉料、粒 料)
塑料的比重大小,会直接 影响到产品的重量以及成本。同 样重量的产品,如果原料比重 越小,每公斤原料可以产出更 多的产品。反而,原本比重越大, 产出的产品数量会更少。
以规定直径的钢球压头,先用初载荷压入试样,继而增至 主载荷,然后恢复至初载荷,造成的压痕深度增量作为材料硬 度,称为洛氏硬度。以符号HR表示 e HR K c
e——初载荷增至主载荷再返回初载荷的压痕深度增量(mm) c——常数,0.002mm K——常数,130
洛氏硬度标尺 R L M E
结晶也会使体积进一步减小,所以结晶性材料的收缩率较大。如:
结晶 收缩率 PBT 1.82.0 PET 2.02.5 POM 2.02.5 非晶 收缩率 PC 0.50.7 ABS 0.40.6 PMMA 0.30.7
收缩率对产品的设计很重要,尤其是对尺寸精度要求高的 产品。材料收缩的预判可避免产品凹陷和翘曲。
CTI值 级别
大于600 0
400-599 1
250-399 2
175-249 3
100-174 4
小于100 2
电性能
电性能
介质在外加电场时会感应电荷而削弱电场,原外加电场(真空中)与 最终介质电场比值即为介电常数,如果有高相对介电常数的材料放进电 场,场的强度会在电介质内有可观的下降。介电常数与所加的电场频率 有关,一般有50Hz/1KHz。 相对介电常数越小,材料的绝缘性越好。 PS 1.05—1.5 ABS 1.5—2.5 PVC 1.3—1.4 PE 1.4—1.6 PP 1.5—1.8 PMMA 3.0—3.6
高分子材料性能测试实验报告
高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料分析与测试
高分子材料分析与测试引言高分子材料是一类重要的工程材料,在各个领域有着广泛的应用。
为了确保高分子材料的质量和性能,对其进行准确的分析与测试是至关重要的。
本文将介绍高分子材料分析与测试的基本原理、常用方法和技术,并对其在实际应用中的重要性进行讨论。
1. 高分子材料的特性分析高分子材料具有许多特殊的性质,如高分子链结构、长链分子的柔性和高分子材料的热性能等。
为了准确分析和测试高分子材料的特性,我们需要运用一些常用的分析方法。
下面介绍几种常用的高分子材料特性分析方法:•红外光谱分析:红外光谱是一种常见的高分子材料分析方法,通过对材料吸收、发射或散射红外辐射进行分析,可以确定材料的化学成分和结构。
•热分析:热分析是一种通过加热样品并监测其温度和质量变化来分析材料热性能的方法。
常见的热分析方法包括热重分析(TGA)和差热分析(DSC)等。
•X射线衍射(XRD):XRD是一种通过测量材料对入射X射线的衍射情况来分析其晶体结构的方法。
通过XRD可以确定高分子材料的结晶性质和晶格参数。
•核磁共振(NMR):核磁共振是一种通过测量材料中核自旋的共振现象来分析材料结构和化学环境的方法。
在高分子材料分析中,NMR可以提供关于材料分子结构、分子量和链结构等信息。
2. 高分子材料的力学性能测试高分子材料的力学性能是评价其质量和使用性能的关键指标之一。
为了准确测试高分子材料的力学性能,常用的测试方法包括:•拉伸测试:拉伸测试是一种通过施加拉伸力来测量材料在拉伸过程中的力学性能的方法。
通过拉伸测试可以确定高分子材料的强度、延展性和弹性模量等指标。
•弯曲测试:弯曲测试是一种通过施加弯曲力来测量材料在弯曲过程中的力学性能的方法。
通过弯曲测试可以确定高分子材料的弯曲强度和弯曲模量等参数。
•硬度测试:硬度测试是一种通过在材料表面施加静态或动态载荷来测量材料硬度的方法。
常用的高分子材料硬度测试方法包括巴氏硬度和洛氏硬度等。
•冲击测试:冲击测试是一种通过施加冲击载荷来测量材料抗冲击性能的方法。
冲击性能
1 Zi (M i M a ) M
i
为落锤质量等级顺序号; ni为落锤质量为 Mi 破坏或不
破坏的试样数; Zi为从 M0 开始质量增加的次数。
例 题
固定试验高度H= 1.5m ,落锤质量改变△M=0.2Kg,对20个试样 进行冲击试验,结果如图示:
计算A、N等值如表
i 1 2 3 4(=k) 锤的质量 Kg 1.6 1.4 1.2 1.0 ni (0) 0 2 6 3 11 (n0) ni, (X) 1 5 3 0 9 (nx) ni 1 5 3 0 9 (N=nx) zi 3 2 1 0 nizi 3 10 3 0 16 (A)
使用范围
拉伸剪切都适用于胶接材料;
单面和双面压缩剪切适用于层压材料和取向材料; 短梁剪切适用于各种纤维材料和层压材料;
一、概念及原理
(一)测试原理
试样在受剪切力作用时,作用在试样两侧面上外力的合力大 小相等,方向相反,作用线相隔较远,并将各自推着所作用 的试样部分沿着与合力作用线平行的受剪面发生位移,直至
试样制备
试样可以模塑成型或机械加工制备。
各向异性的板材试样,纵横各特征方向切割样条;
1型板材试样
厚度大于10.2mm,单面加工成(10.0±0.2)
mm;
2型板材试样
厚度小于12.9mm时,取原厚度试验; 厚度大于12.9时,单面加工成(12.7±0.2)mm。
试验时加工面背向冲锤。
h——试样的厚度,mm
b——试样宽度或缺口试样的剩余宽度,mm
(四)影响因素
(1)冲击过程的能量消耗
当能量达到产生裂纹和裂纹扩展所需要的能量时,试样便开始破裂直到完
6.4 冲击性能测试
(四)试验设备
工作原理图
机架部分、 机架部分、摆锤部分和指示系统部分
14
试验时把摆锤抬高, 试验时把摆锤抬高,摆锤 杆的中心线与通过摆锤杆 轴中心的铅垂线成一角度 为α的扬角 的扬角 摆锤自由落下, 摆锤自由落下,试样断裂 成两部分, 成两部分,消耗了摆锤的 冲击能并使其大大减速 摆锤的剩余能量使摆锤又 升到某一高度,升角为β 升到某一高度,升角为β
17
摆锤冲击后回摆时,使摆锤停止摆动, 摆锤冲击后回摆时,使摆锤停止摆动,并 立即记下刻度盘上的指示值 试样被击断后,观察其断面, 试样被击断后,观察其断面,如因有缺陷 而被击穿的试样应作废 每个试样只能受一次冲击,如试样未断时, 每个试样只能受一次冲击,如试样未断时, 更换试样再用较大能量的摆锤重新进行 可更换试样再用较大能量的摆锤重新进行 试验
GB/T 1043-1993; 硬质塑料简支梁冲击试验方法 硬质塑料简支梁冲击试验方法; GB/T 13525-1992; 塑料拉伸冲击性能试验方法 塑料拉伸冲击性能试验方法; GB/T 1843-1996; 塑料悬臂梁冲击试验方法 GB/T 1697-2001; 硬质橡胶冲击强度的测定 GB/T 14153-1993; 硬质塑料落锤冲击试验方法 通则; 通则 GB/T 14152-2001; 热塑性塑料管材耐外冲击性能 时针旋转法; 试验方法 时针旋转法 GB/T 16420-1996; 塑料冲击性能小试样试验方法 GB 8809-1988; 塑料薄膜抗摆锤冲击试验方法
8
一、摆锤式冲击试验
(一)测试原理——简支梁冲击和悬臂梁冲击 测试原理 简支梁冲击和悬臂梁冲击 简支梁冲击试验是摆锤打击简支梁试样的中央 试样受到冲击而断裂, 试样受到冲击而断裂,试样断裂时单位面积或单位宽 度所消耗的冲击功即为冲击强度
高分子材料冲击试验(精品文档)
七、高分子材料冲击试验7.1 实验目的(1)熟悉高分子材料冲击性能测试的原理、方法、操作及其实验结果处理;(2)了解测试条件对测定结果的影响。
7.2 实验原理对硬质高分子材料试样施加一次冲击负荷使试样破坏,记录下试样破坏时或过程中单位试样截面积所吸收的能量,即冲击强度,来衡量材料冲击韧性。
根据实验中试样受力形式和冲击物的几何形状,板、条试样的冲击实验方法可分为:简支梁冲击实验(GB1093)、悬臂梁冲击实验(GB1043)和落锤式冲击实验(GB11548-89)。
所有冲击实验均应按GB2918规定,在(23±2℃)、常湿下进行试样环境调节,调节时间不少于4h。
7.3 简支梁冲击实验(1)原材料试样①注塑标准试样试样表面应平整、无气泡、裂纹、分层和明显杂志。
缺口试样缺口处应无毛刺。
试样类型和尺寸以及相对应的支撑线间的距离见表7-1。
试样的缺口类型和缺口尺寸见表7-2。
试样的优选类型为I型。
优选的缺口类型为A型。
表7-1 试样类型和尺寸以及相对应的支撑线间的距离(mm)表7-2 缺口类型和缺口尺寸(mm)注:A型、B型、C型缺口的形状和尺寸分别见图7-1~图7-3。
图7-1 A型缺口试样图7-2 B型缺口试样图7-3 C型缺口试样②板材试样板材试样厚度的3~13mm之间时取原厚。
大于13mm时应从两面均匀地进行机械加工到10±0.5mm。
4型试样厚度须加工到13mm。
当使用非标准厚度试样时,缺口深度与试样厚度尺寸之比也应分别满足表7-2的要求。
当厚度小于3mm的试样不做冲击实验。
(2)试样制备①模塑料或挤出料按受试材料的产品标准规定制备试样。
若产品标准没有规定,可按GB5471和GB9352制备试样。
I型试样可以从标准多用途试样上切取。
②板材板材试样是将板材进行机械加工制备。
试样缺口可在铣床、刨床或专用缺口加工机上加工。
加工刀具应无倾角,工作后角为15°~20°。
高分子材料的力学性能测试及其应用研究
高分子材料的力学性能测试及其应用研究高分子材料是一类重要的工程材料,主要用于纺织、建筑、电子、医药等领域。
高分子材料具有轻量、高强、高韧性、耐磨损、耐腐蚀等特点,因此广泛应用于各种领域。
在使用高分子材料的过程中,需要了解其力学性能,以便更好地设计、制造和使用。
本文将介绍高分子材料的力学性能测试方法和应用研究。
一、高分子材料的力学性能高分子材料的力学性能包括弹性性能、塑性性能和破坏性能。
其中弹性性能是指材料在受力后恢复原状的能力,主要包括弹性模量和泊松比。
塑性性能是指材料在受力后能够发生变形的能力,主要包括屈服强度和延伸率。
破坏性能是指材料在受到足够大的载荷后会发生破坏的能力,主要包括断裂韧性和破坏模式。
二、高分子材料的力学性能测试方法1、拉伸试验拉伸试验是最常用的高分子材料力学性能测试方法之一。
通过将试样拉伸至断裂点,测量其载荷与变形量的关系,可以得到材料的应力-应变曲线。
从应力-应变曲线中,可以计算出材料的弹性模量、屈服强度、断裂强度和断裂伸长率等重要参数。
拉伸试验可以使用单轴拉伸机、万能试验机等设备进行。
2、压缩试验压缩试验是评估材料抗压能力的一种方法。
该试验通常以轴向载荷进行,压缩试验结果可以用于确定材料的体积模量或多轴应力状态下的应变量。
根据材料应变分布的不同,可以得到不同的应力-应变曲线,从而得到压缩弹性模量和屈服应力等参数。
3、剪切试验剪切试验可以评估材料的剪切性能,通常使用剪切试验机进行。
在剪切试验中,试样被植入两个夹具中,夹具沿着对称面施加力,使试样发生沿切平面的剪切变形。
通过测量必要的载荷和位移,可以获得材料剪切应力和剪切应变,并从中得出剪切模量和剪切强度等重要参数。
4、冲击试验冲击试验是评估材料耐冲击能力的一种方法。
通常在低温下进行,使用冲击试验机施加冲击载荷,在断裂前测量材料的冲击强度和断裂韧性等参数。
这种试验可以评估大多数高分子材料的耐冲击性和脆性,在材料开发和制造中具有重要的应用价值。
高分子材料分析及测试期末复习及答案
期末复习作业一、名词解释1.透湿量透湿量即指水蒸气透过量。
薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时所透过的蒸汽量(用θ表示)v2.吸水性吸水性是指材料吸收水分的能力。
通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。
3.表观密度对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用η表示)a对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用ρ表示)a4、拉伸强度在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用σ表示)t5、弯曲强度试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用σ表示)f6、压缩强度指在压缩试验中试样所承受的最大压缩应力。
它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用σ表示)e7、屈服点应力—应变曲线上应力不随应变增加的初始点。
8、细长比指试样的高度与试样横截面积的最小回转半径之比(用λ表示)9、断裂伸长率断裂时伸长的长度与原始长度之比的百分数(用ε表示)t10、弯曲弹性模量表示)比例极限应力与应变比值(用Ef11、压缩模量指在应力—应变曲线的线性围压缩应力与压缩应变的比值。
由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E表示)e12、弹性模量在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示)13、压缩变形指试样在压缩负荷左右下高度的改变量(用∆h表示)14、压缩应变指试样的压缩变形除以试样的原始高度(用ε表示)15、断纹剪切强度指沿垂直于板面的方向剪断的剪切强度。
16、剪切应力试验过程中任一时刻试样在单位面积上所承受的剪切负荷。
17、压缩应力指在压缩试验过程中的任何时刻,单位试样的原始横截面积上所承受的压缩负荷(用σ表示)18、拉伸应力为试样在外作用力下在计量标距围,单位初始横截面上所承受的拉伸力(用σ表示)19、热性能高聚物的热性能是其与热或温度有关的性能的总称。
高分材料实验报告答案
实验名称:高分子材料的性能测试一、实验目的1. 了解高分子材料的基本性质和测试方法。
2. 掌握高分子材料的拉伸、冲击、硬度等性能的测试方法。
3. 分析高分子材料的性能与结构之间的关系。
二、实验原理高分子材料是由大量重复单元组成的大分子化合物,具有独特的物理和化学性质。
本实验通过测试高分子材料的拉伸、冲击、硬度等性能,了解其力学性能和结构特点。
三、实验材料与仪器1. 实验材料:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等高分子材料。
2. 实验仪器:万能材料试验机、冲击试验机、硬度计、游标卡尺等。
四、实验步骤1. 拉伸性能测试(1)将高分子材料样品裁剪成规定尺寸,保证样品的厚度一致。
(2)将样品放置在万能材料试验机的夹具中,设置拉伸速度。
(3)启动试验机,记录样品的断裂伸长率、断裂强度等数据。
2. 冲击性能测试(1)将高分子材料样品裁剪成规定尺寸,保证样品的厚度一致。
(2)将样品放置在冲击试验机的夹具中,调整冲击速度。
(3)启动试验机,记录样品的冲击强度等数据。
3. 硬度测试(1)将高分子材料样品裁剪成规定尺寸,保证样品的厚度一致。
(2)将样品放置在硬度计的测试台上,选择合适的测试方法。
(3)启动硬度计,记录样品的硬度值。
五、实验结果与分析1. 拉伸性能测试结果(1)聚乙烯(PE):断裂伸长率为300%,断裂强度为30MPa。
(2)聚丙烯(PP):断裂伸长率为500%,断裂强度为40MPa。
(3)聚氯乙烯(PVC):断裂伸长率为200%,断裂强度为20MPa。
2. 冲击性能测试结果(1)聚乙烯(PE):冲击强度为10kJ/m²。
(2)聚丙烯(PP):冲击强度为15kJ/m²。
(3)聚氯乙烯(PVC):冲击强度为8kJ/m²。
3. 硬度测试结果(1)聚乙烯(PE):硬度为60HB。
(2)聚丙烯(PP):硬度为80HB。
(3)聚氯乙烯(PVC):硬度为70HB。
通过实验结果分析,可以得出以下结论:1. 聚丙烯(PP)的断裂伸长率和断裂强度均高于聚乙烯(PE)和聚氯乙烯(PVC),说明聚丙烯的力学性能较好。
高分子复合材料的生产工艺与性能测试
高分子复合材料的生产工艺与性能测试高分子复合材料是由两种或多种以上的材料通过一定的物理或化学方法组合而成的材料,其获得了优异的性能,比如高强度、高刚度、防腐性、抗冲击性等,广泛应用在各行各业中。
本文将从生产工艺和性能测试两方面详细介绍高分子复合材料的特点和应用。
一、高分子复合材料的生产工艺高分子复合材料的生产工艺主要分为两种:物理混合和化学反应。
物理混合是将两种或多种材料直接混合,形成复合材料。
化学反应是指两种或多种原料经过化学反应后,形成新的复合材料。
1. 物理混合物理混合法是把两种或多种塑料进行混合,使用机械液体混合机械设备将材料进行混合,使它们充分融合。
在物理混合过程中,通常会在材料中添加一些添加剂,比如增塑剂、着色剂、阻燃剂等,以满足不同的要求。
2. 化学反应化学反应可以产生更为稳定的化学结构,并且具有更高的强度,更好的抗氧化和抗皱化能力。
一般来说,化学反应生产的复合材料需要一定的时间来完成化学反应,并且需要一定的工艺水平才能成功。
在实际生产中,化学反应生产的复合材料具有更高的成本和工艺要求,通常应用于高端产品的生产中。
而物理混合生产的复合材料则可以广泛应用于各个领域,从建筑材料到包装产品。
无论哪种生产方法,都需要一定的工艺技能和质量控制步骤。
二、高分子复合材料的性能测试高分子复合材料的性能测试通常包括物理性能、化学性质、热学性质、力学性能等多个方面。
1. 物理性能物理性能测试通常包括密度、吸水率、线膨胀系数、温度变化系数、热线缩合系数等。
密度是指材料重量与材料体积之比,吸水率是指材料吸收水分后重量变化率。
线膨胀系数是材料的热膨胀与温度之间的关系,温度变化系数是材料热输出与温度变化之间的关系,热线缩合系数是材料在高温环境下的热收缩程度。
2. 化学性质化学性质测试通常包括化学稳定性、耐酸碱性、耐溶解性等指标,这些指标可以反映出材料的化学反应与其他物质的化学反应程度。
3. 热学性质热学性质指的是材料在高温环境下的稳定性、燃烧性、热传导性等。
高分子材料专业实验-高分子材料性能测试
高分子材料性能测试拉伸实验实验目的①熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作②了解测试条件对测定结果的影响实验原理将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力~应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力~应变曲线上屈服点处的应力(拉伸屈服应力)、应力~应变曲线偏离直线性达规定应变百分数(偏置)时的应力(偏置屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率。
以百分率表示)。
实验步骤①试样的状态调节和实验环境按GB2918规定进行。
②测试样件中间平行部分的宽度和厚度,精确到0.01㎜.Ⅱ型试样中间平行部分的宽度,精确至0.05㎜。
每个试样测量三点,取算数平均值。
③在试样中间平行部分做标线示明标距,此标线对测试结果不应有影响.。
④夹持试样,夹具夹持试样时,要是试样纵轴与上、下夹具中间连线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内。
⑤选定试验速度,进行实验。
⑥记录屈服时的负荷,或断裂负荷及标距间伸长。
若试验断裂在中间平行部分之外时,此试样作废,另取试样补做。
实验试样本实验采用的是PS(燕山石化666D)实验设备实验机:数字化电子万能试验机型号3010 深圳瑞格尔公司实验数据I思考题1.分析试样断裂在先的外在原因。
答:试样断裂在先的外在原因有:①试样本身存在缺陷,产生了气泡,试样内杂质的分布也不不均匀;②安装的误差,浇口位置处造成断裂.。
2.拉伸速度对测试结果有何影响?答:拉伸速度过快,冲击强度变大,断裂会较早发生;拉伸速度过慢,分子发生取向,断裂将较晚发生。
3.同样是PS材料,为什么测定的拉伸性能(强度、断裂伸长率、模量)有差异?答:因为PS材料本身品质不同,多多少少存在缺陷,各材料的内部杂质分布不均匀,材料内部有起泡等方面也就有所不同。
高分子材料分析与检测技术:冲击性能
试样 类型
1பைடு நூலகம்
冲击 方向
侧向
贯层
缺口 缺口底部半径 缺口底部剩余
类型 rN/mm
宽度bN/mm
无缺口
单缺口
A
0.25±0.05 8.0±0.2
B
1.00±0.05 8.0±0.2
—
A
0.25±0.05 8.0±0.2
GB/T 1843/B
B
1.00±0.05
a 如果试样是由板材或制品上裁取的,板材或制品的厚度h应该加到命名 中。未增强的试样不应使机加工表面处于拉伸状态进行试验;b 如果 板材厚度h等于宽度b,冲击方向(垂直n平行p)应加到名称中。
图5-18 冲击方向命名图
C
0.10±0.02 8.0±0.2
无缺口
a.如果试样取自片材或成品,其厚度应加载名称中。非增强材料的试样 不应以机加工面作为拉伸而进行试验;b.优选方法;c.适用于表面效应 的研究。
(冲击方向)
图5-14 简支梁试样
图5-15 缺口类型
2.测试步骤及计算结果 (1)测试步骤 试样按GB/T 2918-1998的规定调节16小时以上。 ①测量试样中部的宽度和厚度,精确至0.02mm。 ② 根据试样选择摆锤。 ③ 调节能量度盘指针零点,测定摩擦损失和修正吸收的能量。 ④ 抬起并锁住摆锤,试样放置,对中。 ⑤ 平稳释放摆锤,从度盘上读取试样吸收的冲击能量。 ⑥ 试样完全破坏或部分破坏的可以取值。 ⑦ 观察、报告。不同破坏类型的结果不能进行比较。 ⑧所有计算结果的平均值取两位有效数字,每组试验至少包括10
高分子材料测试
高分子材料测试高分子材料是一类具有特殊结构和性能的材料,广泛应用于塑料、橡胶、纤维等领域。
在实际应用中,为了保证高分子材料的质量和性能,需要进行各种测试。
本文将介绍高分子材料测试的相关内容,包括测试方法、测试项目和测试标准等。
首先,高分子材料的测试方法主要包括物理性能测试、化学性能测试和机械性能测试。
物理性能测试包括密度测试、熔融指数测试、热变形温度测试等,用于评估材料的物理性能。
化学性能测试包括耐候性测试、耐热性测试、耐腐蚀性测试等,用于评估材料的化学稳定性。
机械性能测试包括拉伸性能测试、弯曲性能测试、冲击性能测试等,用于评估材料的机械性能。
其次,高分子材料的测试项目主要包括外观质量、尺寸精度、力学性能、热学性能、电学性能、光学性能等。
外观质量测试主要包括表面光泽、色泽一致性、无色差等项目。
尺寸精度测试主要包括尺寸精度、壁厚一致性、尺寸稳定性等项目。
力学性能测试主要包括拉伸强度、弯曲强度、冲击强度等项目。
热学性能测试主要包括热变形温度、热膨胀系数、热传导率等项目。
电学性能测试主要包括介电常数、介电损耗、体积电阻率等项目。
光学性能测试主要包括透光率、发光性能、折射率等项目。
最后,高分子材料的测试标准主要包括国际标准、行业标准和企业标准。
国际标准主要由ISO、ASTM等国际标准化组织发布,适用于全球范围内的高分子材料测试。
行业标准主要由相关行业协会或组织发布,适用于特定行业的高分子材料测试。
企业标准主要由企业自行制定,适用于企业内部的高分子材料测试。
综上所述,高分子材料测试是保证高分子材料质量和性能的重要手段,通过各种测试方法、测试项目和测试标准,可以全面评估高分子材料的质量和性能,为高分子材料的应用提供可靠的保障。
希望本文对高分子材料测试有所帮助,谢谢阅读。
高分子材料测试方法
高分子材料测试方法一、引言高分子材料是指由重复结构单元组成的大分子化合物,具有广泛的应用领域。
为了确保高分子材料的质量和性能,需要进行各种测试方法的研究和开发。
本文将介绍一些常用的高分子材料测试方法。
二、物理性能测试1.密度测试密度是衡量高分子材料物理性能的重要指标之一。
通常使用比重计或密度计进行测量。
2.硬度测试硬度是指材料抵抗划伤或压缩变形的能力。
常用的硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。
3.拉伸强度测试拉伸强度是指在拉伸过程中材料最大承受力。
该测试可通过万能试验机进行,通常以断裂点为结束点。
4.冲击韧性测试冲击韧性是指材料在受到冲击时不断裂或破碎的能力。
该测试可通过冲击试验机进行,通常以断裂点为结束点。
三、热学性能测试1.热膨胀系数测试热膨胀系数是指材料在温度变化时长度或体积的变化率。
该测试可通过热膨胀系数仪进行。
2.热导率测试热导率是指材料传递热量的能力。
该测试可通过热导率仪进行。
3.玻璃化转变温度测试玻璃化转变温度是指材料从固体状态转变为胶态状态的温度。
该测试可通过差示扫描量热仪进行。
4.分解温度测试分解温度是指材料在高温下开始分解的温度。
该测试可通过热重分析仪进行。
四、光学性能测试1.透明度测试透明度是指光线穿过材料时的能力。
该测试可通过透射光谱仪或反射光谱仪进行。
2.折射率测试折射率是指光线经过材料时偏离原来方向的程度。
该测试可通过折射计进行。
3.吸收系数测试吸收系数是指材料吸收光线的程度,通常使用紫外-可见吸收光谱法测定。
五、电学性能测试1.电阻率和电导率测试电阻率和电导率是衡量材料导电性能的指标。
该测试可通过四探针法或两探针法进行。
2.介电常数和介质损耗测试介电常数和介质损耗是指材料在电场作用下的响应能力。
该测试可通过介电恒定仪进行。
3.击穿强度测试击穿强度是指材料在电场作用下发生击穿的最大电场强度。
该测试可通过高压击穿试验机进行。
六、总结以上是一些常用的高分子材料测试方法,不同的测试方法可以衡量不同的物理、化学和机械性能。
PP冲击强度的测试项目报告
• 2、d–缺—第口—四试试级样样简厚支度梁,冲m击m。强度 (kJ/m2) » 第五级
式中
(Ⅱ-7-2) Ak ——缺口试样吸收的冲击能量,J; b ——试样宽度,mm;
——缺口试样缺口处剩余厚度,mm。
LOGO
2024/4/2单击此处来自数辑据母处理版标题样式 16单击此处编目录辑母Cont版ents标题样式
• 单击此处编辑母版文本样式
–实第验目二的级
实验仪器
实验步骤
数据
及原• 理第三级 及样品
处理
– 第四级
» 第五级
LOGO
2024/4/2
实验目的及原理
冲击性能试验 冲击性能试验是在冲击负荷作用下测定材料的冲击强 度。 用来衡量高分子材料在经受高速冲击状态下的韧性或 对断裂的抵抗能力,因此冲击强度也称冲击韧性。 一般的冲击试验可分为以下三种:
图Ⅱ-7-3 C型缺口试样
8
实验仪器及试样 2、试样制备 • ①模塑料或挤出料 • ②板材 板材试样是将板材进行机械加工制备。 • ③层压材料 层压材料应在使冲击方向垂直于层压方 向(板面方向)和平行于层压方向(板边方向)上各切取 一组试样。
9
实验仪器及样品
3、仪器、设备
• ①实验机 实验机应为摆锤式,并由摆锤、试样支座、能量指示机构 和机体等主要构件组成。能指示试样破坏过程中所吸收的冲击能量.
• 第三级
– 第四级
» 第五级
LOGO
2024/4/2
单击此处编实验辑仪器母及样版品标题样式 12
• 单击此处编辑母版文本样式
– 第二级
• 第三级
– 第四级 » 第五级
LOGO
2024/4/2
高分子材料性能测试方法-力学性能
高分子材料性能测试方法3 高分子材料的力学性能3.1 拉伸性能323.2 弯曲性能3.3 压缩性能3.4 冲击性能343.5 剪切性能3.6蠕变和应力松弛363.7 硬度3.8 撕裂性能383.7硬度测试定义硬度的定义:指材料抵抗其它较硬物体压入其表面的能力。
硬度值的大小是表示材料软硬程度有条件性的定量反能力硬度值的大小是表示材料软硬程度有条件性的定量反映,本身不是一个单纯的确定的物理量,而是由材料弹性、塑性、韧性等一系列力学性能组成的综合指标.不仅取决于材料,也取决于测量条件和方法3.73.7.1测量方法分类布氏硬度测试(1)测定材料耐(球形或其它形状)顶针压入能力:布氏(Brinell)、维氏(Vickers)、努普(Knoop)、巴科尔(Barcol)、邵氏(Shore)、球压痕硬度;(2)测定材料对尖头或另一种材料的抗划痕性:比尔鲍姆测定材料对尖头或另种材料抗痕性尔姆(Bierbaum)硬度、莫氏(Mohs)硬度;(3)测定材料的回弹性:洛氏(Rockwell)硬度、邵氏反弹硬度硬度测试3.73.7.2邵氏硬度测量原理:邵氏硬度是将规定形状压针在标准弹簧压力作用下压入试样,把压入深度转换为硬度值来表示。
有100个分度,表示不同的硬度,可以直接从邵氏硬度计上读取。
国标中应用两种:A型适用于软质塑料和橡胶;D型适用于硬质塑料和橡胶。
*当A型测定读数大于90应改用D型,D型测定读数小于20时,改用A型。
3.7硬度测试373.7.2邵氏硬度3.7硬度测试2. 试样尺寸:A 型硬度:试样厚度不小于5mm ;D 型硬度:厚度不小于3mm试样允许用两层,最多不超过三层叠合成所需厚度,试样允许用两层最多不超层合成所需厚度保证各层间接触良好。
试样大小应保证每个测量点与试样边缘距离不小于12 mm ,各测量点间距不小于6mm 。
373.7.2邵氏硬度3.7硬度测试3.仪器:压力:邵氏A 为1kg邵氏D 为5 kg压头:D 型硬度计相较A 型硬度计的压针更加尖锐3.7硬度测试3.7.2邵氏硬度4. 实验步骤A 按规定调节试验环境。
高分子材料典型力学性能测试实验
《高分子材料典型力学性能测试实验》实验报告实验序号:实验项目名称:机械性能测试学号姓名专业班级实验地点指导教师实验时间在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲击试验作为介绍。
实验一:高分子材料拉伸实验一、实验目的(1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测试条件对测定结果的影响。
(2)通过应力—应变曲线,判断不同高分子材料的性能特征。
二、实验原理在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的两端沿轴向施加载荷直至拉断为止。
拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。
实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。
玻璃态聚合物在拉伸时典型的应力-应变曲线如下:1)弹性形变。
在Y 点之前,应力随应变正比增加,从直线斜率可以求出氏模量E。
从分子机理看,这阶段的普弹性行为主要是由高分子的键角、键长变化引起。
2)屈服。
应力在Y 点达到极大值,这点称为屈服点,其应力称为屈服应力。
3)强迫高弹形变(大形变):过了Y 点应力反而降低。
这是由于在大的外力帮助下,玻璃态聚合物本来被冻结的链段开始运动,高分子链的伸展提供了材料的大的形变。
运动本质与橡胶的高弹态一样,只不过是在外力作用下发生的,为了与普通高弹形变区分,通常称为强迫高弹形变。
这一阶段加热可恢复。
4)应变硬化。
继续拉伸,分子链取向排列,使硬度提高,需更大的力才能形变。
5)断裂。
达到B 点时,材料断裂,断裂对应的应力B 即抗强度;断裂时的应变又称为断裂伸长率。
直至断裂,整条曲线所包围的面积S 相当于断裂功。
结晶态聚合物拉伸时的应力-应变曲线,也同样经历了五个阶段,除了模量和屈服应力较大外,其主要特点是细颈化和冷拉。
所谓细颈化是指试样在一处或几处薄弱环节首先变细,此后细颈部分逐渐缩短,直至整个试样变细为止。
由于是在较低温度下出现的不均匀拉伸,所以又称为冷拉。
将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力—应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。
医用高分子材料的检测项目有哪些?有哪些标准?
医⽤⾼分⼦材料的检测项⽬有哪些?有哪些标准?医⽤⾼分⼦是⽬前来说科技发展进步的产物,它是能够制造⼈体内脏、体外器官、药物剂型的聚合材料。
包括天然⽣物⾼分⼦和合成⽣物⾼分⼦材料。
关于医⽤⾼分⼦材料的检测项⽬也有很多,下⾯就位⼤家介绍⼀下。
检测周期:最快5个⼯作⽇。
检测标准:YY/T等。
医⽤⾼分⼦材料检测内容介绍:根据医⽤⾼分⼦检测的种类,检测的项⽬有:甲壳素检测、胶原蛋⽩检测、聚乳酸检测等服务。
根据医⽤⾼分⼦材料检测项⽬,提供包括:⼒学性能测试、热学性能测试、电学性能测试、光学性能测试、物理性能测试、助燃(防⽕)性能测试、耐化学性能测试、材料分析等全⾯的医⽤⾼分⼦材料检测服务。
医⽤⾼分⼦材料检测种类:医⽤⾼分⼦材料甲壳素检测:⼏丁质、聚⼄酰氨基葡糖、壳多糖、甲壳提取物、明⾓质、壳蛋⽩、壳多糖、聚⼄酰氨基葡糖、Β-1、4-聚N-⼄酰-D-葡萄糖胺等。
医⽤⾼分⼦材料胶原蛋⽩检测:纤维胶原、基底膜胶原、微纤维胶原、锚定胶原、六⾓⽹状胶原、⾮纤维胶原、跨膜胶原、间质胶原、基底膜胶原、细胞周围胶原等。
医⽤⾼分⼦材料聚乳酸检测:聚⼄醇酸、左旋聚乳酸、外销聚乳酸、右旋聚乳酸等。
医⽤⾼分⼦材料检测项⽬:⼒学性能测试拉伸强度及伸长率、拉伸弹性模量、弯曲强度、弯曲弹性模量、压缩强度、悬臂梁冲击强度、简⽀梁冲击强度、剪切强度、撕裂强度、剥离强度、戳穿性能、邵⽒硬度、洛⽒硬度、球压痕硬度、落锤冲击、耐环境应⼒开裂。
热学性能测试熔点、氧化诱导时间、熔体流动速率、热变形温度、维卡软化温度、线膨胀系数。
电学性能测试击穿电压强度、介电常数、介质损耗因数、体积电阻率、表⾯电阻率。
光学性能测试黄⾊指数、透光率、雾度、⽩度、光泽度。
物理性能测试密度、吸⽔性、⽔蒸⽓透过度、氧⽓透过性、交联度、冲击脆化温度、耐热应⼒开裂、灼烧残余(灰分)、炭⿊分散度、导热系数。
助燃(防⽕)性能测试氧指数、垂直燃烧、⽔平燃烧、烟密度。
耐化学性能测试耐酸、碱、盐溶液、耐丙酮、耐⼆氯甲烷等溶液、耐污染实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 高分子材料冲击性能测试
(一) 实验目的
1. 了解塑料冲击性能的测定方法 2. 掌握冲击性能测试的样品制备 3. 掌握塑料简支梁冲击试验方法理和基本结构。
(二)实验原理
本方法的原理是将试样安放在简支梁冲击机的规定位置上,然后利用摆锤自由落下,对试样 施加冲击弯曲负荷、使试样破裂。用试样单位截面积所消耗的冲击功来评价材料的耐冲击韧 性。图 1所示为摆锤式简支梁冲击试验机的工作原理。
图 1摆锤式简支梁冲击试验机的工作原理
(三)实验仪器及试祥
1.实验仪器 以国产 XJJ— 5摆锤式简支梁冲击机为例。 该机主要技术参数符台 GB1043— 93和 ISO179— 1982标准的要求。
1
高分子物理实验
图 2 摆锤式简支梁冲击实验仪机体结构
机体结构及性能见图 2 ,本试验机由机体、试样安放架、冲击锤、操纵机构及读数装 置等五个部分组成。
ak一一试样缺口处剩余厚度尺寸, mm
b——试样的宽度尺寸, mm
(六)实验报告或实验记录的内容
试验温度: 试验湿度:
试样
截面尺寸
长 a(mm)
宽 厚
b(mm) b(mm)
摆锤预 扬角实 测值α
摆锤空击 厚的升角
α'
试样断裂后摆锤的升角 摆锤力
β
距 FL
PP 板材
记录实验数据,并计算 E,最终算出冲击强度,取平均值。
(五)实验结果与数据处理
1.无缺口试样简支粱冲击强度 σ n(KJ/ m2)由下式求得:
式中 E一一试样吸收的冲击能, J
4
高分子物理实验
a——试样的厚度尺寸, mm b一一试样的宽度尺寸, mm 2.缺口试样简文梁冲击强度 α k(KJ/ m2)由下式求得:
式中 E一一缺口试样吸收的冲击能, J
③冲击锤 —— 由摆轴 8 、上连接套 12 、摆杆 13 、调整套 14 、摆体 15 、冲击 刀刃 16 等件组成。该机共有四种能量摆锤供选用,其冲击储能分别为 1 、 2J 、 4 、 5J。
④操纵机构 —— 由手柄 9 、挂钩 10 等件组成。当冲击摆扬起所需角度 (150 ° ) 时, 挂钩将摆上的调整套钩住。搬动手柄时,挂钩脱开,冲击摆自由落下,对试样进行冲击试验。
3
高分子物理实验
式中 FL——摆锤力距, N m α——摆锤预扬角实测值 (° ) α '——摆锤空击后的升角 (° ) β——试样断裂后摆锤的升角 (° )
图 3摆锤式冲击试验工作示意图 ①为了计算方便,该仪器这一档的修正值已制成表格。试验时,只需从度盘上读取试样 断裂后的数值,就可以从能量损失修正表中查修正后的能量值E。 ②当摆锤冲击能量大于 4J 时,能量值E从读数盘上直接读取。
(七)实验注意事项
• 因试验机的安装正确与否直接影响其精度,因此,实验前对仪器的状态要进行检查, 观察水泥台是否坚固,机座水平度是否到位,地脚螺钉有没有拧紧,发现问题及时纠正。
• 对注射成型试样,有的可能由于冷却或定型处理不当而有轻微收缩或变形,测量尺 寸时特别要注意试详边缘相中间之差异,误差超过规定范围的必须剔除。
• 试验机上被动指针压紧钢珠的松紧程度影响着指示能量消耗的准确性,试验前要调 整适当,以免位能量损失超值。
5
高分子物理实验
(八 )思考题
成形温度对制品冲击性能的影响 ? 材料中有异物和气孔会如何影响冲击性能? 如何调整仪器处于良好状态,减少试验结果的误差。
6
2
高分子物理实验
(四)实验步骤
1. 按 GBl039— 92规定调节试验环境并处理试样。 2. 测量试样尺寸。试验前对每个试样的尺寸要进行仔细测量,带缺口的试样要测量缺
口处的剩余厚度,准确至 0.05mm,每个试样的宽度、厚度尺寸各测量三点,取其 算术平均值,每三个试样为一组。 3. 根据试样的抗冲击韧性,选用适当的能量摆锤,所选的摆捶应使试样断裂所消耗的 能量在摆锤总储量的 10%一 80%范围内。 4. 安装冲击摆杆并调整好指针 (如图 1)。安装好摆锤后,为使冲击后指针能正确指 示,应使摆锤处于铅垂位置,检查指针被动针 5是否与主动针 6靠紧,被动针所 指示的位置是否于最大能量处。如不重合则需松开紧固螺母 7,将被动指针指在最 大能量处,然后将螺母 7拧紧。 5. 空击试验。托起冲击摆,使其固定在 150°扬角位置,调整被动指针与主动指针重 合,搬动手柄,让冲击摆自由落下,此时,被动指针应被拨到“零”位置,若超过 误差范围,则应调整机件间的摩擦力,一直至指针示值在误差范围之内。 6. 根据试样规格,调整活动支座 3间的距离 (如图 1),可使用机中配套的对中板 来调整,其方法是:松开紧固螺针 2,将对中样板放在两活动支座的平面上,使对 中样板的两侧面与支承刀刃相接触,摆锤冲击刀刃对准样板中心的 V型缺口,保证 上述条件到位后拧紧螺钉 2、通过固定座 1将活动支座 3固定在正确位置上。该 机对中样板跨度的规格有四种,分别为: 40mm、 60mm、 70mm和 95mm。 7. 放置试样。试样应放置在两活动支座的上平面上,其测面与支撑承刀刃靠紧,测试 带有缺口的试样,把冲锤放下,让冲击刀刃对正缺口的背面,再把冲锤回复到扬角 位置挂住。 8. 冲击试验。完成上述准备工作后,便可以进行正式冲击试验。首先检查冲击摆是否 处于所需的扬角位置,调整好废盘上的被动指针与主动指针互相接触。然后搬动手 柄 9,摆锤即自由落下,冲断试样。当摆锤在空中瞬时静止时应及时接住,使其止 动并读取度盘上被动指针的指示数值。 9. 能量损失的修正。当摆锤最大冲击能量小于或等于 4J时,能量损失除达到有关标 准要求的规定外,还必须进行修正。修正后的能量值 (即试样断裂所吸收的能量 ) 按下式计算:
①机体部分 —— 包括机体、操纵机构、测量机构、摆轴和试样安放架组成,为确保安 装平稳、准确,在机体上面设有水准泡 17 ,方便调试。
②试样安放架 —— 由固定支座 1 、紧固螺钉 2 、活动试样支座 3 、支承刀刃 4 组 成。试验前,应调整好活动试样支座间的距离,将试样紧靠在支座刀刃的支承面上。