高中数学三角函数诱导公式练习题与答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学三角函数诱导公式练习题与答案

The Standardization Office was revised on the afternoon of December 13, 2020

三角函数定义及诱导公式练习题

1.代数式sin120cos210的值为( ) A.34-

C.32-

D.1

4

2.tan120︒=( )

A

.3 B

.3- C

3.已知角α的终边经过点(3a ,-4a)(a<0),则sin α+cos α等于( ) A.51 B.57 C .51

- D .-57

4.已知扇形的面积为2cm 2,扇形圆心角θ的弧度数是4,则扇形的周长为(

)

(A)2cm (B)4cm (C)6cm (D)8cm

5.已知3cos()sin()

22()cos()tan()f ππ+α-αα=-π-απ-α,则25

()3f -π的值为( )

A .12

B .-12 C

6.已知3tan()4απ-=,且3(,)22ππ

α∈,则sin()2π

α+=( )

A 、4

5 B 、4

5- C 、3

5 D 、3

5-

7.若角α的终边过点(sin 30,cos30)︒-︒,则sin α=_______.

8.已知(0,)2πα∈,4cos 5α=,则sin()πα-=_____________.

9.已知tan α=3,则224sin 3sin cos 4cos sin cos ααα

ααα+=- .

10.(14分)已知tan α=

12,求证: (1)sin cos sin cos a a a a -3+=-53

; (2)sin 2α+sin αcos α=35

11.已知.2tan =α

(1)求α

αααcos sin cos 2sin 3-+的值; (2)求)cos()sin()3sin()23sin()2cos()cos(αππααππααπ

απ+-+-+-的值; (3)若α是第三象限角,求αcos 的值.

12.已知sin (α-3π)=2cos (α-4π),求52322sin cos sin sin παπαπαα⎛⎫ ⎪⎝⎭

(-)+(-)--(-)的值.

参考答案

1.B

【解析】

试题分析:180o π=,故21203

o π=. 考点:弧度制与角度的相互转化.

2.A.

【解析】

试题分析:由诱导公式以可得,sin120°cos210°=sin60°×(-cos30°×

=34-,选A. 考点:诱导公式的应用.

3.C

【解析】

试题分析:本题主要考查三角诱导公式及特殊角的三角函数值.由

tan120tan(18060)tan 60︒=︒-︒=-︒= C.

考点:诱导公式.

4.A

【解析】 试题分析:σσ55-==r ,53cos ,54sin -===

σσr y ,5

1cos sin =+∴σσ.故选A. 考点:三角函数的定义

5.C

【解析】设扇形的半径为R,则R 2θ=2,∴R 2

=1⇒R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).

6.C

【解析】设扇形的圆心角为α,弧长为l cm,由题意知,260l R += ∴211(602)3022

S lR R R R R ==-=-2(15)225R =--+ ∴当15R cm =时,扇形的面积最大;这个最大值为2225cm . 应选C.

7.A

【解析】

试题分析: ()()

()sin cos cos cos tan f αααααα--==--,

25()3f -π=25cos 3π⎛⎫- ⎪⎝⎭=25cos 3π=cos 83ππ⎛⎫+ ⎪⎝⎭=cos 3π=12. 考点:诱导公式.

8.B

【解析】 试题分析:3tan()4απ-=

3tan 4α⇒=.又因为3(,)22

ππα∈,所以α为三象限的角,4sin()cos 25παα+==-.选B. 考点:三角函数的基本计算.

9.32

- 【解析】

试题分析:点(sin 30,cos30)︒-︒

即1(,22

-

,该点到原点的距离为1r ==

,依题意,根据任意角的三角函数的定义可知2sin 12

y r α===-. 考点:任意角的三角函数.

10.四

【解析】由题意,得tan α<0且cos α>0,所以角α的终边在第四象限.

11.四

【解析】由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的非正半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.

12.-3 【解析】sin()sin()23cos()cos()2

π

πααπαπα+-+++-sin cos tan 1213sin cos tan 121αααααα------====---- 13.35 【解析】

试题分析:因为α是锐角

所以sin(π-α)=sin α

35

考点:同角三角函数关系,诱导公式.

14.2-

【解析】

相关文档
最新文档