恒成立问题——数形结合法
有关恒成立问题的解题策略与技巧
有关恒成立问题的解题策略与技巧作者:黄翠萍来源:《中学生数理化·教与学》2015年第03期近年来,恒成立问题频繁出现在高考数学试题中,主要涉及求参变量的范围问题,考查函数、不等式、数列、导数、圆锥曲线等知识,让试题的深度与广度得到加深,并渗透着换元、化归、数形结合、函数与方程等思想与方法,能够考查学生的综合解题能力.因此,在高中数学学习过程中,学生要注重对这类题目的解题技巧的总结,通过反复练习,达到融会贯通的目的.教师要给予学生正确指导,帮助学生提高解决恒成立问题的能力.一、函数最值法函数最值法是学生比较常用的一种解题方法,适用于恒成立的相关题目.在教学过程中,教师要让学生根据题意,利用函数最值法来解决实际问题.这种方法简单省时.点评:在运用函数最值法解决恒成立问题时,要注重对题目进行变形处理.二、分离参数法在遇到含参数的不等式题目时,要将含参数的不等式进行变形,把参数分离出来,将不等式变形为一端只含参数的解析式,这种方法十分便捷有效,有利于学生快速解决问题.例2已知2a-3b=1,证明直线ax+by=5恒过定点.解:由2a-3b=1,得a=12(3b+1),带入直线方程后分离参数b,得(x-10)+b(3x+2y)=0;由方程x-10=0,3x+2y=0可得,x=10,y=-15;所以(x-10)+b(3x+2y)=0表示经过两直线x-10=0和3x+2y=0的交点(10,-15)的直线系方程.因此,当2a-3b=1时直线ax+by=5恒过定点(10,-15).点评:分离参数法主要是将参数单独放在一端,另一端则为不含参数的函数,然后将其转化为函数最值问题进行处理.这样,就能将复杂的恒成立问题简单化,教师应该向学生加强这方面的指导,让学生能够用分离参数法解决高中数学中的恒成立问题.三、数形结合法运用数形结合法也可以解决恒成立问题.首先要构造函数,作出满足已知条件的函数图形,然后找出函数与函数图形在各区间上的关系,最后得出结论,求得参数范围.点评:在这道恒成立题目中,如果直接进行求解是很困难的,但是在构造函数后,利用函数图形来分析两个函数间的关系,这样就非常直观,也便于得出最后答案.另外,学生通过观察构造的函数,能够全面掌握各函数图形代表的含义,这样学生就能加深对已知条件的理解,今后在遇到类似的题目时,也能轻易解决.总之,高中数学恒成立题型很多,解法也很多,在实际的解题过程中,要充分了解给定函数的特点和性质,具体问题具体分析,选择最恰当的解题方法,尽量将问题等价转化,这样就能很轻松的解决问题.教师要注重对学生进行这方面的指导,让学生在面对恒成立问题时,能够运用有效的方法解决难题.。
高中数学恒成立问题
高中数学不等式的恒成立问题不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点. 考题通常有两种设计方式:一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取值范围.解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。
一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.解:由移项得:.不等式左侧与二次函数非常相似,于是我们可以设则不等式对满足的一切实数恒成立对恒成立.当时,即解得故的取值范围是.注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x为参数,以为变量,令则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。
二、分离参数法在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数.(Ⅰ)若对(Ⅰ)中的任意实数都有在上恒成立,求实数的取值范围.解:由题意知,函数在区间上是减函数.在上恒成立注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则.三、数形结合法如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、图形的位置关系建立不等式求得参数范围.例 3 已知函数若不等式恒成立,则实数的取值范围是 .解:在同一个平面直角坐标系中分别作出函数及的图象,由于不等式恒成立,所以函数的图象应总在函数的图象下方,因此,当时,所以故的取值范围是注:解决不等式问题经常要结合函数的图象,根据不等式中量的特点,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.如:不等式,在时恒成立,求的取值范围.此不等式为超越不等式,求解时一般使用数形结合法,设然后在同一坐标系下准确做出这两个函数的图象,借助图象观察便可求解.四、最值法当不等式一边的函数(或代数式)的最值较易求出时,可直接求出这个最值(最值可能含有参数),然后建立关于参数的不等式求解.例4 已知函数(Ⅰ)当时,求的单调区间;(Ⅱ)若时,不等式恒成立,求实数的取值范围.解(Ⅱ)当时,不等式即恒成立.由于,,亦即,所以.令,则,由得.且当时,;当时,,即在上单调递增,在上单调递减,所以在处取得极大值,也就是函数在定义域上的最大值.因此要使恒成立,需要,所以的取值范围为.例5 对于任意实数x,不等式│x+1│+│x-2│>a恒成立,求实数a的取值范围.分析①:把左边看作x的函数关系,就可利用函数最值求解.解法1:设f(x)=│x+1│+│x-2│=-2x+1,(x≤1)3,(-1<x≤2)2x-1,(x>2)∴f(x)min=3.∴a<3.分析②:利用绝对值不等式│a│-│b│<│a±b│<│a│+│b│求解f(x)=│x+1│+│x-2│的最小值.解法2:设f(x)=│x+1│+│x-2│,∵│x+1│+│x-2│≥│(x+1)-(x-2)│=3,∴f(x)min=3. ∴a<3.分析③:利用绝对值的几何意义求解.解法3:设x、-1、2在数轴上的对应点分别是P、A、B,则│x+1│+│x-2│=│PA│+│PB│,当点P在线段AB上时,│PA│+│PB│=│AB│=3,当点P不在线段AB上时,│PA│+│PB│>3,因此不论点P在何处,总有│PA│+│PB│≥3,而当a<3时,│PA│+│PB│>a恒成立,即对任意实数x,不等式│x+1│+│x-2│>a 恒成立.∴实数a的取值范围为(-∞,3).小结求“恒成立问题”中参数范围,利用函数最值方便自然,利用二次不等式恒为正(负)的充要条件要分情况讨论,利用图象法直观形象.综上,恒成立问题多与参数的取值范围问题联系在一起,是近几年高考的一个热门题型,它以“参数处理”为主要特征,以“导数”为主要解题工具.往往与函数的单调性、极值、最值等有关,所以解题时要善于将这类问题与函数最值联系起来,通过函数最值求解相关问题.不等式恒成立问题,因题目涉及知识面广,解题方法灵活多样,技巧性强,难度大等特点,要求有较强的思维灵活性和创造性、较高的解题能力,上述方法是比较常用的,但因为问题形式千变万化,考题亦常考常新,因此在备考的各个阶段都应渗透恒成立问题的教与学,在平时的训练中不断领悟和总结,教师也要介入心理辅导和思想方法指导,从而促使学生在解决此类问题的能力上得到改善和提高.。
高中数学 恒成立汇总方法-教师版
恒成立问题——参变分离法一、基础知识:1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式。
然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。
3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。
但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。
例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。
(可参见”恒成立问题——最值分析法“中的相关题目)4、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。
则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了。
(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可。
例1:已知函数()x x f x e ae -=-,若'()f x ≥恒成立,则实数a 的取值范围是_______思路:首先转化不等式,'()x xf x e ae -=+,即x xa e e +≥a 与xe便于分离,考虑利用参变分离法,使,a x 分居不等式两侧,()2x x a e ≥-+,若不等式恒成立,只需()()2maxx xa e≥-+,令()()(223x xxg x ee =-+=-+(解析式可看做关于x e 的二次函数,故配方求最值)()max 3g x =,所以3a ≥ 答案:3a ≥例2:已知函数()ln a f x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________思路:恒成立的不等式为2ln ax x x-<,便于参数分离,所以考虑尝试参变分离法 解:233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =-'2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函数的单调性可分析,为了便于确定()'gx 的符号,不妨先验边界值)()'12g =-,()2''11660x g x x x x-=-=<,(判断单调性时一定要先看定义域,有可能会简化判断的过程) ()'gx ∴在()1,+∞单调递减,()()''10()g x g g x ∴<<⇒在()1,+∞单调递减()()11g x g ∴<=- 1a ∴≥- 答案:1a ≥-小炼有话说:求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号。
不等式恒成立问题解题方法汇总(含答案)
不等式恒成立问题解题方法汇总(含答案)不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.例7.若不等式对于恒成立,求的取值范围.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.例10.关于的不等式在上恒成立,求实数的取值范围.答案部分1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设,则.由(I)知,,即;于是,,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3).例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
数学中恒成立与有解问题
数学中的恒成立与有解问题一、恒成立问题若不等式 f x A 在区间 D 上恒成立 , 则等价于在区间 D 上 f x若不等式 f xB 在区间 D 上恒成立 , 则等价于在区间D 上 f x minmaxAB常用方法1、分别变量法;2、数形结合法;3、利用函数的性质;4、改正主元等;1、由二次函数的性质求参数的取值范围例题 1. 若关于 x 的不等式 ax 22x2 0 在 R 上恒成立 , 求实数 a 的取值范围 .解题思路 :结合二次函数的图象求解解析:当 a0 时 , 不等式 2x2 0 解集不为 R , 故 a 0 不满足题意 ;当 a0 时 , 要使原不等式解集为a 0, 解得a1R , 只要4 2a 0 222综上 , 所求实数 a 的取值范围为 ( 1,)22、转变成二次函数的最值求参数的取值范围例题 2:已知二次函数满足 f (0) 1,而且 f ( x 1) f ( x) 2x ,请解决以下问题( 1) 求二次函数的解析式。
,求 m 的取值范围。
( 2) 若 f (x) 2x m 在区间 [ 1,1] 上恒成立解题思路 :先分别系数 , 再由二次函数最值确定取值范围.解析: (1)设 f ( x)ax 2 bx c(a 0) .由 f (0)1 得 c 1,故 f ( x) ax2 bx 1.∵ f ( x 1) f ( x)2x ∴ a( x1)2 b( x 1)1 (ax2 bx 1) 2x即 2axa b 2x ,因此 2a 2, a b 0 ,解得 a 1,b1 ∴ f ( x)x 2x 1(2)由 (1) 知 x 2x 12x m 在 [ 1,1]恒成立 ,即 m x 2 3x 1 在 [ 1,1] 恒成立 .令 g( x)x 23x 1 (x 3)2 5 , 则 g(x) 在 [ 1,1] 上单调递减 . 因此 g(x) 在 [ 1,1] 上的最小值为g(1)1 .2 ( 4 , 1) .m 的取值范围是因此 规律总结 :m f (x) 对所有 x R 恒成立 , 则 m [ f (x)]min ; m f ( x) 对所有 x R 恒成立 , 则 m [ f (x)]max ;注意参数的端点值能否取到需检验。
不等式 恒成立问题
由题意得,对于 恒成立 对于 恒成立,令 ,设 ,则 ,
, , k的取值范围是k> .
解:令 , 所以原不等式可化为: ,
要使上式在 上恒成立,只须求出 在 上的最小值即可。
注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。
四、变换主元法
处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量实行“换位”思考,往往会使问题降次、简化。
例4.对任意 ,不等式 恒成立,求 的取值范围。
1) 函数 图象恒在函数 图象上方;
2) 函数 图象恒在函数 图象下上方。
例5:已知 ,求实数a的取值范围。
解析:由 ,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由 得到a分别等于2和0.5,并作出函数 的图象,所以,要想使函数 在区间 中恒成立,只须 在区间 对应的图象在 在区间 对应图象的上面即可。当 才能保证,而 才能够,所以 。
3.设 ,当 时, 恒成立,求实数 的取值范围。
解:设 ,则当 时, 恒成立
当 时, 显然成立;
当 时,如图, 恒成立的充要条件为:
解得 。
综上可得实数 的取值范围为 。
4:在 ABC中,已知 恒成立,求实数m的范围。
解析:由
, , 恒成立, ,即 恒成立,
5、若不等式 对满足 的所有 都成立,求 的取值范围。
解:设 ,对满足 的 , 恒成立,
解得:
6、若不等式 在 内恒成立,求实数 的取值范围。
解:由题意知: 在 内恒成立,
在同一坐标系内,分别作出函数 和
观察两函数图象,当 时,若 函数 的图象显然在函数 图象的下方,所以不成立;
破解含参不等式恒成立的5种常用方法
破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。
对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。
一 分离参数法分离参数法是解决含问题的基本思想之一。
对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。
例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。
分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。
解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。
)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。
于是工的取值范围为43-≥a 。
【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。
如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。
解这类问题时一定要注意区间的端点值。
二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。
恒成立问题——参变分离法、数形结合法
二 典型例题
【例 1】已知函数 f x ex aex ,若 f ' (x) 2 3 恒成立,则实数 a 的取值范围是_______。
思路:
首先转化不等式,
f
'(x) ex
aex ,即 ex
a ex
2
3 恒成立,观察不等式 a 与 ex 便于分
离,考虑利用参变分离法。
解:利用参变分离法,使 a, x 分居不等式两侧, a ex 2 2 3ex ,若不等式恒成立,
f
x1
g x2 恒成立,则只需
f
x1
g x min
。可求出
g
x
min
0
,进而问题转化
为 x1 0, , ax12 2a 1 x1 ln x1 0 恒成立,此不等式不便于利用参变分离求。
解: f x1 g x2 恒成立
只需
f
x1
g
x
min
由 g x ex x 1得: g' x ex 1,令 g' x 0 解得: x 0
,对任意
x1, x2 0,
,不等式
g x1 f x2 恒成立,则正数 k 的取值范围是______________。
k k 1
解:先将
k
放置不等号一侧,可得
g
x1
kf x2
k 1
,所以
kf x2
k 1
g
x1 max
,先求出
g x 的最大值, g' x e2 1 x ex ,可得 g x 在 0,1 单调递增,在 1, 单调递
2ax
x
3 4
2ax 3x2
x
3 4
不等式恒成立问题的解法PPT
故 (*)式成立的充要条件为: b-1≤a≤b+1
(2)当| m | ≤2,(*)式恒成立,求实数x的取值范围 .
解:(1)当1-m=0即m=1时, (*)式恒成立, 故m=1适合(*) ;
当1-m>0时,即m<1 ,(*)式在x [-2,2]时恒成立的充
要条件为: △=(m-1)2-12(I-m)<0 解,得: -11<m<1;
当1-m<0时,即m>1, (*)式在x [-2,2]时恒成立的充
1
一、方法引入:
1.数形结合法 : (1)若f(x)=ax+b,x ∈[α,β],
则:
f()>0
f(x)>0恒成立 f()>0
f(x)<0恒成立 y
f()<0 f()<0
α
o
βx
2
(2)ax2+bx+c>0在R上恒成立的充要条件是:
a=b=0 或 a>0 C>0_________Δ_=_b_2_-_4_a_c__<_0___。
≤a
≤
1 x
+bx
∵ x ∈(0,1], b>1
∴
bx+
1 x
≥
2
b (x=
1时取等号
b
)
又
bx
-
1 x
在(0,1]上递增
∴ ( bx- 1x)max=b-1 (x=1时取得 )
故 x ∈(0,1]时原式恒成立的充要条件为:
又 x=0时,|f(x)|≤1恒成立
∴ x ∈[0,1]时原式恒成立的充要条件为:
_____________;
“恒成立”问题的解法ppt完美课件 通用
图像(直线)可得上述结论等价于
ⅰ)
a f
0 (m)
0
或ⅱ)
a f
0 (n)
0
亦可合并成
f f
(m) 0 (n) 0
.
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(2)恒成立问题与二次函数联系:
类型2:设 f(x)a2x b xc(a0),f (x) 0
在区间 [ , ] 上恒成立问题:
(1)当 a0 时,f(x)0在 x [,]上恒成立
2ba或 2ba或 2ba,
的范围.
解:
f fБайду номын сангаас
(1) 0 (2) 0
∴ m4 3
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(2)恒成立问题与二次函数联系:
类型1:设 f(x)a2x b xc(a0),f (x) 0 在全集 R 上恒成立问题:
(1)f(x)0在 xR上恒成立 a0且 0 (2)f(x)0在 xR上恒成立 a0且 0
1.函函数数性性质质法法
如图所示.同理,若在 [ m , n ] 内恒有 f (x) 0
则有
f f
(m) 0 (n) 0
“恒成立”问题的解法ppt完美课件 通用
“恒成立”问题的解法ppt完美课件 通用
(1)恒成立问题与一次函数联系
【例1】 如果当自变量满足 1x2时,函数
八种解法解决不等式恒成立问题
八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
专题17 恒成立问题-数形结合法(解析版)
专题17 恒成立问题-数形结合法【热点聚焦与扩展】不等式恒成立问题常见处理方法:① 分离参数恒成立(可)或恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.1、函数的不等关系与图象特征:(1)若,均有的图象始终在的下方 (2)若,均有的图象始终在的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图象中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征【经典例题】例1.(2020·济南市历城第二中学高三三模)已知函数1()ln 0x f x x x x ⎧<⎪=⎨⎪>⎩,,,()()g x f x x a =-+,若()g x 恰有3个零点,则实数a 的取值范围是( ) A .1a <- B .0a >C .10a -<<D .1a >【答案】D【解析】由()g x 恰有3个零点,即方程()f x x a =-恰有3个实数根. 即函数()f x 的 图像与y x a =-的图像有三个交点,如图.()a f x ≥()max a f x ≥()a f x ≤()min a f x ≤()y f x =()y g x =()min 0f x ≥()max 0f x ≤x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g xy x a =-与函数()1()0f x x x=<的 图像恒有一个交点,即函数ln y x =与y x a =-有两个交点.设y x a =-与函数ln y x =相切于点()00,x y ,由()1ln x x'=所以011k x ==,得01x =,所以切点为()1,0,此时1a =,切线方程为1y x =- 将1y x =-向下平移可得y x a =-与ln y x =恒有两个交点, 所以1a > 故选:D例2.(2020·河南高三三模)已知函数ln ()x f x a x =-,3(ln )()ln x ax g x x-=,若方程()()f x g x =有2不同的实数解,则实数a 的取值范围是( ) A .(,)e -∞ B .1(0,)eC .(,0)(,)e -∞⋃+∞D .(,)e +∞【答案】B【解析】由()()f x g x =得ln 3(ln )ln x x ax a x x--=,去分母整理得(ln 3)(ln )0x x x ax --=有2不同的实数解,所以ln 30x x -=或ln 0x ax -=,所以ln 3x x =或ln xa x=, 设ln ()(0)x h x x x=>所以21ln ()xh x x -'=,当0x e <<时,()0h x '>,函数()h x 单调递增,当x e >时,()0h x '<,函数()h x 单调递减.所以max 1()()3h x h e e ==<,所以ln 3x x=没有实数解. 所以方程ln xa x=有两个不同的实数解. (1)0h = 当0x →时,()0h x <;当x →+∞时,()0h x >要方程ln x a x =有两个不同的实数解,必须10a e<<.故选:B 例3.(2020·北京市陈经纶中学高三三模)设函数()()1xf x x e =-.若关于x 的不等式()1f x ax <-有且仅有一个整数解,则正数a 的取值范围是( ) A .(]0,e B .(20,e ⎤⎦C .20,2e ⎛⎤⎥⎝⎦D .211,2e ⎛⎤+ ⎥⎝⎦【答案】D 【解析】()()1x f x x e =-,()x f x xe '∴=,所以函数()y f x =的单调递减区间为(),0-∞,单调递增区间为()0,∞+, 则函数()y f x =在0x =处取得极小值,且极小值为()01f =-, 又当1x <时,()()10xf x x e =-<,直线1y ax =-恒过点()0,1-,所以可在同一直角坐标系中作出函数()y f x =与1y ax =-的图象,如图所示,当0a >时,若关于x 的不等式()1f x ax <-有且仅有一个整数解,则()()11221f a f a ⎧<-⎪⎨≥-⎪⎩,即20121a e a <-⎧⎨≥-⎩,解得2112e a +<≤;当0a <时,由于直线1y ax =-与x 轴的负半轴交于点1,0a ⎛⎫⎪⎝⎭, 当1x a<时,关于x 的不等式()1f x ax <-有无数个整数解,不合题意; 综上所述,实数a 的取值范围是211,2e ⎛⎤+ ⎥⎝⎦.故选:D.例4.(2020·浙江省东阳中学高三三模)已知不等式220x x e e kx -+<在[)0,+∞上无解,则实数k 的取值范围是( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,2⎛⎫+∞⎪⎝⎭D .1,2⎛⎫-∞ ⎪⎝⎭【答案】B【解析】满足题意时22x x e e kx -≥-在[)0,+∞上恒成立,令2()(0)xx f x ee x =-≥,则2()2(21)0x x x x f x e e e e =-=->',2()4(41)0x x x xf x e e e e =-=-'>',故函数()f x 在区间[)0,+∞上单调递增,且函数图象下凸,注意到(0)0f =,(0)1f '=,则函数()f x 在0x =处的切线方程为y x =,绘制函数图象及其切线如图所示,满足题意时应有:21k -≤,∴12k ≥-, 综上可得,实数k 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭.故选:B. 例5.(2020·黑龙江哈尔滨·哈师大附中高三三模)若2x =-是函数()()()22xf x x ax ea =+∈R 的极值点,函数()()g x f x m =-恰好有一个零点,则实数m 的取值范围是( )A .()24,,0e ⎛⎫+∞⋃-∞ ⎪⎝⎭ B .{}24,0e ⎛⎫+∞ ⎪⎝⎭C .24,e ⎛⎫+∞ ⎪⎝⎭D .(),0-∞【答案】B 【解析】()()22x f x x ax e =+,该函数的定义域为R ,则()()2222xf x x a x a e '⎡⎤=+++⎣⎦,由于2x =-是函数()()()22xf x x ax ea =+∈R 的极值点,则()2220f ae -'-=-=,解得0a =,()2x e f x x ∴=,则()()2x f x x x e '=+.列表如下:由于函数()()g x f x m =-恰好有一个零点,则直线y m =与函数()y f x =的图象有且只有一个交点,如下图所示:当x →-∞时,()0f x →;当x →+∞时,()f x →+∞. 由图象可知,当0m =或24m e>时,直线y m =与函数()y f x =的图象有且只有一个交点. 综上所述,实数m 的取值范围是{}240,e ⎛⎫+∞ ⎪⎝⎭. 故选:B.例6.(2020·甘肃三模)设函数()f x 是定义在R 上的单调函数,且x R ∀∈,()()1xf f x e e -=+.若函数()()()2g x f x k x =-+有两个零点,则k 的取值范围是( ) A .(),e +∞ B .(]1,e C .()1,+∞D .()0,1【答案】C【解析】由题意可得()xf x e -为常数,设()xf x e t -=,所以()xf x e t =+,则函数()y f x =为增函数,由()1tf t e t e =+=+,解得1t =,故()1x f x e =+,()xf x e '=.函数()y g x =有两个零点等价于函数()y f x =与()2y k x =+的图象有两个不同的交点, 当直线()2y k x =+与曲线()y f x =相切时,设切点()00,P x y ,则0000012x x y e y e x ⎧=+⎪⎨=⎪+⎩,解得00x =,02y =,此时,1k =. 如下图所示:由图象可知,要使得函数()y f x =与()2y k x =+的图象有两个不同的交点,则1k >. 故选:C.例7.(2020·陕西西安中学高三三模)已知函数()22120x x x x f x e x ⎧--+-≤<=⎨≥⎩,,,若函数()()2g x f x ax a =-+存在零点,则实数a 的取值范围为( )A .314e ⎡⎤-⎢⎥⎣⎦,B .][314e ⎛⎫-∞-⋃+∞ ⎪⎝⎭,,C .2114e ⎡⎤-⎢⎥⎣⎦,D .][214e ⎛⎫-∞-⋃+∞ ⎪⎝⎭,,【答案】B【解析】函数()()2g x f x ax a =-+存在零点,即方程()20f x ax a =+=有解,()(2)f x a x =-有解,∴函数()y f x =的图象与直线(2)y a x =-有交点,作出函数()y f x =的图象,作出直线(2)y a x =-,直线过定点(2,0)A ,如图,(2,1)P -,11224PA k ==---,设直线(2)y a x =-与x y e =相切的切点为00(,)x y ,∵e xy '=,即0x k e =,由000022x x y e e x x ==--得03x =,即切线斜率为3k e =, 由图象可知,函数()y f x =的图象与直线(2)y a x =-有交点时,14a -≤或3a e ≥. 故选:B .例8.(2020·江西省信丰中学高三三模)已知函数()24,0,0x x x x f x e x x⎧+≤⎪=⎨>⎪⎩,方程()0f x ax -=有4个不同的实数根,则a 的取值范围是( )A .2,44e ⎛⎫ ⎪⎝⎭B .,44e ⎛⎫ ⎪⎝⎭C .,4e ⎛⎫+∞ ⎪⎝⎭D .2,4e ⎛⎫+∞ ⎪⎝⎭【答案】A【解析】因为方程()0f x ax -=有4个不同的实数根, 所以函数()y f x =的图象与直线y ax =有4个交点,当0x >时,()xe f x x =,()()21x e x f x x-'=, 当()0,1x ∈时,()0f x '<,()f x 单调递减;当()1,x ∈+∞时,()0f x '>,()f x 单调递增;且当0x +→时,()f x →+∞, 则函数()f x 的图象如图,当0x ≤时,()24f x x x =+,()24f x x '=+,所以()f x 在()0,0处的切线1l 的斜率()104k f '==;当0x >时,()xe f x x =,()()21x e x f x x-'=,设()f x 过原点的切线2l 的切点为000,x e x x ⎛⎫ ⎪⎝⎭, 则2l 的斜率()()000220001x x e e x k x x x f x -'===,解得02x =,224e k =; 若要使函数()y f x =的图象与直线y ax =有4个交点,数形结合可得2,44e a ⎛⎫∈ ⎪⎝⎭.故选:A.【精选精练】1.(2020·安徽安庆·高三三模)函数()ln f x x ax =-恰有两个零点1x ,2x ,且12x x <,则1x 所在区间为( ) A .310,e ⎛⎫ ⎪⎝⎭B .2311,e e ⎛⎫⎪⎝⎭C .211,e e ⎛⎫⎪⎝⎭D .1,1e ⎛⎫ ⎪⎝⎭【答案】D【解析】当0a ≤时不符合题意;当0a >时,考查函数()ln g x x =与()h x ax =图象易知,()g x 与()h x 图象在区间()0,1上必有一个交点 则在区间()1,+∞上有且仅有一个公共点, 当()1,x ∈+∞时,()ln f x x ax =-,()1ax f x x ='-,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()max 11ln 1f x f a a ⎛=⎫=- ⎪⎝⎤⎣⎦⎭⎡, 则只需1ln10a -=,故1ea =, 当()0,1x ∈时,()1ln ef x x x =--, 易知21110e e f ⎛⎫=-> ⎪⎝⎭,()110f e =-<,可知11,1e x ⎛⎫∈ ⎪⎝⎭. 故选:D2.(2020·江西南昌二中高三三模)已知定义域为R 的函数()f x 满足:当0x ≤时,()xf x xe =,0x >时,()()1f x f x =-.若()()1g x k x =+,且方程()()0f x g x -=有两个不同的实根,则实数k 的取值范围是( ) A .11,2e e ⎛⎫-- ⎪⎝⎭B .11,2e e ⎛⎤--⎥⎝⎦C .1,e ⎛⎫-∞- ⎪⎝⎭D .1,e∞⎛⎤-- ⎥⎝⎦【答案】A【解析】当0x ≤时,()xf x xe =的导数为()()1x f x x e '=+,当10x -<<时,()0f x >′,()f x 递增; 当1x <-时,()0f x <′,()f x 递减, 则1x =-处()f x 取得极小值()11f e-=-, 由0x >时,()()1f x f x =-,可将()y f x =在(]10-,的图象每向右平移一个单位,可得()f x 在0x >时的图象,如图:由方程()()0f x g x -=有两个不同的实根,可得()y f x =和()y g x =的图象有两个交点.又()()1y g x k x ==+的图象为恒过定点()10-,的直线,当该直线经过点10e ⎛⎫- ⎪⎝⎭,时, 1k e=-; 当该直线经过点11e ⎛⎫- ⎪⎝⎭,时,k 12e=-.由图象可得当112k e e-<<-时,()y f x =和()y g x =的图象有两个交点. 故选:A .3.(2020·陕西西安中学高三三模)已知函数()(1)(2)x ef x m x x e -=---(e 为自然对数底数),若关于x的不等式()0f x >有且只有一个正整数解,则实数m 的最大值为( )A .32e e +B .22e e +C .32e e -D .22e e -【答案】A【解析】()(1)(2)0xf e e x m x x =--->-, ∴(1)(2)xm x x e e ->-+, 设()(2)x y g x x e e ==-+, ∴()(1)xg x x e '=-,当1x >时,()0g x '>,函数()g x 单调递增, 当1x <时,()0g x '<,函数()g x 单调递减, ∴()(1)0g x g ≥=,当x →+∞时,()f x →+∞,当x →-∞,()f x e →, 函数(1)y m x =-恒过点()1,0,分别画出()y g x =与(1)y m x =-的图象,如图所示,,若不等式()0f x >有且只有一个正整数解,则(1)y m x =-的图象在()y g x =图象的上方只有一个正整数值,∴3(31)(32)e m e -≤-+且(21)(22)xm e e ->-+,即32(3)m g e e ≤=+,且m e >∴32e e e m +<≤,故实数m 的最大值为32e e+,故选:A4.(2020·安徽六安·高三三模)已知函数()1e xf x x +=⋅,x ∈R .若函数()y f x m =+有两个不同的零点,则实数m 的取值范围是( ) A .(),1-∞ B .0,1C .[)0,+∞D .(],0-∞ 【答案】B【解析】由题意,()()11e x f x x +'=+,当(),1x ∈-∞-时,0f x ,函数()f x 单调递减,且此时()0f x <;当()1,x ∈-+∞时,0fx,函数()f x 单调递增,且此时()0f x >,()f x 的最小值为()11f -=-.函数()y f x m =+有两个不同的零点,则方程()f x m =-有两个不同实数解,作出函数()f x 的图象,如下图:显然,当10m -<-<,即01m <<时,()y f x m =+有两个不同的零点. 故选:B.5.(2020·湖南高三三模)已知'()f x 为函数()f x 的导数,且211()(0)'(1)2x f x x f x f e -=-+,若21()()2g x f x x x =-+,方程()0g ax x -=有且只有一个根,则a 的取值范围是( ) A .1e ⎧⎫⎨⎬⎩⎭B .1,e ⎛⎤-∞ ⎥⎝⎦C .10,e ⎛⎤⎥⎝⎦D .1(,0]{}e-∞【答案】D【解析】因为()()()2110'12x f x x f x f e -=-+,所以()()'10f f e= 又()()()10'1x f x x f f e -=-+',所以()()()111'1f f f e''=-+,因此()1f e '=,()01f =,所以()()()212110122x x f x x f x f e x x e -=-=-+'+, 因此()()212xg x f x x x e =-+=,因为方程()0g ax x -=有且只有一个根,所以ax e x =有且只有一个根,即lnxa x=有且只有一个实根,且0x >; 令()lnx h x x =,(0)x >,则()21lnxh x x -'=,由()0h x '=得x e =,所以当x e >时,()0h x '<,函数()h x 单调递减; 当0x e <<时,()0h x '>,函数()h x 单调递增; 故()h x 最大值为()1h e e=,又()10h =;作出函数()h x 的简图如下:因为lnx a x =有且只有一个实根,只需直线y a =与曲线()lnxh x x=有且只有一个交点, 结合图像可得0a ≤或1a e=.故选D6.(2020·北京昌平·高三三模)已知()()(31)xf x e a ax =-+,若()0()f x x R ≥∈成立,则满足条件的a 的个数是( ) A .0 B .1 C .2 D .3【答案】D【解析】分类讨论:很明显当0a =时,()0xf x e =>恒成立,当0a >时,应有130a e a --=,此方程的根即函数y x =与函数13x y e -=在区间()0,∞+上的交点的个数, 注意到13x y e -=过坐标原点的切线方程为3y x e =,且31e>,故函数y x =与函数13x y e -=在区间()0,∞+上有2个交点,函数图象如图所示.当0a <时,不存在满足题意的实数a , 综上可得,满足条件的a 的个数是3. 本题选择D 选项.7.(2020·河南南阳中学高三三模)若关于x 的不等式0x xe ax a -+<的解集为(,)(0)m n n <,且(,)m n 中只有一个整数,则实数a 的取值范围是( ) A .221[,)3e eB .221,)3e e( C .221[,)32e eD .221,32e e ⎛⎫⎪⎝⎭【答案】C【解析】由题意设g (x )=xe x ,y =ax ﹣a , ∵g ′(x )=(x +1)e x ,∴g (x )在(﹣∞,﹣1)递减,在(﹣1,+∞)递增, ∴g (x )min =g (﹣1)1e=-, ∵y =ax ﹣a 恒过定点P (1,0), ∴结合函数图象得,K P A ≤a <K PB ,又A (﹣2,22e-),B (﹣1,1e -), ∴K P A 223e =,K PB 12e =,即223e ≤a 12e<,故选C .8.(2020·河南高三三模)已知函数(),13x e x f x x ⎧≤⎪=<<,若函数()()2g x f x k x =-+有三个零点,则实数k 的取值范围是( )A.1,3e e ⎛⎛⎤⋃ ⎥ ⎝⎦⎝⎭ B.1,e ⎛⎛⎫⋃+∞ ⎪ ⎝⎭⎝⎭ C.⎛ ⎝⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】A【解析】作(),13xe xf x x ⎧≤⎪=<<与2y k x =+图象如下:由)13y x =<<整理得()()22210x y y -+=≥,当直线()()20y k x k =+>与圆()2221x y -+=1=,解得k =,对应图中分界线①;再考虑直线()2y k x =+与曲线xy e =相切,设切点坐标为(),t t e ,对函数x y e =求导得e xy '=,则所求切线的斜率为t e ,所求切线的方程为()tty e e x t -=-,直线()2y k x =+过定点()2,0-,将点()2,0-的坐标代入切线方程得()2tte e t -=--,解得1t =-,所以,切点坐标为11,e ⎛⎫- ⎪⎝⎭,1k e∴=,对应图中分界线③; 当直线()2y k x =+过点()1,e 时,则有3k e =,解得3ek =,对应图中分界线②. 由于函数()()2g x f x k x =-+有三个零点,由图象可知,实数k的取值为10,,153e e ⎛⎫⎛⎤⋃ ⎪ ⎥ ⎪⎝⎦⎝⎭.故选:A. 9.(2020·江西高三三模)已知函数()()()211xf x x e mx m m =-+-≥-,若有且仅有两个整数使得()0f x ≤,则实数m 的取值范围是( )A .235,23e e ⎡⎫--⎪⎢⎣⎭B .258,23e e ⎡⎫--⎪⎢⎣⎭C .215,23e ⎛⎤-- ⎥⎝⎦D .51,2e ⎡⎫--⎪⎢⎣⎭【答案】A【解析】由题意,有且仅有两个的整数,使得()0f x ≤,即()e21xx m mx -≤-,令()e (21)x g x x =-,则'()e (21)xg x x =+,易知()g x 在1(,)2-+∞单调递增,在1(,)2-∞-单调递减,作出()g x 与(1)(1)y m x m =--≤-的图象,如图所示只需(0)(1)(11)(2)(21)f m f m f m ≤⎧⎪-≤---⎨⎪->---⎩,解得2352e 3e m -≤<-. 故选:A.10.(2020·黑龙江铁人中学高三三模)设函数()2x f x xe a =+,()x g x e ax =+,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是( ) A .3[2e-,1) B .3[2e,1) C .3[2e -,3)4D .3[2e ,3)4【答案】D【解析】由题意可知,存在唯一的整数x ,使得(21)x x e ax a -<-, 构造函数()(21)x h x x e =-,则()(21)x h x x e '=+. 当12x <-时,()0h x '<;当12x >-时,()0h x '>. 所以,函数()(21)x h x x e =-的单调递减区间为1(,)2-∞-,单调递增区间为1(,)2-+∞.函数()y h x =在12x =-处取得极小值1()2h -=如下图所示,由于(0)1h =-,3(1)h e-=-,所以,(1)(0)h h -<,结合图象可知,(0)0(1)(1)h a a h a a<⨯-⎧⎨-⨯--⎩,解得312a e <. 故选:B11.(2020·四川攀枝花·高三三模)已知函数22ln ,0()3,0x x x x f x x x x ->⎧=⎨--≤⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在1y kx =+的图象上,则实数k 的取值范围是( ) A .1(,1)2B .(1,1)-C .11(,)32-D .11(,)22-【答案】B【解析】函数22ln ,0()3,0x x x x f x x x x ->⎧=⎨--≤⎩的图象上有且仅有四个不同的点关于直线1y =的对称点在1y kx =+的图象上,而函数1y kx =+关于直线1y =的对称图象为1y kx =-+,22ln ,0()3,0x x x x f x x x x ->⎧∴=⎨--≤⎩的图象与1y kx =-+的图象有且只有四个不同的交点,作函数22ln ,0()3,0x x x x f x x x x ->⎧=⎨--≤⎩的图象与1y kx =-+的图象如下, 易知直线1y kx =-+恒过点(0,1)A ,设直线AC 与2y x xlnx =-相切于点(,2)C x x xlnx -, 1y lnx '=-,故211x xlnx lnx x---=, 解得,1x =,故1AC k =;设直线AB 与23y x x =--相切于点2(,3)B x x x --,23y x '=--,故23123x x x x-----=,解得,1x =-;故()2131AB k =-⨯--=-, 故11k -<-<, 即11k -<<; 故选:B12.(2020·河南安阳·高三三模)已知不等式ln (ln4)0x x x k k +-+<的解集中仅有2个整数,则实数k 的取值范围是( ) A .20,ln 23⎛⎫ ⎪⎝⎭B .342ln ,ln 2433⎛⎫⎪⎝⎭C .34ln ,43⎡⎫+∞⎪⎢⎣⎭D .342ln ,ln 2433⎡⎫⎪⎢⎣⎭【答案】D【解析】原不等式等价于(1)ln 4ln k x x x x +<-,设()(1),()ln4ln g x k x f x x x x =+=-,4()ln 4(1ln )ln 1f x x x'∴=-+=-,令()0f x '=,得4x e=.当40x e <<时,()0f x '>,()f x 单调递增;当4ex >时,()0f x '<,()f x 单调递减.又(4)0,0f x =→时,()0f x →因此()f x 与()g x 的图像如下, 当0k ≤时,显然不满足条件,当0k >时,只需满足(2)(2)(3)(3)g f g f <⎧⎨≥⎩,(21)2ln 42ln 2(31)3ln 43ln 3k k +<-⎧∴⎨+≥-⎩,342ln ln 2433k ∴≤<. 故选:D.。
破解恒成立问题 高考数学【解析版】
专题16 破解恒成立问题从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论 (三)数形结合法1.函数的不等关系与图象特征:(1)若,均有的图象始终在的下方 (2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( ) A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e【答案】C【解析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立. 【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故()()min g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C .【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e xf x x x =+-,()e 21x f x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x ----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x ⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1xh x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e-+++⇔≤xx x x ,令()223e 7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='xxx x h x ()()222213e 2e 9e⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤, 记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123x g x x ax x x ax -'=--+++--()()()2112342e 212e 22xx x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立,所以12a ≥时,满足题意. 综上,27e 4a-. 【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性; 方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性! 【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤: (1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析; (2)(],0a ∈-∞.【分析】(1)求导得到导函数后,设为()g x 进行再次求导,可判断出当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,从而得到()g x 单调性,由零点存在定理可判断出唯一零点所处的位置,证得结论;(2)构造函数()()h x f x ax =-,通过二次求导可判断出()()min 2h x h a π''==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭;分别在2a ≤-,20a -<≤,202a π-<<和22a π-≥的情况下根据导函数的符号判断()h x 单调性,从而确定()0h x ≥恒成立时a 的取值范围.【详解】(1)()2cos cos sin 1cos sin 1f x x x x x x x x '=-+-=+- 令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++= 当()0,x π∈时,令()0g x '=,解得:2x π=∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<()g x ∴在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减又()0110g =-=,1022g ππ⎛⎫=-> ⎪⎝⎭,()112g π=--=-即当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x >,此时()g x 无零点,即()f x '无零点()02g g ππ⎛⎫⋅< ⎪⎝⎭0,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x =又()g x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减 0x x ∴=为()g x ,即()f x '在,2ππ⎛⎫⎪⎝⎭上的唯一零点综上所述:()f x '在区间()0,π存在唯一零点(2)若[]0,x π∈时,()f x ax ≥,即()0f x ax -≥恒成立 令()()()2sin cos 1h x f x ax x x x a x =-=--+ 则()cos sin 1h x x x x a '=+--,()()cos h x x x g x '''==由(1)可知,()h x '在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减且()0h a '=-,222h a ππ-⎛⎫'=- ⎪⎝⎭,()2h a π'=-- ()()min 2h x h a π''∴==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭①当2a ≤-时,()()min 20h x h a π''==--≥,即()0h x '≥在[]0,π上恒成立()h x ∴在[]0,π上单调递增()()00h x h ∴≥=,即()0f x ax -≥,此时()f x ax ≥恒成立 ②当20a -<≤时,()00h '≥,02h π⎛⎫'> ⎪⎝⎭,()0h π'<1,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()10h x '=()h x ∴在[)10,x 上单调递增,在(]1,x π上单调递减又()00h =,()()2sin cos 10h a a ππππππ=--+=-≥()0h x ∴≥在[]0,π上恒成立,即()f x ax ≥恒成立③当202a π-<<时,()00h '<,2022h a ππ-⎛⎫'=-> ⎪⎝⎭20,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()20h x '=()h x ∴在[)20,x 上单调递减,在2,2x π⎛⎫⎪⎝⎭上单调递增()20,x x ∴∈时,()()00h x h <=,可知()f x ax ≥不恒成立④当22a π-≥时,()max 2022h x h a ππ-⎛⎫''==-≤ ⎪⎝⎭()h x ∴在0,2π⎛⎫⎪⎝⎭上单调递减 00h xh可知()f x ax ≥不恒成立 综上所述:(],0a ∈-∞【点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠. (1)讨论()f x 的单调性;(2)当0x >时,不等式()()22cos eax x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【答案】(1)答案见解析 (2)(]0,2e【分析】(1)求出函数()f x 的定义域,求得()2a xf x x-'=,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间;(2)令()t f x =,()e 2cos tg t t t =--,利用导数分析函数()g t 的单调性,对实数a 的取值进行分类讨论,求出()t f x =的取值范围,结合函数()g t 的图象可得出关于实数a 的不等式,即可求得实数a 的取值范围. (1)解:函数()()ln 20f x a x x a =-≠的定义域为()0,∞+,且()22a a x f x x x-'=-=.当0a <时,因为0x >,则()0f x '<,此时函数()f x 的单调递减区间为()0,∞+;当0a >时,由()0f x '<可得2ax >,由()0f x '>可得02ax <<.此时,函数()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为()0,∞+;当0a >时,函数()f x 的单调递增区间为0,2a ⎛⎫⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭. (2)解:()()()()()()()ln 222cos e 2cos 0e 2cos 0eaf x a x x x x f x f x f x f x f x f x -⎡⎤⎡⎤⎡⎤-≥⇔--≥⇔--≥⎣⎦⎣⎦⎣⎦,设()e 2cos tg t t t =--,其中()t f x =,则()e 2sin t g t t '=-+,设()e sin 2th t t =+-,则()e cos th t t '=+,当0t ≤时,e 1t ≤,sin 1t ≤,且等号不同时成立,则()0g t '<恒成立,当0t >时,e 1t >,cos 1t ≥-,则()0h t '>恒成立,则()g t '在()0,∞+上单调递增,又因为()01g '=-,()1e 2sin10g '=-+>,所以,存在()00,1t ∈使得()00g t '=,当00t t <<时,()0g t '<;当0t t >时,()0g t '>.所以,函数()g t 在()0,t -∞上单调递减,在()0,t +∞上单调递增,且()00g =,作出函数()g t 的图象如下图所示:由(1)中函数()f x 的单调性可知,①当0a <时,()f x 在()0,∞+上单调递增,当0x +→时,()f x →+∞,当x →+∞时,()f x →-∞,所以,()t f x =∈R ,此时()00g t <,不合乎题意;②当0a >时,()max ln 22a a f x f a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()f x →-∞,此时函数()f x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦,即,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦.(i )当ln 02a a a -≤时,即当02e a <≤时,()0g t ≥恒成立,合乎题意;(ii )当ln 02a a a ->时,即当2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,结合图象可知()10g t <,不合乎题意.综上所述,实数a 的取值范围是(]0,2e . 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可. 热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D【解析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解.【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为 22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D【典例6】(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a ,故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ). A .211[)e e, B .221[)32e e, C .212[)e e, D .221[)3e e, 【答案】B 【解析】不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解,设()xg x x e =⋅,y ax a =-,求出()g x 的单调区间,作出其大致图像,y ax a =-恒过定点()10,P ,数形结合可得答案.【详解】设()xg x x e =⋅,y ax a =-,()()1xg x x e '=+⋅,由()0g x '>,解得1x >-,由()0g x '<解得1x <-所以()xg x x e =⋅在(]1-∞-,上单调递减,在[)1-+∞,上单调递增. 又当x →-∞ ,()0g x <且()0g x →,又()00g =,则()xg x x e =⋅的大致图象如下由题意由不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解即()xg x x e =⋅在直线y ax a =-下方的部分,故min 1()(1)g x g e=-=-,y ax a =-恒过定点()10,P , 结合函数图像得PA PB k a k ≤<,即22132a e e≤<, 故选:B .【点睛】本题考查根不等式的解集中整数的个数求参数范围的问题,解答本题的关键的根据题意转化为不等式()1x x e a x ⋅<-有唯一整数解,即()x g x x e =⋅在直线y ax a =-下方的部分中唯一整数x ,讨论出()xg x x e =⋅的单调区间,得出其大致图象,属于中档题.【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .[)9,+∞ D .()9,+∞【答案】C【分析】将不等式等价变形,构造函数()ln 3af x x x =-,再借助函数单调性、最值求解作答.【详解】依题意,11211222ln 0ln (ln )0333x a a ax x x x x x x -->⇔--->,令()ln 3a f x x x =-,(1,3]x ∈, 则对任意的12,(1,3]x x ∈,当12x x <时,12()()f x f x >,即有函数()f x 在(1,3]上单调递减, 因此,(1,3]x ∀∈,()1033af x a x x'=-≤⇔≥,而max (3)9x =,则9a ≥, 所以实数a 的取值范围是[9,)+∞. 故选:C2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x=-,满足() f x a x ≥-恒成立,则a 的最大值为( ) A .3 B .4 C .3ln 2- D .3ln 2+【答案】C【分析】由题意,分离参数可得min 2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x=+-,然后利用导数求出()g x 的最小值即可求解.【详解】解:因为()2ln f x x x=-,满足() f x a x ≥-恒成立, 所以min2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x =+-,则()()()222221212()10x x x x g x x x x x x -+--'=--==>,令()0g x '>,得2x >,令()0g x '<,得02x <<, 所以()g x 在()0,2上单调递减,在()2,+∞上单调递增, 所以min ()(2)3ln 2g x g ==-, 所以3ln 2a ≤-,所以a 的最大值为3ln 2-, 故选:C.3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦【答案】A【详解】因为函数21y x =+与函数21y x =--的图象关于x 轴对称,根据已知得函数12ln ,(e)e y a x x =-≤≤的图象与函数21y x =--的图象有交点,即方程22ln 1a x x -=--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解,即22ln 1a x x =--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解.令()22ln 1g x x x =--,1,e e x ⎡⎤∈⎢⎥⎣⎦,则()()22212222xx g x x x x x--'=-==,可知()g x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,故当1x =时,()()max 12g x g ==-,由于21e e 13g ⎛⎫=-- ⎪⎝⎭,()2e e 1g =-,且2211e 3e -->-,所以212e a -≤≤-. 故选:A .4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2xf x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .1e 2⎛ ⎝B .(e,)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭【答案】D【分析】首先考查临界情况,利用导数求得切线的斜率,据此可求得实数k 的取值范围【详解】当过原点的直线y kx =与函数()f x 的图象相切时,设切点为1,e 2m P m ⎛⎫⎪⎝⎭,由()1e 2x f x '=,可得过点P 的切线方程为()11e e 22m my x m -=-,代入点()0,0可得11e e 22m mm -=-,解得1m =,此时切线的斜率为1e 2,由函数()f x 的图象可知,若直线y kx =与函数()f x 的图象有两个交点,直线的斜率k 的取值范围为1e,2⎛⎫+∞ ⎪⎝⎭. 故答案选:D5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( ) A .0 B .1eC .1D .e【答案】C【分析】由题意易知()0f x ≥恒成立,则可等价为对[)20,x ∀∈+∞,()20g x ≥恒成立,利用参变分离,可变形为e 1,(0)x a x x -≤>恒成立,易证e 11,(0)x x x->>,则可得1a ≤,即可选出答案.【详解】对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立, 等价于()()12min min f x g x ≤,当1x <时,10,e e<0x x -<-,所以()0f x >, 当1≥x 时,10,e e 0x x -≥-≥,所以()0f x ≥, 所以()0f x ≥恒成立,当且仅当1x =时,min ()0f x =, 所以对[)20,x ∀∈+∞,()20g x ≥恒成立,即e 10x ax --≥, 当0x =,e 100x ax --=≥成立,当0x >时,e 1e 10x xax a x---≥⇒≤恒成立.记()e 1,0x h x x x =-->, 因为()e 10x h x '=->恒成立,所以()h x 在(0,)+∞上单调递增,且(0)0h =,所以()e 10xh x x =-->恒成立,即e 1e 11,(0)x xx x x-->⇒>>所以1a ≤.所以a 的最大值为1. 故选:C.【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题, 此类问题可按如下规则转化:一般地,已知函数[](),,=∈y f x x a b ,[](),,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有12()()f x g x <成立,故max 12min ()()f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1max 2max ()()f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1min 2max ()()f x g x <; (4)若[]1,x a b ∃∈,[]2,x c d ∀∈,有12()()f x g x <成立,故1min 2min ()()f x g x <; (5)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x =,则()f x 的值域是()g x 值域的子集. 二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈ B .()f x 在()2022,2024上的最大值为2025 C .()f x 有且只有2个零点 D .()f x x ≥恒成立. 【答案】ABD【分析】由题可知函数()g x 为周期函数,根据导数判断函数的单调性,进而可得函数的值域可判断D ,结合条件可得函数()[)[)232,2,2144,21,22x kk x k k f x x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩可判断AB ,利用数形结合可判断C.【详解】由题可得函数()g x 为周期函数,当[)0,1x ∈时,()3x g x x =-,则()3ln31ln310xg x '=-≥->,函数单调递增,()[)31,2xg x x =-∈,当[)1,2x ∈时,()(]240,2g x x =-+∈, 故可得函数()g x 的值域为(]0,2,因为()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,()()2g x g x =+,所以()()[)[)232,2,212244,21,22x kx k x k k g x g x k x k x k k -⎧-+∈+⎪=-=⎨-++∈++⎪⎩(Z k ∈), 故()()f x x g x =+[)[)232,2,2144,21,22x k k x k k x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩,所以函数()f x 的单调递增区间为()()2,21,Z k k k +∈,单调减区间为()()21,22,Z k k k ++∈,故A 正确; 所以函数()f x 在()2022,2023上单调递增,在()2023,2024上单调递减, 故()f x 在()2022,2024上的最大值为()()()202320232023202312025f g g =+=+=,故B 正确;由()()0f x x g x =+=可得()g x x =-,所以函数()y g x =与函数y x =-交点的个数即为函数()f x 的零点数, 作出函数()y g x =与函数y x =-的大致图象,由图可知函数()y g x =与函数y x =-有一个交点, 即函数()f x 有且只有1个零点,故C 错误;由()f x x ≥,即()0g x ≥,因为()g x ∈(]0,2,故()f x x ≥恒成立,故D 正确. 故选:ABD. 三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________.【答案】)8e ,1-⎡⎣【分析】将函数有两个不同零点转化为方程有两个不等实根;再将方程变形构造新函数,求导并研究新函数的单调性,求其最小值,得到22ln ba-≥e ,再由已知条件求得)8,1a -⎡∈⎣e 即可. 【详解】因为()f x 有两个不同零点()0f x ⇔=有两个不相等的实根 即220x a bx ++=e 有两个不相等的实根; 所以ln 220x a bx ++=e e ,令ln t x a = ,则220ln tbta++=e e ,t 显然不为零,所以22ln t b a t+-=e e ,因为()0,1a ∈ ,24e b > , 所以20ln ba-> ,所以0t > ; 令()()20t g t t t+=>e e ,则()()22t t t g t t-+'=e e e ;令()()()20t t h t t t =-+>e e e ,则()0t t t t h t t t '=+-=>e e e e ,所以()h t 在()0,∞+上单调递增,又()20h = ,所以当()0,2t ∈时,()0h t < ;当()2,t ∈+∞ 时,()0h t > ; 所以当()0,2t ∈时,()0g t '< ;当()2,t ∈+∞ 时,()0g t '> ; 故()g t 在()0,2上单调递减,在()2,+∞上单调递增;所以()()2min 2g t g ==e ,所以22ln ba-≥e ; 又24e b >,所以24b >e ,所以ln 42a -≤ 即ln 8a ≥- ,8a -≥e , 又()0,1a ∈ ,所以)8,1a -⎡∈⎣e ; 故答案为:)8,1-⎡⎣e .8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()ee ln mxmx m x x mx x x +≤+-恒成立,则实数m 的最小值为________ 【答案】e e 1- 【分析】将不等式两边同时除以m x ,进而转化为()()ln e eln m x x xx m x x -+≤+-,令()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性转化为ln xm x x≥-恒成立,进而构造函数()()0ln xg x x x x=>-,求导分析最大值即可. 【详解】∵0x >,∴不等式两边同时除以mx ,得:()e e ln mxxm x m x x x+≤+-∴()1lne eln mmx xx x m x x ++≤+- ∴()ln e eln x mx m xx m x x -+≤+- ∴()()ln e eln m x x xx m x x -+≤+- ①令()e xf x x =+,可知()f x 单调递增.①式等价于()()()ln f x f m x x ≤-恒成立 ∴()ln x m x x ≤-恒成立.构造()()ln 0x x x x ϕ=->,则()1x x xϕ-'=,故当()0,1x ∈时()0x ϕ'<, 当()1,x ∈+∞时()0x ϕ'>,所以()()ln 0x x x x ϕ=->在1x =时取得最小值. 即()()ln 010x x x ϕϕ=-≥=>,∴ln 0x x -> ∴ln xm x x≥-恒成立 令()()0ln xg x x x x=>- ∴()g x '()()221ln 11ln ln ln x x x x x x x x x ⎛⎫--- ⎪-⎝⎭==-- ∴当()0e x ∈,时,()0g x '>,∴()g x 单调递增;当()e x +∞,时,()0g x '< ∴()g x 单调递减; ∴()g x 的最大值为()e e e 1g =- ∴ee 1m ≥-,故实数m 的最小值为e e 1-. 故答案为:e e 1- 【点睛】关键点点睛:本题关键是将已知不等式转化为()()ln e eln m x x xx m x x -+≤+-,构造()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性即可得到.9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________. 【答案】(]0,e【分析】将题目所给不等式进行变形,然后利用构造函数法,结合导数来求得a 的取值范围. 【详解】不等式e ln x a a x x x +≥+可变形为ln e ln e ln x a a x x x a x a x --=-. 因为0a >且1x >,所以ln 0a x >.令()e (0)u f u u u =->,则()e 10uf u ='->.所以函数()f u 在()0,∞+上单调递增.不等式ln e e ln x a x x a x -≥-等价于()()ln f x f a x ≥,所以ln x a x ≥. 因为1x >,所以ln x a x≤. 设()(1)ln xg x x x=>,则()2ln 1(ln )x g x x -'=.当()1,e x ∈时,()0g x '<,函数()g x 在()1,e 上单调递减; 当()e,x ∈+∞时,()0g x '>,函数()g x 在()e,+∞上单调递增. 所以()min ()e e g x g ==,所以0e a <≤. 故正实数a 的取值范围是(]0,e .10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x 的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________. 【答案】[]1,2【分析】将不等式()0≤f x 的解集为[)2,-+∞转化为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-及当1x >时,14e 0x ax a -+-≤恒成立,从而可求得12a ≤≤.【详解】不等式()0≤f x 等价于21(2)20x x a x a ≤⎧⎨+--≤⎩或114e 0x x ax a ->⎧⎨+-≤⎩, 而()0≤f x 的解集为[)2,-+∞,故21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-且14e 0x ax a -+-≤对任意的1x >恒成立. 又21(2)20x x a x a ≤⎧⎨+--≤⎩即为()()120x x x a ≤⎧⎪⎨+-≤⎪⎩,若2a <-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x a x ≤⎧⎨≤≤-⎩,这与解为[]2,1-矛盾;若2a =-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x ≤⎧⎨=-⎩,这与解为[]2,1-矛盾;若2a >-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x a ≤⎧⎨-≤≤⎩,因为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-,故1a ≥.当1x >时,14e0x ax a -+-≤恒成立即为14e 1x a x -≤+恒成立, 令()14e ,11x s x x x -=>+,则()()()()111224e 14e 4e 011x x x x x s x x x ---+-'==>++, 故()s x 在()1,+∞为增函数,故()()02s x s >=, 故2a ≤. 综上,12a ≤≤ 故答案为:[]1,2.【点睛】思路点睛:与分段函数有关的不等式解的问题,应该就不同解析式对应的范围分类讨论,讨论时注意结合解析式的形式确定分类讨论还是参变分离.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x xf x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围. 【答案】(1)0 (2)(,3]-∞【分析】(1)0是函数()2=-y f x 的零点代入可得a ;(2)由题意知e (1)e 1-++≥+xxa a 在(0,)+∞上恒成立,转化为2e e 1e 1x xxa -+≤-在(0,)+∞上恒成立,化简可得11≤++a t t,利用均值不等式求最值可得答案.(1)因为0是函数()2=-y f x 的零点,所以00e (1)e 20a -++-=,解得a =0; (2)由题意知e (1)e 1-++≥+x x a a 在(0,)+∞上恒成立,则()2e 1e e 1x x xa -≤-+,又因为,()0x ∈+∞,所以e 1x>,则2e e 1e 1x x xa -+≤-, 令e 1(0)-=>x t t ,则e 1x t =+,可得22(1)(1)1111+-++++≤==++t t t t a t t t t, 又因为111123t t t t ++≥+⋅=,当且仅当1t t =即1t =时,等号成立,所以3a ≤,即a 的取值范围是(],3-∞.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)【答案】(1)当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减; (2)证明见解析.【分析】(1)对函数求导,讨论0a 和0a >两种情况,即可得出函数的单调性; (2)利用分类参数的方法,先得到23ln 1x a x +≤+,构造新的函数()()231ln 1x h x x x +=>+,用导数的方法求其最小值,即可证明结论成立.【详解】(1)由题知函数()f x 的定义域为()0,∞+,()22a a xf x x x-'=-= ①当0a ≤时,()0f x '<,此时函数()f x 在()0,∞+上单调递; ②当0a >时,令()0f x '>,得02ax <<;令()0f x '<,得2a x >, 所以函数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;(2)由题意,()()ln 123f x a x x =+-在()1,+∞上恒成立, 可化为23ln 1x a x +≤+在()1,x ∈+∞上恒成立, 设()()231ln 1x h x x x +=>+, 则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++设()()32ln 1x x x x ϕ=->,则()2230x x xϕ'=+>, 所以()x ϕ在()1,+∞上单调递增,又()3ln16322ln 2022ϕ-=-=<,()3e 20eϕ=-> 所以方程()0h x '=有且只有一个实根0x ,且02e x <<,0032ln x x =, 所以在()01,x 上,()0h x '<,()h x 单调递减, 在()0,x +∞上,()0h x '>,()h x 单调递增, 所以函数()h x 的最小值为()000000232322e 3ln 112x x h x x x x ++===<++, 从而022e a x ≤<. 【点睛】思路点睛:求解不等式在给定区间内恒成立求参数的问题时,优先考虑分离参数的方法,分离出所求参数,构造新的函数,利用导数的方法求解函数的最值,进而即可求解.13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++. (1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围. 【答案】(1)极小值为e a a -;无极大值 (2)a 的取值范围为(,0]-∞【分析】(1)先判断函数定义域,再求导结合函数单调性求出极值即可;(2)对函数进行同构变形,令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,首先可以证明0ln 1x x ≤≤-对[1,)x ∈+∞恒成立,原题转化为求()g x 在[0,)+∞上单调递增时a 的取值范围即可. (1)由题意得:()ln (1)f x x x a x a =-++,,()0x ∈+∞, 所以()ln f x x a '=-,令()0f x '=,解得e (0,)a x =∈+∞,当0e a x <<时()0f x '<;当e a x >时,()0f x '>.所以()f x 在()0,e a 上单调递减,在()e ,a+∞上单调递增. 所以()f x 有极小值,为()e e a af a =-;无极大值.(2)由已知得,(1)ln (1)(2)e x x x a x x a --+≤--对任意[1,)x ∈+∞恒成立, 即ln (1)(ln 1)e [(1)1]e x x x a x a ---≤---对任意[1,)x ∈+∞恒成立, 令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立, 下证:0ln 1x x ≤≤-对任意[1,)x ∈+∞恒成立, 令()ln (1)h x x x =--,[1,)x ∈+∞. 则()10xh x x-'=≤在[1,)+∞上恒成立,且仅当1x =时取"=". 所以()h x 在[1,)+∞上单调递减,()(1)0h x h ≤=, 即0ln 1x x ≤≤-,[1,)x ∈+∞所以(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,只需()g x 在[0,)+∞上单调递增,即()()e 0xg x x a '=-≥在[0,)+∞上恒成立,即a x ≤在[0,)+∞上恒成立, 所以0,a ≤即a 的取值范围为(,0]-∞.【点睛】导数求参问题要善于运用转化的手法,本题先运用同构方法对原不等式变形,最终转化为函数单调性问题,结合函数的单调性与导数的关系,即可解答.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围. 【答案】(1)2e y x =- (2)32eea【分析】(1)求出函数()f x 的导函数,确定切线的斜率,即可求()f x 在()()e,e f 处的切线方程;(2)先把不等式()()2f x g x ≥成立转化为32ln a x x x≤++成立,设32ln x x xx,[]1,e x ∈,利用导函数求出()x ϕ在[]1,e x ∈上的最大值,即可求实数a 的取值范围.(1)由()ln f x x x =,可得()ln 1f x x '=+, 所以切线的斜率()e 2k f '==,()e e f =.所以()f x 在()()e,e f 处的切线方程为()e 2e y x -=-,即2e y x =-; (2) 令20l 223n h x xf xg x x ax x ,则max 32ln a x x x ⎡⎤≤++⎢⎥⎣⎦,令32ln x x xx ,[]1,e x ∈, 在[]1,e x ∈上,2130x xxx ,()x ϕ∴在[]1,e 上单调递增,max3e 2e +ex , 32eea. 15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数). 【答案】(I ) 见解析(II ) 1[,)2a ∈+∞.【详解】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对()f x 求导,再对a 进行讨论,从而判断函数()f x 的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论. 试题解析:(Ⅰ)2121()2(0).ax f x ax x x x --=>'=0a ≤当时,()'f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由()'f x =0,有12x a=. 此时,当x ∈10,)2a(时,()'f x <0,()f x 单调递减; 当x ∈1+)2a(,∞时,()'f x >0,()f x 单调递增. (Ⅱ)令()g x =111ex x --,()s x =1e x x --.则()s x '=1e 1x --. 而当1x >时,()s x '>0,所以()s x 在区间1+)∞(,内单调递增. 又由(1)s =0,有()s x >0, 从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<时,12a>1. 由(Ⅰ)有1()(1)02f f a <=,从而1()02g a>, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()()()(1)h x f x g x x =-≥, 当1x >时,3212222111112121()20xx x x x h x ax e x x x x x x x x --+-+=-+->-+-=>>', 因此,()h x 在区间(1,)+∞单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立. 综上,1[,)2a ∈+∞.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.16.(2020·河南开封市·高三一模(理))已知函数()()ln 0af x ax x a =>.(1)当1a =时,求曲线()y f x =在x e =处的切线方程; (2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值.【答案】(1)2y x e =-;(2)最大值为e . 【解析】(1)先由1a =,得到()ln f x x x =,对其求导,根据导数的几何意义,即可求出切线方程;(2)先由不等式恒成立,得到ln ln a a x x x x e e ≤⋅,构造函数()ln g x x x =,利用导数的方法判定其单调性,得到a x x e ≤对于任意的1x >都成立,分离参数,得到ln xa x≤对于任意的1x >都成立,再由导数的方法求出ln xx的最小值,即可得出结果. 【详解】(1)当1a =时,()ln f x x x =,得()ln 1f x x '=+, 则()f e e =,()2f e '=,所以()y f x =在x e =处的切线方程为:2y x e =-. (2)当0a >且1x >时,由于()ln ln ln ln xaxaaxaaxxf x xe ax x xe x x xe x x e e ≤⇔≤⇔≤⇔≤⋅, 构造函数()lng x x x =,得()ln 10g x x '=+>在1x >上恒成立,所以()ln g x x x =在()1,+∞上单调递增,()()()ln ln x a a x x a x f x xe x x e e g x g e ≤⇔≤⋅⇔≤,由于()xf x xe ≤对任意的1x >都成立,又1a x >,e 1x >,再结合()g x 的单调性知道:。
恒成立之数形结合法
— —
/
一
2
/
- 4
0
g ( ) 的 图象 是 平 行 的 直 线 系4 x 一 3 y + 3 — 3 a = 0 。 要 ) ≤g ( ) 恒成立 , 则 圆心 ( 一 2 , 0 ) 到直线 一 + 3 — 3 a = 0  ̄ 离 al≥ 2 满足d : — I - 8 + 33
|
( 2 )
综上, 存在实数o I 【 — Z / , l J { , 使得关于 的 不等
1
/
2 2 m
-
、 、 r \ 、
-
式3 x 2 一 l o g x < O 在O < 时恒成立 。
3
2 D2
, r
例3 设厂 ( ) = 、 /
为 :x - 1 ) z > 一 m( 一 1 ) , 再设y = ( 一 1 ) 2 , y = - m( x — 1 ) , 构 造直曲相关问题求参 。 此种方法解答起来 比较麻烦 。
察两函 数图象, 当 ∈ 1 0 , — 1 l 时, 函数Y = l o 的图象
园丁沙龙
囝
恒成立之数形结合法
睡 《 I 黄守诸
一
一
数 学 教 学 中常 常 遇 到 恒 成 立 问 题 ,学生 解 决 这 类 问题 往 往 比较 吃 力 。 恒成 立 问题 有 很 多 种 类 型 , 蕴
> ,
含着换元 、 化归 、 数形结合 、 函数 与方程等思想方法 , 解 决恒成立 问题有 利于提高学生 的综 合解题 能力 , 在培养思 维的灵活性 、创造性等方面起到了积极 的 作用。本 文就来探讨下如何用函数的图像来解决恒 成立问题 ,数形结合法是先将不等式两端的式子分 别看作两个 函数 , 且正确作 出两个 函数 的图象 , 然后 通过观察 两图象( 特 别是交点时 ) 的位置关 系 , 列 出 关于参数的不等式 。其一般解题思路 : ( 1 ) 若不 等式 ) ( ) 在 区间D 上恒成立 , 则等 价 于在 区问 上 函数 ) 和 图象 在 函数y = g ( x ) 图 象上方 ; ( 2 ) 若不等式 ) ( ) 在区间D 上恒成立 , 则等 价于在 区间, J 上 函数y = , ( ) 和 图象 在 函数y = g ( x ) 图 象下方。 我们举例来说 明 例 1 若对任意 y =l xl 。 R,不等 式 ≥似恒 成 立, 则实数n 的取值 范围 / . ・ ・
高中数学--恒成立能成立问题总结(详细)
恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。
这类问题在各类考试以及高考中都屡见不鲜。
感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。
在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。
一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决 对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。
解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。
由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g 解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。
小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。
练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。
(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。
(答案:或)(二)构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。
高三数学恒成立问题的一般解法
高三数学恒成立问题的一般解法 胶州实验中学数学组 张守明高三数学复习中的恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
因此也成为历年高考的一个热点。
恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。
一、一次函数型:给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例1、 对于满足|p|≤2的所有实数p,求使不等式x 2+px+1>2p+x 恒成立的x 的取值范围。
分析:在不等式中出现了两个字母:x 及P,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将p 视作自变量,则上述问题即可转化为在[-2,2]内关于p 的一次函数大于0恒成立的问题。
略解:不等式即(x-1)p+x 2-2x+1>0,设f(p)= (x-1)p+x 2-2x+1,则f(p)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3.二、二次函数型若二次函数y=ax 2+bx+c=0(a ≠0)大于0恒成立,则有⎩⎨⎧<∆>0a若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。
谈高中数学中的恒成立问题
多媒体把四棱锥和三棱锥进行比对ꎬ讨论出四棱锥的空间特点等概念.3.几何体和空间向量的转化能力教师要引导学生认识几何体在空间中的特性ꎬ并且不断提高数学信息的转换能力.还是对立体几何的证明与计算或者把空间几何体转化成为向量的关系等.空间想象力有关的逻辑推理能力的目的是为了解决立体几何的相关问题ꎬ基于此ꎬ要不断地进行信息的处理ꎬ运用文字信息㊁符号信息和图形信息等方式进行立体几何信息的交流ꎬ最终的目的是让学生们能够就某个具体的立体几何问题进行数据的转换ꎬ提高逻辑推理能力.在进行立体几何问题的证明时ꎬ须要进行文字信息㊁符号信息以及图形信息的相互转化ꎬ不断进行已知㊁求证㊁证明的推导过程.㊀㊀三㊁立体几何教学对于学生逻辑推理核心素养的培养的几个方面㊀㊀立体几何教学对于广大青年学生逻辑推理核心素养的培养主要表现在六个方面.这六个方面分别是符号的表示方面㊁思想的转化方面㊁归纳类比方面㊁推导证明方面㊁运算的求解方面㊁以及反思与建构方面.教师在教学过程中ꎬ要注重对青年学生运用符号语言和图形语言的培训ꎬ要时常向学生渗透转化思想的能力ꎬ提高他们逻辑推理核心素养.在教学实践中有意识地培养学生们的归纳类比的素养ꎬ养成复习和预习的好习惯.要求学生们对 线面平行 等数学公理和定理的相互推导熟练掌握.要培养青少年在求证和推导的过程中专心致志ꎬ提高解决数学问题的正确率.要敦促学生们对自己的推理过程进行不断的反思ꎬ从而得出对这一问题的新认识.综上所述ꎬ数学是中学教育的课程中最富有逻辑思维的学科ꎬ立体几何又是流于生活㊁形于研究ꎬ具有形㊁数的双重特征ꎬ是培养学生逻辑推理核心素养的重要学科.㊀㊀参考文献:[1]杨莹.高中数学立体几何教学中情景教学有效运用分析[J].才智ꎬ2017(26):80.[2]邓天发.高中立体几何教学如何培养学生空间想象能力[J].学周刊ꎬ2016(36):177-178.[3]仇夜生.高中立体几何教学中如何帮助学生形成空间想象能力[J].中国校外教育ꎬ2016(12):132.[责任编辑:杨惠民]谈高中数学中的恒成立问题陈德华(江苏省溧阳市竹箦中学㊀213351)摘㊀要:高中数学需要学生有很强的思维能力ꎬ所以教师在进行教学时要注意培养学生的思维能力.且在进行数学解题过程中ꎬ学生需要掌握正确的教学方法ꎬ而后才能够快速而且正确的去进行数学问题的解决.恒成立问题作为高中数学学习中不可缺少的一部分ꎬ需要教师在进行教授过程中多多让学生练习相关的解题方法.而且掌握高中数学恒成立问题的解法和思路不仅是高中阶段的重要任务ꎬ还是日后学习数学的一个基础.关键词:高中数学ꎻ恒成立问题ꎻ解题方法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2018)09-0003-02收稿日期:2018-01-01作者简介:陈德华(1967.2-)ꎬ男ꎬ江苏省溧阳人ꎬ高级教师ꎬ本科ꎬ从事中学数学教学研究.㊀㊀高中数学十分考验学生的综合能力ꎬ而且学生在进行数学问题的解决过程中会提升自身的思维能力ꎬ所以教师在进行高中数学教授时要注意讲究方法ꎬ从而提升学生在数学方面的综合素质.数学问题有很多种类ꎬ而且针对不同的不同种类的数学问题有不同的解决方法ꎬ学生只有掌握了正确的解决方法ꎬ才能够高效率地去解决数学问题ꎬ所以教师在平时课堂教授过程中应该多多去传授给学生解题方法ꎬ而不应该让学生去进行记忆解题.恒成立问题是数学问题的一个重要类别ꎬ而且解决该问题时有很多种思路和方法ꎬ例如分离参数法ꎬ函数最值法等ꎬ教师在进行教授时应该针对每一种解题方法都举例说明ꎬ并让学生做适当的练习ꎬ在做题的过程中去进行总结ꎬ从而提升学生自身的逻辑能力和解决数学问题的能力.㊀㊀一㊁构造函数恒成立法函数是数学问题中一个很重要的类别ꎬ通过函数学生可以解决很多问题ꎬ并且将数学问题进行简化.而恒成立问题是指在已知条件下ꎬ无论其他变量有什么变化ꎬ其3Copyright©博看网 . All Rights Reserved.命题都永远成立.高中数学恒成立问题中涉及到很多函数ꎬ所以在进行该问题的解决时ꎬ教师不妨让学生利用函数去求解.一次函数ꎬ二次函数甚至是多元函数等都是数学中重要的知识点ꎬ也是考试的重点内容.函数在数学问题中以多种形式展现ꎬ因此其学习难度系数较大ꎬ所以教师在让学生利用函数去解决恒成立问题时ꎬ要教授给学生正确的方法ꎬ让数学问题不再成为难题.而利用函数去解决恒成立问题ꎬ其中一个重要的方法就是构造新函数ꎬ通过新函数的构造来简化问题ꎬ从而使得恒成立求解更加容易ꎬ让学生能够更加高效率的解决恒成立问题.除此之外ꎬ函数可以在坐标系中作图ꎬ所以在解决恒成立问题时ꎬ教师可以利用函数的图像来进行求值.我们在利用函数解决恒成立问题时要注意转化ꎬ可以通过未知数的转化ꎬ或者是将函数转化成图像来进行求解.例如ꎬ若不等式2x-1>m(x2-1)ꎬ对满足-2ɤmɤ2所有的x都成立ꎬ求x的取值范围.这是一道关于不等式的恒成立问题ꎬ而且不等号两边都有未知数ꎬ我们不妨先将原不等式转化为m(x2-1)-(2x-1)<0ꎬ而为了借助函数去解决该问题ꎬ我们可以再构造函数f(m)=(x2-1)m-(2x-1)(-2ɤmɤ2)ꎬ不难发现ꎬ该函数是一次函数ꎬ那么题干中的不等式恒成立问题便转化成一次函数的恒成立问题ꎬ即f(m)>0恒成立.在该问题中ꎬ需要求出变量的取值范围ꎬx为已知参数ꎬ这与以往的求未知数的取值范围不同.那么在此问题中ꎬ我们可以针对一次项的系数进行分类ꎬ当x-1分别等于0ꎬ小于0ꎬ大于0时ꎬ让函数大于0的关于x的解集ꎬ根据此种方法ꎬ我们将x看成变量ꎬ完成了函数变量的转化ꎬ从而更加容易的解决恒成立问题.所以学生在平时解决恒成立问题中ꎬ不妨多多去利用函数的性质来简化恒成立问题.㊀㊀二㊁数形结合恒成立法数学学习过程中会有很多图形ꎬ而且这些图形与数字有着密切的联系ꎬ并且在解题过程中ꎬ若利用图像ꎬ会简化问题的解决步骤.而且图像与很多类数学问题都有联系ꎬ例如函数问题.而在进行函数图像绘画时ꎬ首先需要去构造函数ꎬ并且求出自变量的范围ꎬ而后再做出坐标系去考虑函数与函数图像之间的联系ꎬ最后作出函数图像.在数学问题的解决过程中ꎬ数形结合的思想应用很普遍ꎬ也很高效.利用该思想可以直接将一些复杂难懂的公式以及概念通过图像直观表示出来ꎬ从而使得学生能够更进一步的理解数学问题.而在解决恒成立问题过程中ꎬ学生也可以利用数形结合的方法去进行该类问题的解决ꎬ且通过做出图像能够更加准确地求出恒成立问题成立时未知数的范围.例如ꎬ解由2x-1ȡx-2ꎬx+8ȡ4x-1组成的方程组ꎬ传统解法中直接去计算方程组的解ꎬ但为了简便计算ꎬ我们可以将其看成为不等式的恒成立问题并且去利用图像进行求解ꎬ首先我们计算出每一个方程的解集ꎬ作出数轴ꎬ并将两个方程的解集分别标在数轴上ꎬ取其交集ꎬ而交集即是恒成立问题的解ꎬ也是该方程组的解.很明显这种方法比直接解方程组速度快ꎬ正确率高.所以学生在解决恒成立问题时ꎬ不妨多多作图像ꎬ从而在图像中寻找解决问题的简便方法.㊀㊀三㊁分离参数恒成立法恒成立问题往往是求不同变量的取值范围ꎬ而且在该问题的整式中会含有多种参数ꎬ包括已知和未知参数.所以学生在进行解题时ꎬ要能够将这些参数进行分离ꎬ分离的过程可以通过将含有参数的不等式问题进行变形来实现.分离参数解决恒成立问题ꎬ能够将复杂的恒成立问题简单化ꎬ且能够提升解决问题的正确率和效率.在平时的数学问题解答过程中ꎬ我们通常将不同的位置数转换成未知元xꎬ在恒成立习题中ꎬ我们可以将参数视作主元ꎬ通过这种转化可以简化恒成立问题.分离参数进行恒成立问题的解决时ꎬ学生需要正确将未知数转化ꎬ而实现此能力需要学生进行多次的锻炼ꎬ那么教师在平时的课堂上ꎬ便可以多多去带领学生练习该方面的习题.例如在 xɪR时ꎬ不等式4a+sinx+a2ȡ0恒成立ꎬ求出实数a的取值范围. 的恒成立问题解题过程中ꎬ通过观察已知条件ꎬ我们发现该问题中有两个变量a和xꎬ其中xɪRꎬ另一变量a范围是求值数ꎬ所以在利用分离参数解决恒成立问题时ꎬ首先我们要对a和x进行分离ꎬ解出解析式的变形后为sin2x+4sinx<a2-4aꎬ而这边转化成了不等式的恒成立问题ꎬ所以为了使得该不等式永远成立ꎬa2-4a必须大于sin2x+4sinxꎬ此时我们便可以求函数f(x)=sin2x+4sinx的最值来求解ꎬf(x)=sin2x+4sinx=(sinx+2)2-4ɤ5ꎬ则a2-4a>5ꎬ最终我们解出a的范围:小于-1或者是大于5.在该问题中ꎬ我们通过分离参数ꎬ将恒成立问题转化成求得函数的最值问题ꎬ从而进行进一步参数的求值.总之ꎬ高中数学恒成立问题主要是探求未知数的取值范围和解集ꎬ而且往往恒成立问题中会掺杂许多其他种类的数学知识ꎬ包括数学的函数ꎬ数学不等式以及各种图像等ꎬ这便让恒成立问题解决起来变得困难.但也正是由于恒成立问题中包含许多其他类问题ꎬ我们所能用来解决问题的数学性质增多ꎬ这便为我们解决数学恒成立问题提供了多种方法.教师在进行恒成立问题的教授时应该让学生多多去练习ꎬ并且在练习中学会总结ꎬ从而让学生找出最适合自己的解决恒成立问题的解题方法.㊀㊀参考文献:[1]孟凡栋.恒成立型不等式中参数范围的几种求法[J].数学教学通讯ꎬ2004(01).[责任编辑:杨惠民]4Copyright©博看网 . All Rights Reserved.。
函数导数中的恒成立问题解题技巧
函数导数中的恒成立问题解题技巧函数导数中的恒成立问题解题技巧随着新课标下的高考越来越重视考查知识的综合应用,恒成立问题成为了考试中的热点问题。
这种问题涉及方程、不等式、函数性质与图象及它们之间的综合应用,同时渗透换元、转化与化归、数形结合、函数与方程等思想方法,考查综合解题能力。
在函数、导数中,这种问题更为明显。
本文将介绍两种解题技巧。
一、利用函数的性质解决XXX成立问题利用函数的性质解决恒成立问题,主要是函数单调性的应用。
例如,对于已知函数$f(x)=x^3+(1-a)x^2-a(a+2)x+b(a,b\in R)$,若函数$f(x)$的图象过原点,且在原点处的切线斜率是$-3$,求$a,b$的值。
我们可以先求出$f'(x)$,然后令$f(0)=b=0$,$f'(-1)$和$f'(1)$的乘积小于$0$,解出$a=-3$或$a=1$。
再比如,若函数$f(x)$在区间$(-1,1)$上不单调,求$a$的取值范围。
我们可以利用导函数$f'(x)$在给定的区间上有零点这一性质,根据函数零点的存在性定理解出$a$的取值范围。
二、利用数形结合思想解决恒成立问题利用数形结合思想解决恒成立问题,可以通过画图来求出函数的单调区间、极值点等信息,再结合数学方法解决问题。
例如,对于已知$x=3$是函数$f(x)=a\ln(1+x)+x^2-10x$的一个极值点,求$a$。
我们可以求出$f'(x)$,然后令$f'(3)=0$,解出$a=16$。
再比如,若直线$y=b$与函数$y=f(x)$的图象有$3$个交点,求$b$的取值范围。
我们可以根据函数$f(x)$的单调性来求出其极大值和极小值,画出图象,数形结合可以求出$b$的取值范围。
这些技巧可以帮助我们更好地解决函数导数中的恒成立问题,提高我们的解题能力。
方法点评:分离参数是解决恒成立问题的一种重要方法,通过构造新函数并求其最值,可以得到参数取值范围。
秒杀恒成立问题
秒杀“恒成立”问题------新东方刘佩红类型1:主参换位法设()b ax x f +=()0>x f 在[]n m x ,∈上恒成立⇔ ⎩⎨⎧>>0)(0)(n f m f()0<x f 在[]n m x ,∈上恒成立⇔⎩⎨⎧<<0)(0)(n f m f .例题1、设()()1log 2log 222+--+=t x t x y ,若t 在[]2,2-∈t 上变化,y 恒取正值,求实数x 的取值范围。
【分析】这是一个含有参数t 的不等式问题,然而跟我们平常思路不一样的地方在于这里不再要求我们求参数t 的范围,而是给出参数的范围求未知数x 的范围,这就要求我们转化思想,采用主参换为法,把原来函数转换为关于t 的一次函数,即()(),1log 2log 1log )(2222+-+-=x x t x t f 在[]2,2-∈t 恒大于零,只要满足⎩⎨⎧<>-0)2(0)2(f f ,故可求出x 的取值范围为()+∞⎪⎭⎫ ⎝⎛,821,0Y类型2:设()()02≠++=a c bx ax x f()0>x f 在R x ∈上恒成立⇔0>a 且0<∆()0<x f 在R x ∈上恒成立⇔0<a 且0>∆.例2.不等式3642222++++x x m mx x 1<对一切实数x 恒成立,求实数m 的取值范围。
【分析】容易发现原不等式左边分母的0<∆,所以是一个恒正的数,不等式可以变形为R x x x m mx x ∈++<++,3642222,即()R x m x m x ∈>-+-+,032622,则只要满足0<∆即可,故实数m 的取值范围为()3,1类型3:分离常量法(任意函数型)()x f a > 恒成立对D x ∈恒成立⇔()max x f a >,()x f a < 恒成立对D x ∈恒成立⇔()min x f a <例3.(2000.上海)已知()=x f xa x x ++220>在∈x [)+∞,1上恒成立,求实数a 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒成立问题——数形结合法一、基础知识:1、函数的不等关系与图像特征:(1)若x D ∀∈,均有()()()f x g x f x <⇔的图像始终在()g x 的下方(2)若x D ∀∈,均有()()()f x g x f x >⇔的图像始终在()g x 的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图像中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图像,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图像变换作图(2)所求的参数在图像中具备一定的几何含义(3)题目中所给的条件大都能翻译成图像上的特征二、典型例题:例1:已知不等式()21log a x x -<在()1,2x ∈上恒成立,则实数a 的取值范围是_________思路:本题难于进行参变分离,考虑数形结合解决,先作出()21y x =-的图像,观察图像可得:若要使不等式成立,则log a y x =的图像应在()21y x =-的上方,所以应为单增的对数函数,即1a >,另一方面,观察图像可得:若要保证在()1,2x ∈时不等式成立,只需保证在2x =时,()21log a x x -<即可,代入2x =可得:1log 22a a ≤⇒≤,综上可得:12a <≤ 答案:12a <≤小炼有话说:(1)通过常系数函数图像和恒成立不等式判断出对数函数的单调性,进而缩小了参数讨论的取值范围。
(2)学会观察图像时要抓住图像特征并抓住符合条件的关键点(例如本题中的2x =)(3)处理好边界值是否能够取到的问题例2:若不等式log sin 2(0,1)a x x a a >>≠对于任意的0,4x π⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________思路:本题选择数形结合,可先作出sin 2y x =在0,4x π⎛⎤∈ ⎥⎝⎦的图像,a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得01a <<,观察图像进一步可得只需4x π=时,log sin 2a x x ≥,即log sin 21444a a πππ>⋅=⇒>,所以,14a π⎛⎫∈ ⎪⎝⎭ 答案:,14a π⎛⎫∈ ⎪⎝⎭ 例3:若不等式21x x c +->对任意x R ∈恒成立,求c 的取值范围 思路:恒成立不等式变形为21x c x ->-,即2y x c =-的图像在1y x =-图像的上方即可,先作出1y x =-的图像,对于2y x c =-,可看作y x =经过平移得到,而平移的距离与c 的取值有关。
通过观察图像,可得只需21c >,解得:12c >答案: 12c >小炼有话说:在本题中参数c 的作用是决定图像平移变换的程度,要抓住参数在图像中的作用,从而在数形结合中找到关于参数的范围要求 例4:若||2p ≤,不等式212x px p x ++>+恒成立,则x 的取值范围是______ 思路:本题中已知p 的范围求x 的范围,故构造函数时可看作关于p 的函数,恒成立不等式变形为 ()2210x p x x -+-+>,设()()()22122f x x p x x p =-+-+-≤≤,即关于p 的一次函数,由图像可得:无论直线方向如何,若要()0f x >,只需在端点处函数值均大于0即可,即()()2020f f >⎧⎪⎨->⎪⎩,解得:132x +<-或12x -+>答案:12x +<-或12x -+> 小炼有话说:(1)对于不等式,每个字母的地位平等,在构造函数时哪个字母的范围已知,则以该字母作为自变量构造函数。
(2)线段的图像特征:若两个端点均在坐标轴的一侧,则线段上的点与端点同侧。
(3)对点评(2)的推广:已知一个函数连续且单调,若两个端点在坐标轴的一侧,则曲线上所有点均与端点同侧例5:已知函数()21f x x mx =+-,若对任意的[],1x m m ∈+,都有()0f x <成立,则实数m 的取值范围是_____________思路:恒成立的不等式为210x mx +-<,如果进行参变分离,虽可解决问题,但是因为x 所在区间含参,m的取值将决定分离时不等号方向是否改变,需要进行分类讨论,较为麻烦。
换一个角度观察到()f x 是开口向上的抛物线,若要()0f x <,只需端点处函数值小于零即可(无论对称轴是否在区间内),所以只需()()22210223123002m f m m f m m m m ⎧<<⎪⎧=-<⎪⎪⇒⎨⎨+=+<⎪⎪⎩-<<⎪⎩,解得2m ⎛⎫∈- ⎪⎝⎭答案:2⎛⎫-⎪⎝⎭小炼有话说:本题也可以用最值法求解:若()0f x <,则()max 0f x <,而()f x 是开口向上的抛物线,最大值只能在边界处产生,所以()()010f m f m <⎧⎪⎨+<⎪⎩,再解出m 的范围即可 例6:已知函数()()1f x x a x =+,设关于x 的不等式()()f x a f x +<的解集为A ,若11,22A ⎡⎤-⊆⎢⎥⎣⎦,则实数a 的取值范围是_____________ 思路:首先理解条件11,22A ⎡⎤-⊆⎢⎥⎣⎦,即11,22x ⎡⎤∀∈-⎢⎥⎣⎦时,不等式()()f x a f x +<恒成立,可判断出函数()f x 为奇函数,故先作出0x >的图像,即2y ax x =+,参数a 的符号决定开口方向与对称轴。
故分类讨论:当0a >时,2y ax x =+单调递增,且()f x a +为()f x 向左平移a 个单位,观察图像可得不存在满足条件的a ,当0a <时,2y ax x =+开口向下,且()f x a +为()f x 向右平移a 个单位,观察可得只需11,22x x ==-,()()f x a f x +<,即可保证11,22x ⎡⎤∈-⎢⎥⎣⎦,()f x a +的图像始终在()f x 的下方。
()()1212f a f x f a f x ⎧⎛⎫+< ⎪⎪⎪⎝⎭∴⎨⎛⎫⎪-< ⎪⎪⎝⎭⎩解得:102a -<<;当0a =时,代入验证不符题意。
答案:0a << 小炼有话说:(1)注意本题中“恒成立问题”的隐含标志:子集关系(2)注意函数奇偶性对作图的影响(3)本题中参数a 扮演两个角色:① ()f x 二次项系数——决定抛物线开口,② 决定二次函数对称轴的位置; ③ 图像变换中决定平移的方向与幅度,所以要进行符号的分类讨论。
例7:已知函数()212ln 2f x a x ax x ⎛⎫=--+ ⎪⎝⎭.当x ∈()1,+∞时,不等式()0f x <恒成立,则实数a 的取值范围是________ 思路:所证不等式可转化为212ln 2a x ax x ⎛⎫--<- ⎪⎝⎭,作出ln y x =-的图像,当12a ≠时a 的取值决定2122y a x ax ⎛⎫=-- ⎪⎝⎭的开口,观察可得102a -<,且1x =时,212ln 2a x ax x ⎛⎫--≤- ⎪⎝⎭即可,10112122202a a a a ⎧-<⎪⎪∴⇒-≤<⎨⎪--≤⎪⎩ 当12a =时,不等式为ln 0x x -<,可证明其成立 答案:11,22a ⎡⎤∈-⎢⎥⎣⎦ 小炼有话说:原不等式无法直接作出图像,则考虑先变形再数形结合,其原则为两个函数均可进行作图。
例8:设a R ∈,若0x >时均有()21110a x x ax ⎡⎤----≥⎡⎤⎣⎦⎣⎦,则a =_________ 思路:本题如果考虑常规思路,让两个因式同号去解a 的值(或范围),则不可避免较复杂的分类讨论,所以可以考虑利用图像辅助解决。
将两个因式设为函数:()()11f x a x =--,()21g x x ax =--,则在图像上要求这两个函数同时在x 轴的上方与下方。
这两个函数在图像上有公共定点()0,1-,且()g x 为开口向上的抛物线。
所以()f x 的斜率必大于0,即1a >,通过观察图像可得:()f x 与()g x 与x 轴的交点必须重合。
()101f x x a =⇒=-,所以2111010111g a a a a ⎛⎫⎛⎫=⇒-⋅-= ⎪ ⎪---⎝⎭⎝⎭,解得:0a =(舍)或32a = 答案:32a =小炼有话说:(1)在处理不等式的问题时要有两手准备,一是传统的代数方法,二是通过数形结合的方式。
要根据题目选择出合适的方法。
对于数形结合而言,要求已知条件与所求问题都具备一定的图像特征。
所以在本题中一旦确定了使用图像,则把条件都翻译为图像上的特点。
(2)本题中隐藏的公共定点是本题的一个突破口,这要求我们对于含参的函数(尤其是直线),要看是否具备过定点的特征。
例9:(2015山东烟台高三一模)已知()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩,不等式()()2f x a f a x +>-在[],1a a +上恒成立,则实数a 的取值范围是( )A. (),2-∞-B. (),0-∞C. ()0,2D. ()2,0- 思路:本题有两个难点,一是所给区间含参,一个是()x a +与()2a x -很难确定其范围,从而()f x a +与()2f a x -无法化成解析式。
但由于所给不等式可视为两个函数值的大小,且分段函数图像易于作出,所以考虑作出()f x 图像,看是否存在解题的突破口。
通过图像可以看出虽然()f x 是分段函数,但是图像连续且单调递减。
所以()f x 是R 上的减函数。
那么无论()x a +与()2a x -位于哪个区间,由()()2f x a f a x +>-及单调性均可得到:只需22x a a x a x +<-⇒>,所以()()max 221a x a >=+,解得2a <-答案:A例10:已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2221232f x x a x a a =-+-- ,若()(),1x R f x f x ∀∈-≤,则实数a 的取值范围是_____________思路:()f x 是奇函数且在0x >时是分段函数(以22,2a a 为界),且形式。