江西省吉安市“省重点中学五校协作体”2021届高三第一次联考数学(理)试题
江西省重点中学协作体(鹰潭一中、上饶中学等)2021届高三下学期第一次联考数学(理)试题
江西省重点中学协作体2021届高三第一次联考数学(理)试卷考试时间:120分钟分值:150分一、选择题:本题共12小题,每题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{0,1,2,3}A =,集合{}2|B x x x ==,则A B =( ) A. {0,1,2.3} B. {1,0,1}-C. {1.2}D. {0,1}D利用集合交集的定义计算即可.{}{}2|0,1B x x x ===,则{}0,1A B =故选:D2. 已知复数511i z i-=+,z 的虚部是( )A. 1-B. i -C. 1D. iC利用复数的乘方和除法法则化简复数z ,利用共轭复数的概念以及复数的概念可得出复数z 的虚部.()()()25111211112i i ii z i i i i i ----=====-+++-,z i ∴=,因此,z 的虚部是1.故选:C.3. 已知1::P p a≤1,2:10q a -≥则P 是q 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件B根据题意,化简,p q ,即可利用集合之间的关系,判定得到结论.1:p a≤1,化简可得:0p a <或1a ≥, 2:10q a -≥,化简可得:1q a ≤-或1a ≥,由{|1a a ≤-或1}a ≥ {|0a a <或1}a ≥, 可知,pq q p ⇒,故p 是q 的必要不充分条件,故选:B方法点睛:判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件; ②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件; ③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件. ⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.4. sin155sin35cos25cos35︒︒-︒︒=( )A. B. 12-C.12B根据诱导公式,以及两角和的余弦公式直接化简,即可得出结果.sin155sin35cos25cos35sin 25sin35cos25cos35︒︒-︒︒=︒︒-︒︒()1cos 2535cos602=-︒+︒=-︒=-.故选:B.关键点点睛:该题主要考查利用两角和的余弦公式化简求值,涉及诱导公式,正确解题的关键是熟练掌握公式.5. 在6()2x y x y ⎛⎫-+ ⎪⎝⎭的展开式中,25x y 的系数是( )A. 20B.152C. 12-D. 252-C将原式变形为666()()()22x x y x y x y y x y =⎛⎫-++-+ ⎪⎝⎭,再根据6()x y +的展开式的通项公式616rr r r T x y C -+=,分别令=5r , 4r =求解.666()()()22x x y x y x y y x y =⎛⎫-++-+ ⎪⎝⎭, 6()x y +的展开式的通项公式为616rr r r T x y C -+=,令=5r 时,25x y 的系数是56123C =; 令4r =时,25x y 的系数是4615C =--,所以6()2x y x y ⎛⎫-+ ⎪⎝⎭的展开式中,25x y 的系数是3-15=-12,故选:C6. “干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅……癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸巳;…,共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2121年是“干支纪年法”中的( ) A. 庚午年 B. 辛未年C. 庚辰年D. 辛巳年D根据“干支纪年法”的规则判断.2021年是辛丑年,则2081年是辛丑年,天干10个一循环,地支12个一循环,2082年到2121年共40年,天干正好又是辛,因为40除以12的余数为4,故地支为丑后的第四个巳,因此2021年是辛巳年.故选:D .7. 已知|1|3()5x f x -⎛⎫= ⎪⎝⎭,则下列不等关系正确的是( )A. ()()20.5log 71 2.5(1)f f f <∞<B. ()()0.52log 2.5log 7(1)f f f <<C. ()()0.52(1)log 2.5log 7f f f <<D. ()()20.5(1)log 7log 2.5f f f <<B根据|1|3()5x f x -⎛⎫= ⎪⎝⎭,分别求得()()0.52log 2.5,log 7,(1)f f f ,再利用35xy ⎛⎫= ⎪⎝⎭在R 上递减求解.因为|1|3()5x f x -⎛⎫= ⎪⎝⎭,所以()0.50.50.50.5|log 2.51||log 2.51|og 5og 0502..3333log 2.55555l l f ---⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪ ⎪===⎝⎭⎝⎭⎝⎭⎝⎭,()22|log 71|log 2 3.533log 755f -=⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,03(1)5f ⎛⎫= ⎪⎝⎭,又因为0.50.5222log 0.2log 0.252,1log 2log 3.5log 42>==<<=,所以0.52log 0.2log 3.50>>,又35xy ⎛⎫= ⎪⎝⎭在R 上递减,所以0.52og log00.2 3.5333 555 l⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎝⎭⎝⎝<⎭⎭<,即()()0.52log 2.5log7(1)f f f<<,故选:B8. 若函数sin23y xπω⎛⎫=+⎪⎝⎭的图象向右平移6π个单位后与函数cos2y xω=的图象重合,则ω的值可能为()A. 1-B. 2-C.12- D.14-C写出平移的函数解析式,根据诱导公式求得ω的表达式,比较可得.函数sin23y xπω⎛⎫=+⎪⎝⎭的图象向右平移6π个单位后得图象的解析式为1sin2()sin2633y x xππωωωπ-⎡⎤⎛⎫=-+=-⎪⎢⎥⎣⎦⎝⎭,它与cos2y xω=相同,则1232kωπππ--=+,16,2k k Zω=--∈,只有C满足.故选:C.9. 如图ABCDEF为五面体,其中四边形ABCD为矩形,//EF AB,3332AB EF AD===,ADE和BCF△都是正三角形,则该五面体的体积为()A.23B.232 D.322A把该五面体分割为两个等体积的四棱锥和一个直三棱柱,结合棱锥和棱柱的体积公式,即可求解.过点F作FO⊥平面ABCD,垂足为O,取BC的中点P,连接PF,过点F作FQ AB⊥,垂足为Q,连接OQ,交CD于G,得到四棱锥F BCGQ-,同理得到四棱锥E ADMN-,可得F BCGQ E ADMNV V--=,如图所示,因为ADE 和BCF △都是边长为2的等边三角形,所以11()1,3,122OP AB EF PF OQ BC =-====,可得222OF PF OP =-=,所以112212233E ADMN F BCGQ BCGQ V V S OF --==⋅=⨯⨯⨯=,中间部分三棱柱FGQ EMN -为直三棱柱, 其体积为 122122FGQ EMN FGQV SEF -=⨯=⨯⨯⨯=, 所以该五面体的体积为22722233FGQ EMN E ADMN F BCGQ V V V V ---=+==+⨯=.故选:A.求空间几何体的表面积与体积的求法:(1)公式法:对于规则的几何体的表面积和体积,可直接利用公式进行求解;(2)割补法:把不规则的图形分割成规则的图形,然后进行体积的计算,或不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算;(3)等体积法:等体积法也称积转化或等积变形,通过选择合适的底面来求几何体体积的一种方法,多用来解决锥体的体积,特别时三棱锥的体积.10. 在三角形ABC 中,E 、F 分别为AC 、AB 上的点,BE 与CF 交于点Q 且2AE EC →→=,3AF FB →→=,AQ 交BC 于点D ,AQ QD λ→→=,则λ的值为( ) A. 3 B. 4 C. 5 D. 6C由题得2(1)3AQ x AB x AC →→→=+-,3(1)4AQ y AC y AB →→→=+-,求出,x y 的值,再根据1+123AD AB AC λλλλ→→→+=+,,,B D C 共线,得解.因为,,B Q E 三点共线,所以2(1)(1)3AQ x AB x AE x AB x AC →→→→→=+-=+-,因为,,C Q F 三点共线,所以3(1)(1)4AQ y AC y AF y AC y AB →→→→→=+-=+-,所以3(1)114,.223(1)3x y x y y x ⎧=-⎪⎪∴==⎨⎪=-⎪⎩, 所以11=,231AQ AB AC AD λλ→→→→=++ 所以1+123AD AB AC λλλλ→→→+=+, 因为,,B D C 共线, 所以1+11,523λλλλλ++=∴=.故选:C 结论点睛:如果,,A B C 三点共线,则1212(1)OA OB OC λλλλ→→→=++=,要根据已知条件灵活运用这个结论解题.11. 已知A .B .C 是双曲线22221(0,0)x y a b a b-=>>上的三个点,AB 经过原点O ,AC 经过右焦点F ,若BF AC ⊥且3||||AF CF =,则该双曲线的离心率是( )A. B.53C.D.94A根据题意,连接','AF CF ,构造矩形'FAF B ;根据双曲线定义表示出各个边长,由直角三角形勾股定理求得a c 、的关系,进而求出离心率. 设左焦点为'F ,AF m =,连接','AF CF ,则3FC m = ,'2AF a m =+ ,'23CF a m =+,'2FF c =, 因为BF AC ⊥,且AB 经过原点O , 所以四边形'FAF B 为矩形,在Rt △'AF C 中,222'+'AF AC F C =, 将边长代入得()()()2222+4=23a m m a m ++, 化简得m a =,所以在Rt △'AF F 中,222'+'AF AF F F =,代入边长得()()()22222a a a c ++=化简得2252c a =,即10e ,故选:A.关键点点睛:该题考查的是有关双曲线的离心率的求解问题,根据题意画出草图,分析出'FAF B 为矩形是解题关键,然后根据垂直和已知边长关系及双曲线定义写出每条线段长度,最后借助勾股定理形成等式求解离心率即可.12. 设k 、b R ∈,若关于x 的不等式()ln 1x x k x b +≤++在()0,∞+上恒成立,则221k b k +--的最小值是( ) A. 2e - B. 11e -+ C. 1e -+ D. 1e --C令()()ln 1f x x x k x =+-+,分析得出()max b f x ≥,分1k ≤、1k >两种情况讨论,可得出()()max ln 11f x k k =----,进而可得出()ln 1222111k k b k k -++-≥---,令10t k =->,利用导数求出函数()ln 21t g t t+=-的最小值,即可得解. 令()()ln 1f x x x k x =+-+,则()f x b ≤对任意的()0,x ∈+∞恒成立,所以,()max b f x ≥. ①当1k ≤时,()110f x k x'=+->,函数()f x 在()0,∞+上单调递增,函数()f x 无最大值,不合乎题意;②当1k >时,令()0f x '=,可得11x k =-. 当101x k <<-时,()0f x '>,此时函数()f x 单调递增, 当11x k >-时,()0f x '<,此时函数()f x 单调递减, 所以,()()max 1111ln 1ln 111111f x f k k k k k k k ⎛⎫⎛⎫==+-+=---- ⎪ ⎪----⎝⎭⎝⎭, 即()ln 11b k k ≥----,()()ln 11ln 12222211111k k k k b bk k k k -++-++-∴=+≥-=-----,设10t k =->,令()ln 21t g t t +=-,则()2ln 1t g t t+'=, 当10<<t e 时,()0g t '<,此时函数()g t 单调递减,当1t e>时,()0g t '>,此时函数()g t 单调递增.所以,()min 11g t g e e ⎛⎫==- ⎪⎝⎭,因此,221k b k +--的最小值是1e -.故选:C.结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.二、填空题:本大题共4小题,每题5分,共20分13. 已知实数x ,y 满足约束条件222440x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最大值为_____.10作出可行域,作出目标函数对应的直线,平移该直线可得最优解.作出可行域,如图ABC 及其内部(含边界),其中()0,1A ,()2,0B ,()4,2C ,作直线30x y -=,由3z x y =-得3y x z =-,直线向下平移时截距减小,z 增大, 当直线l 过()4,2C 时,max 34210z =⨯-=, 故答案为:10.14. 已知函数()f x 是奇函数,当0x <时,()sin 1f x x =-,则函数() f x 在2x π=处的切线方程为_____.2y =先求出切线的斜率,再求出切线的方程.详解】当0x <时,()=cos f x x ',所以()=cos()022f ππ'--=,因为函数是奇函数,所以对称点处的导数相同,所以()()=022f f ππ''=-,所以切线的斜率为0,又因为()()[sin()1]2222f f πππ=--=---=, 所以切线方程为2y =. 故答案为:2y =结论点睛:曲线()y f x =在点00(,())x f x 处的切线方程为000()()()y f x f x x x '-=-,这个结论要理解记住并熟练利用.15. 过抛物线2:2(0)C y px p =>的焦点F 的直线l 与C 相交于A.B 两点,且A.B 两点在准线上的射影分别为M.N ,AFM △的面积与BFN 的面积互为倒数,则MFN △的面积为_____. 2根据题意,画出图形,结合抛物线的定义以及三角形的面积公式,根据题中所给的条件,列出等量关系,求得结果.【详解】设,,MAF AF a BF b θ∠===,由抛物线定义可得,AM a BN b ==, 且180********AFM BFN ︒-∠+︒-∠=︒,故90AFM BFN ∠+∠=︒, 故90MFO NFO ∠+∠=︒即MF NF ⊥.设MAF θ∠=,则由余弦定理得222(1cos )MF a θ=-,222(1cos )NF b θ=+,2211sin ,sin 22MAFNBFSa Sb θθ== 因为AFM △的面积与BFN 的面积互为倒数,所以有2211sin sin 122a b θθ⋅=,即222sin 4a b θ=,所以2222221()()sin 44MFN S MF NF a b θ===,所以MFN △的面积为2, 故答案:2.关键点点睛:该题考查的是有关抛物线中的三角形的面积的求解问题,正确解题的关键是熟练掌握抛物线的定义,得到其相应的性质.16. 在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//,AB CD AB AD ⊥,22CD AD AB ===,若动点Q 在平面P AD 内运动,使得CQD ∠与BQA ∠相等,则三棱锥- Q ACD 的体积最大时的外接球的体积为_____. 40103π 根据题意推出AB QA ⊥,CD QD ⊥,再根据CQD BQA ∠=∠推出2QD AQ =,在平面PDA 内,建立直角坐标系求出Q 点轨迹是圆22(3)8x y -+=,从而可求出点Q 到DA 的距离最大为22,即三棱锥 - Q ACD 的高的最大值为22,再寻找三棱锥的外接球球心,计算球半径,进而计算球的体积即得结果.因为PA ⊥平面ABCD ,所以平面PAD ⊥平面ABCD ,因为//AB CD ,AB ⊥AD ,所以AB ⊥平面PAD ,CD ⊥平面PAD , 因为Q 在PAD △内及边上,所以QA 、QD 在平面PAD 内, 所以AB QA ⊥,CD QD ⊥, 所以在Rt CDQ △内,tan CD CQD DQ ∠=,在Rt ABQ △内,tan ABBQA QA=,因为CQD BQA ∠=∠,所以CD AB DQ QA=,因为2,2CD AB ==, 所以2QD AQ=,在平面PDA 内,以DA 的中点为原点O ,线段DA 的垂直平分线为y 轴,建立平面直角坐标系: 则(1,0)D -,(1,0)A ,设(,)P x y ,则22||(1)DQ x y =++,22||(1)QA x y =-+,由2QD AQ =得2222(1)2(1)x y x y ++=⋅-+,化简得22(3)8x y -+=, 所以动点Q 在平面P AD 内运动,Q 点轨迹是圆22(3)8x y -+=,如图所示,当Q 在过圆心的垂线时点Q 到DA 的距离最大为半径22,也就是三棱锥Q ACD -的高的最大值为22,下面的计算不妨设点Q 在x 轴上方,QAD 外接圆圆心在DA 中垂线上,即y 轴上,设外接圆圆心N ,半径r ,则2sin DQr DAQ=∠,而22,2,4QS AS DS ===,故()()222222223,42226AQ DQ =+==+=,222sin sin 233QS DAQ QAS AQ ∠=∠===,所以32266sin 2DQ r DAQ ==⨯=∠,故3AN r ==,则223122ON =-=.如图三棱锥Q ACD -,CD ⊥平面PAD ,2CD AD ==,ACD △的外接圆圆心在斜边中点M 上,过M ,N 作平面ACD 和平面QAD 的垂线,交于点I ,即是三棱锥外接球球心,因为12,222DM AC IM ON ====, 所以三棱锥Q ACD -外接球半径()()222222210R DI DM IM ==+=+=,所以三棱锥Q ACD -的外接球的体积为3344333V R ππ===.故答案为:3. 方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第T ~22为必考题,每个试题考生都必须作答,第22、23题为选做题,考生根据要求作答. (一)必考题:共60分17. 已知等差数列{}n a 为递减数列且首项15a =,等比数列{}n b 前三项依次为11a -,22a +,33a .(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n S .(1)6n a n =-,1342n n b -⎛⎫=⋅ ⎪⎝⎭;(2)211388222nn n n S ⎛⎫=-+-+ ⎪⎝⎭.(1)设等差数列{}n a 的公差为d ,由题设求出d 即可求得n a ,进而求得等比数列{}n b 的首项1b 和公比q ,即可求得n b ;(2)先由(1)求得n n a b +,再利用分组求和法求得其前n 项和n S 即可. (1)设等差数列{}n a 的公差为d ,由题意得:2(7)4(156),1d d d +=⨯+∴=-,或11d =(舍)6n a n ∴=-又11254,6b a b =-==,∴公比133422n n q b -⎛⎫=∴=⋅ ⎪⎝⎭(2)13 6,42nn na n b-⎛⎫=-=⋅ ⎪⎝⎭1122n n nS a b a b a b=++++⋯⋯⋯⋯⋯⋯++()()1212n na a ab b b=++⋯⋯⋯⋯+++⋯⋯⋯211388222nnn ns⎛⎫∴=-+-+ ⎪⎝⎭.思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)首先设出数列的公差,利用题中所给的条件,建立等量关系式,求得公差,根据首项,写出{}n a的通项,进而求得{}n b的首项和公比,求得其通项公式;(2)结合(1)的结论,利用分组求和法,求得其前n项和n S.18. 如图,在三棱锥A BCD-中,ABD△是等边三角形,2AC=,2BC CD==,BC CD⊥,E为空间内一点,且CDE△为以CD为斜边的等腰直角三角形.(1)证明:平面ABD⊥平面BCD;(2)若2BE=,试求平面ABD与平面ECD所成锐二面角的余弦值.(1)证明见解析;(26(1)取BD的中点O,连接OC,OA,证明二面角A BD C--的平面角AOC∠是直角,得面面垂直;(2)以O为原点,OC为x轴,OD为y轴,OA为z轴建立空间直角坐标系,不妨令E在平面BCD上方,取CD的中点F,连接OF,EF,可证明CD⊥平面EOF,得证平面EOF⊥平面OCD,EFOπθ∠=-,得出各点坐标,由2BE=求得cosθ,得出E点坐标,再求出两个平面的法向量,由法向量夹角得二面角.解:(1)取BD的中点O,连接OC,OA,因为ABD △是等边三角形,2BD =,所以AO BD ⊥,且3AO =,又因为2BC CD ==,所以OC BD⊥112CO BD ==,又2AC = 222AO OC AC AO OC ∴+=∴⊥ 又AO BD ⊥,因为CO BD O ⋂=,二面角A BD C --的平面角AOC ∠是直角, ∴平面ABD ⊥平面BCD ;(2)由(1)以O 为原点,OC 为x 轴,OD 为y 轴,OA 为z 轴建立空间直角坐标系, 不妨令E 在平面BCD 上方取CD 的中点F ,连接OF ,EF ,则,OF CD EF CD ⊥⊥.OF EF F ⋂=,,OF EF ⊂平面EOF ,∴CD ⊥平面EOF ,CD ⊂平面OCD ,∴平面EOF ⊥平面OCD ,22OF =,6EF =,设EFO πθ∠=-,则(0,0,0)O ,(1,0,0)C ,(0,1,0)D ,3)A ,(0,1,0)B -1111211132cos ,cos ,cos ,cos 22222222E BE θθθθθθ⎛⎫⎛⎫++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 13336232cos 2,cos ,sin ,,,22444BE E θθθ⎛=+=∴=∴=∴ ⎝⎭所以(1,1,0)CD =-,13,,444CE ⎛=- ⎝⎭,设平面ECD 的一个法向量为(,,)n x y z =,则0CD n CE n ⎧⋅=⎨⋅=⎩, 0136044x y x y z -+=⎧⎪∴⎨-++=⎪⎩, 令1x =,则1,1,3n ⎛=- ⎝⎭因为平面ABD 的一个法向量为(1,0,0)OC =,所以|cos ,|4OC n〈〉==,即平面ECD 与平面ECD 方法点睛:本题考查证明面面垂直,考查向量法求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).19. 已知椭圆2222:1(0)x y C a b a b +=>>,长轴为4,不过原点O 且不平行于坐标轴的直线l 与C有两个交点A ,B ,线段AB 的中点为M ,直线OM 的斜率与直线l 的斜率的乘积为定值34-.(1)求椭圆C 的方程;(2)若直线l 过右焦点2F ,问y 轴上是否存在点D ,使得三角形ABD 为正三角形,若存在,求出点D ,若不存在,请说明理由.(1)22143x y +=;(2)不存在这样的点D ,理由见解析.(1)由题意可得2a =,设点()11,A x y ,()22B x y ,利用点差法可得22AB OMk k b a=-⋅,即可求出b ,从而得解;(2)设直线:(1)l y k x =-,联立直线与椭圆方程,消元、列出韦达定理,即可表示出点M ,假设存在点D ,求出MD 的直线方程,从而得到D 点坐标,利用弦长公式求出AB 、MD ,由ABD △为等边三角形,则||||MD AB =,即可得到方程,即可判断; 解(1)由题意可知:24a =,所以2a =设点()11,A x y ,()22B x y ,A ,B 在椭圆上2211221x y a b∴+=..............① 2222221x y a b +=...............② 因为34AB OM k k ⋅=-2112211234y y y y x x x x -+∴⋅=--+..............③ 由①-②得2222121222220x x y y a a b b -+-=,即22221212220x x y y a b--+=,所以2211222112y y y y b x x x x a -+⋅=--+ 由③得2234b a -=-23b ∴=∴椭圆C 方程为:22143x y +=(2)设直线:(1)l y k x =-联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得()22223484120k x k x k +-+-= 221212228412,3434k k x x x x k k-∴+==++ ()()()2121212228623112344k ky y k x x x k k k k x k k k =-+-=-∴=-+⨯++-=+ 22243,3434k k M k k ⎛⎫∴- ⎪++⎝⎭,假设存在点D ,则MD 的直线方程为:2223143434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭ 20,34k D k ⎛⎫∴ ⎪+⎝⎭所以()2122121||34k AB x k +=-==+.||0MD =-=若ABD △为等边三角形则:||||MD AB =()2221214||23434k k k k+=++即223270k +=,方程无实数解, ∴不存在这样的点D(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形. 20. 某超市计划按月订购一种预防感冒饮品,每天进货量相同,进货成本每瓶5元,售价每瓶8元,未售出的饮品降价处理,以每瓶3元的价格当天全部处理完.根据一段时间以来的销售经验,每天需求量与当天最高气温(单位:C ︒)有关.如果最高气温不低于30,需求量为500瓶;如果最高气温位于区间[25,30),需求量为300瓶;如果最高气温低于25,需求量为200瓶.为了确定七月份的订购计划,统计了前三年七月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求七月份这种饮品一天的需求量x (单位:瓶)的分布列;(2)若七月份一天销售这种饮品的利润的数学期望值不低于700元,则该月份一天的进货量n (单位:瓶)应满足什么条件? (1)答案见解析;(2)267400n ≤≤.(1)根据题意,求得随机变量X 的所有可能取值为500,300,200,求得相应的概率,即可求得随机变量的分布列;(2)由题意得出200500n ≤≤,分别求得300500n ≤≤和200300n ≤<时,12(,)()E Y E Y ,再令1)(700E Y ≥和2)(700E Y ≥,即可求解.(1)依题意,可得随机变量X 的所有可能取值为500,300,200,. 由表格数据知273627(500)0.3,(300)0.4,(200)0.3909090P x P x P x =========, 因此分布列为(2)由题意可知,这种饮品一天的需求量最多为500瓶,最少为200瓶, 因此只需考虑200500n ≤≤, 当300500n ≤≤时,1(0.3[20032(200)]0.4[3003(300)2]0.339000.5)E Y n n n n =⨯⨯--+⨯--⨯+⨯=-,令1)(700E Y ≥,即9000.5700n -≥,解得400n ≤. 当200300n ≤<时,2()0.3[20032(200)]0.73 1.5n 300E Y n n =⨯⨯--+⨯=+令2)(700E Y ≥,即1.5n 300700+≥,解得 8003n ≥, 因为n Z ∈,所以267n ≥, 综上可得267400n ≤≤. 21. 已知函数ln()()ax f x ax=. (1)讨论函数()f x 的单调区间. (2)若当1a =时,()9()2()f x F x f x ex=+,求证:()0F x > (1)答案见解析;(2)证明见解析.(1)对函数()f x 求导,分0a >和0a <两种情况,结合函数的定义域得出函数的单调性;(2)要证()0F x >,由于0x >,即证ln 2ln e90x xx +>.令ln ()2ln e9(0)x xm x x x =+>,对函数求导并化简,构造()(1ln )ln h x x x x =-+二次求导,令分子为()2ln 1x x x ϕ=-+,利用导数判断出单调性和最小值,得出函数()h x 的单调性,由零点存在定理知极小值即为最小值,利用导数判断出最小值的范围,命题得证. (1)()21ln ()ax f x ax -'=, 当0a >,定义域为(0,)+∞,令()0f x '>,得0e x a <<,()0f x '<得e x a> ()f x ∴在0,e a ⎛⎫ ⎪⎝⎭单调递增,在,e a ⎛⎫+∞ ⎪⎝⎭单调递减当0a <,定义域为(,0)-∞,令()0f x '>,得ex a <,()0f x '<得0e x a<< ()f x ∴在,e a ⎛⎫-∞ ⎪⎝⎭单调递增,在,0e a ⎛⎫⎪⎝⎭单调递减(2)要证()0F x >,0x,即证ln 2ln e90x xx +>.令ln ()2ln e9(0)x xm x x x =+>,则ln ln ln 221ln 12m ()2ln 2[ln (1ln )]xxx xxxxex ex e x x x x x x-'=⋅⋅+⋅=-+, 设()(1ln )ln h x x x x =-+,则12ln 2ln 1()1x x x h x x x x'-+=-+=, 令()2ln 1x x x ϕ=-+,其中0x >,22()1x x x xϕ-'=-=. 当02x <<时,()0x ϕ'<,此时函数()ϕx 单调递减;所以,min ()(2)32ln 20x ϕϕ==->,则对任意的0x >,()0h x '>, 所以,函数()h x 在(0,)+∞上为增函数,因为11111ln ln 02222h ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,(1)10h =>,由零点存在定理可知,存在01,12x ⎛⎫∈ ⎪⎝⎭使得()()00001ln ln 0h x x x x =-+=,可得000ln 1ln 1x x x =-.当00x x <<时,h(x)<0,即()0F x '<,此时函数()F x 单调递减;当0x x >时,()0h x >,即()0F x '>,此时函数()F x 单调递增.()0000ln 11ln 1ln 2min 000009m()m 2ln 92ln 9ln 2ln x x x x x x e x ex x e x --⎛⎫∴==+=+=+ ⎪ ⎪⎝⎭, 令1121022929ln (ln 2,0),()2,()0(1)t t t x p t e p t e t t t '--=∈-=+=--<-, 则函数()p t 在(ln 2,0)t ∈-时单调递减, 所以,1ln 229()(ln 2)20ln 2p t p e -+<-=-<,所以,()min 0m()0x m x => 因此,对任意的0x >,m()0x >,即()0F x >.方法点睛:本题考查导函数在函数单调性和极值以及最值中的应用,考查导数证明不等式,考查分类讨论思想,其中利用导函数判断单调性的步骤为:1. 先求出原函数的定义域;2. 对原函数求导;3. 令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;4. 若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22. 在直角坐标系 xOy 中,已知曲线1C 的参数方程为44241121t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩(t 为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为cos 43πρθ⎛⎫+= ⎪⎝⎭. (1)写出曲线1C 的普通方程,2C 的直角坐标方程;(2)过曲线1C 上任意一点P 作与2C 夹角为60°的直线,交2C 于点A ,求||PA 的最大值与最小值.(1)221(0)x y y +=≥,80x -=;(2)最小值3,最大值3. (1)用消元法得1C 的普通方程,由公式cos sin x y ρθρθ=⎧⎨=⎩化极坐标方程为直角坐标方程; (2)求出P 到直线2C 的距离的最大值和最小值后可得结论.(1)曲线1C 的普通方程为221(0)x y y +=≥直线2C 的普通方程为80x -=.(2)曲线1C 上任意一点(cos ,sin )[0,]P θθθπ∈到2C 的距离为1|cos 8|cos 423d πθθθ⎛⎫=-=+- ⎪⎝⎭.则cos 4sin 603d PA πθ⎛⎫==+- ⎪︒⎝⎭,当0θ=,||PA 取得最小值,最小值为3.当23πθ=,||PA 取得最大值,最达值为3. 关键点点睛:本题考查参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,考查点到直线的距离公式.化参数方程为直角坐标方程时,注意变量的取值范围,本题中0y ≥,对圆来讲可以用参数方程cos sin x r y r θθ=⎧⎨=⎩表示圆上的点,从而求得点到直线的距离,利用三角函数知识求得最值.这里仍然要注意θ的范围是[0,]π.23. 已知a ,b ,c 为正数.(1)证明233232332b c a a c b a b c a b c+-+-+-++≥; (2)求4444111a b c a b c ⎛⎫+++++ ⎪⎝⎭的最小值.(1)证明见解析;(2)(1)利用基本不等式可证得命题成立;(2)三次使用不等式且等号同时成立,可求得最小值.(1)证明a ,b ,c 均为正数,23322223232b a c a c b a b a c b c∴+≥+≥+≥ 以上三式相加,得233263232b a c a c b a b a c b c +++++≥ 2332111333223b c a c a b a a b b c c ⎛⎫⎛⎫⎛⎫∴+-++-++-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即233232332b c a a c b a b c a b c+-+-+-++≥.(当且仅当32a b c ==时等号成立) (2)因为0a >,0b >,0c >,444444343111813()()a b c abc a b c abc ⎛⎛⎫∴+++++≥=+ ⎪ ⎝⎭⎝≥= 当且仅当383a b c ===,即时等号成立.所以原式的最小值为。
江西省吉安市2021届新高考数学第一次调研试卷含解析
江西省吉安市2021届新高考数学第一次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线的中心在原点且一个焦点为(7,0)F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D 【解析】 【分析】 根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.2.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤ 【答案】B 【解析】 【分析】根据计算结果,可知该循环结构循环了5次;输出S 前循环体的n 的值为12,k 的值为6,进而可得判断框内的不等式. 【详解】因为该程序图是计算11111246810++++值的一个程序框圈 所以共循环了5次所以输出S 前循环体的n 的值为12,k 的值为6, 即判断框内的不等式应为6k ≥或5k > 所以选C 【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.3.运行如图所示的程序框图,若输出的i 的值为99,则判断框中可以填( )A .1S ≥B .2S >C .lg99S >D .lg98S ≥【答案】C 【解析】 【分析】模拟执行程序框图,即可容易求得结果. 【详解】运行该程序:第一次,1i =,lg 2S =;第二次,2i =,3lg 2lg lg32S =+=; 第三次,3i =,4lg3lg lg 43S =+=,…;第九十八次,98i =,99lg98lg lg9998S =+=; 第九十九次,99i =,100lg99lg lg100299S =+==, 此时要输出i 的值为99. 此时299S lg =>. 故选:C. 【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.4.已知[]2240a b a b +=⋅∈-r r r r ,,,则a r的取值范围是( ) A .[0,1] B .112⎡⎤⎢⎥⎣⎦,C .[1,2]D .[0,2]【答案】D 【解析】 【分析】设2m a b =+r r r ,可得[]2240a b a m a ⋅=⋅-∈-r r r r r ,,构造(14a m -r r )2≤22116m +r ,结合2m =r ,可得113422a m ⎡⎤-∈⎢⎥⎣⎦r r ,,根据向量减法的模长不等式可得解.【详解】设2m a b =+r r r,则2m =r,[]22240b m a a b a m a =-⋅=⋅-∈-r r r r r r r r,,,∴(14a m -rr )2212a a =-r r •2116m m +≤r r 22116m +r|m r |2m r =2=4,所以可得:2182m =r,配方可得222111192()428482m a m m =≤-≤+=r r rr ,所以113422a m ⎡⎤-∈⎢⎥⎣⎦rr ,, 又111||||||||||||444a m a m a m -≤-≤+rr r r rr 则a ∈r [0,2].故选:D . 【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 5.已知向量(,1),(3,2)a m b m ==-r r,则3m =是//a b r r的( )A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A 【解析】 【分析】向量1a m =r (,),32b m =-r (,),//a b r r,则32m m =-(),即2230m m --=,3m =或者-1,判断出即可. 【详解】解:向量1a m =r (,),32b m =-(,)r, //a b r r,则32mm =-(),即2230m m --=, 3m =或者-1,所以3m =是3m =或者1m =-的充分不必要条件, 故选:A . 【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.6.已知双曲线22214x y b -=(0b >0y ±=,则b =( )A .BC D .【答案】A 【解析】 【分析】根据双曲线方程22214x y b-=(0b >),确定焦点位置,再根据渐近线方程30x y ±=得到3b a =求解. 【详解】因为双曲线22214x y b -=(0b >), 所以2a =,又因为渐近线方程为30x y ±=, 所以32b ba ==, 所以b =23. 故选:A. 【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题. 7.集合{|20}N A x x B =-≤=,,则A B =I ( ) A .{}1 B .{}1,2C .{}0,1D .{}0,1,2【答案】D 【解析】 【分析】利用交集的定义直接计算即可. 【详解】{}|2A x x =≤,故{}0,1,2A B =I ,故选:D. 【点睛】本题考查集合的交运算,注意常见集合的符号表示,本题属于基础题.8.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下: 卦名 符号表示的二进制数 表示的十进制数 坤000震 001 1坎 010 2兑011 3依此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是()A.18 B.17 C.16 D.15【答案】B【解析】【分析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1.故选:B.【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.9.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以3再加1;如果它是偶数,则将它除以2;如此循环,最终都能够得到1.下图为研究“角谷猜想”的一个程序框图.若输入n的值为10,则输出i的值为()A.5B.6C.7D.8【答案】B【解析】根据程序框图列举出程序的每一步,即可得出输出结果. 【详解】输入10n =,1n =不成立,n 是偶数成立,则1052n ==,011i =+=; 1n =不成立,n 是偶数不成立,则35116n =⨯+=,112i =+=; 1n =不成立,n 是偶数成立,则1682n ==,213i =+=; 1n =不成立,n 是偶数成立,则842n ==,314i =+=;1n =不成立,n 是偶数成立,则422n ==,415i =+=;1n =不成立,n 是偶数成立,则212n ==,516i =+=;1n =成立,跳出循环,输出i 的值为6.故选:B. 【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.10.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月100=)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A .3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B .4月份仅有三个城市居民消费价格指数超过102C .四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D .仅有天津市从年初开始居民消费价格指数的增长呈上升趋势 【答案】D 【解析】 【分析】采用逐一验证法,根据图表,可得结果.A 正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大 B 正确,从图表二可知,4月份只有北京市居民消费价格指数低于102 C 正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大 D 错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势 故选:D 【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.11.已知()5x a +展开式的二项式系数和与展开式中常数项相等,则2x 项系数为( ) A .10 B .32 C .40 D .80【答案】D 【解析】 【分析】根据二项式定理通项公式1r r n rr n T C a b -+=可得常数项,然后二项式系数和,可得a ,最后依据1r r n rr n T C a b -+=,可得结果.【详解】由题可知:515r r r r T C x a -+=当0r =时,常数项为51T a =又()5x a +展开式的二项式系数和为52 由5522a a =⇒=所以5152r r rr T C x -+=当2r =时,223235280T C x x ==所以2x 项系数为80 故选:D 【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.12.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--【答案】C 【解析】 【分析】对k 分奇数、偶数进行讨论,利用诱导公式化简可得. 【详解】k 为偶数时,sin cos 2sin cos A αααα=+=;k 为奇数时,sin cos 2sin cos A αααα=--=-,则A 的值构成的集合为{}2,2-.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题. 二、填空题:本题共4小题,每小题5分,共20分。
2021届江西省重点中学协作体高三第一次联考数学(理)试题Word版含解析
2021届江西省重点中学协作体高三第一次联考数学(理)试题一、单选题1.已知()12i z i -=+(i 为虚数单位),则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】首先化简z ,得到1322z i =+,再求出1322z i =-,判断对应的点位于的象限即可. 【详解】因为()12i z i -=+,所以22(2)(1)22131(1)(1)222i i i i i i z i i i i ++++++====+--+. 所以1322z i =-,对应的点为13(,)22-,位于第四象限. 故选:D 【点睛】本题主要考查复数的运算,同时考查了共轭复数和复数对应点的象限,属于简单题. 2.设全集U =R ,(){}2lg 6A x y x x ==--,{}2,0xB y y x ==<,则() UA B =( )A .{2x x <-或}1x ≥B .{0x x ≤或}1x ≥ C .{2x x <-或}3x > D .{}33x x -<<【答案】B【解析】求出集合A 、B ,利用补集和并集的定义可求得集合() UA B .【详解】(){}{}{22lg 6602A x y x x x x x x x ==--=-->=<-或}3x >,{}{}2,001x B y y x y y ==<=<<,{0U B y y ∴=≤或}1y ≥,因此,(){ 0UA B x x ⋃=≤或}1x ≥.故选:B. 【点睛】本题考查补集和并集的混合运算,同时也考查了对数型复合函数定义域和指数函数值域的求解,考查计算能力,属于基础题.3.已知等差数列{}n a 的公差为()0d d ≠,35a =,若5a 是2a 和14a 的等比中项,则d =( ) A .1 B .2 C .3 D .4【答案】B【解析】首先根据题意得到25214a a a =⋅,再转化为2333(2)()(11)a d a d a d +=-⋅+,计算d 即可.【详解】由题知:25214a a a =⋅,即:2333(2)()(11)a d a d a d +=-⋅+, 整理得:222233333441111a a d d a a d a d d ++=+--.因为0d ≠,所以1530d =,解得2d =. 故选:B 【点睛】本题主要考查等差,等比数列综合应用,同时考查了等比中项,属于简单题 4.函数sin xy e x =的大致图象为( )A .B .C .D .【答案】A【解析】分析函数sin xy e x =在0x =处的取值,以及该函数在区间(),0π-函数值符号、该函数的奇偶性,结合排除法可得出合适的选项. 【详解】对于函数sin x y e x =,当0x =时,sin 0xy e x ==,即该函数图象过原点,排除B 选项; 当(),0x π∈-时,sin 0x <,则sin 0xy e x =<,排除D 选项.当()x k k Z π≠∈时,()sin sin x x e x e x -⋅-≠-,所以,函数sin x y e x =不是奇函数,排除C 选项.故选:A. 【点睛】本题考查利用函数解析式选择函数图象,一般需分析函数的定义域、奇偶性、单调性、零点与函数值符号,结合排除法得出正确选项,考查分析问题和解决问题的能力,属于中等题. 5.已知log 9log 9n m >,则下列结论中一定不正确的是( ) A .1m n >> B .10n m >>>C .10n m >>>D .10m n >>>【答案】C【解析】分log 9log 90n m >>、log 90log 9n m >>和0log 9log 9n m >>,利用换底公式、不等式的性质以及对数函数的单调性可得出结论. 【详解】分以下三种情况讨论:①当log 9log 90n m >>时,由换底公式可得lg 9lg 90lg lg n m>>,lg90>,lg lg 0m n ∴>>,可得1m n >>;②当log 90log 9n m >>时,由换底公式得lg 9lg 90lg lg n m>>,lg90>,lg 0lg n m ∴>>,可得10n m >>>;③当0log 9log 9n m >>时,由换底公式可得lg 9lg 90lg lg n m>>,lg90>,lg lg 0n m ∴<<,可得01n m <<<.综上所述,不可能的是10n m >>>. 故选:C. 【点睛】本题考查利用对数的大小关系比较底数的大小关系,考查换底公式和对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.6.已知()1312axdx a =>⎰,则5ax ⎫-⎪⎭的展开式中的2x 的系数为( )A .80-B .80C .160-D .160【答案】A【解析】首先根据微积分定理得到2a =,再求出52x⎫⎪⎭展开式的通项532215(2)rr r r T C x -++=-⋅⋅,即可得到答案. 【详解】 由题知:221113|2222aa x a xdx ==-=⎰,因为1a >,所以2a =.所以52x⎫-⎪⎭展开式的通项53522155(2)(2)r r r r r rr T C x C x -+-+=⋅⋅-=-⋅⋅.令53222r -+=,得:3r =. 故展开式中的2x 的系数为335(2)80C -⋅=-.故选:A 【点睛】本题主要考查二项式定理,同时考查了微积分定理,熟记二项式定理展开式的通项为解题的关键,属于中档题.7.有歌唱道:“江西是个好地方,山清水秀好风光.”现有甲乙两位游客慕名来到江西旅游,分别准备从庐山、三清山、龙虎山和明月山4个著名旅游景点中随机选择其中一个景点游玩,记事件A :甲和乙至少一人选择庐山,事件B :甲和乙选择的景点不同,则条件概率()P B A =( ) A .716B .78C .37D .67【答案】D【解析】首先根据题意分别算出()n A 和()n AB ,再利用条件概率公式计算即可. 【详解】由题知:事件A :甲和乙至少一人选择庐山共有:1123()17n A C C =⋅+=种情况, 事件AB :甲和乙选择的景点不同,且至少一人选择庐山,共有1123()6n AB C C =⋅=种情况,()()6=()7n AB P B A n A =. 故选:D 【点睛】本题主要考查条件概率,理解条件概率及掌握公式为解题的关键,属于中档题.8.把函数()cos cos2f x x x x =+的图像先向右平移6π个单位,得到函数()g x 的图像,再将()g x 的图像上的所有点的横坐标变成原来的12,得到函数()h x 的图像,则下列说法正确的是( ) A .函数的最小正周期为2π B .5,06π⎛⎫⎪⎝⎭是函数()h x 图像的一个对称中心 C .函数()h x 图像的一条对称轴方程为6x π=D .函数()h x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 【答案】C【解析】由三角公式可得()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,再通过平移变换及周期变换得到()2sin 46x h x π⎛⎫=- ⎪⎝⎭,再利用三角函数的性质逐一判断即可. 【详解】解:()cos cos 22cos 22sin 26f x x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,则()2sin 22sin 2666g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ()2sin 46x h x π⎛⎫=- ⎪⎝⎭,此时242T ππ==,故A 错误; 当56x π=时,55662sin 416h πππ⎛⎫=⨯-=- ⎪⎝⎭⎛⎫ ⎪⎝⎭,故B 错误;当6x π=时,2sin 46626h πππ⎛⎫=⨯-= ⎛⎫⎪⎝⎪⎭⎭⎝,故C 正确;当,63x ππ⎡⎤∈-⎢⎥⎣⎦,则574666x πππ-≤-≤, 因为函数sin y x =在57,66ππ⎡⎤-⎢⎥⎣⎦上不是单调函数, 则函数()h x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单不是单调函数,故D 错误. 故选:C. 【点睛】本题考查三角恒等变形,考查三角函数的性质,是基础题.9.生活中我们通常使用十进制计数法,计算机常用二进制和十六进制,其中十六进制是逢十六进一,采用数字09-和字母A F -共16个计算符号,这些符号与十进制数的对应关系如下表:例如:用十六进制表示,15A B +=,1C F B +=,则B B ⨯=( ) A .2B B .79C .4BD .81【答案】B【解析】首先计算出B B ⨯的值,再根据十六进制的含义表示出结果. 【详解】解:∵1111121B B ⨯=⨯=,121167÷=余9, 9160÷=余9,∴用十六进制表示为79. 故选:B. 【点睛】本题考查对十六进制含义的理解,是基础题.10.已知定义在R 上的函数()f x 满足()()2sin f x f x x --=,当0x ≤时,()1f x '>,若()36f t f t t ππ⎛⎫⎛⎫≤-+- ⎪ ⎪⎝⎭⎝⎭,则实数t 的取值范围为( )A .,6π⎛⎤-∞ ⎥⎝⎦B .,6π⎡⎫+∞⎪⎢⎣⎭C .,3π⎛⎤-∞ ⎥⎝⎦D .,3π⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】构造函数()()sin g x f x x =-,可得出该函数为偶函数,利用导数分析出函数()y g x =在(],0-∞上单调递增,进而可得出该函数在[)0,+∞上单调递减,将所求不等式变形为()3g t g t π⎛⎫≤-⎪⎝⎭,可得()3g t g t π⎛⎫≤- ⎪⎝⎭,可得出3t t π≥-,由此可解得实数t 的取值范围.【详解】由()()2sin f x f x x --=可得()()sin sin f x x f x x -=-+,构造函数()()sin g x f x x =-,则()()()()()sin sin g x f x x f x x g x -=---=-+=, 所以,函数()y g x =为偶函数,当0x ≤时,()()cos 1cos 0g x f x x x ''=->-≥,所以,函数()y g x =在(],0-∞上单调递增,则该函数在[)0,+∞上单调递减,13sin sin sin sin sin 3226t t t t t t t t ππ⎫⎛⎫⎛⎫--=--==-⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由()36f t f t t ππ⎛⎫⎛⎫≤-+-⎪ ⎪⎝⎭⎝⎭得()sin sin 33f t f t t t ππ⎛⎫⎛⎫≤-+-- ⎪ ⎪⎝⎭⎝⎭, 即()sin sin 33f t t f t t ππ⎛⎫⎛⎫-≤--- ⎪ ⎪⎝⎭⎝⎭,即()3g t g t π⎛⎫≤- ⎪⎝⎭,则()3g t g t π⎛⎫≤- ⎪⎝⎭,由于函数()y g x =在[)0,+∞上单调递减,所以,3t t π≥-,解得6t π≥. 因此,实数t 的取值范围是,6π⎡⎫+∞⎪⎢⎣⎭.故选:B. 【点睛】本题考查函数不等式的求解,利用题中等式构造新函数()()sin g x f x x =-是解答的关键,考查分析问题和解决问题的能力,属于难题. 11.已知ABC 的面积为2,23A π=,P 为线段BC 上一点,2PC BP =,点P在线段AB 和AC 上的投影分别为点,M N ,则PMN 的面积为( ) A .29B .13C .49D .59【答案】B【解析】首先利用三角形的面积公式得到833AB AC ⋅=,之后根据比值得到小三角形的面积,进而求得43PM PN ⋅=,之后应用三角形面积公式求得结果. 【详解】因为ABC 的面积为2,23A π=,所以3sin A =,所以1sin 22ABC S AB AC A ∆=⋅=,即33AB AC ⋅=, 因为2PC BP =,所以12ABP ACP S S ∆∆=, 又因为1122233ABP S AB PM ∆=⋅⋅=⨯=,所以43AB PM ⋅=, 同理可得83AC PN ⋅=,所以329AB PM AC PN ⋅⋅⋅=,因为AB AC ⋅=,所以PM PN ⋅=因为sin sin()2NPM A π∠=-=所以111sin()22923PMN S PM PN A π∆=⋅⋅⋅-=⨯=, 故选:B. 【点睛】该题考查的是有关三角形的问题,涉及到的知识点有三角形的面积公式,属于中档题.12.已知双曲线()2222:1,0x y C a b a b-=>的焦距为4,直线l 与双曲线C 的渐近线分别交于,A B 两点,若AB 的中点在双曲线C 上,O 为坐标原点,且ABO C 的离心率为( )A B C .2 D .2【答案】C【解析】由渐近线设1122,,,b b A x x B x x a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,求出中点,代入双曲线方程可得212x x a =,设1l 的倾斜角为α,利用三角形面积公式1sin 22S OA OB α=,化简可得ab =,a b ,进而可得离心率. 【详解】由题意可知,A B 只能在双曲线的同侧,当交点,A B 在y 轴右侧时,作图如下:双曲线()2222:1,0x y C a b a b-=>,则渐近线方程为:b y x a =±.则1122,,,b b A x x B x x a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则AB 的中点()1212,22b x x x x M a -⎛⎫+ ⎪⎝⎭在双曲线C 上,可得:()()22121222144x x x x a a +--=,即212x x a =. 设1l 的倾斜角为α,则tan baα=, 又因为ABO 的面积1sin sin 2cos cos sin cos 2cos S OA OB OA OB OA OB ααααααα===212tan 3bx xa ab aα==⋅==, 222+=a b c ,24c =,解得:31a b ⎧=⎪⎨=⎪⎩或13a b =⎧⎪⎨=⎪⎩,故离心率为:23c e a ==或2. 同理可知当交点,A B 在y 轴左侧,利用对称性,可转化为在y 轴右侧情况. 故选:C.【点睛】本题考查双曲线的方程与性质,考查直线与双曲线的关系,考查运算求解能力以及转化思想,属于难题.二、填空题13.若某班40名同学某次考试数学成绩X (满分150分)近似服从正态分布()290,N σ,已知()60900.35P X <<=,则可估计该班120分以上的人数约为______.【答案】6【解析】根据考试的成绩X 服从正态分布()290,N σ,得到考试的成绩X 关于90X =对称,根据()60900.35P X <<=,得到()90120P X <<,进而可得到()120P X >,根据频率乘以样本容量得到这个分数段上的人数. 【详解】解:∵考试的成绩X 服从正态分布()290,N σ,∴考试的成绩X 关于90X =对称, ∵()60900.35P X <<=,∴()()9012060900.35P X P X <<=<<=,()()()19012060901200.152P X P X P X -<<-<<∴>==,∴该班数学成绩在120分以上的人数约为400.156⨯=. 故答案为:6. 【点睛】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩X 关于90X =对称,利用对称求出要用的一段分数的频率,题目得解.14.已知实数,x y 满足不等式组1021020x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,若目标函数z x ay =+仅在点13,22⎛⎫⎪⎝⎭处取最大值,则实数a 的取值范围为______. 【答案】1,【解析】画出可行域,将目标函数z x ay =+仅在点13,22⎛⎫⎪⎝⎭处取最大值,转化为目标函数仅在过A 点时,在x 轴上的截距最大,得出直线的斜率范围,从而求得a 的取值范围. 【详解】作出可行域如图所示,目标函数z x ay =+,令0y =,则z x =,即目标函数仅在过A 点时,在x 轴上的截距 最大,如图旋转l 并观察,则l 的斜率k ∈(1,0)-,即110a-<-<,得1a >. 故答案为:(1,)+∞ 【点睛】本题考查了线性规划中目标函数仅在某点处取最值的问题,解题的关键在于画出可行域,转化为目标函数仅在过该点取最值,确定直线的斜率的范围.15.已知棱长为2的正方体1111ABCD A B C D -中,E 在棱AD 上,且2AE DE =,则过点1B 且与平面1A BE 平行的正方体的截面面积为______.【答案】3【解析】取ED 的中点F ,取G,使11113AG A D =,取H 使13BH BC =,连接1,,GF FH GB ,根据面面平行的判定定理可证得面1//A EB 面1FHB G ,求出边长,及对角线长,根据菱形的面积公式即可求出结果. 【详解】取ED 的中点F ,取G,使11113AG A D =,取H 使13BH BC =,连接1,,GF FH GB ,由平行性质可知1//FH GB 且1FH GB =,即四边形1FHB G 为平行四边形,棱长为2的正方体1111ABCD A B C D -中,E 在棱AD 上,且2AE DE =,1233AE AD ==, ∴1//,//BE FH A E GF ,∴//BE 面1FHB G ,1//A E 面1FHB G ,1,A E EB E ⋂= ∴面1//A EB 面1FHB G ,FH EB ===1FG A E ===,∴四边形1FHB G 为菱形,1GH A E ==∴ 13B F ===.截面面积1112233S GH B F =⨯=⨯=【点睛】本题考查截面面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.16.已知抛物线()2:0C y ax a =>的通径长为4,点(),P x y 是抛物线C 上任意一点,则()2241xy y y x +++的最大值为______. 【答案】15【解析】由抛物线的通径公式可求得4a =,由()2241xy y y x +++取最大值可得出0y >,利用基本不等式求得11x y+≥,由()()22141411xy yx y y x x y+=+++++,设11x t y +=≥,()14f t t t =+,利用双勾函数的单调性可求得()2241xy y y x +++的最大值.【详解】已知抛物线()2:0C y ax a =>的通径长为4a =,所以,抛物线C 的方程为24y x =,当0y >时,2111142144y x y y y y y y++==+≥⋅=,当且仅当12y =时,等号成立, 所以,()()()()2222114141411x yxy yx y y x y x x y++==+++++++,当()2241xy y y x +++取最大值时,0y >,且11x y+≥, 令1x t y +=,则1t ≥,由双勾函数的单调性可知,函数()14f t t t=+在[)1,+∞上单调递增, 因此,当11x y +=时,()2241xy y y x +++取得最大值15. 故答案为:15. 【点睛】本题考查利用基本不等式和双勾函数求代数式的最值,同时也考查了抛物线方程的应用,考查计算能力,属于中等题.三、解答题17.在锐角ABC 中,内角A 、B 、C 的对应的边长分别为a 、b 、c ,若ABC 的面积2sin S a B =,且sin sin sin A B C =. (1)求角B ;(2)求22b a的值.【答案】(1)6B π=;(2)225b a=-.【解析】(1)由21sin sin 2S a B ac B ==可得出2c a =,再由sin sin sin A B C =结合正弦定理边角互化思想可求得sin B 的值,再由角B 为锐角可求得角B 的值;(2)由(1)可得2c a =,再由余弦定理可求得22b a的值.【详解】(1)因为21sin sin 2S a B ac B ==,所以2c a =, 而sin sin sin A B C =,即sin a c B =,所以1sin 2B =,又因为B 为锐角,所以6B π=;(2)由(1)知2c a =,又因为6B π=,则cos B =由余弦定理得(2222222cos 545b a c ac B a a a =+-=-=-,因此,225b a =-.【点睛】本题考查正弦定理边角互化思想和三角形面积公式的应用,同时也考查了利用余弦定理解三角形,考查计算能力,属于基础题.18.已知椭圆()2222:10y x C a b a b+=>>的短轴长为C 经过点3,12A ⎛⎫ ⎪⎝⎭. (1)求椭圆C 的方程;(2)已知点,P Q 是椭圆C 上关于原点的对称点,记AP AQ λ=⋅,求λ的取值范围.【答案】(1)22143y x +=(2)31,44λ⎡⎤∈-⎢⎥⎣⎦ 【解析】(1)先由短轴长求出b ,再将点3,12A ⎛⎫⎪⎝⎭的坐标代入椭圆方程可得a ,进而可得椭圆方程;(2)设()00,P x y ,则()00,Q x y --,由点,P Q 在椭圆C 上得到220334y x =-,代入点的坐标可得201144AP AQ y λ=⋅==-,由20y 的范围可得λ的取值范围.【详解】解:(1)依题意得2b =b =将点3,12A ⎛⎫⎪⎝⎭的坐标代入椭圆方程得:221914a b+=,又因为b =2a =,所以椭圆C 的方程为22143y x +=;(2)设()00,P x y ,则()00,Q x y --,有2200143y x +=,即2200334y x =-, 则000033,1,122AP AQ x y x y λ⎛⎫⎛⎫=⋅=--⋅---- ⎪ ⎪⎝⎭⎝⎭22222000003991113144444y x y y y ⎛⎫=-+-=--+-=- ⎪⎝⎭, 又因为[]200,4y ∈,所以201131,4444y λ⎡⎤=-∈-⎢⎥⎣⎦. 【点睛】本题考查椭圆方程的求解,考查椭圆的对称性及有界性的应用,是中档题.19.如图所示,正方形ABCD 边长为2,将ABD △沿BD 翻折到PBD △的位置,使得二面角P BD A --的大小为120︒.(1)证明:平面PAC ⊥平面PBD ;(2)点M 在直线PD 上,且直线BM 与平面ABCD 3M BC P --的余弦值.【答案】(1)证明见解析;(2)57【解析】(1)根据已知可得,AE BD PE BD ⊥⊥,证明得BD ⊥平面PAC ,即可证明结论;(2)由(1)得PEA ∠即为二面角P BD A --的平面角,即120PEA ∠=︒,建立如下图直角坐标系,得出,,,D B C P 坐标,设DM DP λ=,由已知条件结合直线与平面所成角公式,求出λ,确定DM 坐标,分别求出平面MBC 和平面PBC 法向量坐标,再由空间向量的二面角公式,即可求解. 【详解】(1)证明:设AC 交BD 于点E ,连接PE ,即E 为BD 中点, 又因为AB AD =,所以AE BD ⊥,因为PD PB =,所以PE BD ⊥ 由于AE ⊂平面PAC ,PE ⊂平面PAC ,AE PE E ⋂= 所以BD ⊥平面PAC ,又因为BD ⊂平面PBD , 所以平面PAC ⊥平面PBD .(2)因为,AE BD PE BD ⊥⊥,所以PEA ∠即为二面角P BD A --的平面角,即120PEA ∠=︒, 得60PEC ∠=︒,由2AB =,2EP EC PC ===以D 点为原点建立如图空间直角坐标系D xyz -, 则()0,0,0D ,()2,2,0B ,()0,2,0C ,136,22P ⎛⎝⎭, 设136(,)22DM DP λλλ==, 所以1362,22BM BD DM λλ⎛⎫=+=--⎪⎝⎭平面ABCD 的一个法向量可为()0,0,1n =, 因为直线BM 与平面ABCD 3所以222632cos ,213622222n BM n BM n BMλλλλ⋅===⎛⎫⎛⎫⎛⎫-+-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 解得2λ=,所以(6BM =-,()2,0,0CB =,设平面MBC 的法向量为()1111,,n x y z =,则1100n BM n CB ⎧⋅=⎪⎨⋅=⎪⎩,即11116020x y z x ⎧-++=⎪⎨=⎪⎩,令16y =()10,6,1n =-,因为11,,222CP ⎛=- ⎝⎭,()2,0,0CB =设平面PBC 的法向量为()2222,,n x y z =,则2200n CP n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22221102220x y z x ⎧-=⎪⎨⎪=⎩,令2y =,得()20,6,1n =, 所以121265cos 77n n n n θ⋅===, 即二面角M BC P --的余弦值为57. 【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,以及应用空间向量法求线面与面面所成的角,注意空间垂直关系相互转化,考查逻辑推理和计算求解能力,属于中档题. 20.已知函数()()1axf x x e =-(a R ∈,e 为自然对数的底数).(1)若1a =,求函数()f x 的图像在点()()1,1f 处的切线方程; (2)()()g x f x x =+在R 上单调递增,求实数a 的取值范围. 【答案】(1)e e0xy (2)(],2-∞【解析】(1)首先求导()xf x xe '=,求出切点坐标和斜率,再利用点斜式即可求出切线方程.(2)首先根据题意得到()0g x '≥恒成立,令0x =,得到()20g x a '=-≥,即2a ≤,再分类讨论a 的范围证明()g x 在R 上单调递增即可. 【详解】(1)当1a =时,()()1xf x x e =-,()xf x xe '=所以()10f =,切点为(1,0),()1k f e '== 所以切线方程为()01y e x -=-,即e e 0x y(2)()()1axg x x e x =-+所以()()()1111axaxaxg x e a x e ax a e '=+-+=-++因为()g x 在R 上单调递增,则()0g x '≥恒成立, 令0x =,则()20g x a '=-≥,得2a ≤ 下面证当2a ≤时,()g x 在R 上单调递增. 构造函数()()1,2axF x ax a ex R a -=-++∈≤()()1ax ax F x a ae a e --'=-=-当0a <时,0x <时,()0F x '<,0x >时,()0F x '> 得()F x 在(),0-∞单调递减,在()0,∞+单调递增.()()min 020F x F a ==->,即10ax ax a e --++>恒成立,整理得:()11axax a e-+>-恒成立,即:()()110axg x ax a e '=-++>恒成立,所以()g x 在R 上单调递增. 当0a =时,()21g x x =-显然在R 上单调递增.当02a <≤时,0x <时,()0F x '<,0x >时,()0F x '> 得()F x 在(),0-∞单调递减,在()0,∞+单调递增.()()min 020F x F a ==-≥,即:10ax ax a e --++≥恒成立,整理得:()11axax a e -+≥-恒成立,从而()()110axg x ax a e '=-++≥恒成立,所以()g x 在R 上单调递增.综上,实数a 的取值范围为(],2-∞ 【点睛】本题第一问主要考查导数的几何意义中的切线问题,第二问考查利用导数研究函数的单调性,根据题意构造函数为解题的关键,属于难题.(1)求出数列{}n P 的通项公式和1n S +的表达式;(2)设该人进行一次答题活动中获得的积分记为X ,该人答对每道题的概率设为45p =,求随机变量X 的分布列和数学期望EX .(估算时请使用以下数据:540.335⎛⎫≈ ⎪⎝⎭,1040.115⎛⎫≈ ⎪⎝⎭,计算结果保留到小数点后两位.) 【答案】(1)()()211nn P n p p =+-;()()111111n n S n p p++=-++-⎡⎤⎣⎦;(2)分布列见解析;期望为2.97.【解析】(1)根据题意可知,该人共答了2n +道题,前1n +道题中答错1题且最后一题是答错的,由此列式即可求出n P ,然后利用错位相减法即可求出1n S +;(2)求出X 的所有可能取值并求出相应的概率,然后列出X 的分布列,根据数学期望公式即可求出EX . 【详解】(1)由题意知,答题过程中每次均有两题答错后离场,且最后一题一定是答错的,故()()211(1)(1)11n nn n P C p p p n p p +=-⋅-=+-,所以()()22111231n n S p p p n p +⎡⎤=-+++++⎣⎦①,()()22311123...1n n n pS p p p p np n p ++⎡⎤=-++++++⎣⎦②,①-②得:()()()()()1222311111111111n nn n n p p S p p p p p n pp n p p ++++⎡⎤-⎡⎤-=-+++++-+=--+⎢⎥⎣⎦-⎣⎦, 故()()111111n n S n p p++=-++-⎡⎤⎣⎦.(2)X 的所有可能取值为03,6,()501234540120.345P X P P P P P S ⎛⎫==++++==-⨯≈ ⎪⎝⎭,()51056789104443230.3355P X P P P P P S S ⎛⎫⎛⎫==++++=-=⨯-⨯≈ ⎪ ⎪⎝⎭⎝⎭,()()()61030.33P X P X P X ==-=-=≈,所以X 的分布列为:所以X 的数学期望00.3430.3360.33 2.97EX =⨯+⨯+⨯=.【点睛】本题主要考查二项分布,事件独立性的概率计算及数学期望的计算,同时考查错位相减法求数列的和,属于中档题.22.在极坐标系中,点P 的极坐标是()1,π,曲线C 的极坐标方程为2cos ρθ=.以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,斜率为k 的直线l 经过点P .(1)若1k =时,写出直线l 和曲线C 的直角坐标方程;(2)若直线l 和曲线C 相交于不同的两点,A B ,求线段AB 的中点M 的在直角坐标系中的轨迹方程.【答案】(1)10x y -+=;()2211x y -+=(2)221x y +=,1,12x ⎛⎤∈ ⎥⎝⎦【解析】(1)利用极坐标和直角坐标的互化公式即可得解;(2)方法一:设直线l 的参数方程为:1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数)与曲线C 的方程联立,根据参数的几何意义求得()12cos 2M A B t t t α=+=,代入直线方程求得()212cos ,2sin cos M ααα-+化简消参即可得出结果. 方法二: 由于直线l 的斜率存在,设直线():1l y k x =+,与曲线C 方程联立,根据韦达定理可得2122121M x x k x k+-==+,代入直线求得()2211M M k y k x k =+=+,化简可得221M M x y +=,即可得出结果. 【详解】解:(1)P 点的直角坐标为()1,0-,所以直线:10l x y -+=22cos ρρθ=,可得222x y x +=,即()2211x y -+=(2)如图可知,直线和圆相切时,6πα=±.方法一:设直线l 的参数方程为:1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数)由于直线l 和曲线C 相交,所以,66ππα⎛⎫∈- ⎪⎝⎭联立直线l 和曲线C 的方程可得24cos 30t t α-+=()12cos 2M A B t t t α=+= 所以()212cos ,2sin cos M ααα-+,即()cos2,sin 2M αα因此221M M x y +=,其中1cos 2,12M x α⎛⎤=∈ ⎥⎝⎦即点M 的轨迹方程为221x y +=,1,12x ⎛⎤∈ ⎥⎝⎦方法二:显然直线l 的斜率存在,不妨设为k ,即直线():1l y kx =+, 与()2211x y -+=联立可得:()()22221220k x k x k ++-+=,()()222222410k k k =--+>△,可以解得213k <,即:k << 设()11,A x y ,()22,B x y ,所以2122221k x x k-+=+,所以2122121M x x k x k +-==+, 可得()2211M M k y k x k =+=+ 所以()()2222422422222222121241211111M M k k k k k k k x y k k k k ⎛⎫--++++⎛⎫+=+=== ⎪ ⎪++⎝⎭⎝⎭++ 另一方面,由于213k <,所以2221211,1112M k x k k -⎛⎤==-∈ ⎥++⎝⎦ 综上,点M 的轨迹方程为211x y +=,1,12x ⎛⎤∈ ⎥⎝⎦【点睛】本题考查极坐标和直角坐标的互化,考查利用参数方程和韦达定理解决直线和圆的关系中的轨迹法问题,属于中档题.23.设函数()x x =,()21g x x =-.(1)解不等式()()2f x g x +≤;(2)若()()22f x g x ax +>-对任意的x ∈R 恒成立,求实数a 的取值范围.【答案】(1)113x x ⎧-≤≤⎫⎨⎬⎩⎭(2)[]4,4- 【解析】(1) 零点分区间,去掉绝对值,()()f x g x +写成分段函数的形式,分段解不等式即可;(2)()()2f x g x +零点区间讨论写成分段函数,分别讨论在每一个区间()()22f x g x ax +>-恒成立时,参数满足的情况即可得解.【详解】解:(1)()()131,21211,0213,0x x f x g x x x x x x x ⎧-≥⎪⎪⎪+=+-=-<<⎨⎪-≤⎪⎪⎩当12x ≥时,312x -≤,即33x ≤,即1x ≤,即1x ≤,即112x ≤≤ 当102x <<时,12-≤x ,即1x ≥-,即102x << 当0x ≤时,312x -+≤,即13x ≥,即103x -≤≤ 综上所述,不等式的解集为113x x ⎧⎫-≤≤⎨⎬⎩⎭(2)()()141,2122211,0214,0x x f x g x x x x x x ⎧-≥⎪⎪⎪+=+-=<<⎨⎪-≤⎪⎪⎩当12x ≥时,412x ax ->-,即()410a x -+> 所以()4014102a a -≥⎧⎪⎨-+>⎪⎩,得4a ≤ 当102x <<时,12ax >-,即30ax -<,所以132a ≤,即6a ≤ 当0x ≤时,142x ax ->-,即()430a x +-<,40a +≥即可,即4a ≥-综上所述,44a -≤≤,即a 的取值范围为[]4,4-【点睛】本题考查零点区间讨论法在解绝对值不等式中的应用,考查绝对值不等式恒成立时求解参数问题,属于中档题.。
江西省重点中学盟校2021届高三第一次联考数学(理)答案
n 6n ⎩ 1 1 ⎝ ⎭⎝ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎭江西省重点中学盟校 2021 届高三第一次联考理科数学答案1 2 3 4 5 6 7 8 9 10 11 12 BDCADAABBCCD5730 ⋅ ⎛ ln N f ⎫N ⎪ 10、t = ⎝ 0 ⎭ = 5730⋅ (2 log 3- 3)≈ 5730⨯ 0.17 ≈ 974ln 2 21 2 2⎛ 3 5 ⎫ 19π 11、 a = 1,V = π(⎰ 0 3xdx + ⎰ 1 (4- x )dx ) = π + ⎪ = ⎝ 2 3 ⎭ 612、设a = k ,则k - 1 ≤ ≤ k + 1 ,即 k 2 - k + 1 ≤ n ≤ k 2 + k + 1n2 2 4 4所以 a = k 数的项共有 2k 项, k = 45 时, k 2 - k = 1980 , k 2+ k = 2080 所以 a= 44, a = 45∴ 1 + 1 + ....... + 1 = 1 ⨯ 2k ⨯ 44 + 1 ⨯ 41 = 88 411980 198113、λ= -2a 1 a 2 a 2021 k45 45⎧ 1 , n = 114、 a n = ⎨2n -2, n ≥ 215、10000⨯ 0.1359 = 135916、cos B =617、(1)设数列{a }的公差为 d ,则由题意(a + d )2= a (a +3d )----------------1 分 n1 1 1⇒ d 2 = a d ∴d = a = 2或者d = 0 ------------------3 分又 a 1 ≠ a 2021 ∴d ≠ 0∴d = 2 -----------------4 分∴ a n = a 1 + (n - 1)2 = 2n ---------------6 分(2)1=1=1 ⎛ 1-1⎫ ------------8 分a n a n +14n (n +1) 4 n n +1 ⎪1 ⎛ ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎫n ∴T n = 4 1- 2 ⎪ + 2 - 3 ⎪ + .......+ n - n +1 ⎪ ⎪ =4 (n +1 )--------------------10 分1 2 2 1 1 1 1 1 1 { n 由 4 (n +1) = 505 2021得n = 2020 --------------12 分18、由棱台性质知:平面 ABCD ∥平面 A 1B 1C 1D 1 , AD ∥ A 1D 1 ,取 A 1D 1 的中点 E ,AD = AA 1 且 AD ∥ A 1E ∴ 四 边 形 ADA 1D 1 是 平 行 四 边 形 ∴ DE 、 AA 1 ⊥ 平 面ABCD ∴ A A 1 ⊥ AD ∴ A 1D = DD 1 = ∴ A D 2 +D D 2 =A D 2∴ A D ⊥ DD ------------2 分AA 1 ⊥ 平面 A 1B 1C 1D 1 ∴C 1D 1 ⊥ AA 1 又C 1D 1 ⊥ A 1D 1 ,∴C 1D 1 ⊥ 平面 A 1D 1DA --------4 分故 A 1D ⊥ C 1D 1 ,又 A 1D ⊥ DD 1 , DD 1 ⋂ C 1D 1 =D 1 ∴ A 1D ⊥ 平面DD 1C 1C ------6 分(2)如图建坐标系 D (0,1,1), B 1 (2,0,0) D 1 (0,2,0) C 1 (2,2,0) ,C(1,1,1)由(1)知 A 1D =(0,1,1)是平面DD 1G 一个法向量-----------------------7 分令 n = (x , y , z ) 是平面CD 1B 1 的一个法向量,设 B 1C = (-1,1,1) , B 1D 1 = (-2, 2, 0)n ⋅ B 1 D 1 =0 n ⋅B 1C =0{x = y =1-2 x + 2 y =0- x + y + z =0 令cos z =0 则 n = (1,1, 0) ------------------------------9 分1n , A 1D = = 2-----------------------------11 分所以二面角 D - GD - B 的平面角为120︒------------12 分1119、(1)完成表格如下骑车不骑车 合计 45 岁以下 35 15 50 45 岁及其以上20 30 50 合计5545100-------2 分2 ⇒ { ,= 2 + = 2 10(0 35 ⨯30-15 ⨯ 20)2(7 ⨯ 6-3⨯ 4)2κ2 ==50 ⨯ 50 ⨯ 55⨯ 4511⨯ 9≈9.1 >7.879 -------5 分所以有 95%把握认为该地区市民是否考虑骑自行车与他(她)是不是“青年人”有 关--------6 分。
【校级联考】江西省吉安市2021届高三上学期五校联考数学(理)试卷
8.设a=log36,b=log510,c=log714,则( ).
A.c>b>aB.b>c>a
C.a>c>bD.a>b>c
9. 中,三内角 成等差数列, 成等比数列,则 的形状是( )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等边三角形
10.设 满足约束条件 若目标函数 的最大值为12,则 的最小值为()
2.C
【解析】
试题分析: ,所以 的共轭复数为 .
考点:复数的代数运算
3.D
【解析】
分析:利用点到直线的距离计算出 ,从而得到 ,再根据面积为1得到 ,最后结合离心率求得 .
详解:因为 , ,所以 ,故 即 ,
由 ,所以 即 ,故 ,双曲线的实轴长为 .故选D.
点睛:在双曲线中有一个基本事实:“焦点到渐近线的距离为虚半轴长”,利用这个结论可以解决焦点到渐进线的距离问题.
【校级联考】江西省吉安市2019届高三上学期五校联考数学(理)试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 , ,则 ( )
A. B.
C. D.
2.若复数 满足 ( 是虚数单位),则 的共轭复数为()
A. B. C. D.
C.命题“ ”的否定是“ ”
D.已知函数f(x)在区间 上的图象是连续不断的,则命题“若 ,则 在区间 内至少有一个零点”的逆命题为假命题
6.某三棱锥的三视图如图所示,则该三棱锥的表面积为( )
A.
B.
C.
D.
江西省吉安市“省重点中学五校协作体”2021届上学期高三年级第一次联考数学试卷(理科)
江西省吉安市“省重点中学五校协作体”2021届上学期高三年级第一次联考数学试卷(理科)时间:120分钟 总分:150分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 已知集合{}5,2,1,3-=A ,⎭⎬⎫⎩⎨⎧≤-+=052|x x x B ,则=B A ABC D 2 已知i 为虚数单位,复数121iz i+=+,则复数z 在复平面上的对应点位于A 第一象限B 第二象限C 第三象限D 第四象限 3 等差数列{}n a 中,201063=+-a a a ,则9112a a -的值为 A 20- B 10- C 10 D 2 47)2(xx -的展开式中x 的系数为A 280-B 280C 210-D 2105 攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,且1cos 4α=,则侧棱与底面外接圆半径的比为A 2 B15152 C 1 D 416 已知抛物线26y x =的焦点为F ,过点F 的直线交抛物线于B A ,两点,且||||12FA FB ⋅=,则=||AB A 6 B7 C8 D9 7.已知直线y =()()()2sin 0f x x ωϕω=+>的图象相交,E ,F 为两个相邻的交点,若π4EF =,则ω=A 2B 2或6C 3或5D 38 执行如图所示的程序框图,设所有输出数据构成的集合为A ,若从集合A 中任取一个元素a ,则满足函数2()22021f x x ax =-+在区间[2,)+∞内单调递增的概率为{}2,1,3-{}5,2,1{}2,1A31 B 32 C 21 D 43 9 已知A 、B 、C 、D 四点都在表面积为100π的球O 的表面上,若BC =,∠BAC =120°,则球O 内接三棱锥A -BCD 的体积的最大值为 A3312 B332 C 3332 D 36410 已知圆C :1622=+y x ,过点l ,则M 的轨迹的长度为A 8 B38π C 34π D 334π11 下列大小关系正确的是 A 23.23.22> B 25.35.32> C1ln2ln22<D 5log 3log 85< 12 已知定义在R 上的函数(2)3y f x =+-是奇函数,当(2,)x ∈+∞时,,则不等式[]0)1ln(3)(>+-x x f 的解集为A (2,)+∞B ),()0,1(+∞-eC (0,2)(,)e +∞D (1,0)(2,)-+∞ 二、填空题:本题共4小题,每小题5分,共20分。
2021届江西省高三第一次联考测试数学(理)试题Word版含答案
2021届江西省高三第一次联考测试数学(理)试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|1,|A x x B x x a =≤=<,若AB B =,则实数a 的取值范围是( )A .(),1-∞B .(],1-∞-C .()1,+∞D .[)1,+∞2.函数y = )A .()1,3-B .(]1,3-C .()()1,00,3-D .()(]1,00,3-3.下列命题中:①“2000,10x R x x ∃∈-+≤”的否定;②“若260x x +-≥,则2x >”的否命题; ③命题“若2560x x -+=,则2x =”的逆否命题; 其中真命题的个数是( )A .0个B .1个C .2个D .3个 4.幂函数()()226844m m f x m m x-+=-+在()0,+∞为增函数,则m 的值为( )A .1或3B .1C .3D .25.已知函数()21xf x =-+,定义函数()()(),0,0f x x F x f x x >⎧⎪=⎨-<⎪⎩,则()F x 是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数6.已知正方体1111ABCD A B C D -的棱长为1,E F 、分别是边11AA CC 、的中点,点M 是1BB 上的动点,过三点E M F 、、的平面与棱1DD 交于点N ,设BM x =,平行四边形EMFN 的面积为S ,设2y S =,则y 关于x 的函数()y f x =的解析式为( ) A .()[]2322,0,12f x x x x =-+∈ B .()[]2322,0,12f x x x x =-++∈C .()[]3,0,12f x x x =-∈ D .()[]3,0,12f x x x =-∈ 7.若函数()()22log 3f x x ax a =--在区间(],2-∞-上是减函数,则实数a 的取值范围是( ) A .(),4-∞ B .(]4,4- C .()[),42,-∞-+∞ D .[)4,4-8.函数221x x e x y e =-的大致图像是( )A .B .C .D .9.函数()ln x y e x a =-+(e 为自然对数的底数)的值域是正实数集R +,则实数a 的取值范围为( ) A .(),1-∞- B .(]0,1 C .(]1,0- D .()1,-+∞ 10.已知()f x '为()f x 的导函数,若()ln 2x f x =,且()3111212b b dx f a b x '=+-⎰,则a b +的最小值为( )A .42.2 C .92 D .9222+ 11.已知函数()f x 和()1f x +都是定义在R 上的偶函数,若[]0,1x ∈时,()12xf x ⎛⎫= ⎪⎝⎭,则( )A .1532f f ⎛⎫⎛⎫-> ⎪⎪⎝⎭⎝⎭ B .1532f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭ C .1532f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭ D .1932f f ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭12.如果定义在R 上的函数()f x 满足:对于任意12x x ≠,都有()()()()11221221x f x x f x x f x x f x +≥+,则称()f x 为“H 函数”.给出下列函数:①31y x x =-++;②()32sin cos y x x x =--;③1xy e =+;④()()()ln 101x x f x x ≥⎧⎪=⎨<⎪⎩,其中“H 函数”的个数有( )A .3个B .2个C .1个D .0个第Ⅱ卷 非选择题二、填空题(本小题共4小题,每题5分,满分20分,将答案填在答题纸上)13.若方程210x mx m -+-=有两根,其中一根大于2一根小于2的充要条件 是____________. 14.设,A B 是非空集合,定义{}|A B x x AB x A B ⊗=∈∉且.已知{}{}21|2,02,|2,0x M y y x x x N y y x -==-+<<==>,则M N ⊗=___________.15.若函数()()3211,220,11log ,2x a x f x a a x x -⎧⎛⎫⎪≤ ⎪⎪⎝⎭=>≠⎨⎪>⎪⎩且的值域是R ,则实数a 的取值范围是___________. 16.给出下列四个命题:①函数()()log 211a f x x =--的图像过定点()1,0;②已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()()1f x x x =+,则()f x 的解析式为()2f x x x =-;③函数11y x =-的图像可由函数1y x =图像向右平移一个单位得到; ④函数11y x =-图像上的点到()0,1其中所有正确命题的序号是_____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)设()()()()log 1log 30,1a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的值域.18.(本小题满分12分)命题2:,10p x R ax ax ∀∈+-<,命题3:101q a +<-. (1)若“p 或q ”为假命题,求实数a 的取值范围;(2)若“非q ”是“[],1m m α∈+”的必要不充分条件,求实数m 的取值范围. 19.(本小题满分12分)已知二次函数()f x 的对称轴()2,x f x =-的图像被x 轴截得的弦长为,且满足()01f =. (1)求()f x 的解析式;(2)若12x f k ⎛⎫⎛⎫> ⎪ ⎪ ⎪⎝⎭⎝⎭对[]1,1x ∈-恒成立,求实数k 的取值范围.20.(本小题满分12分)某店销售进价为2元/件的产品A ,假设该店产品A 每日的销售量y (单位:千件)与销售价格x (单位:元/件)满足的关系式()210462y x x =+--,其中26x <<. (1)若产品A 销售价格为4元/件,求该店每日销售产品A 所获得的利润;(2)试确定产品A 销售价格x 的值,使该店每日销售产品A 所获得的利润最大.(保留1位小数点) 21.(本小题满分12分) 已知函数()()22xf x x x cec R -=-+∈.(1)若()f x 是在定义域内的增函数,求c 的取值范围; (2)若函数()()()52F x f x f x '=+-(其中()f x '为()f x 的导函数)存在三个零点,求c 的取值范围. 22.(本小题满分12分) 已知函数()()ln ,x af x m a m R x-=-∈在x e =(e 为自然对数的底)时取得极值且有两个零点. (1)求实数m 的取值范围;(2)记函数()f x 的两个零点为12,x x ,证明:212x x e >.2021届江西省高三第一次联考测试数学(理)试题参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBAADACCAA二、填空题13. 3m > 14. ()10,1,2⎛⎤+∞ ⎥⎝⎦15. 2,12⎡⎫⎪⎢⎪⎭16. ②④ 三、解答题17.解:(1)∵()12f =,∴()log 420,1a a a =>≠,∴2a =......................2分函数()f x 在30,2⎡⎤⎢⎥⎣⎦上的最大值是()21log 42f ==,函数()f x 在30,2⎡⎤⎢⎥⎣⎦上的最小值是()20log 3f =,∴()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的值域是[]2log 3,2.....................10分18.解:(1)关于命题2:,10p x R ax ax ∀∈+-<,0a >时,显然不成立,0a =时成立,......................1分 0a <时,只需240a a ∆=+<即可,解得:40a -<<,故p 为真时:(]4,0a ∈-;...............................4分关于命题3:101q a +<-,解得:21a -<<,...............6分 命题“p 或q ”为假命题,即,p q 均为假命题,则41a a ≤-≥或;..........................9分(2)非:21q a a ≤-≥或,所以121m m +≤-≥或, 所以31m m ≤-≥或..................12分19.解:(1)由题意可以设()(22f x a x x =+++-,................2分 由()011f a =⇒=,∴()(22241f x x x xx =+++=++;................6分 (2)当[]1,1x ∈-时,11,222xt ⎛⎫⎡⎤=∈ ⎪⎢⎥⎝⎭⎣⎦..........................8分∵()f x 开口向上,对称轴为2x =-,∴()f t 在1,22t ⎡⎤∈⎢⎥⎣⎦上单调递增........................9分∴()min 11324f t f ⎛⎫==⎪⎝⎭. ∴实数k 的取值范围是13,4⎛⎫-∞ ⎪⎝⎭......................12分 20.解:(1)当4x =时,销量()210446212y =+-=千件, 所以该店每日销售产品A 所获得的利润是22142⨯=千元;.....................5分 (2)该店每日销售产品A 所获得的利润:()()()()()()22321024610462456240278262f x x x x x x x x x x ⎡⎤=-+-=+--=-+-<<⎢⎥-⎣⎦从而()()()()2121122404310626f x x x x x x '=-+=--<<.................8分令()0f x '=,得103x =,且在102,3⎛⎫⎪⎝⎭上,()0f x '>,函数()f x 单调递增; 在10,63⎛⎫⎪⎝⎭上,()0f x '<,函数()f x 递减,.........................10分 所以103x =是函数()f x 在()2,6内的极大值点,也是最大值点,.................11分 所以当103.33x =≈时,函数()f x 取得最大值.故当销售价格为3.3元/件时,利润最大.............................12分21.解:(1)因为()()22xf x x x cec R -=-+∈,所以函数()f x 的定义域为R ,且()2212xf x x ce -'=--,由()0f x '≥得22120x x c e ---≥,即()21212x c x e ≤-对于一切实数都成立............2分 再令()()21212x g x x e =-,则()22x g x xe '=,令()0g x '=得0x =, 而当0x <时,()0g x '<,当0x >时,()0g x '>,所以当0x =时,()g x 取得极小值也是最小值,即()()min 102g x g ==-. 所以c 的取值范围是1,2⎛⎤-∞- ⎥⎝⎦...........................5分(2)由(1)知()2212xf x x c e-'=--,所以由()0F x =得()22252122x x x x ce x ce ---++--=,整理得2272x c x x e ⎛⎫=+- ⎪⎝⎭.......................7分 令()2272x h x x x e ⎛⎫=+-⎪⎝⎭,则()()()()222223231x xh x x x e x x e '=+-=+-, 令()0h x '=,解得3x =-或1x =, 列表得:由表可知当3x =-时,()h x 取得极大值62e -;.........................9分 当1x =时,()h x 取得极小值232e -. 又当3x <-时,2270,02x x x e +->>,所以此时()0h x >, 故结合图像得c 的取值范围是650,2e -⎛⎫⎪⎝⎭........................12分22.解:(1)()()21ln 1ln a x x a a xx f x x x--+-'==, 由()10a f x x e+'=⇒=,且当1a x e +<时,()0f x '>,当1a x e +>时,()0f x '<,所以()f x 在1a x e +=时取得极值,所以10a e e a +=⇒=,.................2分 所以()()()2ln 1ln ,0,x xf x m x f x x x -'=->=,函数()f x 在()0,e 上递增,在(),e +∞上递减,()1f e m e=-,()00x x →>时,();f x x →-∞→+∞时,()(),f x m f x →-有两个零点12,x x ,故11,00m m e e m ⎧->⎪<<⎨⎪-<⎩;..........................5分 (2)不妨设12x x <,由题意知1122ln ln x mx x mx =⎧⎨=⎩,则()()221121221121lnln ,ln x x x x x m x x m x x m x x x =+=-⇒=-,...............7分欲证212x x e >,只需证明:()12ln 2x x >,只需证明:()122m x x +>,即证:()122211ln2x x x x x x +>-,即证2122111ln21x x x x x x +>-,设211x t x =>,则只需证明:1ln 21t t t ->+,...................9分 也就是证明:1ln 201t t t -->+,记()()1ln 2,11t u t t t t -=->+,∴()()()()222114011t u t t t t t -'=-=>++, ∴()u t 在()1,+∞单调递增,∴()()10u t u >=,所以原不等式成立,故212x x e >得证.........................12分。
2021届江西省吉安市“省重点中学五校协作体”高三第一次联考数学(理)试题(解析版)
【分析】根据二次函数 的零点可求得 、 的值,求出 ,推导出数列 为等比数列,确定该数列的首项和公比,进而可求得 .
【详解】 有两个零点 、 ,由韦达定理可得 ,解得 ,
, .
由题意得 ,
,
, .
又 ,所以,数列 是首项为 ,公比为 的等比数列,所以, ,
.
故答案为: .
【点睛】方法点睛:数列求和的常用方法:
12.已知定义在 上的函数 是奇函数,当 时, ,则不等式 的解集为()
A. B.
C. D.
【答案】D
【分析】本题首先可根据题意得出函数 的图像关于点 中心对称且 ,然后根据基本不等式得出 ,则函数 在 上单调递增,最后将不等式 转化为 或 ,通过计算即可得出结果.
【详解】因为函数 是定义在 上的奇函数,
二、填空题
13.若 ,则 的最大值是___________.
【答案】
【分析】根据约束条件作出可行域以及直线 过点A时在 轴上的截距最小, 有最大值,得出答案.
【详解】根据约束条件 作出可行域如图所示,
由 解得
将目标函数 化为 ,
表示直线 在 轴上的截距的相反数的
故当直线 在 轴上的截距最小时, 有最大值.
2021届江西省吉安市“省重点中学五校协作体”高三第一次联考数学(理)试题
一、单选题
1.已知集合 , ,则 ()
A. B. C. D.
【答案】D
【分析】解出集合 ,利用交集的定义可求得集合 .
【详解】 , ,因此, .
故选:D.
2.已知 为虚数单位,复数 ,则复数 在复平面上的对应点位于()
A.第一象限B.第二象限
10.已知圆 ,过点 的动直线 与圆 相交于 , 两点,线段 的中点为 ,则 的轨迹的长度为()
江西省吉安市2021届新高考一诊数学试题含解析
江西省吉安市2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) AB .2C .4D.【答案】C 【解析】 【分析】设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,根据导数的几何意义,求出切线斜率,进而得到切线方程,将P 点坐标代入切线方程,抽象出直线AB 方程,且过定点为已知圆的圆心,即可求解. 【详解】圆22650x y y +-+=可化为22(3)4x y +-=.设221212,,,,(,3)44x x A x B x P t ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则12,l l 的斜率分别为1212,22x xk k ==, 所以12,l l 的方程为()21111:24x x l y x x =-+,即112x y x y =-,()22222:24x x l y x x =-+,即222x y x y =-,由于12,l l 都过点(,3)P t -,所以11223232x t y x t y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,即()()1122,,,A x y B x y 都在直线32xt y -=-上, 所以直线AB 的方程为32xt y -=-,恒过定点(0,3), 即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 故选:C. 【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.2.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,22PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3π B .32π C .12πD .24π【答案】C 【解析】 【分析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积. 【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =,22PB =Q 211822AO PA x ∴==+ 1222AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=, 即22221182x ⎫+=+⎪⎪⎝⎭,解得:2x =, ∴三棱锥P ABC -的外接球的半径为:()()2221122422322x AO +=+==,∴三棱锥P ABC -外接球的表面积为2412S R ππ==.故选:C .【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.3.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .134B .866C .300D .500【答案】A 【解析】分析:设三角形的直角边分别为13. 解析:设三角形的直角边分别为132,故而大正方形的面积为4,小正方形的面积为)231423=-∴42323--=.∴落在黄色图形内的图钉数大约为2310001342⨯≈.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量. (1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.4.设n S 是等差数列{}n a 的前n 项和,且443S a =+,则2a =( )A .2-B .1-C .1D .2【答案】C 【解析】 【分析】利用等差数列的性质化简已知条件,求得2a 的值. 【详解】由于等差数列{}n a 满足443S a =+,所以123443a a a a a +++=+,1233a a a ++=,2233,1a a ==. 故选:C 【点睛】本小题主要考查等差数列的性质,属于基础题. 5.要得到函数1cos 2y x =的图象,只需将函数1sin 223y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的( )A .横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位长度B .横坐标缩短到原来的12(纵坐标不变),再向右平移6π个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平移3π个单位长度 【答案】C 【解析】 【分析】根据三角函数图像的变换与参数之间的关系,即可容易求得. 【详解】 为得到11sin 222y cosx x π⎛⎫==+ ⎪⎝⎭, 将1sin 223y x π⎛⎫=+ ⎪⎝⎭横坐标伸长到原来的2倍(纵坐标不变), 故可得1sin 23y x π⎛⎫=+ ⎪⎝⎭; 再将1sin 23y x π⎛⎫=+ ⎪⎝⎭ 向左平移6π个单位长度,故可得111sin sin 236222y x x cosx πππ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭.故选:C. 【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.6.如图是计算11111++++246810值的一个程序框图,其中判断框内应填入的条件是( )A .5k ≥B .5k <C .5k >D .6k ≤ 【答案】B 【解析】 【分析】根据计算结果,可知该循环结构循环了5次;输出S 前循环体的n 的值为12,k 的值为6,进而可得判断框内的不等式. 【详解】因为该程序图是计算11111246810++++值的一个程序框圈 所以共循环了5次所以输出S 前循环体的n 的值为12,k 的值为6, 即判断框内的不等式应为6k ≥或5k > 所以选C 【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.7.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A .173B .32C .53D .102【答案】D 【解析】 【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,'Rt CBF ∆和'Rt FBF ∆中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF , 设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =; 'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故10e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 8.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .25B .4C .2D .22【答案】D 【解析】 【分析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度. 【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:2AD = ,3,2,CE SD ==所以2SC DC ==, 所以222222,22SA SDADSB SCBC=+==+=所以该几何体的最长棱的长为22 故选:D 【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.9.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b ca b +++=+,若c 为最大边,则a b c +的取值范围是( )A .1⎛ ⎝⎭B .(C .1⎛ ⎝⎦D .【答案】C 【解析】 【分析】由444222222a b c a b c a b+++=+,化简得到cos C 的值,根据余弦定理和基本不等式,即可求解. 【详解】由444222222a b c a b c a b +++=+,可得222422222(2)a b c a b c a b ++-=+, 可得22222222222()c a b c a b a b c a b+-++-=+, 通分得2222222222()()0a b c c a b a b a b+---+=+, 整理得222222()a b c a b +-=,所以22221()24a b c ab +-=,因为C 为三角形的最大角,所以1cos 2C =-, 又由余弦定理2222222cos ()c a b ab C a b ab a b ab =+-=++=+-2223()()()24a b a b a b +≥+-=+,当且仅当a b =时,等号成立,所以)c a b >+,即a b c +≤,又由a b c +>,所以a b c +的取值范围是. 故选:C. 【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.10.下列函数中,在区间()0,∞+上为减函数的是( )A.y =B .21y x =-C .12xy ⎛⎫= ⎪⎝⎭D .2log y x =【答案】C 【解析】 【分析】利用基本初等函数的单调性判断各选项中函数在区间()0,∞+上的单调性,进而可得出结果. 【详解】对于A选项,函数y =()0,∞+上为增函数;对于B 选项,函数21y x =-在区间()0,∞+上为增函数;对于C 选项,函数12xy ⎛⎫= ⎪⎝⎭在区间()0,∞+上为减函数; 对于D 选项,函数2log y x =在区间()0,∞+上为增函数. 故选:C. 【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题. 11.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A .18种 B .36种 C .54种 D .72种【答案】B 【解析】 【分析】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得. 【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有234336C A =种.故选:B . 【点睛】本题考查排列组合,属于基础题.12.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y =+( ) A .有最大值,无最小值B .有最大值,有最小值C .无最大值,有最小值D .无最大值,无最小值【答案】B 【解析】 【分析】判断直线0bx ay c ++=与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【详解】由0a b c ++=,a b c >>,所以可得0,0a c ><.1112,22222c c c ca b a a c b c a c c a a a a>⇒>--⇒>->⇒-->⇒<-∴-<<-⇒<-<, 所以由0b cbx ay c y x a a++=⇒=--,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值. 故选:B 【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用. 二、填空题:本题共4小题,每小题5分,共20分。
专题29 空间向量与立体几何(解答题)(新高考地区专用)(解析版)
专题29 空间向量与立体几何(解答题)1.如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PC AC ⊥,BC AC ⊥,2AC PC ==,4CB =,M 是PA 的中点.(1)求证:PA ⊥平面MBC ;(2)设点N 是PB 的中点,求二面角N MC B --的余弦值.【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(理)【答案】(1)证明见解析;(2)3. 【解析】(1)平面PAC ⊥平面ABC ,平面PAC平面ABC =AC ,BC ⊂平面ABC ,BC AC ⊥,所以BC ⊥平面PAC ,因为PA ⊂平面PAC ,所以BC PA ⊥,因为AC PC =,M 是PA 的中点,所以CM PA ⊥, 因为CMBC C =,,CM BC ⊂平面MBC ,所以PA ⊥平面MBC .(2)因为平面PAC ⊥平面ABC ,平面PAC平面ABC =AC ,PC ⊂平面PAC ,PC AC ⊥,所以PC ⊥平面ABC ,因为BC ⊂平面ABC ,所以PC BC ⊥,以C 为原点,CA ,CB ,CP 为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系,(2,0,0)A ,(0,4,0)B ,(0,0,0)C ,(0,0,2)P ,(1,0,1)M ,(0,2,1)N ,则(1,0,1)CM =,(0,2,1)CN =,(2,0,2)PA =-,由(1)知(2,0,2)PA =-是平面MBC 的一个法向量,设(,,)n x y z =是平面MNC 的法向量,则有00CM n CN n ⎧⋅=⎨⋅=⎩,即020x z y z +=⎧⎨+=⎩,令1y =,则2z =-,2x =,所以(2,1,2)n =-,设二面角N MC B --所成角为θ,由图可得θ为锐角,则2cos cos ,||||PA n PA n PA n θ⋅⨯=<>===【名师点睛】解题的关键是熟练掌握面面垂直的性质定理,线面垂直的判定和性质定理,并灵活应用,处理二面角或点到平面距离时,常用向量法求解,建立适当的坐标系,求得所需点的坐标及向量坐标,求得法向量坐标,代入夹角或距离公式,即可求得答案. 2.在四棱锥P ABCD -中,PAB △为直角三角形,90APB ∠=︒且12PA AB CD ==,四边形ABCD 为直角梯形,//AB CD 且DAB ∠为直角,E 为AB 的中点,F 为PE 的四等分点且14EF EP =,M 为AC 中点且MF PE ⊥.(1)证明:AD ⊥平面ABP ;(2)设二面角A PC E --的大小为α,求α的取值范围. 【试题来源】山东省德州市2020-2021学年高三上学期期末 【答案】(1)证明见解析;(2),32ππα【解析】(1)取PE 的中点N ,连接AN ,DN ,CE ,如图所示:因为12AE AB =,12AP AB =,所以AP AE =,AN PE ⊥.因为四边形ABCD 为直角梯形,且90DAB ∠=︒,12CD AB =, 所以四边形AECD 为正方形,即M 为DE 的中点. 因为14EF EP =,N 为PE 的中点,所以F 为EN 的中点.所以//MF DN . 因为MF PE ⊥,所以DN PE ⊥.所以PE DN PE ANPE DN AN N ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩平面ADN . 因为DA ⊂平面ADN ,所以PE DA ⊥.所以DA AB DA PEDA PE AB E ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩平面ABP . (2)以A 为原点,AB ,AD 分别为y ,z 轴,垂直AB 的直线为x 轴,建立空间直角坐标系,如图所示:设AD a =,1PA CD ==,2AB =,则()0,0,0A,1,02P ⎫⎪⎪⎝⎭,()0,1,0E ,()0,1,C a . 31,02AP ⎛⎫= ⎪ ⎪⎝⎭,()0,1,AC a =,1,02PE ⎛⎫=- ⎪ ⎪⎝⎭,()0,0,CE a =-. 设平面PAC 的法向量()111,,n x y z =,则1111310220AP n x yAC n y az ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令1y =,解得11x =,1z =,故1,3,n⎛=- ⎝⎭. 设平面PEC 的法向量()222,,m x y z =,则222310220PE mx y CE m az ⎧⋅=-+=⎪⎨⎪⋅=-=⎩,令2y =21x =,20z =,故()1,3,0m =.由图知,二面角A PC E --的平面角α为锐角,所以11cos 0,2α-⎛⎫==⎪⎝⎭.故,32ππα.3.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,112BC AD ==且CD =E 为AD 的中点,F 是棱PA 的中点,2PA =,PE ⊥底面ABCD .AD CD ⊥(1)证明://BF平面PCD ; (2)求二面角P BD F --的正弦值;(3)在线段PC (不含端点)上是否存在一点M ,使得直线BM 和平面BDF 所成角的正弦值为13?若存在,求出此时PM 的长;若不存在,说明理由. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考 【答案】(1)证明见解析;(2(3)存在,7PM = 【解析】(1)由题意得//BC DE ,=BC DE ,90ADC ∠=︒,所以四边形BCDE 为矩形, 又PE ⊥面ABCD ,如图建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0A,()B ,()1,0,0D -,(P ,()C -,1,0,22F ⎛ ⎝⎭,设平面PCD的法向量为(),,m x y z=,()0,DC =,(DP =则00DC m DP m ⎧⋅=⎨⋅=⎩,则0x ==⎪⎩,则0y =,不妨设x =1z =,可得()3,0,1m =-,又1,22BF ⎛⎫= ⎪ ⎪⎝⎭,可得0BF m ⋅=,因为直线BF ⊄平面BCD ,所以//BF 平面BCD .(2)设平面PBD 的法向量为()1111,,x n y z =,()1,DB =,(0,BP =,则1100DB n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即111100x ⎧+=⎪⎨+=⎪⎩,不妨设x =()13,1,1n =--,设平面BDF 的法向量为()2222,,n xy z =,32DF ⎛= ⎝⎭,则2200DB n DF n ⎧⋅=⎪⎨⋅=⎪⎩,即222203022x x z ⎧+=⎪⎨+=⎪⎩,不妨设2x =,可得()2n =-,因此有121212cos ,65n n n n n n ⋅==-⋅,(注:结果正负取决于法向量方向) 于是21212465sin ,1cos ,n n n n =-=,所以二面角P BD F --.(3)设((),PM PC λλλ==-=-,()0,1λ∈(),BM BP PM λ=+=-,由(2)可知平面BDF 的法向量为()23,1,3n =-,2223cos ,BM n BM n BM n⋅===⋅,有23410λλ-+=,解得1λ=(舍)或13λ=, 可得1,333PM ⎛=-- ⎝⎭,所以73PM =. 4.在四棱锥P ABCD -中,PA ⊥平面ABCD ,PA =//DC AB ,90DAB ∠=︒,3AB =,2AD CD ==,M 是棱PD 的中点.(1)求异面直线DP 与BC 所成的角的余弦值; (2)求AM 与平面PBC 所成的角的大小;(3)在棱PB 上是否存在点Q ,使得平面QAD 与平面ABCD 所成的锐二面角的大小为60°?若存在,求出AQ 的长;若不存在,说明理由.【试题来源】天津市南开中学2020-2021学年高三上学期第四次月考 【答案】(1;(2)45︒;(3)125. 【解析】如图,以,,AD AB AP 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系,则(()()()()(,0,0,0,3,0,0,2,2,0,0,2,0,P A B C D M ,(1)(0,DP =-,()1,2,0BC =-,所以cos,DP BC==,即异面直线DP与BC(2)(AM=,(3,0,PB=-,()1,2,0BC=-设平面PBC的法向量(),,m x y z=,则mPBm BC⎧⋅=⎨⋅=⎩,3020xx y⎧-=⎪⎨-+=⎪⎩,所以可取(m=,设AM与平面PBC所成的角为θ,则sin cos,AM mθ===,所以AM与平面PBC所成的角为45︒;(3)平面ABCD的法向量可取()10,0,1n=,设(()3,0,3,0,PQ PBλλλ==-=-,则()3Qλ,所以()3AQλ=,()0,2,0AD =,设平面QAD的法向量为()2222,,n x y z=,则22nAQn AD⎧⋅=⎪⎨⋅=⎪⎩,()2223020x zyλ⎧+=⎪⎨=⎪⎩,可取()223,0,3nλ=-,因为平面QAD与平面ABCD所成的锐二面角的大小为60°.所以121cos,2n n=,12=,解得25λ=或2λ=-(舍)所以6,0,55AQ⎛=⎝⎭,所以61255AQ⎛==5.如图,在正四面体A BCD-中,点E,F分别是,ABBC的中点,点G,H分别在,CD AD 上,且14DH AD=,14DG CD=.(1)求证:直线,EH FG 必相交于一点,且这个交点在直线BD 上; (2)求直线AB 与平面EFGH 所成角的正弦值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(理) 【答案】(1)证明见解析;(2. 【解析】(1)因为//,//EF AC GH AC ,11=,=24EF AC GH AC ,所以//GH EF 且12GH EF =,故E ,F ,G ,H 四点共面,且直线,EH FG 必相交于一点,设=EH FG M ,因为,∈M EH EH平面ABD ,所以M ∈平面ABD ,同理:M ∈平面BCD ,而平面ABD ⋂平面BCD BD =,故M ∈平面BCD ,即直线,EH FG 必相交于一点,且这个交点在直线BD 上; (2)取BD 的中点O ,则,⊥⊥BD OA BD OC ,所以BD ⊥平面AOC ,不妨设OD =,则BD AC ==12AO CO ==, 所以1441441921cos 212123+-∠==⨯⨯AOC ,以O 为坐标原点建立如图所示的空间直角坐标系,则(0,(12,0,0),(6,--A B C F G ,故=BA ,(=-FG ,(8,0,=-AC ,(4,0,=-EF ,设平面EFGH 的法向量为(,,)n x y z =,由00n EF n FG ⎧⋅=⎨⋅=⎩可得50y x ⎧+=⎪⎨-=⎪⎩,令x =,则(52,=n ,则182cos ,3||||92⋅<>===⨯BA n BA n BA n ,故直线AB 与平面EFGH . 6.如图,已知四边形ABCD 为菱形,对角线AC 与BD 相交于O ,60BAD ∠=︒,平面ADEF平面BCEF =直线EF ,FO ⊥平面ABCD ,22BC CE DE EF ====(1)求证://EF DA ;(2)求二面角A EF B --的余弦值.【试题来源】江西省五市九校协作体2021届高三第一次联考 【答案】(1)证明见解析;(2)35. 【解析】(1)因为四边形ABCD 为菱形,所以//AD BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF ,//AD ∴平面BCEF ,因为平面ADEF平面BCEF =直线,EF AD ⊂平面ADEF ,所以//EF AD ;(2)因为四边形ABCD 为菱形,所以AC BD ⊥,因为OF ⊥平面ABCD ,所以以O 为坐标原点、OA ,OB ,OF 为x ,y ,z 轴建立空间直角坐标系,取CD 中点M ,连EM ,OM ,60BAD ︒∠=,21BC OA OC OB OD =∴====,2BC CD CE DE CDE ====∴为正三角形,EM =11//,=,//,=22OM BC OM BC EF BC EF BC,//,=//,=EF OM EF OM OF EM OF EM∴∴,从而1(0,1,0),((0,1,0),(22A B C D E---,设平面ADEF一个法向量为(,,)m x y z=,则m DAm DE⎧⋅=⎨⋅=⎩,即12yx y⎧+=⎪⎨+=⎪⎩,令11,(1,x y z m=∴===-,设平面BCEF一个法向量为(,,)n x y z=,则n BCn EC⎧⋅=⎨⋅=⎩,即122yx y⎧-=⎪⎨-+-=⎪⎩,令11,(1,3,1)x y z n=∴==-=--,3cos,5|||,|m nm nm n⋅∴<>==,因此二面角A EF B--的余弦值为35.7.如图,在四棱锥P ABCD-中,90BAD∠=,//AD BC,PA AD⊥,PA AB⊥,122PA AB BC AD====.(1)求证://BC平面PAD;(2)求平面PAB与平面PCD所成锐二面角的余弦值.【试题来源】北京房山区2021届高三上学期数学期末试题【答案】(1)证明见解析;(2【解析】(1)解法1.因为//BC AD,BC⊄平面PAD,AD⊂平面PAD,所以//BC平面PAD,解法2.因为PA AD⊥,PA AB⊥,AD AB⊥,所以以A为坐标原点,,,AB AD AP所在直线分别为x轴、y轴、z轴,建立如图所示空间直角坐标系A xyz-,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C ,平面PAD 的法向量为(1,0,0)t , (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ; (2)因为PA AD ⊥,PA AB ⊥AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = , 设平面PCD 的法向量为(,,)m x y z =, (2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x y m PC m PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩,令1(1,1,2)y m ==得 ,cos ,1n mn m n m ⋅<>===⨯,设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以cos θ=. 8.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,3BAD π∠=,E 是线段AD 的中点,连结BE .(1)求证:BE PA ⊥;(2)求二面角A PD C --的余弦值;(3)在线段PB 上是否存在点F ,使得//EF 平面PCD ?若存在,求出PF PB 的值;若不存在,说明理由.【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)证明见解析;(2)7-;(3)存在;12PF PB =. 【解析】(1)因为四边形ABCD 为菱形,所以AB AD =.因为3BAD π∠=,E 为AD 的中点,所以BE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,所以BE ⊥平面PAD . 因为PA ⊂平面PAD ,所以BE PA ⊥.(2)连结PE .因为PA PD =,E 为AD 的中点,所以PE AD ⊥.由(1)可知BE ⊥平面PAD ,所以BE AD ⊥,PE BE ⊥.设2AD a =,则PE a =.如图,建立空间直角坐标系E xyz -.所以(,0,0),,0),(2,0),(,0,0),(0,0,)A a B C a D a P a --.所以),0(D C a =-,(,0,)D a P a =.因为BE ⊥平面PAD ,所以(0,,0)EB =是平面PAD 的一个法向量.设平面PCD 的法向量为(,,)x y z =n ,则00n DC n DP ⎧⋅=⎨⋅=⎩,即00ax ax az ⎧-+=⎪⎨+=⎪⎩,所以,.x x z ⎧=⎪⎨=-⎪⎩令3x =,则1y =,z =(3,1,n =.所以cos ,||||7n EB n EB n EB ⋅===.由题知,二面角A PD C --为钝角,所以其余弦值为- (3)当点F 是线段PB 的中点时,//EF 平面PCD .理由如下: 因为点E ∈/平面PCD ,所以在线段PB 上存在点F 使得//EF 平面PCD 等价于0EF ⋅=n .假设线段PB 上存在点F 使得//EF 平面PCD .设([0,1])PF PBλλ=∈,则PF PB λ=.所以(0,0,),),)EF EP PF EP PB a a a a a λλλ=+=+=+-=-.由)0EF a a a λ⋅=-=n ,得12λ=. 所以当点F 是线段PB 的中点时,//EF 平面PCD ,且12PF PB =. 9.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,4PD =,底面ABCD 是边长为2的正方形,E ,F 分别为PB ,PC 的中点.(1)求证:平面ADE ⊥平面PCD ;(2)求直线BF 与平面ADE 所成角的正弦值.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)证明见解析;(2)15. 【解析】(1)因为PD ⊥平面ABCD ,所以PD AD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.因为PD CD D ⋂=,所以AD ⊥平面PCD .因为AD ⊂平面ADE ,所以平面ADE ⊥平面PCD .(2)因为PD ⊥底面ABCD ,所以PD AD ⊥,PD CD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.如图建立空间直角坐标系D xyz -.因为4PD =,底面ABCD 为边长为2的正方形,所以()0,0,4P ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()1,1,2E ,()0,1,2F . 则()2,0,0DA =,()1,1,2DE =,()2,1,2BF =--.设平面ADE 的法向量(),,m x y z =,由00m DA m DE ⎧⋅=⎨⋅=⎩,可得2020x x y z =⎧⎨++=⎩. 令1z =-,则0x =,2y =.所以()0,2,1m =-.设直线BF 与平面ADE 所成角为θ,则,sincos ,9BF mBF m BF m θ====.所以直线BF 与平面ADE . 【名师点睛】本题考查了面面垂直的判定,核心是要求面面垂直,先考虑线面垂直;同时也考查了线面角的计算方法,核心是要求正弦值,先求余弦值.10.如图,已知11ABB A 是圆柱1OO 的轴截面,O 、1O 分别是两底面的圆心,C 是弧AB 上的一点,30ABC ∠=,圆柱的体积和侧面积均为4π.(1)求证:平面1ACA ⊥平面1BCB ;(2)求二面角11B A B C --的大小.【试题来源】江西省吉安市2021届高三大联考数学(理)(3-2)试题【答案】(1)证明见解析 ;(2)60 .【解析】(1)因为1AA 是圆柱的母线,所以1AA ⊥平面ABC ,因为BC ⊂平面ABC , 所以1AA BC ⊥,又C 是弧AB 上的一点,且AB 是圆O 的直径,所以AC BC ⊥,因为1AA AC A =,所以BC ⊥平面1ACA ,又BC ⊂平面1BCB ,所以平面1ACA ⊥平面1BCB ;(2)设圆柱的底面半径为r ,母线长为l ,因为圆柱的体积和侧面积均为4π,所以2244rl r l ππππ=⎧⎨=⎩,解得,2r ,1l =,即4AB =,11AA =,因为30ABC ∠=,所以2AC =,BC =设圆柱过C 点的母线为CD ,以C 为原点,CA ,CB ,CD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -,如图所示;则()0,0,0C ,()B ,()12,0,1A ,()1B ;所以()12,0,1CA =,()10,CB =,()12,BA =-,()10,0,1BB = 设平面11CA B 的法向量为(),,n x y z =,由1120000x z n CA n CB z ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩,取z =x =1y =-,所以平面11CA B的一个法向量为(3,n =--, 设平面11BA B 的法向量为(),,m a b c=,由1102000m BA a c m BB c ⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩, 取1b =,则a =0c ,所以平面11BA B 的一个法向量为()3,1,0m =, 所以1cos ,23n mm n n m ⋅===-+⋅, 由图中可看出二面角11B A B C --是锐角,故二面角11B A B C --的值为60.【名师点睛】证明面面垂直的方法:(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用); (4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.11.如图1,正方形ABCD ,边长为a,,E F 分别为,AD CD 中点,现将正方形沿对角线AC 折起,折起过程中D 点位置记为T ,如图2.(1)求证:EF TB ⊥;(2)当60TAB ︒∠=时,求平面ABC 与平面BEF 所成二面角的余弦值.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)证明见解析;(2. 【解析】(1)取AC 中点O ,连,,OT OB BT ,因为ABCD 为正方形,所以,AC OT AC OB ⊥⊥,又OT OB O ⋂=,所以AC ⊥平面OBT ,而TB ⊂平面OBT ,所以AC TB ⊥. 又,E F 分别为,AD CD 中点,所以//EF AC ,所以EF TB ⊥;(2)因为60TAB ︒∠=,所以TAB △为等边三角形,TB a =,又2OT OB a ==,所以222TB OB OT =+,即OT OB ⊥. 如图建立空间直角坐标系O xyz -,则,0,0,0,,B E F ⎫⎛⎛⎪ ⎝⎭⎝⎭⎝⎭,220,,0,,,2244EF a EB a ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,平面ABC 法向量(0,0,1)m =设平面BEF 法向量(,,1)x n y =,由00n EF n EB ⎧⋅=⎨⋅=⎩,00244y ay =⎧+-=⎩,012y x =⎧⎪⎨=⎪⎩,1,0,1,cos ,2||||11mn n m n m n ⋅⎛⎫=<>=== ⎪⋅⎝⎭⋅, 记平面ABC 与平面BEF 所成二面角为θ,则θ为锐角,所以cos 5θ=即平面ABC 与平面BEF . 12.如图所示,四棱柱1111ABCD A B C D -的底面是菱形,侧棱垂直于底面,点E ,F 分别在棱1AA ,1CC 上,且满足113AE AA =,113CF CC =,平面BEF 与平面ABC 的交线为l .(1)证明:直线l ⊥平面1BDD ;(2)已知2EF =,14BD =,设BF 与平面1BDD 所成的角为θ,求sin θ的取值范围.【试题来源】海南省2021届高三年级第二次模拟考试【答案】(1)证明见解析;(2)35⎫⎪⎪⎝⎭.【解析】(1)如图,连接AC ,与BD 交于点O .由条件可知//AE CF ,且AE CF =,所以//AC EF ,因为EF ⊂平面BEF ,所以//AC 平面BEF .因为平面BEF 平面ABC l =,所以//AC l . 因为四棱柱1111ABCD A B C D -的底面是菱形,且侧棱垂直于底面,所以AC BD ⊥,1AC BB ⊥,又1BD BB B ⋂=,所以AC ⊥平面1BDD ,所以l ⊥平面1BDD .(2)如图所示,以O 为坐标原点,分别以OB ,OC 的方向为x ,y 轴的正方向建立空间直角坐标系.设2BD a =,因为1BD BD <,所以02a <<.则OB a =,1DD ==所以(,0,0)B a ,(0,1,0)C,F ⎛ ⎝. 由(1)可知(0,1,0)OC =是平面1BDD的一个法向量,而BF a ⎛=- ⎝, 所以sin cos ,OC BF OC BF OC BF θ⋅=<>===当02a <<35<<,即3sin 5θ⎫∈⎪⎪⎝⎭.【名师点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.13.在三棱柱111ABC A B C -中,1AB AC ==,1AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ;(2)求直线AE 与平面11AAC C 所成角的正弦值.【试题来源】浙江省宁波市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2【解析】(1)由1B C ⊥平面ABC ,AB平面ABC ,得1AB B C ⊥, 又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C , AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B,又BC =11BB AA == 故11CB =,()10,0,1B ,10,0,2E ⎛⎫ ⎪⎝⎭,()1,0,0CA =, ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭,设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1sin 102nAEn AE θ⋅===,即直线AE 与平面11AAC C14.如图,在平面四边形PABC 中,PA AC ⊥,AB BC ⊥,PA AB ==,2AC =,现把PAC △沿AC 折起,使P 在平面ABC 上的射影为O ,连接OA 、OB ,且OB//AC .(1)证明:OB ⊥平面PAO ;(2)求二面角O PB C --的余弦值.【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(理)【答案】(1)证明见解析;(2) 【解析】(1)PO ⊥平面ABC ,AC ⊂平面ABC ,PO AC ∴⊥,又PA AC ⊥,PAPO P =,所以AC ⊥平面PAO , //OB AC ,所以OB ⊥平面PAO ;(2)在Rt ABC 中,AB =2AC =,则1BC ==,30BAC ∴∠=,在Rt OAB 中,903060OAB ∠=-=,所以12OA AB ==,32OB =,Rt PAO 中,PA =AO =32OP ∴==, 以点O 为坐标原点,OB 、OA 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,则0,,02A ⎛⎫ ⎪ ⎪⎝⎭、,02C ⎛⎫ ⎪ ⎪⎝⎭、3,0,02B ⎛⎫ ⎪⎝⎭、30,0,2P ⎛⎫ ⎪⎝⎭,所以33,0,22PB ⎛⎫=- ⎪⎝⎭,32PC ⎛⎫=- ⎪ ⎪⎝⎭,由(1)可知()0,1,0m =为平面POB 的一个法向量,设平面平PBC 的法向量为(),,n x y z =,则有330223202x z x y z ⎧-=⎪⎪⎨⎪-=⎪⎩y x z x ⎧=⎪⇒⎨⎪=⎩,取x =(3,n =-,cos ,717m n m n m n ⋅===-⋅⨯, 由图可知,二面角O PB C --为钝角,所以,二面角O PB C --的余弦值为7-. 15.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,//,90BC AD ADC ∠=︒,11,2BC CD AD E ===为线段AD 的中点,过BE 的平面与线段,PD PC 分别交于点,G F .(1)求证:GF ⊥平面PAD ;(2)若PA PD ==G为PD 的中点,求平面PAB 与平面BEGF所成锐二面角的余弦值.【试题来源】安徽省名校2020-2021学年高三上学期期末联考(理)【答案】(1)证明见解析;(2.【解析】证明:(1)因为12BC AD =,且E 为线段AD 的中点,所以BC DE =, 因为//BC AD ,所以四边形BCDE 为平行四边形,所以//BE CD ,因为CD ⊂平面,PCD BE ⊂/平面PCD ,所以//BE 平面PCD ,又平面BEGF ⋂平面PCD GF =,所以//BE GF ,又BE AD ⊥,且平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =, 所以BE ⊥平面PAD ,所以GF ⊥平面PAD ;(2)因为,PA PD E =为线段AD 的中点,所以PE AD ⊥,‘’因为平面PAD ⊥平面ABCD ,所以PE ⊥平面ABCD ,以E 为坐标原点,EA 的方向为x 轴正方向建立如图所示的空间直角坐标系E xyz -;则11(0,0,1),(1,0,0),(0,1,0),(0,0,0),(1,0,0),,0,22P A B E D G ⎛⎫--⎪⎝⎭, 则11(1,0,1),(0,1,1),(0,1,0),(1,0,1),,0,22PA PB BE DP EG ⎛⎫=-=-=-==- ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,则0{0PA m PB m ⋅=⋅=,,,即11110,0x z y z -=⎧⎨-=⎩, 不妨令11x =,可得(1,1,1)n =为平面BEGF 的一个法向量,设平面BEGF 的法向量为()222,,n x y z =,则0{0BE n EG n ⋅=⋅=,,,即222011022y x z =⎧⎪⎨-+=⎪⎩,,不妨令21x =,可得(1,0,1)n =为平面BEGF 的一个法向量,设平面PAB 与平面BEGF 所成的锐二面角为α,于是有2cos |cos ,|32m n α=〈〉==; 所以平面PAB 与平面BEGF .16.如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,对角线AC 与BD 交于点F ,侧面SBC 是边长为2的等边三角形,点E 在棱BS 上.(1)若//SD 平面AEC ,求SE EB的值; (2)若平面SBC ⊥平面ABCD ,求二面角B AS C --的余弦值.【试题来源】江苏省G4(苏州中学、常州中学、盐城中学、扬州中学)2020-2021学年高三上学期期末联考【答案】(1)1;(2. 【解析】(1)连结EF ,因为//SD 平面AEC ,SD ⊂平面BSD ,平面BSD ⋂平面AEC EF =,所以//SD EF .因为底面ABCD 是正方形,F 为AC 中点,所以EF 是SD 的中位线,则1SE EB=. (2)取BC 的中点为O ,AD 的中点为M ,连结MO ,则MO BC ⊥, 因为平面SBC ⊥平面ABCD ,平面SBC平面ABCD BC =,OM ⊂平面ABCD , 所以OM ⊥平面SBC .又OS BC ⊥,所以O 为坐标原点.以{},,OS OC OM 为正交基底建立空间直角坐标系O xyz -.则()0,1,2A -,()010B -,,,()0,1,0C,)S,1,022E ⎛⎫- ⎪ ⎪⎝⎭,从而()SC =-,()0,2,2AC =-,()0,0,2AB =-,()3,1,2AS =-. 设平面ASC 的法向量为(),,m x y z =, 则0,0.m SC m AC ⎧⋅=⎪⎨⋅=⎪⎩,即0,0.y y z ⎧+=⎪⎨-=⎪⎩取1x =,则y =z = 所以平面ASC的一个法向量为(1,3,m =.设平面ASB 的法向量为(),,n x y z =, 则0,0.n AB n AS ⎧⋅=⎪⎨⋅=⎪⎩,即20,20.z y z -=⎧⎪+-=取y =1x =-,0z =. 所以平面ASB 的一个法向量为()1,3,0n =-.所以7cos ,7m n m n m n ⋅〈〉==. 因为二面角B AS C --的平面角为锐角,所以二面角B AS C --的余弦值为7. 【名师点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n 分别为平面α,β的法向量,则二面角θ与,m n <>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.17.在三棱锥P ABC -中,底面ABC 为正三角形,平面PBC ⊥平面,1,ABC PB PC D ==为AP 上一点,2,AD DP O =为三角形ABC 的中心.(1)求证:AC ⊥平面OBD ;(2)若直线PA 与平面ABC 所成的角为45︒,求二面角A BD O --的余弦值.【试题来源】山东省威海市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2)5. 【解析】(1)证明:连接AO 并延长BC 交于点E ,则E 为BC 中点,连接PE .如图所示:因为О为正三角形ABC 的中心,所以2,AO OE =又2AD DP =,所以//,DO PE 因为PB PC =,E 为BC 中点,所以,PE BC ⊥ 又平面PBC ⊥平面ABC ,平面PBC 平面ABC BC =,所以PE ⊥平面,ABC 所以DO ⊥平面,ABC AC ⊂平面PBC ,所以,DO AC ⊥又,AC BO DO BO O ⊥⋂=,所以AC ⊥平面OBD .(2)由PE ⊥平面ABC 知,所以45PAE ∠=︒ ,所以,PE AE =所以,ABE PBE ≌ 所以1AB PB BC AC ====,由(1)知,,,EA EB EP 两两互相垂直,所以分别以,,EA EB EP 的方向为,,x y z 轴正方向,建立如图所示空间直角坐标系,则1,0,,0,0,0,,22263A B P D ⎛⎫⎛⎫⎛⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,10,,02C ⎛⎫- ⎪⎝⎭所以31,,0,2231,,623AB BD ⎛⎫-⎛= ⎪ ⎪⎝⎭=-⎝⎭, 设平面ABD 的法向量为(),,n x y z =, 则302302x y nBD z y n AB x ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩,令1,x =可得1y z ==,则()1,3,1n =. 由(1)知AC ⊥平面,DBO 故1,02AC ⎛⎫=-- ⎪ ⎪⎝⎭为平面DBO 的法向量, 所以2cos ,5nAC n AC n AC -⋅===-,由图可知二面角A BD O --的为锐二面角,所以二面角A BDO --的余弦值为5. 18.如图,在几何体ABCDEF 中,四边形ABCD 为等腰梯形,且22AB CD ==,60ABC ∠=︒,四边形ACFE 为矩形,且FB =,M ,N 分别为EF ,AB 的中点.(1)求证://MN 平面FCB;(2)若直线AF 与平面FCB 所成的角为60°,求平面MAB 与平面MAC 所成锐二面角的余弦值.【试题来源】山西省运城市2021届高三上学期期末(理)【答案】(1)证明见解析;(2.【解析】(1)取BC 的中点Q ,连接NQ ,FQ ,则1//2NQ AC ,且12NQ AC =, 又1//2MF AC ,且12MF AC = ,所以//MF NQ 且MF NQ =, 所以四边形MNQF 为平行四边形,所以//MN FQ ,因为FQ ⊂平面FCB ,MN ⊄平面FCB ,所以//MN 平面FCB ;(2)由四边形ABCD 为等腰梯形,且22AB CD ==,60ABC ∠=︒,可得1BC =,AC =90ACB ∠=︒,所以AC BC ⊥.因为四边形ACFE 为矩形,所以AC CF ⊥,所以AC ⊥平面FCB ,所以AFC ∠为直线AF 与平面FCB 所成的角,即60AFC ∠=︒,所以1FC =.因为FB =,所以222FB FC CB =+,所以FC BC ⊥.则可建立如图所示的空间直角坐标系C xyz -,3(3,0,0),(0,1,0),,0,12A B M ⎛⎫ ⎪⎝⎭,所以3,0,1,(3,1,0)2MA AB ⎛⎫=-=- ⎪⎝⎭,设(,,)m x y z =为平面MAB 的法向量,则00MA m AB m ⎧⋅=⎨⋅=⎩,即30230x z x y ⎧-=⎪⎨⎪-+=⎩,取23x =,则(23,6,3)m =为平面MAB 的一个法向量,又(0,1,0)n =为平面MAC的一个法向量, 所以657257cos 571||m n mn m n ⋅〈〉====⨯∣∣, 故平面MAB 与平面MAC 所成锐二面角的余弦值为5719. 19.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)若H 为EF 的中点,证明://GH 平面ABCD ;(2)若14=EH EF ,求直线CH 与平面ACG 所成角的正弦值. 【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(理) 【答案】(1)证明见解析;(26. 【解析】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,所以截面AEFG 是平行四边形,则4=-=DG CF EB .因为36==FC EB ,所以1(26)42=⨯+=HM ,且DG//HM ,所以四边形DGHM 是平行四边形,所以GH //DM .因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:如图,以D 为原点,分别以DA ,DC ,DG 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系D xyz -,则(4,0,0)A ,(0,4,0)C ,(0,0,4)G ,(3,4,3)H ,(4,4,0)=-AC ,(4,0,4)=-AG ,(3,0,3)=CH .设平面ACG 的法向量为(,,)n x y z =,则440440AC n x y AG n x z ⎧⋅=-+=⎨⋅=-+=⎩,令1x =,得(1,1,1)n =.因为cos ,3||||32⋅〈〉===⨯CH n C n n CH H ,所以直线CH 与平面ACG 所成角的正弦值为3.【名师点睛】本题考查了立体几何中的线面平行的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过严密推理证明线线平行从而得线面平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.如图,已知四边形ABCD 和BCEG 均为直角梯形,//AD BC ,//CE BG ,且2BCD BCE π∠=∠=,120ECD ∠=︒.22BC CD CE AD BG ====.(1)求证://AG 平面BDE ;(2)求二面角E BD C --的余弦值.【试题来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查(理)【答案】(1)证明见解析;(2 【解析】(1)证明:在平面BCEG 中,过G 作GN CE ⊥于N ,交BE 于M ,连DM , 由题意知,MG MN =,////MN BC DA 且12MN AD BC ==, 因为//MG AD ,MG AD =,故四边形ADMG 为平行四边形,所以//AG DM , 又DM ⊂平面BDE ,AG ⊂/平面BDE ,故//AG 平面BDE .(2)由题意知BC ⊥平面ECD ,在平面ECD 内过C 点作CF CD ⊥交DE 于F , 以C 为原点,CD ,CB ,CF 的方向为x ,y ,z 轴的正方向建立空间直角坐标系,不妨设1AD =,则22BC CD CE BG ====.且()0,0,0C ,()2,0,0D ,()0,2,0B ,(E -,设平面EBD 的法向量(),,n x y z =,则由0,0,DE n BD n ⎧⋅=⎨⋅=⎩得30,220,x x y ⎧-=⎪⎨-=⎪⎩ 取1y =,得(1,1,3n =,易知平面BCD 的一个法向量为()0,0,1m =,3cos ,51m nm n m n ⋅==⋅=⋅E BD C --. 21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,M 为PC 的中点.(1)求证://AP 平面BDM ;(2)若PB PC ==CD PC ⊥,求二面角C DM B --的余弦值.【试题来源】河南省湘豫名校2020-2021学年高三上学期1月月考(理)【答案】(1)证明见解析;(2. 【解析】(1)连接AC 交BD 于E ,连接EM ,则E 为AC 中点,所以EM 为APC △的中位线,所以//EM AP ,因为EM ⊂平面BDM ,AP ⊄平面BDM ,所以//AP 平面BDM .(2)在PBC 中,因为2224PB PC BC +==,所以PB PC ⊥,取BC 中点O ,AD 中点F ,连接PO ,OF ,则PO BC ⊥,1PO =,因为BC CD ⊥,CD PC ⊥,BC 、PC ⊂平面PBC ,BC PC C ⋂=,所以CD ⊥平面PBC ,因为PO ⊂平面PBC ,所以CD PO ⊥,因为PO BC ⊥,BC CD C ⋂=,BC 、CD ⊂平面ABCD ,所以PO ⊥平面ABCD ,因为OF ⊂平面ABCD ,所以PO OF ⊥,所以PO ,OF ,OB 两两垂直,如图所示,以O 为原点,OF ,OB ,OP 分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,1,0)D -,(0,0,1)P ,(0,1,0)B ,(0,1,0)C -,所以110,,22M ⎛⎫- ⎪⎝⎭,可得112,,22DM ⎛⎫=- ⎪⎝⎭,(2,2,0)BD =-,(2,0,0)CD =.设平面BDM 的法向量为()111,,m x y z =, 则0 0m BD m DM ⎧⋅=⎨⋅=⎩,即11111220112022x y x y z -=⎧⎪⎨-++=⎪⎩,取(1,1,3)m =, 设平面CDM 的法向量为()222,,n x y z =,则00n CD n DM ⎧⋅=⎨⋅=⎩,即222220112022x x y z =⎧⎪⎨-++=⎪⎩,取(0,1,1)n =-,所以222cos ,11||||112m n m nm n ⋅〈〉===⋅⨯, 所以二面角C DM B --的余弦值为11.22.如图所示,矩形ABCD 和梯形BEFC 所在平面互相垂直, //BE CF ,BCF CEF ∠=∠=90°,AD =EF =(1)求证:EF ⊥平面DCE(2)当AB 的长为何值时,二面角A EF C --的大小为60°. 【试题来源】山东省菏泽市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2)60°.【解析】(1)因为平面ABCD ⊥平面BEFC ,平面ABCD 平面BEFC BC =,CD BC ⊥,CD ⊂平面ABCD ,所以CD ⊥平面BEFC ,EF ⊂平面BEFC ,从而CD EF ⊥. 因为EF CE ⊥,CD CE C =,,CD CE ⊂平面CDE ,所以EF ⊥平面CDE .(2)如图所示,以点C 为坐标原点,以CB 、CF 和CD 所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系.过点E 作EG CF ⊥于点G .在Rt EFG中,EG AD ==EF =1FG =.因为CE EF ⊥,则90EFC ECF BCE ∠=︒-∠=∠,所以Rt EFG Rt ECB △△,EG GF EF BE BC EC==,所以2,BE CE == 所以2CG =,所以3CF =.设AB a ,则()0,0,0C,)A a,)E ,()0,3,0F .()0,2,AE a =-,()EF =-,()2,2,0CE =, 设平面AEF 的法向量(),,n x y z =.则00n AE n EF ⎧⋅=⎨⋅=⎩,即200y az y -=⎧⎪⎨+=⎪⎩, 令2z=,得,2n a ⎫=⎪⎭.因为CD ⊥平面EFC ,()0,0,CD a =,所以1cos ,2n CD ==,解得a =所以当AB =A EF C --的大小为60°.【名师点睛】本题考查空间向量法求二面角.求空间角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出平面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).23.如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,//CD AB ,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)证明:当2MA EM =时,直线//CE 平面BDM ;(2)当AE ⊥平面MBC 时,求二面角E BD M --的余弦值.【试题来源】内蒙古赤峰市2021届高三模拟考试(理)【答案】(1)证明见解析;(2. 【解析】(1)连结BD 与AC 交于点N ,连结MN ,//AB CD ,24AB CD ==, CND ANB ∴△∽△,12CD CN AB AN ∴==, 12EM MA =,EM CN MA AN∴=,MN //EC ∴, 又MN ⊂面BDM ,CE ⊂面BDM ,//CE ∴平面BDM .(2)AE 平面MBC ,AE BM ∴⊥,M ∴是AE 的中点,取AB 的中点为O , OE ∴⊥平面ABCD ,以OD ,OA ,OE 所在的直线为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0,2,0)B-,E ,(2,0,0)D ,(0,2,0)A ,M ,设平面EBD 的法向量为()1111,,x n y z=,则1111112200020x y n BD n BE y ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令11z =,则1y=1x =1(3,3,1)n ∴=-,设平面BDM 的法向量为()2222,,n x y z =,则2222222200030x y n BD n BM y ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩,令2z 21y =-,21x =,1(1,13)n ∴=-, 1212123105cos ,||n n n n n n ⋅∴<>===⋅ ∴二面角E BD M --的余弦值为35. 24.已知正方体1111ABCD A B C D -,棱长为2,M 为棱CD 的中点,N 为面对角线1BC 的中点,如图.(1)求证:ND AN ⊥;(2)求平面1AMD 与平面11AAC C 所成锐二面角的余弦值.【试题来源】安徽省池州市2020-2021学年高三上学期期末(理)【答案】(1)证明见解析;(2 【解析】(1)取BC 的中点分别为F ,连接NF ,DF ,因为N ,F 分别为1BC ,BC 的中点,1111ABCD A B C D -是正方体,易得NF ⊥平面ABCD ,所以NF AM ⊥;因为FC MD =,AD DC =,FCD MDA ∠=∠,所以FCD MDA ≌△△,所以CFD DMA ∠=∠,所以90FDC DMA ∠+∠=︒,所以FD AM ⊥,因为NF FD F =,NF ⊂平面NFD ,FD ⊂平面NFD ,所以AM ⊥平面NFD , 又DN ⊂平面NFD ,所以ND AM ⊥;(2)以A 为原点,分别以AB 、AD 、1AA 方向为x 轴、y 轴、z 轴正方向,建立如下图所示空间直角坐标系:连接BD ,1C D ,在正方体1111ABCD A B C D -中,易知1BD C D =,且N 为1BC 中点,所以1DN BC ⊥.又11//BC AD ,所以1AD DN ⊥. 因为1AD AM A =,1AD ⊂平面1AMD ,AM ⊂平面1AMD ,所以ND ⊥平面1AMD ,故ND 为平面1AMD 的一个法向量;由1111ABCD A B C D -是正方体,得BD ⊥平面11AAC C ,故BD 为平面11AAC C 的一个法向量,因为()2,0,0B ,()0,2,0D ,()2,1,1N , 所以()2,1,1ND =--,()2,2,0BD =-, 所以(cos ,ND BDND BD ND BD -⋅<>===⋅则平面1AMD 与平面11AAC C25.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,AB ∥CD ,122AB AD CD ===,点M 在线段EC 上.(1)当点M 为EC 中点时,求证:BM ∥平面ADEF ;(2)当平面BDM 与平面ABFM 在线段EC 上的位置.【试题来源】宁夏固原市第五中学2021届高三年级期末考试(理)【答案】(1)证明见解析;(2)点M 为EC 中点.【解析】(1)以直线DA 、DC 、DE 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(2,0,0)A ,(2,2,0)B ,(0,4,0)C ,(0,0,2)E ,所以(0,2,1)M .所以(2,0,1)BM =-, 又(0,4,0)DC =是平面ADEF 的一个法向量.因为0BM DC ⋅=即BM DC ⊥,BM ⊄平面ADEF ,所以BM ∥平面ADEF ;(2)设(,,)M x y z ,则(,,2)EM x y z =-,又(0,4,2)EC =-,设()01EM EC λλ=≤≤,则0,4,22x y z λλ===-,即(0,4,22)M λλ-.设111(,,)n x y z =是平面BDM 的一个法向量,则11112204(22)0DB n x y DM n y z λλ⎧⋅=+=⎪⎨⋅=+-=⎪⎩,取11x =得11y =-,此时显然1λ=时不符合,则121z λλ=-,即2(1,1,)1n λλ=--, 又由题设,(2,0,0)DA =是平面ABF 的一个法向量,所以cos ,622DA n DA n DA n ⋅===⋅,解得12λ=,即点M 为EC 中点. 【名师点睛】利用法向量求解空间面面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.26.如图所示,在多面体ABCDEF 中,//AB CD ,AB BC ⊥,22AB BC CD ==,四边形ADEF 为矩形,平面ADEF ⊥平面ABCD ,AF AB λ=.(1)证明://DF 平面BCE ;(2)若二面角C BE F --λ的值. 【试题来源】江西宜春市2021届高三上学期数学(理)期末试题【答案】(1)证明见解析;(2)1.【解析】(1)取AB 的中点为M ,连接FM CM DM ,,,因为//AM CD 且AM CD =,四边形AMCD 为平行四边形,所以//AD MC 且AD MC =,因为四边形ADEF 为矩形,所以//FE MC 且=FEMC ,所以四边形EFMC 是平行四边形,所以//FM EC ,且EC ⊂平面BEC ,FM ⊄平面BEC ,。
2021届江西省吉安市“省重点中学五校协作体”高三第一次联考理科综合试卷及答案
2021届江西省吉安市“省重点中学五校协作体”高三第一次联考理科综合试卷★祝考试顺利★(含答案)第Ⅰ卷可能用到的相对原子质量:H-1 Li-7 C-12 O-16 Ni-59一、选择题:本题共 13 小题,每小题 6 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 .下列关于大肠杆菌与硝化细菌的叙述,正确的是( )A.都没有线粒体,所以都不能进行有氧呼吸B.硝化细菌是生产者,大肠杆菌生活在人肠道内与人构成寄生关系C.去除植物细胞壁的酶也可以用于去除大肠杆菌的细胞壁D.硝化细菌能将二氧化碳和水合成糖类,所以是自养生物2.下列有关实验与探究的叙述正确的是( )A.建立血糖调节的模型就是构建动态的数学模型B.在探究 pH 对酶活性影响的实验中,可以淀粉为底物,并用斐林试剂检测C.75%的酒精可用于冲洗卡诺氏液处理过的根尖D.探索 2,4-D 促进插条生根的最适浓度时,需要提前做预实验3.阿糖胞苷是一种嘧啶类抗癌药物,在细胞中能有效抑制 DNA 聚合酶的合成。
当阿糖胞苷进入胃癌患者体内后,机体短期内可能发生的明显变化是( )A.甲状腺激素的合成减少,神经系统兴奋性降低B.淋巴细胞的生成减少,机体的免疫功能下降 C.糖蛋白的合成增加,癌细胞的转移速度变慢 D.抑癌基因表达加速,胃部肿瘤生长变慢4.下列说法不正确的是( )A.a、b、d 过程中均存在基因的选择性表达B.a、b、d 过程中都可能发生基因突变C.a、b、c 过程均遵循孟德尔遗传定律D.a、b、d 过程中遗传信息的传递均遵循中心法则5.下列说法正确的是( )A.内环境中含有多种成分,抗体、淋巴因子、血小板、尿素等都是内环境的成分B.抗体抵抗病毒的机制与溶菌酶杀灭细菌的机制相同C.生长素是由植物体内特定器官产生的一类有机物D.胚胎期大脑中大量的神经细胞的凋亡与大脑功能的完善密切相关6.“稻在水中长,虾在稻下游。
”虾粪便为水稻生长提供良好的生物肥料,农药、化肥达到零投入,再采用添加富硒营养液的培育方式,种出了绿色环保的“虾稻”。
专题15 复数的四则运算(解析版)
专题15 复数的四则运算一、单选题1.若复数Z 满足()·1 2z i i -=(i 是虚数部位),则下列说法正确的是 A .z 的虚部是-i B .Z 是实数C .z =D .2z z i +=【试题来源】江苏省盐城市滨海中学2020-2021学年高三上学期迎八省联考考前热身 【答案】C【分析】首先根据题意化简得到1z i =-,再依次判断选项即可.【解析】()()()22122211112i i i i iz i i i i ++====---+-. 对选项A ,z 的虚部是1-,故A 错误. 对选项B ,1z i =-为虚数,故B 错误.对选项C ,z ==C 正确.对选项D ,112z z i i +=-++=,故D 错误.故选C 2.已知复数1z i =+(i 为虚数单位),则1z在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(文) 【答案】D【分析】由复数的运算化简1z,再判断复平面内对应的点所在象限. 【解析】因为()()11111122i i z i i -==-+-,所以1z 在复平面内对应的点11 ,22⎛⎫- ⎪⎝⎭在第四象限.故选D3.已知复数1z i =+(i 为虚数单位),则1z在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(理)【答案】D 【分析】化简复数1z,利用复数的几何意义可得出结论. 【解析】因为()()11111112i i z i i i --===++-,所以1z在复平面内对应的点的坐标为11,22⎛⎫- ⎪⎝⎭,在第四象限.故选D . 4.设复数z 满足11zi z+=-,则z = A .i B .i - C .1D .1i +【试题来源】山东省威海市2020-2021学年高三上学期期末 【答案】B【分析】利用除法法则求出z ,再求出其共轭复数即可【解析】11zi z+=-得()11z i z +=-,即()()()()111111i i i z i i i i ---===++-,z i =-,故选B. 5.(1)(4)i i -+= A .35i + B .35i - C .53i +D .53i -【试题来源】安徽省皖西南联盟2020-2021学年高三上学期期末(文) 【答案】D【分析】根据复数的乘法公式,计算结果.【解析】2(1)(4)4453i i i i i i -+=-+-=-.故选D 6.设复数z 满足()11z i i -=+,则z 的虚部为. A .1- B .1 C .iD .i -【试题来源】安徽省芜湖市2020-2021学年高三上学期期末(文) 【答案】B【分析】利用复数的除法化简复数z ,由此可得出复数z 的虚部.【解析】()11z i i -=+,()()()211111i iz i i i i ++∴===--+, 因此,复数z 的虚部为1.故选B . 7.若复数z 满足21zi i=+,则z = A .22i + B .22i - C .22i --D .22i -+【试题来源】安徽省芜湖市2020-2021学年高三上学期期末(理) 【答案】C【分析】求出()2122z i i i =+=-+,再求解z 即可. 【解析】()2122z i i i =+=-+,故22z i =--,故选C. 8.将下列各式的运算结果在复平面中表示,在第四象限的为A .1ii + B .1ii +- C .1i i-D .1i i--【试题来源】河南省湘豫名校2020-2021学年高三上学期1月月考(文) 【答案】A【分析】对A 、B 、C 、D 四个选项分别化简,可得. 【解析】由11ii i+=-在第四象限.故选A . 【名师点睛】(1)复数的代数形式的运算主要有加、减、乘、除及求低次方根; (2)复数除法实际上是分母实数化的过程.9.若复数z 满足()z 1i i +=- (其中i 为虚数单位)则复数z 的虚部为A .12-B .12C .12i -D .12i【试题来源】安徽省马鞍山市2020-2021学年高三上学期第一次教学质量监测(文) 【答案】A【分析】先由已知条件利用复数的除法运算求出复数z ,再求其虚部即可. 【解析】由()z 1i i +=-可得()()()111111222i i i z i i i ----===--+-,所以复数z 的虚部为12-,故选A 10.复数z 满足()212()z i i -⋅+=(i 为虚数单位),则复数z 在复平面内对应的点在 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】宁夏吴忠市2021届高三一轮联考(文) 【答案】D【分析】先计算复数221z i i=++,再求其共轭复数,即可求出共轭复数对应的点,进而可得在复平面内对应的点所在的象限. 【解析】由()()212z i i -⋅+=得()()()()21212211112i i z i i i i i ---====-++-, 所以1z i =+,1z i =-.所以复数z 在复平面内对应的点为()1,1-, 位于第四象限,故选D .11.已知复数z 满足(2)z i i -=(i 为虚数单位),则z = A .125i-+ B .125i-- C .125i- D .125i+ 【试题来源】安徽省名校2020-2021学年高三上学期期末联考(文) 【答案】A【分析】由已知可得2iz i=-,再根据复数的除法运算可得答案. 【解析】因为(2)z i i -=,所以()()()2122225i i i i z i i i +-+===--+.故选A . 12.已知复数3iz i-=,则z =A .4 BCD .2【试题来源】江西省吉安市“省重点中学五校协作体”2021届高三第一次联考(文) 【答案】B【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【解析】因为()()()3331131i i i i z i i i i -⋅----====--⋅-,所以z ==B .【名师点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属于基础题. 13.复数z 满足:()11i z i -=+,其中i 为虚数单位,则z 的共轭复数在复平面对应的点的坐标为 A .0,1 B .0,1 C .1,0D .()1,0【试题来源】江西宜春市2021届高三上学期数学(理)期末试题 【答案】A【分析】先由()11i z i -=+求出复数z ,从而可求出其共轭复数,进而可得答案【解析】由()11i z i -=+,得21i (1i)2ii 1i (1i)(1+i)2z ++====--, 所以z i =-,所以其在复平面对应的点为0,1,故选A 14.已知复数312iz i+=-,则z =A .1 BCD .2【试题来源】湖南省岳阳市平江县第一中学2020-2021学年高二上学期1月阶段性检测 【答案】B【分析】利用复数的除法法则化简复数z ,利用复数的模长公式可求得z .【解析】()()()()2312337217121212555i i i i i z i i i i +++++====+--+,因此,z ==B . 15.设复1iz i=+(其中i 为虚数单位),则复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】江苏省南通市如皋市2020-2021学年高三上学期期末 【答案】A【分析】利用复数的除法化简复数z ,利用复数的几何意义可得出结论. 【解析】()()()1111111222i i i i z i i i i -+====+++-,因此,复数z 在复平面内对应的点位于第一象限.故选A .16.已知(1)35z i i +=-,则z = A .14i - B .14i -- C .14i -+D .14i +【试题来源】江苏省盐城市一中、大丰高级中学等四校2020-2021学年高二上学期期末联考 【答案】B【分析】由复数的除法求解.【解析】由题意235(35)(1)3355141(1)(1)2i i i i i i z i i i i -----+====--++-.故选B 17.复数(2)i i +的实部为 A .1- B .1 C .2-D .2【试题来源】浙江省绍兴市上虞区2020-2021学年高三上学期期末 【答案】A【分析】将(2)i i +化简即可求解.【解析】(2)12i i i +=-+的实部为1-,故选A .18.已知i 是虚数单位,(1)2z i i +=,则复数z 所对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】山东省德州市2019-2020学年高一下学期期末 【答案】D【分析】利用复数的运算法则求解复数z ,再利用共轭复数的性质求z ,进而确定z 所对应的点的位置.【解析】由(1)2z i i +=,得()()()()2121211112i i i i z i i i i -+====+++-, 所以1z i =-,所以复数z 所对应的点为()1,1-,在第四象限,故选D .【名师点睛】对于复数的乘法,类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可;对于复数的除法,关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式. 19.若复数2iz i=+,其中i 为虚数单位,则z =A B C .25D .15【试题来源】重庆市南开中学2020-2021学年高二上学期期末 【答案】B【分析】先利用复数的除法运算法则化简复数2iz i=+,再利用复数模的公式求解即可. 【解析】因为()()()21212222555i i i i z i i i i -+====+++-,所以z ==,故选B . 20.52i i-= A .152i--B .52i-- C .152i- D .152i+ 【试题来源】江西省吉安市2021届高三上学期期末(文) 【答案】A【分析】根据复数的除法的运算法则,准确运算,即可求解. 【解析】由复数的运算法则,可得()5515222i i i ii i i ----==⨯.故选A .21.设复数z 满足()1z i i R +-∈,则z 的虚部为 A .1 B .-1 C .iD .i -【试题来源】湖北省2020-2021学年高三上学期高考模拟演练 【答案】B【分析】根据复数的运算,化简得到()11(1)z i i a b i +-=+++,根据题意,求得1b =-,即可求得z 的虚部,得到答案.【解析】设复数,(,)z a bi a b R =+∈,则()11(1)z i i a b i +-=+++,因为()1z i i R +-∈,可得10b +=,解得1b =-,所以复数z 的虚部为1-.故选B . 22.若复数151iz i-+=+,其中i 为虚数单位,则z 的虚部是 A .3 B .3- C .2D .2-【试题来源】安徽省淮南市2020-2021学年高三上学期第一次模拟(文) 【答案】A【分析】先利用复数的除法运算,化简复数z ,再利用复数的概念求解.【解析】因为复数()()()()1511523111i i i z i i i i -+--+===+++-, 所以z 的虚部是3,故选A. 23.若m n R ∈、且4334im ni i+=+-(其中i 为虚数单位),则m n -= A .125- B .1- C .1D .0【试题来源】湖北省部分重点中学2020-2021学年高三上学期期末联考 【答案】B【分析】对已知进行化简,根据复数相等可得答案.【解析】因为()()()()433443121225343434916i i i ii m ni i i i +++-+====+--++, 根据复数相等,所以0,1m n ==,所以011m n -=-=-.故选B .24.若复数z满足()36z =-(i 是虚数单位),则复数z =A.32-B.32- C.322+D.322-- 【试题来源】湖北省荆州中学2020-2021学年高二上学期期末 【答案】A【分析】由()36z =-,得z =,利用复数除法运算法则即可得到结果.【解析】复数z满足()36z +=-,6332z --=====-∴+,故选A .25.若复数2i()2i+=∈-R a z a 是纯虚数,则z = A .2i - B .2i C .i -D .i【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(理) 【答案】D【分析】由复数的除法运算和复数的分类可得结果. 【解析】因为2i (2i)(2i)22(4)i2i (2i)(2i)5+++-++===-+-a a a a z 是纯虚数, 所以22040a a -=⎧⎨+≠⎩,则1a =,i =z .故选D .26.复数12z i =+,213z i =-,其中i 为虚数单位,则12z z z =⋅在复平面内的对应点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】江苏省G4(苏州中学、常州中学、盐城中学、扬州中学)2020-2021学年高三上学期期末联考 【答案】D【分析】根据复数的乘法法则,求得55z i =-,即可求得答案. 【解析】由题意得122(2)(13)25355i i i i i z z z =+-=-==--⋅, 所以12z z z =⋅在复平面内的对应点为(5,-5)位于第四象限,故选D27.复数2()2+∈-R a ia i 的虚部为 A .225+aB .45a - C .225a -D .45a +【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(文) 【答案】D【分析】由得数除法运算化为代数形式后可得. 【解析】因为2i (2i)(2i)22(4)i 2i (2i)(2i)5+++-++==-+-a a a a ,所以其虚部为45a +.故选D . 28.复数z 满足()12z i i ⋅+=,则2z i -=ABCD .2【试题来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查(文) 【答案】A【分析】先利用除法化简计算z ,然后代入模长公式计算.【解析】()1i 2i z ⋅+=变形得22222221112-+====++-i i i i z i i i ,所以2121-=+-=-==z i i i i A .29.i 是虚数单位,若()17,2ia bi ab R i-=+∈+,则ab 的值是 A .15- B .3- C .3D .15【试题来源】山东省菏泽市2020-2021学年高三上学期期末 【答案】C【分析】根据复数除法法则化简得数后,由复数相等的定义得出,a b ,即可得结论.【解析】17(17)(2)2147132(2)(2)5i i i i i i i i i ------===--++-, 所以1,3a b =-=-,3ab =.故选C . 30.复数3121iz i -=+的虚部为 A .12i -B .12i C .12-D .12【试题来源】江西省赣州市2021届高三上学期期末考试(理) 【答案】C【分析】由复数的乘除法运算法则化简为代数形式,然后可得虚部.【解析】231212(12)(1)1223111(1)(1)222i i i i i i i z i i i i i ---++--=====-+--+, 虚部为12-.故选C . 31.若复数z 满足(1)2i z i -=,i 是虚数单位,则z z ⋅=AB .2C .12D .2【试题来源】内蒙古赤峰市2021届高三模拟考试(理) 【答案】B【分析】由除法法则求出z ,再由乘法法则计算.【解析】由题意222(1)2()11(1)(1)2i i i i i z i i i i ++====-+--+, 所以(1)(1)2z z i i ⋅=-+--=.故选B . 32.若23z z i +=-,则||z =A .1 BCD .2【试题来源】河南省(天一)大联考2020-2021学年高三上学期期末考试(理) 【答案】B【分析】设(,)z a bi a b R =+∈,代入已知等式求得,a b 后再由得数的模的定义计算. 【解析】设(,)z a bi a b R =+∈,则22()33z z a bi a bi a bi i +=++-=-=-,所以以331a b =⎧⎨-=-⎩,解得11a b =⎧⎨=⎩,所以==z B .33.复数z 满足(2)(1)2z i i -⋅+=(i 为虚数单位),则z = A .1 B .2CD 【试题来源】宁夏吴忠市2021届高三一轮联考(理) 【答案】C【分析】先将复数化成z a bi =+形式,再求模. 【解析】由(2)(1)2z i i -⋅+=得2211z i i i-==-+,所以1z i =+,z ==C .34.已知a R ∈,若()()224ai a i i +-=-(i 为虚数单位),则a = A .-1 B .0 C .1D .2【试题来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测 【答案】B【分析】将()()22ai a i +-展开可得答案.【解析】()()()222444ai a i a a i i +-=+-=-,所以0a =,故选B.35.已知i 为虚数单位,且复数3412ii z+=-,则复数z 的共轭复数为 A .12i -+ B .12i -- C .12i +D .1 2i -【试题来源】湖北省孝感市应城市第一高级中学2020-2021学年高二上学期期末【答案】D【分析】根据复数模的计算公式,以及复数的除法运算,求出z ,即可得出其共轭复数. 【解析】因为3412i i z+=-,所以512z i =-,则()()()512512121212i z i i i i +===+--+, 因此复数z 的共轭复数为1 2i -.故选D . 36.已知复数i()1ia z a +=∈+R 是纯虚数,则z 的值为 A .1 B .2 C .12D .-1【试题来源】江西省赣州市2021届高三上学期期末考试(文) 【答案】A【分析】根据复数除法运算化简z ,根据纯虚数定义求得a ,再求模长. 【解析】()()()()11121122a i i a i a a z i i i i +-++-===+++-是纯虚数,102102a a +⎧=⎪⎪∴⎨-⎪≠⎪⎩,解得1a =-,所以z i ,1z =.故选A . 37.设复数11iz i,那么在复平面内复数31z -对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(理) 【答案】C【分析】利用复数的除法法则化简复数z ,再将复数31z -化为一般形式,即可得出结论.【解析】()()()21121112i ii z i i i i ---====-++-,3113z i ∴-=--, 因此,复数31z -在复平面内对应的点位于第三象限.故选C . 38.已知复数13iz i-=+(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【试题来源】江西省南昌市新建区第一中学2020-2021学年高二上学期期末考试(理) 【答案】D【分析】将复数化简成z a bi =+形式,则在复平面内对应的点的坐标为(),a b ,从而得到答案.【解析】因为1(1)(3)24123(3)(3)1055i i i i z i i i i ----====-++-, 所以z 在复平面内对应的点12(,)55-位于第四象限,故选D.39.若复数2(1)34i z i+=+,则z =A .45 B .35C .25D 【试题来源】成都市蓉城名校联盟2020-2021学年高三上学期(2018级)第二次联考 【答案】C 【分析】先求出8625iz -=,再求出||z 得解. 【解析】由题得()()()()212342863434343425i i i i iz i i i i +-+====+++-,所以102255z ===.故选C. 40.设复数11iz i,那么在复平面内复数1z -对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(文) 【答案】C【分析】先求出z i =-,11z i -=--,即得解.【解析】由题得21(1)21(1)(1)2i i iz i i i i ---====-++-, 所以11z i -=--,它对应的点的坐标为(1,1)--, 所以在复平面内复数1z -对应的点位于第三象限.故选C. 二、多选题1.已知m ∈R ,若6()64m mi i +=-,则m =A .B .1-CD .1【试题来源】2021年高考一轮数学(理)单元复习一遍过 【答案】AC【分析】将6()m mi +直接展开运算即可.【解析】因为()()66661864m mi m i im i +=+=-=-,所以68m =,所以m =故选AC . 2.设复数z 满足1z i z+=,则下列说法错误的是 A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 【试题来源】2021年新高考数学一轮复习学与练 【答案】AB【分析】先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【解析】由题意得1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误;复数z 的虚部为12-,故B 错误;在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确.故选AB 【名师点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.3.已知复数122z =-,则下列结论正确的有 A .1z z ⋅=B .2z z =C .31z =-D .202012z =-+ 【试题来源】山东新高考质量测评联盟2020-2021学年高三上学期10月联考 【答案】ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【解析】因为111312244z z ⎛⎫⎛⎫-+=+= ⎪⎪⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为221122z ⎛⎫=-⎪⎪⎝⎭=,122z =+,所以2z z ≠,所以B 错误;因为3211122z z z ⎛⎫⎛⎫=⋅=-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222zzz z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选ACD .【名师点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易. 4.下面是关于复数21iz =-+的四个命题,其中真命题是A .||z =B .22z i =C .z 的共轭复数为1i -+D .z 的虚部为1-【试题来源】福建省龙海市第二中学2019-2020学年高二下学期期末考试 【答案】ABCD【分析】先根据复数的除法运算计算出z ,再依次判断各选项. 【解析】()()()2121111i z i i i i --===---+-+--,z ∴==,故A 正确;()2212z i i =--=,故B 正确;z 的共轭复数为1i -+,故C 正确;z 的虚部为1-,故D 正确;故选ABCD .【名师点睛】本题考查复数的除法运算,以及对复数概念的理解,属于基础题. 5.若复数351iz i-=-,则A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限 【试题来源】2021年新高考数学一轮复习学与练 【答案】AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出. 【解析】()()()()351358241112i i i iz i i i i -+--====---+,z ∴==,z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确,故选AD .6.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是A .z 的实部为2B .z 的虚部为1C .z i =D .||z =【试题来源】2021年新高考数学一轮复习学与练 【答案】AC【分析】根据复数的运算及复数的概念即可求解.【解析】因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =,故AC 错误,BD 正确.故选AC. 7.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 【试题来源】湖北省六校(恩施高中、郧阳中学、沙市中学、十堰一中、随州二中、襄阳三中)2020-2021学年高三上学期11月联考 【答案】BC【分析】分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误.【解析】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确; 对于C 选项,22cos sin 1z θθ=+=,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误.故选BC . 8.已知非零复数1z ,2z 满足12z z R ∈,则下列判断一定正确的是 A .12z z R +∈B .12z z R ∈C .12z R z ∈D .12z R z ∈【试题来源】重庆市南开中学2020-2021学年高二上学期期中 【答案】BD【分析】设12,(,,,)z a bi z c di a b c d R =+=+∈,结合选项逐个计算、判定,即可求解. 【解析】设12,(,,,)z a bi z c di a b c d R =+=+∈,则()()12()()z z a bi c di ac bd ad bc i =++=-++,则0ad bc +=,对于A 中,12()()z z a bi c di a c b d i +=+++=+++,则12z z R +∈不一定成立,所以不正确;对于B 中,12()()ac bd ad bc z R i z =-+∈-一定成立,所以B 正确; 对于C 中,()()()()2122()()a bi c di a bi ac bd ad bc i R c di c di c z di z c d+-++--==∈++-+=不一定成立,所以不正确;对于D 中,()()()()2122()()a bi c di a bi ac bd ad bc iR c di c di c z di z c d ++++++==∈--++=一定成立,所以正确.故选BD .9.已知复数()()()32=-+∈z a i i a R 的实部为1-,则下列说法正确的是 A .复数z 的虚部为5- B .复数z 的共轭复数15=-z i C.z =D .z 在复平面内对应的点位于第三象限【试题来源】辽宁省六校2020-2021学年高三上学期期中联考 【答案】ACD【分析】首先化简复数z ,根据实部为-1,求a ,再根据复数的概念,判断选项. 【解析】()()()()23232323223z a i i a ai i i a a i =-+=+--=++-,因为复数的实部是-1,所以321a +=-,解得1a =-, 所以15z i =--,A .复数z 的虚部是-5,正确;B .复数z 的共轭复数15z i =-+,不正确;C .z ==D .z 在复平面内对应的点是()1,5--,位于第三象限,正确.故选ACD 10.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位),下列说法正确的是() A .复数z 在复平面上对应的点可能落在第二象限 B .cos z θ=C .1z z ⋅=D .1z z+为实数 【试题来源】山东省菏泽市2021届第一学期高三期中考试数学(B )试题 【答案】CD【分析】利用复数对应点,结合三角函数值的范围判断A ;复数的模判断B ;复数的乘法判断C ;复数的解法与除法,判断D . 【解析】复数cos sin ()22z i ππθθθ=+-<<(其中i 为虚数单位),复数z 在复平面上对应的点(cos ,sin )θθ不可能落在第二象限,所以A 不正确;1z ==,所以B 不正确;22·(cos sin )(cos sin )cos sin 1z z i i θθθθθθ=+-=+=.所以C 正确;11cos sin cos sin cos()sin()2cos cos sin z i i i z i θθθθθθθθθ+=++=++-+-=+为实数,所以D 正确;故选CD11.已知i 为虚数单位,下面四个命题中是真命题的是 A .342i i +>+B .24(2)()a a i a R -++∈为纯虚数的充要条件为2a =C .()2(1)12z i i =++的共轭复数对应的点为第三象限内的点D .12i z i +=+的虚部为15i 【试题来源】2020-2021年新高考高中数学一轮复习对点练 【答案】BC【分析】根据复数的相关概念可判断A ,B 是否正确,将()2(1)12z i i =++展开化简可判断C 选项是否正确;利用复数的除法法则化简12iz i+=+,判断D 选项是否正确. 【解析】对于A ,因为虚数不能比较大小,故A 错误;对于B ,若()242a a i ++-为纯虚数,则24020a a ⎧-=⎨+≠⎩,解得2a =,故B 正确;对于C ,()()()211221242z i i i i i =++=+=-+,所以42z i =--对应的点为()4,2--位于第三象限内,故C 正确;对于D ,()()()()12132225i i i i z i i i +-++===++-,虚部为15,故D 错误.故选BC . 12.已知复数(12)5z i i +=,则下列结论正确的是A .|z |B .复数z 在复平面内对应的点在第二象限C .2z i =-+D .234z i =+【试题来源】河北省邯郸市2021届高三上学期期末质量检测【答案】AD【分析】利用复数的四则运算可得2z i =+,再由复数的几何意义以及复数模的运算即可求解.【解析】5512122121212()()()()i i i z i i i i i i -===-=+++-,22,||34z i z z i =-==+ 复数z 在复平面内对应的点在第一象限,故AD 正确.故选AD13.已知i 是虚数单位,复数12i z i -=(z 的共轭复数为z ),则下列说法中正确的是 A .z 的虚部为1B .3z z ⋅=C .z =D .4z z +=【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考【答案】AC 【分析】利用复数的乘法运算求出122i z i i-==--,再根据复数的概念、复数的运算以及复数模的求法即可求解. 【解析】()()()12122i i i z i i i i ---===---,所以2z i =-+, 对于A ,z 的虚部为1,故A 正确;对于B ,()2225z z i ⋅=--=,故B 不正确;对于C ,z =C 正确;对于D ,4z z +=-,故D 不正确.故选AC14.早在古巴比伦时期,人们就会解一元二次方程.16世纪上半叶,数学家得到了一元三次、一元四次方程的解法.此后数学家发现一元n 次方程有n 个复数根(重根按重数计).下列选项中属于方程310z -=的根的是A.12 B.12-+ C.122-- D .1【试题来源】江苏省苏州市2020-2021学年高二上学期1月学业质量阳光指标调研【答案】BCD【分析】逐项代入验证是否满足310z -=即可.【解析】对A,当122z =+时, 31z -31122i ⎛⎫+- ⎪ ⎪⎭=⎝21112222⎛⎫⎛⎫+⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21121344i ⎛⎫=++⋅ ⎪⎛⎫+- ⎪ ⎝ ⎭⎭⎪⎪⎝12112⎛⎫=-+⋅⎛⎫+- ⎪ ⎪⎝⎭⎪ ⎪⎝⎭2114⎫=-+-⎪⎪⎝⎭ 13144=--- 2=-,故3120z -=-≠,A 错误; 对B,当12z =-时,31z -3112⎛⎫-+- ⎪ ⎪⎝⎭=211122⎛⎫⎛⎫-⋅-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=2113124242i ⎛⎫=-+⋅ ⎪ ⎪⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭1221122⎛⎫-⎛⎫=--⋅ ⎪+ - ⎪ ⎪⎝⎭⎪⎝⎭21142⎛⎫=-- ⎪ ⎪⎝⎭ 13144=+- 0=,故310z -=,B 正确; 对C,当12z =-时,31z-31122⎛⎫--- ⎪ ⎪⎝⎭=21112222⎛⎫⎛⎫--⋅--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=21131442i ⎛⎫=++⋅ ⎪ ⎪⎛⎫--- ⎪ ⎪⎝⎭⎝⎭12112⎛⎫-⎛⎫=-+⋅ ⎪- - ⎪ ⎪⎝⎭⎪⎝⎭2114⎫=--⎪⎪⎝⎭13144=+-0=,故310z -=,C 正确; 对D ,显然1z =时,满足31z =,故D 正确.故选BCD .15.已知复数()()122z i i =+-,z 为z 的共轭复数,则下列结论正确的是A .z 的虚部为3iB .5z =C .4z -为纯虚数D .z 在复平面上对应的点在第四象限【试题来源】湖南师范大学附属中学2020-2021学年高二上学期期末【答案】BCD【分析】先根据复数的乘法运算计算出z ,然后进行逐项判断即可.【解析】因为()()12243z i i i =+-=+,则z 的虚部为3,5z z ===,43z i -=为纯虚数,z 对应的点()4,3-在第四象限,故选BCD .三、填空题1.已知复数z 满足(1)1z i i ⋅-=+(i 为虚数单位),则z =_________.【试题来源】上海市松江区2021届高三上学期期末(一模)【答案】1【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解析】由(1)1z i i ⋅-=+,得21(1)1(1)(1)i i z i i i i ++===--+,所以1z =.故答案为1. 2.i 是虚数单位,复数1312i i-+=+_________. 【试题来源】天津市七校2020-2021学年高三上学期期末联考【答案】1i +【分析】分子分母同时乘以分母的共轭复数12i -,再利用乘法运算法则计算即可. 【解析】()()()()22131213156551121212145i i i i i i i i i i i -+--+-+-+====+++--.故答案为1i +. 3.若复数z 满足方程240z +=,则z =_________.【试题来源】上海市复旦大学附属中学2020-2021学年高二上学期期末【答案】2i ±【分析】首先设z a bi =+,再计算2z ,根据实部和虚部的数值,列式求复数..【解析】设z a bi =+,则22224z a b abi =-+=-,则2240a b ab ⎧-=-⎨=⎩,解得02a b =⎧⎨=±⎩,所以2z i =±,故答案为2i ±. 4.复数21i-的虚部为_________. 【试题来源】上海市上海交通大学附属中学2020-2021学年高二上学期期末【答案】1【分析】根据分母实数化,将分子分母同乘以分母的共轭复数1i +,然后即可判断出复数的虚部. 【解析】因为()()()2121111i i i i i +==+--+,所以复数的虚部为1,故答案为1. 5.若复数z 满足(12)1i z i +=-,则复数z 的虚部为_________.【试题来源】山东省山东师大附中2019-2020学年高一下学期5月月考 【答案】35【分析】根据复数的除法运算法则,求出z ,即可得出结果.【解析】因为(12)1i z i +=-,所以()()()()112113213121212555i i i i z i i i i -----====--++-, 因此其虚部为35.故答案为35. 6.复数34i i+=_________. 【试题来源】北京市东城区2021届高三上学期期末考试【答案】43i -【分析】分子和分母同乘以分母的共轭复数,整理后得到最简形式即可. 【解析】由复数除法运算法则可得, ()343434431i i i i i i i i +⋅+-===-⋅-,故答案为43i -. 7.已知复数(1)z i i =⋅+,则||z =_________.【试题来源】北京市西城区2020-2021学年高二上学期期末考试【分析】根据复数的运算法则,化简复数为1z i =-+,进而求得复数的模,得到答案.【解析】由题意,复数(1)1z i i i =⋅+=-+,所以z == 8.i 是虚数单位,复数73i i-=+_________. 【试题来源】宁夏银川一中2020-2021学年高二上学期期末考试(文)【答案】2i -【分析】根据复数除法运算法则直接计算即可. 【解析】()()()()27372110233310i i i i i i i i i ----+===-++-.故答案为2i -. 9.设复数z 的共轭复数是z ,若复数143i z i -+=,2z t i =+,且12z z ⋅为实数,则实数t 的值为_________.【试题来源】宁夏银川一中2020-2021学年高二上学期期末考试(理) 【答案】34【分析】先求出12,z z ,再计算12z z ⋅即得解. 【解析】由题得14334i z i i-+==+,2z t i =-, 所以12(34)()34(43)z z i t i t t i ⋅=+-=++-为实数, 所以3430,4t t -=∴=.故答案为34【名师点睛】复数(,)a bi a b R +∈等价于0b =,不需要限制a .10.函数()n nf x i i -=⋅(n N ∈,i 是虚数单位)的值域可用集合表示为_________. 【试题来源】上海市上海中学2020-2021学年高二上学期期末【答案】{}1【分析】根据复数的运算性质可函数的值域.【解析】()()1111nn n n n n n n f x i i i i i i i i --⎛⎫=⋅⋅⋅⋅= ⎪⎝=⎭==,故答案为{}1. 11.已知()20212i z i +=(i 为虚数单位),则z =_________.【试题来源】河南省豫南九校2021届高三11月联考教学指导卷二(理)【分析】由i n 的周期性,计算出2021i i =,再求出z ,求出z .【解析】因为41i =,所以2021i i =,所以i 12i 2i 55z ==++,所以z z == 【名师点睛】复数的计算常见题型:(1) 复数的四则运算直接利用四则运算法则;(2) 求共轭复数是实部不变,虚部相反;(3) 复数的模的计算直接根据模的定义即可.12.若31z i =-(i 为虚数单位),则z 的虚部为_________. 【试题来源】江西省上饶市2021届高三第一次高考模拟考试(文) 【答案】32-【分析】利用复数的除法化简复数z ,由此可得出复数z 的虚部. 【解析】()()()313333111122i z i i i i i +==-=-=-----+,因此,复数z 的虚部为32-. 故答案为32-. 13.设i 为虚数单位,若复数z 满足()21z i -⋅=,则z =_________. 【试题来源】江西省上饶市2020-2021学年高二上学期期末(文)【答案】2i +【分析】利用复数的四则运算可求得z ,利用共轭复数的定义可求得复数z .【解析】()21z i -⋅=,122z i i ∴=+=-,因此,2z i =+.故答案为2i +. 14.已知i 是虚数单位,则11i i+=-_________. 【试题来源】湖北省宜昌市2020-2021学年高三上学期2月联考【答案】1【分析】利用复数的除法法则化简复数11i i +-,利用复数的模长公式可求得结果. 【解析】()()()21121112i i i i i i i ++===--+,因此,111i i i +==-.故答案为1. 15.i 是虚数单位,复数103i i=+____________. 【试题来源】天津市南开中学2020-2021学年高三上学期第四次月考【答案】13i +【分析】根据复数的除法运算算出答案即可.【解析】()()()()10310313333i i i i i i i i i -==-=+++-,故答案为13i +. 16.在复平面内,复数()z i a i =+对应的点在直线0x y +=上,则实数a =_________.【试题来源】北京市丰台区2021届高三上学期期末练习【答案】1【分析】由复数的运算法则和复数的几何意义直接计算即可得解.【解析】2()1z i a i ai i ai =+=+=-+,其在复平面内对应点的坐标为()1,a -, 由题意有:10a -+=,则1a =.故答案为1.17.已知复数z 满足()1234i z i +=+(i 为虚数单位),则复数z 的模为_________.【试题来源】江苏省苏州市2020-2021学年高二上学期1月学业质量阳光指标调研【分析】求出z 后可得复数z 的模.【解析】()()3412341121255i i i i z i +-+-===+,5z == 18.复数1i i-(i 是虚数单位)的虚部是_________. 【试题来源】北京通州区2021届高三上学期数学摸底(期末)考试【答案】1-【分析】先化简复数得1i 1i i-=--,进而得虚部是1-【解析】因为()()221i i 1i i i 1i i i--==--=--, 所以复数1i i-(i 是虚数单位)的虚部是1-.故答案为1-. 19.已知i 是虚数单位,复数11z i i =+-,则z =_________. 【试题来源】山东省青岛市2020-2021学年高三上学期期末【答案】2【分析】根据复数的除法运算,化简复数为1122z i =-+,再结合复数模的计算公式,即可求解. 【解析】由题意,复数()()111111122i z i i i i i i --=+=+=-+----,所以2z ==.故答案为2. 20.计算12z ==_______. 【试题来源】2021年高考一轮数学(理)单元复习一遍过【答案】-511【分析】利用复数的运算公式,化简求值.【解析】原式1212369100121511()i ==+=-+=--. 【名师点睛】本题考查复数的n次幂的运算,注意31122⎛⎫-+= ⎪ ⎪⎝⎭,()212i i +=, 以及()()612211i i ⎡⎤+=+⎣⎦,等公式化简求值. 四、双空题1.设32i i 1ia b =++(其中i 为虚数单位,a ,b ∈R ),则a =_________,b =_________. 【试题来源】浙江省绍兴市嵊州市2020-2021学年高三上学期期末【答案】1- 1- 【分析】利用复数的除法运算化简32i 1i 1i=--+,利用复数相等的定义得到a ,b 的值,即得解. 【解析】322(1)2211(1)(1)2i i i i i a bi i i i ----===--=+++-,1,1a b ∴=-=-. 故答案为-1;-1.2.已知k ∈Z , i 为虚数单位,复数z 满足:21k i z i =-,则当k 为奇数时,z =_________;当k ∈Z 时,|z +1+i |=_________.【试题来源】2020-2021学年【补习教材寒假作业】高二数学(苏教版)【答案】1i -+ 2【分析】由复数的运算及模的定义即可得解.【解析】当k 为奇数时,()()2211k k k i i ==-=-, 所以1z i -=-即1z i =-+,122z i i ++==; 当k 为偶数时,()()2211k k k i i ==-=,所以1z i =-,122z i ++==;所以12z i ++=.故答案为1i -+;2.3.若复数()211z m m i =-++为纯虚数,则实数m =_________,11z=+_________. 【试题来源】浙江省金华市义乌市2020-2021学年高三上学期第一次模拟考试【答案】1 1255i - 【分析】由题可得21010m m ⎧-=⎨+≠⎩,即可求出m ,再由复数的除法运算即可求出.【解析】复数()211z m m i =-++为纯虚数,21010m m ⎧-=∴⎨+≠⎩,解得1m =,。
2021年1月21日江西省吉安市省重点中学五校协作体2021届高三毕业班第一次联考数学文科试题及答案
332222侧左()视图正主()视图绝密★启用前 考试时间:2021 年 1 月 21 日下午15:00——17:00江西省吉安市“省重点中学五校协作体”2021届高三毕业班第一次联考质量检测数学(文)试题时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数ii z -=3,则||z =( ) A .4 B .10 C .5 D .22.已知集合{}|02A x x =≤≤,集合{}|lg 0B x x =>,则A B =( )A .(](),12,-∞+∞B .()(),01,2-∞C .[)1,2D .(]1,23.某学生准备参加某科目考试,在12次模拟考试中,所得分数的茎叶图如图所示,则此学生该门功课考试成绩的众数与中位数分别为( )A .95,94B .95,94.5C .93,94.5D .95,954.设12log 3a =,0.913b ⎛⎫= ⎪⎝⎭,182c =,则( ) A .a b c <<B .b c a <<C .c a b <<D .b a c <<5.某四棱锥的三视图如图所示,则此四棱锥的体积为( ) A .2 B .3C .4D .66.等差数列}{n a 前n 项和为n s ,121191=++a a a ,则13S =( )A.32B.42 C .52 D. 627.若抛物线()220y px p =>上的点()2,0-x A 到其焦点的距离是点A 到y 轴距离的2倍,则p 等于( )A .2B .4C .6D .88.为了得到函数3y x =的图象,可以将函数sin 3cos3y x x =+的图象( )A .向右平移4π个单位B .向左平移4π个单位C .向右平移12π个单位D .向左平移12π个单位 9.已知双曲线)0,0(12222>>=-b a by a x C :的离心率为3,双曲线C 的一个焦点到它的一条渐近线的距离为22,则双曲线C 的方程为( )A .18922=-y x B. 1822=-y x C. 1822=-y x D. 19822=-y x 10.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .812πB .814πC .815πD .817π 11.已知函数()f x 是定义域为R 的奇函数,且当0<x 时,x ex x f =)(,则曲线()y f x =在点())1(1f ,处的切线方程为( )A .2y ex e =-B .2y ex e =--C .2y ex e =+D .2y ex e =-+12.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .9 B .8 C .6 D .7二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,2)a =,(3,)b m =,且a b ⊥,则m =______.14.已知实数x ,y 满足不等式组20301x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则目标函数y x z 2-=的最大值为 .15.已知()()⎩⎨⎧≥<--=1,log 1,4x x x a x a x f a 是(),-∞+∞上的增函数,则a 的取值范围为_________. 16.设函数()f x 是定义在R 上周期为2的函数,且对任意实数x 恒有()()0f x f x --=,当[1,0]x ∈-时,2()f x x =,若()()log x a g x f x =-在(0,)x ∈+∞上有三个零点,则a 的取值范围为。
江西吉安2021高三数学(理)大联考试题(解析版)
2021届江西省吉安市高三大联考数学(理)试题一、单选题1.已知集合{}21,A a =,{}1,0,1B =-,若A B B ⋃=,则A 中元素的和为( )A .0B .1C .2D .1-【答案】B【分析】由已知条件可得B A ⊆,进而可得出关于a 的等式,求出a 的值,即可求得A 中元素的和. 【详解】A B B =,A B ∴⊆,20a ∴=,则0a =,{}1,0A ∴=,因此,集合A 中元素的和为011+=. 故选:B.2.已知a 为实数,复数()2i z a a =-+(i 为虚数单位),复数z 的共轭复数为z ,若z 为纯虚数,则1z -=( ) A .12i - B .12i +C .2i +D .2i -【答案】B【分析】根据()2i z a a =-+为纯虚数,令20a a -=⎧⎨≠⎩求解. 【详解】∵()2i z a a =-+为纯虚数, ∴2a =,则2i z =, ∴2i z =-, 则112i z -=+, 故选:B3.造纸术、印刷术、指南针、火药被称为中国古代四大发明,这四种发明对中国古代的政治、经济、文化的发展产生了巨大的推动作用;2017年5月,来自“一带一路”沿线的20国青年评选出了“中国的新四大发明”:高铁、扫码支付、共享单车和网购.若从这8个发明中任取两个发明,则两个都是新四大发明的概率为( ) A .114B .17C .314D .14【答案】C【分析】这是一个古典概型,先求得从8个发明中任取两个发明的基本事件数,再求得两个都是新四大发明基本事件数,代入公式求解.【详解】从8个发明中任取两个发明共有28C 28=种, 两个都是新四大发明的有24C 6=种,∴所求概率为632814P ==, 故选:C4.已知两个单位向量a 和b 夹角为60︒,则向量a b -在向量a 方向上的投影为( ) A .1- B .1C .12-D .12【答案】D【分析】由题意首先求得a b ⋅的值,然后求解向量a b -在向量a 方向上的投影即可. 【详解】由题意可知:111cos602a b ⋅=⨯⨯=, 则()22221121a b a b a b a b -=-=+-⋅=+-⨯=, ()211122a ab a a b ⋅-=-⋅=-=, 据此可得向量a b -在向量a 方向上的投影为()11212a a b a b⋅-==-.本题选择D 选项.【点睛】本题主要考查平面向量数量积的几何意义,数量积的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.5.已知ABC 的内角A ,B ,C 成等差数列,若()3sin sin 5B αα+=+,则()sin 300α+︒=( ) A .35B .45-C .45 D .35【答案】D【分析】由等差中项的性质求出B ,再由辅助角公式得到()3cos 305α︒+=,最后再由诱导公式计算可得; 【详解】解:∵A ,B ,C 成等差数列,∴2B A C =+,又180A B C ++=︒,∴60B =︒,由()3sin 60sin 5αα︒+=+得,13sin 225αα-=,∴()3cos 305α︒+=,则()()()3sin 300sin 27030cos 305ααα+︒=︒+︒+=-︒+=-,故选:D . 6.()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -项的系数为160,则a =( )A .2B .4C .2-D .-【答案】C【分析】先求得()61ay +展开式中3y 的系数,可得()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数,从而得答案. 【详解】二项式()61ay +展开式的通项为()6166C 1C rr r r r rr T ay a y -+=⨯=, 令3r =可得二项式()61ay +展开式中3y 的系数为336C a ,∴()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数为()3361C 160a -=, 可得38a =-,解得2a =-, 故选:C .7.已知某几何体的三视图如图所示,若该几何体的体积是83π,则x =( )A .1B .2C .4D .6【答案】B【分析】作出原几何体对应的直观图,可知该几何体为一个圆台中挖去一个以圆台上底面为底面的圆柱后所得,结合题中的数据以及台体、柱体的体积公式可求得x 的值. 【详解】作出原几何体对应的直观图如下图所示:由三视图可知,该几何体为一个圆台中挖去一个以圆台上底面为底面的圆柱后所得, 圆台的上底面半径为1,下底面半径为2,高为x ,圆柱底面半径为1,高为x , 则其体积为(22222141212133V x x x ππππππ=⋅⋅⋅+⋅+⋅⋅⋅-⋅⋅=, 由题设知,4833x ππ=,2x ∴=, 故选:B .【点睛】方法点睛:求解几何体体积的方法如下:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 8.已知函数()()2sin f x x ωϕ=+,(0,)2πωϕ><的部分图象如图所示,()f x 的图象过,14A π⎛⎫⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将()f x 的图象向左平移712π个单位得到()g x 的图象,则函数()g x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为( )A .2-B 2C .3-D .1-【答案】A【分析】根据()f x 的图象过,14A π⎛⎫⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,求得周期,进而求得1ω=,然后将点,14A π⎛⎫⎪⎝⎭的坐标代入求得()2sin 12f x x π⎛⎫=- ⎪⎝⎭,再 将()f x 的图象向左平移712π个单位得到函数()2cos g x x =,利用余弦函数的单调性求解. 【详解】由图象知,5244T πππ=-=, ∴2T π=,则1ω=, ∴()()2sin f x x ϕ=+, 将点,14A π⎛⎫⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭, 又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭, 将()f x 的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴()g x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为32cos 4π= 故选:A9.已知圆C :()()22111x y ++-=,P 是直线10x y --=的一点,过点P 作圆C 的切线,切点为A ,B ,则PC AB ⋅的最小值为( )A B .C .D【答案】A【分析】根据题意,PC AB ⋅为四边形PACB 的面积的2倍,即12242PAC PC AB S PA AC ⋅=⋅=⋅⋅⋅△,然后利用切线长定理,将问题转化为圆心到直线10x y --=的距离求解. 【详解】圆C :()()22111x y ++-=的圆心为()1,1C -,半径1r =,设四边形PACB 的面积为S ,由题设及圆的切线性质得,122242PAC PC AB S S PA AC ⋅==⋅=⋅⋅⋅△, ∵1AC r ==,∴2PC AB PA ⋅===,圆心()1,1C -到直线10x y --=的距离为2d =,∴PC 的最小值为2,则PC AB ⋅的最小值为=故选:A10.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,B 是椭圆C 的上顶点,直线13x c =与直线2BF 交于点A ,若124AF F π∠=,则椭圆C 的离心率为( )AB.CD【答案】A【分析】根据()0,B b ,()2,0F c ,写出直线2BF 的方程,与13x c =联立求得点A ,再由124AF F π∠=求解.【详解】由题设知,()0,B b ,()2,0F c ,∴直线2BF 的方程为1x y c b +=,联立131x c x y c b⎧=⎪⎪⎨⎪+=⎪⎩得,12,33A c b ⎛⎫ ⎪⎝⎭,设直线13x c =与x 轴交于点M ,则143F M c =,23MA b =, ∵124AF F π∠=,∴14233F M MA c b =⇒=,即2b c =, ∴2224a c c -=,即225a c =,∴2155e e =⇒=, 故选:A11.如图,已知四棱锥S ABCD -的底面是边长为6的菱形,60BAD ∠=︒,AC ,BD 相交于点O ,SO ⊥平面ABCD ,4SO =,E 是BC 的中点,动点P 在该棱锥表面上运动,并且总保持PE AC ⊥,则动点P 的轨迹的长为( )A .3B .7C .13D .8【答案】D【分析】取DC ,SC 的中点G ,F ,连接GE ,FE ,利用中位线可得到//GE DB ,//FE SB ,再利用线面平行以及面面平行的判定定理得到平面//FEG 平面SBD ,再利用线面垂直的判定定理得到AC ⊥平面SBD ,进而得到AC ⊥平面FEG ,可得动点P 的轨迹的周长即为FEG 的周长,求解即可.【详解】取DC ,SC 的中点G ,F ,连接GE ,FE , ∵E 是BC 的中点, ∴//GE DB ,//FE SB ,GE ⊄平面SBD ,DB ⊂平面SBD ,则//GE 平面SBD ;FE ⊄平面SBD ,SB ⊂平面SBD ,则//FE 平面SBD , 又GEFE E =,∴平面//FEG 平面SBD , ∵SO ⊥平面ABCD , ∴SO AC ⊥,又四边形ABCD 是菱形,∴DB AC ⊥, ∵SO DB O ⋂=, ∴AC ⊥平面SBD , 则AC ⊥平面FEG ,故只要动点P 在平面FEG 内即总保持PE AC ⊥, 又动点P 在棱锥表面上运动,∴动点P 的轨迹的周长即为FEG 的周长, ∵四边形ABCD 是菱形边长为6,且60BAD ∠=︒, ∴6BD =, 则3OB OD ==, 又4SO =, ∴5SB SD ==, 故52FE FG ==,3GE =, ∴FEG 的周长为8, 故选:D.【点睛】关键点睛:本题主要考查了线面平行以及面面平行的判定定理,考查了线面垂直的判定定理以及以及性质定理;解决本题的关键是通过证明平面//FEG 平面SBD ,得到AC ⊥平面FEG ,进而得到动点P 在平面FEG 内即总保持PE AC ⊥.12.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定【答案】A【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数.【详解】∵()xf x xe =,∴()()1x f x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x-'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A .【点睛】思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)二、填空题13.执行如图所示的程序框图,若输入n 的值为3,则输出i 的值为______.【答案】4【分析】根据程序逐一判断和运算,即得结果. 【详解】由程序框图知, 当3n =时,第一次循环:“1n =”否,“n 是奇数”是,则314n =+=,112i =+=;第二次循环:“1n =”否,“n 是奇数”否,则422n ==,213i =+=; 第三次循环:“1n =”否,“n 是奇数”否,则212n ==,314i =+=;满足条件“1n =”,结束循环, 输出i 的值为4. 故答案为:4.【点睛】含有循环结构的程序框图问题,根据框图的结构,逐次循环,注意条件的检验是关键. 14.已知数列{}n a 是等差数列,11a ≥-,22a ≤,30a ≥,则153z a a =-的最大值是______. 【答案】16【分析】由等差数列得通项公式可的1111220a a d a d ≥-⎧⎪+≤⎨⎪+≥⎩设1a x =,d y =,则不等式组等价为1220x x y x y ≥-⎧⎪+≤⎨⎪+≥⎩,15324z a a x y =-=-,利用线性规划知识求最值即可.【详解】设等差数列{}n a 的公差为d ,由题设知,1111220a a d a d ≥-⎧⎪+≤⎨⎪+≥⎩,设1a x =,d y =,则不等式组等价为1220x x y x y ≥-⎧⎪+≤⎨⎪+≥⎩,对应的可行域为如图所示的三角形ABC及其内部,由15132424a a a d x y-=-=-,由24z x y=-可得124zy x=-,作12y x=沿着可行域的方向平移,当直线过点A时,z取得最大值.由220x yx y+=⎧⎨+=⎩解得()4,2A-,所以()max244216z=⨯-⨯-=,故答案为:16【点睛】关键点点睛:本题解题的关键是设1a x=,d y=,将1111220aa da d≥-⎧⎪+≤⎨⎪+≥⎩转化为,进而转化为利用线性规划求最值.15.定义在R上的函数()f x满足:()()ln2f x f x=--,函数()()2sincosxxx f xgπ++=,若()()1ln2ag e a=∈R,则()ag e-=______.【答案】2ln2【分析】先依题意()()ln 2aaf ef e +-=,令()2sin cosxh x x π=+,得()()0a ah e h e +-=,利用()()()g x f x h x =+,计算()()ln 2a a g e g e +-=,再结合已知条件,即得结果.【详解】∵()()ln 2f x f x =--,∴()()ln 2f x f x +-=,故()()ln 2aaf e f e +-=;令()2sin cos xh x x π=+,则()()()g x f x h x =+,而()()2sin cos xx h x h x π-=+-=-,即()()0h x h x +-=,该函数是奇函数 ,故()()0a a h e h e +-=;故()()()()()()()()()aaaaaaaaag eg e f e h e f e f e f e h e h e ⎡⎤⎡⎤+-=++-=+-++-⎣⎦⎣⎦ln 20ln 2=+=,又∵()1ln ln 22ag e==-,∴()()ln 2ln 22ln 2ag e -=--=. 故答案为:2ln 2. 【点睛】关键点点睛:本题解题关键在于构造函数()2sin cos xh x x π=+使()()()g x f x h x =+,并证明()()0h x h x +-=,结合已知条件突破难点即可.16.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若2sin sin cos cos21B C A A +=,则2abc的最小值为______. 【答案】23【分析】由二倍角公式,正弦定理,余弦定理化简已知等式可得2223b c a +=,利用均值不等式求解即可. 【详解】∵2sin sin cos cos21B C A A +=,∴2sin sin cos 1cos2=-B C A A ,即22sin sin cos 2sin B C A A =, 由正弦定理得,∴22cos 2bc A a =, 由余弦定理知,2222cos bc A b c a =+-, ∴22222b c a a +-=, 则2223b c a +=,∵222b c bc +≥,∴232a bc ≥,则223a bc ≥,当且仅当bc =时,等号成立即2a bc的最小值为23.故答案为:23【点睛】关键点点睛:利用正弦定理、余弦定理可得2223b c a +=,再根据重要不等式 222b c bc +≥求解,余弦定理、正弦定理的灵活运用是解题关键.三、解答题17.已知数列{}n a 满足31212311212121212n n na a a a ++++=-++++,n *∈N . (1)求数列{}n a 的通项公式;(2)设等差数列{}n b 的前n 项和为n S ,且21122n S n n k =-+,令2n n n c b a kn =-+,求数列{}n c 的前n 项和n T .【答案】(1)112n n a =--;(2)()11122n nn n T +=+- . 【分析】(1)令1n =可求得1a 的值,令2n ≥,由31212311212121212n n na a a a ++++=-++++可得出31121231111212121212n n n a a a a ---++++=-++++,两式作差可得出()2n a n ≥的表达式,然后验证1a 满足()2n a n ≥的表达式,综合可得出数列{}a 的通项公式;(2)设等差数列{}n b 的公差为d ,根据等差数列的求和公式可得出关于1b 、d 、k 的方程组,可求得这三个量的值,进而可求得数列{}n b 的通项公式,然后利用分组求和法可求得n T . 【详解】(1)当1n =时,11132a =-,132a ∴=-;当2n ≥时,由31212311212121212n n na a a a ++++=-++++,① 得31121231111212121212n n n a a a a ---++++=-++++,② ①-②得,111121222n n n n na -=-=-+,112n n a ∴=--,132=-a 也符合, 因此,数列{}n a 的通项公式为112n n a =--; (2)由题意,设等差数列{}n b 的公差为d ,则()221111122222n n n d d d S nb n b n n n k -⎛⎫=+=+-=-+ ⎪⎝⎭, 11221220d d b k ⎧=⎪⎪⎪∴-=-⎨⎪=⎪⎪⎩,解得,1010b d k =⎧⎪=⎨⎪=⎩,()111n b b n d n ∴=+-=-;由(1)知,212n n n n c b a kn n =-+=+, 故123231*********2n n nT c c c c n ⎛⎫=++++=+++++++++ ⎪⎝⎭()()111111*********n n n n n n ⎛⎫- ⎪++⎝⎭=+=+--. 【点睛】方法点睛:数列求和的常用方法: (1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和; (3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.18.从2020年元月份以来,全世界的经济都受到了新冠病毒的严重影响,我国抗疫战斗取得了重大的胜利,全国上下齐心协力复工复产,抓经济建设;某公司为了提升市场的占有率,准备对一项产品实施科技改造,经过充分的市场调研与模拟,得到x ,y 之间的五组数据如下表:其中,x (单位:百万元)是科技改造的总投入,y (单位:百万元)是改造后的额外收益;设2U x y =+是对当地生产总值增长的贡献值.(1)若从五组数据中任取两组,求恰有一组满足30U >的概率;(2)记ξ为20U >时的任意两组数据对应的贡献值的和,求随机变量ξ的分布列和数学期望;(3)利用表中数据,甲、乙两个调研小组给出的拟合直线方程分别为甲组:21y x =+,乙组:5322y x =-,试用最小二乘法判断哪条直线的拟合效果更好? 附:对于一组数据()()()1122,,,,,n n x y x y x y ,其拟合直线方程y bx a =+的残差平方和为()21ni i i D y bx a ==--∑,D 越小拟合效果越好.【答案】(1)25;(2)分布列见解析;期望为1643 ;(3)甲组给出的拟合直线方程21y x =+拟合效果更好 .【分析】(1)通过列举法,利用古典概型公式求解即可;(2)满足20U >的数据是后3组(贡献值分别为:22,28,32),可得ξ的值为50,54,60,分别求概率可得分布列,进而里期望公式可得期望;(3)分别计算两条直线的残差平方和,取较小的位拟合效果好的.【详解】(1)设所给五组数据分别为A ,B ,C ,D ,E (只有E 满足)30U >,从五组数据中任意取出两组的情况有:AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE 共10种情况,其中,恰有一组满足230U x y =+>的有:AE ,BE ,CE ,DE 共4种情况,故所求概率为42105P ==; (2)满足20U >的数据是后3组(贡献值分别为:22,28,32), ∴ξ的值为50,54,60, 则()231150C 3P ξ===, ()231154C 3P ξ===, ()231160C 3P ξ===, ∴ξ的分布列为:数学期望()1111645054603333E ξ=⨯+⨯+⨯=; (3)用甲组给出的拟合直线方程列表如下:用乙组给出的拟合直线方程列表如下:22x =-由表中数据得,()()22222011114D =+++-+-=甲, ()()222221.5212 2.517.5D =+++-+-=乙,∴D D <甲乙,故甲组给出的拟合直线方程21y x =+拟合效果更好. 【点睛】思路点睛:一、计算古典概型概率的方法如下:(1)列举法;(2)列表法;(3)树状图法;(4)排列组合数的应用. 二、求离散型随机变量X 的数学期望的一般步骤: (1)先分析X 的可取值,根据可取值求解出对应的概率; (2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望.19.如图,已知11ABB A 是圆柱1OO 的轴截面,O 、1O 分别是两底面的圆心,C 是弧AB 上的一点,30ABC ∠=,圆柱的体积和侧面积均为4π.(1)求证:平面1ACA ⊥平面1BCB ; (2)求二面角11B A B C --的大小. 【答案】(1)证明见解析 ;(2)60 .【分析】(1)由1AA ⊥平面ABC ,证明1AA BC ⊥,再证明AC BC ⊥,利用线面垂直的判定定理证明BC ⊥平面1ACA ,,在利用面面垂直的判定定理即可求证.(2)设圆柱过C 点的母线为CD ,以C 为原点,CA ,CB ,CD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -,求出平面11CA B 的法向量和平面11BA B 的法向量,利用向量的夹角公式即可求角的余弦值,进而求得二面角的大小.【详解】(1)∵1AA 是圆柱的母线, ∴1AA ⊥平面ABC ,因为BC ⊂平面ABC , 所以1AA BC ⊥, 又C 是弧AB 上的一点,且AB 是圆O 的直径, ∴AC BC ⊥, ∵1AA AC A =,∴BC ⊥平面1ACA ,又BC ⊂平面1BCB , ∴平面1ACA ⊥平面1BCB ;(2)设圆柱的底面半径为r ,母线长为l , ∵圆柱的体积和侧面积均为4π,∴2244rl r l ππππ=⎧⎨=⎩,解得,2r ,1l =,即4AB =,11AA =,∵30ABC ∠=,∴2AC =,23BC =,设圆柱过C 点的母线为CD ,以C 为原点,CA ,CB ,CD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -,如图所示;则()0,0,0C,()0,B ,()12,0,1A,()1B ; ∴()12,0,1CA =,()10,CB =,()12,BA =-,()10,0,1BB =设平面11CA B 的法向量为(),,n x y z =,由1120000x z n CA n CB z ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 取23z =,则x =1y =-,∴平面11CA B的一个法向量为(3,n =--, 设平面11BA B 的法向量为(),,m a b c =,由1102000m BA a c m BB c ⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩, 取1b =,则a =0c ,∴平面11BA B 的一个法向量为()3,1,0m =,∴1cos ,23n m m n n m⋅===-+⋅,由图中可看出二面角11B A B C --是锐角, 故二面角11B A B C --的值为60. 【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用); (3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.20.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,过2F 的直线l 与椭圆交于A ,B 两点,P为椭圆的下顶点,2OPF 为等腰三角形,当l x ⊥轴时,OAB. (1)求椭圆C 的标准方程;(2)若直线l 不与坐标轴垂直,线段AB 的中垂线l '与y 轴交于点M ,若直线1F M 的斜率为13,求直线l 的方程.【答案】(1)2212x y += ;(2)10x y --=或210x y --= .【分析】()1由已知条件得b c =,又直线l 过2F ,当l x ⊥轴时,22bAB a=,,再由2OPF 的面积得出有关a的方程,求出a ,b ,c 的值,可得出椭圆C 的标准方程;()2设直线l 的方程为()10x ty t =+≠,结合韦达定理及中垂线的性质可得t 的值,进而可得方程.【详解】【详解】(1)由题设知,()2,0F c ,()0,P b -, ∵2OPF 为等腰三角形,∴b c =,又直线l 过2F ,当l x ⊥轴时,22b AB a=,∴OAB的面积为22112222b AB c c b c a ⋅⋅=⋅⋅=⇒=,由22222b cb c a b c =⎧⎪=⎨⎪=+⎩解得,a =1b c ==; 故椭圆C 的标准方程为2212x y +=.(2)由(1)知,()11,0F -,()21,0F, 设直线l 的方程为()10x ty t =+≠,由22122x ty x y =+⎧⎨+=⎩得,()222210t y ty ++-=, 设()11,A x y ,()22,B x y , ∴12222ty y t +=-+,12212y y t =-+,设线段AB 的中点为()00,N x y , 则120222y y t y t +==-+,002212x ty t =+=+, 即222,22t N t t ⎛⎫-⎪++⎝⎭. 设()0,M m ,∵MN AB ⊥,∴2212122t m t t t ++⋅=--+,解得,22t m t =+, 即20,2t M t ⎛⎫ ⎪+⎝⎭, ∵直线1F M 的斜率为13, ∴()2012013tt -+=--,即2320t t -+=, 解得,1t =或2t =,故直线l 的方程为10x y --=或210x y --=.【点睛】关键点点睛:先设直线联立方程组求出线段AB 的中点为()00,N x y ,再由MN AB ⊥求出20,2t M t ⎛⎫ ⎪+⎝⎭是解题的关键,利用直线斜率求出t ,本题计算量较大属于难题. 21.已知函数()xf x e =,()21g x x ax x =+-+.(1)令()()()g x h x f x =,讨论函数()h x 的单调性;(2)令()()()x f x g x ϕ=,当1a ≥时,若()1x eϕ≥-恒成立,求实数a 的取值范围. 【答案】(1)答案不唯一,具体见解析 ;(2)[]1,4 .【分析】(1)求出()()()g x h x f x =的导函数()h x ',令()0h x '=,求出1x =或2x a =-,讨论1a <、1a =或1a >,即可求出函数的单调性.(2)由()()211xx x a x e ϕ⎡⎤=+-+⎣⎦,求出导函数()()()1xx x x a e ϕ'=++,讨论1a =或1a >,判断函数的单调性,利用单调性求出()min x ϕ,只需()min 1x eϕ≥-,解不等式即可求解. 【详解】(1)∵()xf x e =,()21g x x ax x =+-+,∴()()()21xg x x ax x h x f x e +-+==, 则()()()()22211x xx x a e x ax x e h x e +-+-+='-()()2211xx a x ax x e +--+-+=()()12xx x a e -+-=-,x ∈R , 令()0h x '=,则1x =或2x a =-, ①当1a <时,12a <-,当(),1x ∈-∞或()2,x a ∈-+∞时,()0h x '<, ∴函数()h x 在(),1-∞和()2,a -+∞上单调递减; 当()1,2x a ∈-时,()0h x '>, ∴函数()h x 在()1,2a -上单调递增;②当1a =时,12a =-,()0h x '≤在R 上恒成立, ∴函数()h x 在R 上单调递减; ③当1a >时,12a >-,当(),2x a ∈-∞-或()1,x ∈+∞时,()0h x '<, ∴函数()h x 在(),2a -∞-和()1,+∞上单调递减; 当()2,1x a ∈-时,()0h x '>, ∴函数()h x 在()2,1a -上单调递增;综上:①当1a <时,函数()h x 在(),1-∞和()2,a -+∞上单调递减,函数()h x 在()1,2a -上单调递增; ②当1a =时,函数()h x 在R 上单调递减;③当1a >时,函数()h x 在(),2a -∞-和()1,+∞上单调递减,函数()h x 在()2,1a -上单调递增; (2)由题设知,()()211xx x a x e ϕ⎡⎤=+-+⎣⎦,∴()()()22111xxx a e x a x e x ϕ'⎡⎤=+-++-+⎣⎦()()1x x x a e =++,x ∈R ,当1a =时,()0x ϕ'≥, ∴函数()x ϕ单调递增,且()()210xx x e ϕ=+>恒成立,故()1x eϕ≥-恒成立,符合题意; 当1a >时,令()0x ϕ=,则1x =-或x a =-,且1a -<-,列表如下:当x a ≤-时,∵()()21110x a x x x a x +-+=++->恒成立,∴()0x ϕ>,则()1x eϕ≥-恒成立,符合题意;当x a >-时,()()min 31ax eϕϕ-=-=,则31a e e-≥-恒成立,∴4a ≤, 综上,实数a 的取值范围是[]1,4.【点睛】关键点点睛:本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是讨论a 的取值范围,求出函数()x ϕ的最小值,考查了分析能力、计算能力以及分类讨论的思想.22.在平面直角坐标系xOy 中,直线l 过定点()3,0P,倾斜角为02παα⎛⎫<<⎪⎝⎭,曲线C 的参数方程为1122x t tt y t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数);以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系. (1)求曲线C 的极坐标方程;(2)已知直线l 交曲线C 于M ,N 两点,且103PM PN ⋅=,求l 的参数方程. 【答案】(1)2222cos 4sin 4ρθρθ-= ;(2)3x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数) .【分析】(1)由1122x t tt y t ⎧=+⎪⎪⎨⎪=-⎪⎩,消去t ,得到普通方程,再由cos sin x y ρθρθ=⎧⎨=⎩代入求得极坐标方程.(2)设l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数),代入2244x y -=,由韦达定理得到12t t ,然后由12103PM PN t t ⋅==求解. 【详解】(1)由1122x t t t y t ⎧=+⎪⎪⎨⎪=-⎪⎩,得112x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩,∵2222221111224t t t t t t t t ⎛⎫⎛⎫+--=++-+-= ⎪ ⎪⎝⎭⎝⎭, ∴()2224x y -=,即2244x y -=,又cos sin x y ρθρθ=⎧⎨=⎩,∴2222cos 4sin 4ρθρθ-=,即曲线C 的极坐标方程为2222cos 4sin 4ρθρθ-=;(2)设l 的参数方程为3cos sin x t y t αα=+⎧⎨=⎩(t 为参数),代入2244x y -=整理得,()222cos 4sin 6cos 50tt ααα-++=,设方程的两根分别为1t ,2t , 则12225cos 4sin t t αα=-,则1222510cos 4sin 3PM PN t t αα⋅===-,解得,cos α=, ∵02πα<<,∴4πα=. 故l的参数方程为3x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).【点睛】易错点点睛:在利用参数的几何意义时,一定要将参数方程化为标准方程. 23.已知函数()211f x x a x =---,a ∈R .(1)当2a =时,解不等式()()20f x f +≥;(2)对任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()1f x a x ≥+恒成立,求实数a 的取值范围.【答案】(1) (),11⎡-∞-⋃-+∞⎣;(2)5,12⎛⎤-∞ ⎥⎝⎦ . 【分析】(1)由2a =得()2211f x x x =---,将所求不等式化为2210x x --≥,利用分类讨论的方法,即可求出结果;(2)先将题中条件化为112a x x ⎛⎫≤- ⎪⎝⎭对任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,由单调性求出112x x ⎛⎫- ⎪⎝⎭在给定区间的最小值,即可得出结果.【详解】(1)当2a =时,()2211f x x x =---,∴()21f =,则不等式()()20f x f +≥为2210x x --≥,当1≥x 时,2210x x --≥为2220x x -+≥恒成立,∴1≥x , 当1x <时,2210x x --≥为2220x x -+≥,解得,1x ≤-1x ≥-∴1x ≤-或11x -+≤<,综上,不等式()()20f x f +≥的解集为(),11⎡-∞-⋃-++∞⎣;(2)不等式()1f x a x ≥+等价于2111x a x a x ---≥+,即2111x a x x -≤-++对任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,即2211111122x x a x x x x x --⎛⎫≤==- ⎪-++⎝⎭对任意的3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, ∵函数112y x x ⎛⎫=- ⎪⎝⎭在区间3,2⎡⎫+∞⎪⎢⎣⎭上单调递增,最小值为132522312⎛⎫-= ⎪⎝⎭, ∴512a ≤,故实数a 的取值范围是5,12⎛⎤-∞ ⎥⎝⎦.【点睛】方法点睛: 解绝对值不等式的常用方法:(1)基本性质法:a 为正实数,x a a x a <⇔-<<,x a x a >⇔<-或x a >;(2)平方法:两边平方去掉绝对值,适用于x a x b -<-或x a x b ->-型的不等式的求解;(3)分类讨论法(零点分区间法):含有两个或两个以上绝对值的不等式,可用分类讨论法去掉绝对值,将其转化为与之等价的不含绝对值符号的不等式求解;(4)几何法:利用绝对值不等式的几何意义,画出数轴,将绝对值问题转化为数轴上两点的距离问题求解; (5)数形结合法:在直角坐标系中,作出不等式两边所对应的两个函数的图像,利用函数图像求解.。
江西省吉安市“省重点中学五校协作体”2021届高三第一次联考数学(文)试题(wd无答案)
江西省吉安市“省重点中学五校协作体”2021届高三第一次联考数学(文)试题一、单选题(★) 1. 已知复数,则()A.B.C.D.(★★) 2. 已知集合,集合,则()A.B.C.D.(★★) 3. 某学生准备参加某科目考试,在12次模拟考试中,所得分数的茎叶图如图所示,则此学生该门功课考试成绩的众数与中位数分别为()A.95,94B.95,94.5C.93,94.5D.95,95(★★) 4. 设,,,则()A.B.C.D.(★★) 5. 某四棱锥的三视图如图所示,则此四棱锥的体积为()A.4B.3C.5D.6(★★) 6. 等差数列前项和为,,则()A.32B.42C.52D.62(★) 7. 若抛物线()上的点到其焦点的距离是点到轴距离的2倍,则等于()A.2B.4C.6D.8(★★) 8. 为了得到函数图象,可将函数y=sin3x+cos3x图象()A.向左平移个单位B.向右平移个单位C.向右平移个单位D.向左平移个单位(★★) 9. 已知双曲线:(,)的离心率为3,双曲线的一个焦点到它的一条渐近线的距离为,则双曲线的方程为()A.B.C.D.(★★) 10. 正四棱锥的顶点都在同一球面上,若该棱锥的高为,底面边长为,则该球的表面积为()A.B.C.D.(★★) 11. 已知函数是定义域为的奇函数,且当时,,则曲线在点处的切线方程为()A.B.C.D.(★★★) 12. 已知数列满足(),且,其前项之和为,则满足不等式的最小整数是()A.9B.8C.6D.7二、填空题(★) 13. 已知向量,且,则______.(★) 14. 已知实数,满足不等式组,则目标函数的最大值为 ______ .(★★) 15. 已知是上的增函数,则的取值范围为 ______ .(★★★) 16. 设函数是定义在上的周期为2的函数,且对任意实数恒有当时,,若在上有三个零点,则的取值范围为 _______ .三、解答题(★★★) 17. 已知的内角、、的对边分别为,,且满足.(1)求角的大小;(2)若,,求的面积.(★★★) 18. 在四棱锥中,平面,底面四边形是边长为1的正方形,侧棱与底面成的角是,,分别是,的中点.(1)求证: 平面 ;(2)求三棱锥的体积.(★★★) 19. 某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士. (1)完成下列 列联表,并判断是否有的把握认为“政策是否有效与性别有关”;政策有效政策无效总计女士10男士合计25100(2)从被调查的市民中,采取分层抽样方法抽取5名市民,再从这5名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式: ( )0.150.100.050.0250.0100.0050.0012.0722.7063.8425.0246.6357.87910.828(★★★) 20. 已知函数.(1)若,求函数的最大值;(2)对任意的 ,不等式 恒成立,求实数 的取值范围.(★★★) 21. 已知椭圆的长轴长是短轴长的2倍,且过点.(1)求椭圆的标准方程;(2)直线交椭圆于两点,若点始终在以为直径的圆内,求实数的取值范围.(★★) 22. 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数). (1)写出曲线的直角坐标方程和曲线的普通方程;(2)已知点,曲线与曲线相交于,两点,求.(★★★) 23. 已知函数.(1)解不等式;(2)若关于的不等式有解,求实数的取值范围.。
2021年1月21日江西省吉安市省重点中学五校协作体2021届高三毕业班第一次联考文科数学试题及答案
332222侧左()视图正主()视图绝密★启用前江西省吉安市“省重点中学五校协作体”2021届高三毕业班教学质量检测第一次联合考试数学(文)试题2021年1月21日时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数ii z -=3,则||z =( ) A .4 B .10 C .5 D .22.已知集合{}|02A x x =≤≤,集合{}|lg 0B x x =>,则A B =( )A .(](),12,-∞+∞B .()(),01,2-∞C .[)1,2D .(]1,23.某学生准备参加某科目考试,在12次模拟考试中,所得分数的茎叶图如图所示,则此学生该门功课考试成绩的众数与中位数分别为( )A .95,94B .95,94.5C .93,94.5D .95,954.设12log 3a =,0.913b ⎛⎫= ⎪⎝⎭,182c =,则( ) A .a b c <<B .b c a <<C .c a b <<D .b a c <<5.某四棱锥的三视图如图所示,则此四棱锥的体积为( ) A .2 B .3C .4D .66.等差数列}{n a 前n 项和为n s ,121191=++a a a ,则13S =( )A.32B.42 C .52 D. 627.若抛物线()220y px p =>上的点()2,0-x A 到其焦点的距离是点A 到y 轴距离的2倍,则p 等于( )A .2B .4C .6D .88.为了得到函数3y x =的图象,可以将函数sin 3cos3y x x =+的图象( )A .向右平移4π个单位B .向左平移4π个单位C .向右平移12π个单位D .向左平移12π个单位 9.已知双曲线)0,0(12222>>=-b a by a x C :的离心率为3,双曲线C 的一个焦点到它的一条渐近线的距离为22,则双曲线C 的方程为( )A .18922=-y x B. 1822=-y x C. 1822=-y x D. 19822=-y x 10.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .812πB .814πC .815πD .817π 11.已知函数()f x 是定义域为R 的奇函数,且当0<x 时,xe x xf =)(,则曲线()y f x =在点())1(1f ,处的切线方程为( )A .2y ex e =-B .2y ex e =--C .2y ex e =+D .2y ex e =-+12.已知数列{}n a 满足()1341n n a a n ++=≥,且19a =,其前n 项之和为n S ,则满足不等式16125n S n --<的最小整数n 是( ) A .9 B .8 C .6 D .7二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,2)a =,(3,)b m =,且a b ⊥,则m =______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省吉安市“省重点中学五校协作体” 2021届高三第一次联考数学理科试卷
命题人:吉安县立中学: 吉水中学: 永丰中学:
时间:120分钟 总分:150分
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题
目要求的。
1. 已知集合{}5,2,1,3-=A ,⎭
⎬⎫
⎩⎨⎧≤-+=052|
x x x B ,则=B A ( ) A.
B.
{}2,1,3- C. {}5,2,1 D. {}2,1 2. 已知i 为虚数单位,复数121i
z i
+=+,则复数z 在复平面上的对应点位于( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限 3. 等差数列{}n a 中,201063=+-a a a ,则9112a a -的值为( ) A. 20- B. 10- C. 10 D. 2 4.7
)2(x
x -的展开式中x 的系数为( )
A. 280-
B. 280
C. 210-
D. 210
5. 攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其
平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,也有单檐和重檐之分,多见于亭阁式建筑.如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,若此正六棱锥的侧面等腰三角形的底角为α,且
1
cos 4α=,则侧棱与底面外接圆半径的比为( )
A. 2
B. 15
15
2 C. 1 D. 41
6. 已知抛物线26y x =的焦点为F ,过点F 的直线交抛物线于B A ,两点,且||||12FA FB ⋅=, 则=||AB ( )
A. 6
B. 7
C. 8
D. 9 7.已知直线2y =
和函数()()()2sin 0f x x ωϕω=+>的图象相交,E ,F 为两个相邻的交点,若
π
4
EF =
,则ω=( )
A. 2
B. 2或6
C. 3或5
D. 3
8. 执行如图所示的程序框图,设所有输出数据构成的集合为A ,若从集合A 中任取一个元素a ,则满足函数2()22021f x x ax =-+在区间[2,)+∞内单调递增的概率为( )
A.
3
1 B.
32 C. 21 D. 4
3 9. 已知A 、B 、C 、D 四点都在表面积为100π的球O 的表面上,若BC =43,∠BAC =120°,则球O 内接三棱锥A -BCD 的体积的最大值为( )
A.
3312 B.
332
C.
3332 D. 3
64
10. 已知圆C :162
2
=+y x ,过点P(8,0)的动直线l 与圆C 相交于A ,B 两点,线段AB 的中点为M ,则M 的轨迹的长度为( ) A. 8 B.
38π C. 34π D. 3
34π 11. 下列大小关系正确的是( )
A. 23.23.22>
B. 25.35.32>
C.
1ln2
ln22
<
D. 5log 3log 85< 12. 已知定义在R 上的函数(2)3y f x =+-是奇函数,当(2,)x ∈+∞时,1
()42
f x x x '≥+
--,则不等式 []0)1ln(3)(>+-x x f 的解集为( )
A. (2,)+∞
B. ),()0,1(+∞-e
C. (0,2)
(,)e +∞
D. (1,0)(2,)-+∞
二、填空题:本题共4小题,每小题5分,共20分。
13.若0
2030x x y x y ≥⎧⎪-≤⎨
⎪+-≥⎩
,则y x z 3-=的最大值是____________.
14. 向量a ,b 满足1||=a ,2||=b ,a 与b 的夹角为
120,则=-|2|b a __________.
15. 已知双曲线)0,0(,1:22
22>>=-b a b y a x C ,点),(00y x P 是直线02=+-a ay bx 上任意一点,若圆
2)()(2020=-+-y y x x 与双曲线C 的右支没有公共点,则双曲线的离心率取值范围为__________.
否
是
结束
开始
3?
x ≤|21|y x =-y
输出1
x x =+5
x =-
16.定义:若数列{}n t 满足1()
()
n n n n f t t t f t +=-
',则称该数列为函数)(x f 的“切线—零点数列”.已知函数 q px x x f ++=2)(有两个零点1-,2,数列{}n x 为函数)(x f 的“切线—零点数列”,设数列{}n a 满
足13a =,2
ln
1
n n n x a x -=+,数列{}n a 的前n 项和为n S ,则2020S =_______. 三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.
(本小题满分12分)
已知函数2
1
cos )6cos(sin )(2-+-
=x x x x f π
. (1)当x ∈[,0]π-时,求出函数)(x f 的最大值,并写出对应的x 的值;
(2)ABC ∆的内角C B A ,,的对边分别为c b a ,,,若2
1
)(=A f ,4=+c b ,求a 的最小值.
18.(本小题满分12分)
已知,如图四棱锥ABCD P -中,2===AD AB PA ,
ABCD 为平行四边形,3
π
=
∠ABC ,ABCD PA 平面⊥, M E ,分
别是PD BC ,中点,点F 在棱PC 上. (1)证明:平面⊥AEF 平面PAD ;
(2)若二面角E AF P --的余弦值为5
15
-,求直线AM 与 平面AEF 所成角的正弦值.
19.(本小题满分12分)
面对环境污染,党和政府高度重视,各级环保部门制定了严格措施治理污染,同时宣传部门加大保护环境的宣传力度,因此绿色低碳出行越来越成为市民的共识,为此吉安市在吉州区建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分缴费,具体扣分标准如下: ①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,扣1分; ③租用时间为2小时以上且不超过3小时,扣2分; ④租用时间为3小时以上且不超过4小时,扣3分;
⑤租车时间超过4小时除扣3分外,超出时间按每小时扣2分收费(不足1小时的部分按1小时
计算)
甲、乙两人独立出行,各租用公共自行车一次,且两人租车时间都不会超过4小时,设甲、乙租用时间不超过一小时的概率分别是0.4,0.3;租用时间为1小时以上且不超过2小时的概率分别是0.4,0.5;租用时间为2小时以上且不超过3小时的概率分别是0.1,0.1. (1)求甲比乙所扣积分多的概率;
(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.
20. (本小题满分12分)
已知椭圆2222:1(0)x y C a b a b +=>>经过点⎪⎭⎫ ⎝⎛21,3P ,且离心率2
3
=e .
(1)求椭圆C 的方程;
(2)已知斜率存在的直线l 与椭圆相交于B A ,两点,点⎪⎪⎭
⎫ ⎝⎛0334,Q 总满足BQO AQO ∠=∠, 证明:直线l 过定点.
21.(本小题满分12分) 已知函数)(,ln 1
)(R a x a x
x x f ∈--
=. (1)讨论函数)(x f 的单调性;
(2)已知函数ax x x f x x g -+'=ln 2)()(2
,(其中)(x f '是)(x f 的导函数),若函数)(x g 有两个极
值点21,x x ,且e x x <<21,求)()(21x g x g -的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修4 ― 4:坐标系与参数方程](本小题满分10分)
在直角坐标系xOy 中,直线l 的参数方程为42x t
y t
=⎧⎨=-⎩(t 为参数).以坐标原点为极点,以x 轴的
正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2
22
1cos ρθ
=+.
(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设点P 在直线l 上,点Q 在曲线C 上,求PQ 的最小值.
23.[选修4—5:不等式选讲] (本小题满分10分) 已知函数()2145f x x x =++-的最小值为M . (1)求M ;
(2)若正实数a ,b ,c 满足2a b c M ++=,求:2
2
2
(1)(2)(3)a b c ++-+-的最小值.。