气体动理论(附答案)
大学物理气体动理论热力学基础复习题及答案详解
第12章 气体动理论一、 填空题:1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为×510pa .则在温度变为37℃,轮胎内空气的压强是 。
(设内胎容积不变)2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -⨯的空气泡升到水面上来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。
(取大气压强为50 1.01310p pa =⨯)3、一容器内储有氧气,其压强为50 1.0110p pa =⨯,温度为27.0℃,则气体分子的数密度为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均距离为 。
(设分子均匀等距排列)4、星际空间温度可达,则氢分子的平均速率为 ,方均根速率为 ,最概然速率为 。
5、在压强为51.0110pa ⨯下,氮气分子的平均自由程为66.010cm -⨯,当温度不变时,压强为 ,则其平均自由程为1.0mm 。
6、若氖气分子的有效直径为82.5910cm -⨯,则在温度为600k ,压强为21.3310pa ⨯时,氖分子1s 内的平均碰撞次数为 。
7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的某种理想气体不同温度下的速率分布曲线,对应温度高的曲线是 .若图中两条曲线定性的表示相同温度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的是 .8、试说明下列各量的物理物理意义: (1)12kT , (2)32kT , (3)2i kT , (4)2i RT , (5)32RT , (6)2M i RT Mmol 。
参考答案:1、54.4310pa ⨯2、536.1110m -⨯3、25332192.4410 1.30 6.2110 3.4510mkg m J m ----⨯⋅⨯⨯ 4、2121121.6910 1.8310 1.5010m s m s m s ---⨯⋅⨯⋅⨯⋅图12-15、6.06pa6、613.8110s -⨯ 7、(2) ,(2)8、略二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208)参考答案:12-1~12-4 C, C, B, B.第十三章热力学基础一、选择题1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的热量是 ( )(A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定:(1)该理想气体系统在此过程中作了功;(2)在此过程中外界对该理想气体系统作了正功;(3)该理想气体系统的内能增加了;(4)在此过程中理想气体系统既从外界吸了热,又对外作了正功。
大学物理气体的动理论习题答案
(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为
大学物理第十一章气体动理论习题详细答案
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
第5章气体动理论作业答案
9. 一定量某种理想气体,温度为T1与T2时分子最
可几速率分别为VP1和VP2,分子速率分布函数最
大值分别为f(VP1)和f(VP2) 若T1>T2,则
A. VP1>VP2,f(VP1)>f(VP2)
f ( ) T2
B. VP1>VP2,f(VP1)<f(VP2)
T1
C. VP1<VP2,f(VP1)>f(VP2)
3.27×104 K。
10.在大气中,随着高度的增加,氮气分子数密度与 氧气分子数密度的比值 增加 。(填增加或减少)
三、计算题
1.设某系统由 N 个粒子组成,粒子速率分布 如图所示.求
(1)分布函数 f ( ) 表达式;
(2)常数
a
以
0
表示式;
(3)速率0~ 0之间、1.50 ~ 20 之间的粒子数;
1 3
N
1.设某系统由 N 个粒子组成,粒子速率分布 如图所示.求
(4)速率在0~
0
之间粒子的平均速率。
0
0
dN
0 dN 0
0 0
Nf
(
)d
0 0
Nf
(
)d
0 0
a
N 0
d
0 0
a
N
d
2
30
0
2.某气体的温度T=273K,压强P=1.00×103Pa 密度ρ=1.24×10-2kg•m-3。 (1) 求气体的摩尔质量; (2) 求气体分子的方均根速率; (3) 容器单位体积内分子的总平动动能。
(4)速率在0~
0
之间粒子的平均速率。
解(1)由速率分布图可知,在 0 0
Nf k
0, Nf a
a k
第十二章气体动理论答案
一、选择题1.下列对最概然速率p v 的表述中,不正确的是( )(A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大;(C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。
答案:A2.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同;(D )两种气体的压强相同。
答案:A 3.理想气体体积为 V ,压强为 p ,温度为 T . 一个分子 的质量为 m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为:(A )pV/m (B )pV/(kT)(C )pV/(RT) (D )pV/(mT)答案:B4.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫ ⎪⎝⎭的关系为 ( ) (A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。
答案:A5.一摩尔单原子分子理想气体的内能( )。
(A )32mol M RT M (B )2i RT (C )32RT (D )32KT 答案:C二、简答题1.能否说速度快的分子温度高,速度慢者温度低,为什么?答案:不能,因为温度是表征大量分子热运动激烈程度的宏观物理量,也就是说是大量分子热运动的集体表现,所以说温度是一个统计值,对单个分子说温度高低是没有意义的。
2.指出以下各式所表示的物理含义:()()()()()RT i RT i kT i kT kT 252423232211ν 答案: (1)表示理想气体分子每个自由度所具有的平均能量(2)表示分子的平均平动动能(3)表示自由度数为的分子的平均能量(4)表示分子自由度数为i 的1mol 理想气体的内能(5)表示分子自由度数为i 的ν mol 理想气体的内能3. 理想气体分子的自由度有哪几种?答案: 理想气体分子的自由度有平动自由度、转动自由度。
9-气体动理论-习题分析与解答(第二版)
第9章 气体动理论 习题解答(一). 选择题1. 已知某理想气体的压强为p ,体积为V ,温度为T ,气体的摩尔质量为M ,k 为玻尔兹曼常量,R 为摩尔气体常量,则该理想气体的密度为(A )M/V (B )pM/(RT) (C )pM/(kT) (D )p/(RT) [ ] 【分析与解答】气体的密度V m =ρ,由理想气体状态方程 RT M m pV =得RT pMV m ==ρ 正确答案是B 。
2. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16. (D) 4∶2∶1. [ ] 【分析与解答】同种理想气体,分子数密度n 相同,由理想气体压强公式)21(322v m n p =()()()16:4:1v :v :v ::222==C B A C B A p p p正确答案是C 。
3. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ ] 【分析与解答】(A )温度相同,分子平均平动动能相等,wn p 32=,因无法比较单位体积分子数,故无法比较压强大小;(B)由一1密度公式RT pM V m ==ρ,压强不确定,故密度不能判定;(C)讨论分子速率一定要讨论统计平均值;(D) =,氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. 正确答案是D 。
4. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3). (C) (2)、(3) 、(4).(D) (1)、(3) 、(4). [ ] 【分析与解答】上述表述中(1)、(2) 、(3)是正确的。
《大学物理》第十章气体动理论习题参考答案
第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
07 气体动理论答案(2016)
一.选择题 1、[ A ](基础训练2)下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A)pV M m 23. (B) pV M Mmol23.(C) npV 23. (D) pV N M M A 23mol . 【解】:根据气体分子的平均平动动能:201322k m v kT ε==,==N p nkT kT V ,而=M N m,则333==222k pV mkT pV N Mε= 2、[ B ](基础训练5)一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定. 【解】:由于pV 2=恒量,又=pVC T,则有=VT C ',因此,体积膨胀,温度将降低。
3、[ C ](基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /()d f v v ∞⎰.【解】:速率分布在v 1~v 2区间内的分子的速率总和:⎰21d )(v v v v v f N ,速率分布在v 1~v 2区间内的分子数总和:21()d v v Nf v v ⎰,因此速率分布在v 1~v 2区间内的分子的平均速率:222111222111()()()()v v v v v v v v v v v v vdN vNf v dv vf v dvv dNNf v dvf v dv===⎰⎰⎰⎰⎰⎰4、[ B ](基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B)Z 减小而λ增大. (C) Z 增大而λ减小. (D)Z 不变而λ增大.【解】:根据分子的平均碰撞频率:n v d Z22π=,和平均速率公式:v =,在温度不变的条件下,平均速率不变,当体积增大时,分子数密度Nn V=减小,平均碰撞频率Z 减小。
《大学物理》第8章气体动理论练习题及答案
《大学物理》第8章气体动理论练习题及答案练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是 ( )A. p 1>p 2;B. p 1<p 2;C. p 1=p 2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n ,单位体积内的气体分子的总平动动能为E k V ⁄,单位体积内的气体质量为ρ,分别有如下关系 ( )A. n 不同,E k V ⁄不同,ρ不同;B. n 不同,E k V ⁄不同,ρ相同;C. n 相同,E k V ⁄相同,ρ不同;D. n 相同,E k V ⁄相同,ρ相同。
3. 有容积不同的A 、B 两个容器,A 中装有刚体单原子分子理想气体,B 中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A 和E B 的关系( )A. E A <E B ;B. E A >E B ;C. E A =E B ;D.不能确定。
气体动理论答案
第七章气体动理论答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一. 选择题1、(基础训练1)[ C ]温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.【解】:分子的平均动能kT i2=ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 23=,仅与温度有关,所以温度、压强相同的氦气和氧气,它们分子的平均平动动能w 相等。
2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1.【解】:气体分子的方均根速率:MRTv 32=,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同,则其压强之比等于温度之比,即:1:4:16。
3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C) ⎰21d )(v v v v v f /⎰21d )(v v v v f . (D) ⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。
气体动理论
1质量为 m 摩尔质量为 M 的理想气体,在平衡态下,压强 p、体积 V 和热力学温度 T 的关系 式是 A、pV=(M/m)RT B、pT=(M/m)RV C、pV=(m/M)RT D、VT=(m/M)Rp 正确答案: C 我的答案:C 得分: 9.1 分2一定量某理想气体按 =恒量的规律膨胀,则膨胀后理想气体的温度 A、将降低 B、将升高 C、保持不变 D、升高还是降低,不能确定正确答案: A 我的答案:A 得分: 9.1 分3在标准状态下,任何理想气体每立方米中含有的分子数都等于 A、 B、 C、 D、 正确答案: C 我的答案:A 得分: 0.0 分 4 有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有 0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量 为 A、0.16 kg B、0.8 kg C、1.6 kg D、3.2 kg 正确答案: C 我的答案:C 得分: 9.1 分5若理想气体的体积为 V,压强为 p,温度为 T,一个分子的质量为 m,k 为玻尔兹曼常量, R 为普适气体常量,则该理想气体的分子数为 A、pV / m B、pV / (kT) C、pV / (RT) D、pV / (mT) 正确答案: B 我的答案:C 得分: 0.0 分6一定量的理想气体在平衡态态下,气体压强 p、体积 V 和热力学温度 T 的关系式是 A、 B、 C、 D、 正确答案: C 我的答案:C 得分: 9.1 分 7 某理想气体在温度为 27℃和压强为 1.0×10-2atm 情况下,密度为 11.3g/m3,则这气体的 摩尔质量 Mmol=______g/mol。
正确答案:第一空: 27.8-28我的答案: 得分: 0.0 分第一空: 0.0113批语 8热力学温度 T 和摄氏温度 t 的关系是 T=t+_________(取整数) 正确答案:第一空:273我的答案: 得分: 9.1 分 第一空: 273批语 9质量为 m、摩尔质量为 M 的理想气体,处于平衡态时,状态方程写为这 pV=(m/M)________, 状态方程的另一形式为 p=nkT,其中 n 是理想气体的________,k 称为________常数。
(完整版)《大学物理》习题册题目及答案第6单元 气体动理论
第6单元 气体动理论 序号 学号 姓名 专业、班级一 选择题[ C ]1.在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2121=V V ,则其内能之比21/E E 为: (A) 1/2 (B) 5/3 (C) 5/6 (D) 3/10[ B ]2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为(A) pV/m (B) pV/(kT)(C) pV/(RT) (D) pV/(mT)[ D ]3.若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(21221v Nf mv v v ⎰ d v 的物理意义是 (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。
(B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。
(C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。
(D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。
[ D ]4.在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态,A 种气体的分子数密度为 1n ,它产生的压强为 1p ,B 种气体的分子数密度为 12n ,C 种气体的分子数密度为3n 1,则混合气体的压强p 为(A)31p (B)41p(C)51p (D)61p二 填空题1.在定压下加热一定量的理想气体,若使其温度升高1K 时,它的体积增加了0.005倍,则气体原来的温度是_________200k__________。
2.用总分子数N 、气体分子速率v 和速率分布函数f(v),表示下列各量:(1)速率大于0v 的分子数= ⎰∞0)(v dv v Nf ;(2)速率大于0v 的那些分子的平均速率=⎰⎰∞∞00)()(v v dv v f dv v vf ;(3)多次观察某一分子的速率,发现其速率大于0v 的概率=⎰∞0)(v dv v f 。
第七章 气体动理论(答案)
一、选择题[ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量ρ的关系为:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同. (C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同;② ∵kT n V kTNV E k 2323==,而n ,T 均相同,∴V E k 相同;③ RT M MpV mol=→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。
[ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H p v 分别表示氧气和氢气的最概然速率,则(A) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.(B) 图中a 表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(C) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v =1/4.(D) 图中b表示氧气分子的速率分布曲线;()2O p v /()2H p v = 4.【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线;②23,3210(/)mol O M kg mol -=⨯, 23,210(/)mol H M kg mol -=⨯,得()()22Ov v p p H14=[ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为(A)⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C)⎰21d )(v v v v v f /⎰21d )(v v v v f . (D)⎰21d )(v v v v v f /0()d f v v ∞⎰ .【提示】① f (v )d v ——表示速率分布在v 附近d v 区间内的分子数占总分子数的百分比;② ⎰21)(v v dv v Nf ——表示速率分布在v 1~v 2区间内的分子数总和;③21()v v vNf v dv ⎰表示速率分布在v 1~v 2区间内的分子的速率总和,因此速率分布在v 1~v 2区间内的分子的平均速率为22112211()()()()v v v v v v v v vNf v dv vf v dvNf v dvf v dv=⎰⎰⎰⎰[ B ]4、(基础训练9)一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z 减小而λ不变. (B) Z 减小而λ增大. (C) Z 增大而λ减小. (D) Z 不变而λ增大.【提示】①2Z d n =,其中v =不变;N n V =,当V 增大时,n 减小; ∴Z 减小。
大学物理(气体动理论)习题答案
大学物理(气体动理论)习题答案8-1 目前可获得的极限真空为Pa 1033.111-⨯,,求此真空度下3cm 1体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程nkT P =得 kT V NP =,kT PV N =故 323611102133001038110110331⨯=⨯⨯⨯⨯⨯=---...N (个)8-2 使一定质量的理想气体的状态按V p -图中的曲线沿箭头所示的方向发生变化,图线的BC 段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A 时的温度是K 300=A T ,求气体在B 、C 、D 时的温度。
(2)将上述状态变化过程在 T V -图(T 为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV /T =恒量,可得:由A →B 这一等压过程中BBA A T V T V = 则 6003001020=⋅=⋅=A AB B T V V T (K) 因BC 段为等轴双曲线,所以B →C 为等温过程,则==B C T T 600 (K)C →D 为等压过程,则CCD D T V T V = 3006004020=⋅=⋅=C CD D T V V T (K) (2)8-3 有容积为V 的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m 的分子1N 和2N 个, 它们的方均根速率都是0υ,求: (1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?010203040[解] (1) 分子数密度 VNV N n VN V N n 2222111122====由压强公式:231V nm P =, 可得两部分气体的压强为 VV mN V m n P VV mN V m n P 3231323120220222012011====(2) 取出隔板达到平衡后,气体分子数密度为 VN N V N n 21+==混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:VV m N N V nm P 3)(31202120+==8-4 在容积为33m 105.2-⨯的容器中,储有15101⨯个氧分子,15104⨯个氮分子,g 103.37-⨯氢分子混合气体,试求混合气体在K 433时的压强。
3气体动理论习题解答
气体动理论习题与答案一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。
A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。
故本题答案为B 。
2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。
A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=故本题答案为D 。
3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。
因此答案选C 。
4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。
单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。
氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。
气体动理论
能有如下关系:
()
(A)和都相等;
(B)相等,而不相等;
(C)相等,而不相等; (D)和都不相等。
15.刚性多原子分子所具有的平均能量为
()
(A) (B) (C) (D)
16.1mol刚性双原子分子理想气体,当温度为T时,其内能为(式中R为
摩尔气体常量,k为玻尔兹曼常量)
()
(A);
(B);
(C);
Байду номын сангаас
压强分别为P1和P2,则两个的大小关系是
()
(A)P1>P2; (B)P1<P2; (C)P1=P2; (D)不能确定
14.下列各试中哪一式表示气体分子的平均平动动能?(式中M为气体
的质量,m为气体分子的质量,N为气体分子的总数目,n为气体分
子数密度) ( )
(A); (B); (C); (D)
15.1mol氮气,由状态A(P1,V)变到状态B(P2,V),气体内能的增量为 ()
(C)刚性双原子理想气体分子的平均能量为;
(D)单原子理想气体分子的平均平动能量为。
11.对一定量气体来说,下列说法中哪个是正确的?
()
(A)当温度不变时,气体对器壁的压强随体积的减少而增大;当体积不
变时,压强随温度升高而增加;
(B)当温度不变时,气体对器壁的压强随体积的减少而减少;当体积不
变时,压强随温度升高而增加;
(A) 2倍 (B) 4倍 (C) 6倍 (D) 34倍 21.三个容器A、B、C中装有同种理想气体,其分子数密度n相同,而方
均根速率之比为=1∶2∶4,则其压强之比∶∶为: ()
(A) 1∶2∶4; (C) 1∶4∶16;
(B) 1∶4∶8; (D) 4∶2∶1。
《大学物理》气体动理论练习题及答案解析
《大学物理》气体动理论练习题及答案解析一、简答题1、你能够从理想气体物态方程出发 ,得出玻意耳定律、查理定律和盖吕萨克定律吗? 答: 方程RT Mm pV '=描述了理想气体在某状态下,p ,V ,T 三个参量所满足的关系式。
对给定量气体(Mm '不变),经历一个过程后,其初态和终态之间有222111T V p T V p =的关系。
当温度不变时,有2211V p V p =,这就是玻意耳定律;当体积不变时,有2211T p T p =,这就是查理定律;当压强不变时,有2211T V T V =,这就是盖吕萨克定律。
由上可知三个定律是理想气体在经历三种特定过程时所表现出来的具体形式。
换句话说,遵从玻意耳定律、查理定律和盖吕萨克定律的气体可作为理想气体。
2、为什么说温度具有统计意义? 讲一个分子具有多少温度,行吗?答:对处于平衡态的理想气体来说,温度是表征大量分子热运动激烈程度的宏观物理量,是对大量气体分子热运动状态的一种统计平均,这一点从公式kT v m 23212=中的2v 计算中就可以看出(∑∑=iii Nv N v22),可见T 本质上是一种统计量,故说温度具有统计意义,说一个分子的T 是毫无意义的。
3、解释下列分子运动论与热力学名词:(1) 状态参量;(2) 微观量;(3) 宏观量。
答:(1)状态参量:在一定的条件下,物质系统都处于一定的状态下,每个状态都需用一组物理量来表征,这些物理量称为状态参量。
(2)微观量:描述个别分子运动状态的物理量。
(3)宏观量:表示大量分子集体特征的物理量。
4、一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量和不随时间变化的微观量分别有哪些?建议:本题“不随时间变化的微观量分别有哪些”不知道通过该设问需要学生掌握什么东西。
其实从微观角度来讲,分子的任何量,如分子速度,动能,动量,严格说来甚至质量也是变化的。
可能会有人回答为平均速度、平均速率、平均自有程等,但那又是一种统计行为,该值对应着某些宏观量,这只能称为统计量,与微观量和宏观量相区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. (本题 5 分)图示的曲线分别表示了氢气和氦气在同一温度下的分子速率的分布情 况。由图可知,氦气分子的最概然速率为______________,氢气分子的最概然速 率为_______________。
答案:1000m/s ×1000m/s
10. (本题 4 分)氮气在标准状态下的分子平均碰撞频率为×108s-1,分子平均自由程为 6×10-6 cm,若温度不变,气压降为,则分子的平均碰撞频率变为_____________; 平均自由程变为_________________。 答案:×107s-1
参考解答 解题分析利用麦克斯韦速率分布函数.求一段速率区间的总分子数是要用到
积分的.但本题的速率区间相对于速率来说非常小,所以可以直接用速率区间相 乘,而免于积分.
解题过程 解:已知
T 273.15K , p 1.013105 Pa , MN2 28103kg/mol 故得
mN2
M N2 NA
2πd 2L 这就是对于容器内压强的限制条件.
V 50L 5.0102 m3 , p 1.013107 Pa ,
T 300.15K , M 2.8102 kg/mol ,
得罐中原有氮气的质量为
m MpV 2.8102 1.013107 5.0102 kg 5.63kg
RT
8.31 303.15
(2)用掉部分氮气之后,
p 4.052106 Pa ,T 293.15K .
答案: ikT
RT 6. (本题 5 分)图示的两条曲线分别表示氦、氢两种气体在相同温度 T 时分子按速率 的分布,其中
(1)曲线 I 表示________气分子的速率分布曲线;曲线 II 表示________气分子的速 率分布曲线。 (2)画有阴影的小长条面积表示____________。 (3)分布曲线下所包围的面积表示__________。 答案:氧,氢
答案:NvxdtdA f (v) dvxdvydvz 8. (本题 5 分)用总分子数 N、气体分子速率 v 和速度分布函数 f(v)表示下列各量: (1)速率大于 v0 的分子数=_________; (2)速率大于 v0 的那些分子的平均速率=_________; (3)多次观察某一分子的速率,发现其速率大于 v0 的概率=__________。 答案:
解题过程 如果不是高度真空,容器内有杂质粒子,分子与杂质粒子碰撞会改变速率分
布,使得测到的分布不准。假若真空度较差,只要分子的平均自由程 大于容器 的线度 L ,即 L ,那么可以认为分子在前进过程中基本不受杂质粒子的影响.
由于平均自由程与压强的关系为 kBT 2πd 2 p
所以要求
kBT L 2πd 2 p 即 p kBT
E
3 2
kBT
3M N2 pV 2mNA
3 28103 1.013105 7.7103
2
10 6.0221023
J 5.441024 J
18.
一摩尔双原子理想气体(
CV ,m
5 2
R
,
1.4 )的体积,绝热地膨胀到原来
的
2
倍,V2
2V1 .问:(1)前后平均自由程之比
2 1
? (2)碰撞频率为
Z,前后
碰撞频率之比 Z2 ? Z1
参考解答 解题分析既然是绝热膨胀,就可以利用绝热过程方程.求出终态的压强后,
再利用平均自由程式的表达式 kBT 和碰撞频率的表达式 Z v ,即可求
2πd 2 p
出所需的量.
解题过程
(1)理想气体进行绝热过程,有
p1V1
p2V2 ,
p2
p1
( V1 V2
强随高度变化的表达式即可.
解题过程 将理想气体的状态方程写成这样的形式:
p nkBT 其中 n 是分子数密度。代入压强随高度变化的表达式,
p p e 0 Mgh / RT kBT kBT 有
n
n eMgh / RT 0
(1)
因此如果大气的温度不随高度改变,则分子数密度随高度按指数规律减小.
质量越小的分子数密度随高度下降得越慢。氮气分子的分子量比氧气分子的分子
)
p1
(
1 2
)
由理想气物态方程
p1V1 p2V2 , T2 p2V2 (V1 ) (V2 ) ( 1 ) 1
T1
T2
T1 p1V1 V2
V1
2
和平均自由程式 kBT , 2πd 2 p
得到 2 T2 p1 (1) 1 (1) 2
1 T1 p2 2
2
(2)碰撞频率 Z v ,其中 v 8RT ,
速率在 v→v+Δv 范围内的分子数占分子数的百分率。 速率在 0→∞整个速率区间内的分子数的百分率的总和。 7. (本题 3 分)图中 dA 为器壁上一面元,x 轴与 dA 垂直。已知分子数密度为 n,速 率分布函数为 f (v) ,则速度分量在 vx~vx+dvx,vy~vy+dvy,vz~vz+dvz 区间中的 分子在 dt 时间内与面元 dA 相碰的分子数为__________。
4.052106 Pa ,同时罐内氮气温度由 30℃降为 20℃.求:(1)罐中原有氮气的质
量;(2)用掉氮气的质量;(3)用掉的氮气在1.013105 Pa 和 20℃时应占有的体 积. 参考解答
解题分析 由理想气体的状态方程可以计算出气体的质量.在第三问中,同样由理想气 体的状态方程反过来从气体的质量求出气体所占的体积. 解题过程 (1)已知
6×10-5 cm 11. (本题 3 分)质量为×10-14g 的某种粒子是浮于 27℃的气体中,观察到它们的方均根 速率为 s,则该种粒子的平均速率为__________。 (设粒子遵守麦克斯韦速度分布律) 答案:×10-2m/s
12. 氮 气 罐 容 积 为 50L , 由 于 用 掉 部 分 氮 气 , 压 强 由 1.013107 Pa 减 为
π
Z2 V21 1 T2 1 (1)0.4 0.435 Z1 V12 2 T1 2 2 19. 测定气体分子速率分布实验要求在高度真空的容器内进行.如果真空度较差, 那么容器内允许的气体压强受到什么限制
参考解答 解题分析要求气体分子在容器内的运动不受杂质影响,也就是气体分子的平
均自由程要大于容器的线度.
(2)
它们的比值
nN nN0 (3) e(MO MN ) gh / RT nO nO0 由于氧气分子的分子量 MN 比氧气分子的分子量 MO 小,这一比值随高度的增加 而上升.
15. N 个假想气体分子,其速率分布如图(当 v 2v0 时分子数为 0),求:(1)a; (2)分子平均速率及方均根速率.
17. 质量为 10kg 的氮气,当压强为 p 1.013105 Pa, ,体积为 7700cm2,其分子
的平均平动动能是多少
参考解答 解题分析利用理想气体平均动能的表达式.不过现在温度未直接给出.所以要
利用理想气体状态方程.
解题过程 解:已知
MN2 28103kg/mol , p 1.013105 Pa ,V 7.7103m3 , m 10kg 故分子的平均平动动能为
×10-23 4. (本题 3 分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一 温度 T 下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百 分比为________。 答案:% 5. (本题 4 分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为 i,则当温度为 T 时, (1)一个分子的平均动能为_______。 (2)一个摩尔氧气分子的转动动能总和为________。
p2
V1 V2
T2 T1
p1
2.8105 Pa
14.已知大气压强随高度变化的规律为:
p
p eMgh / RT 0
.其中
M
是分子质量.证明:
分子数密度随高度按指数规律减小.设大气的温度不随高度改变.大气的主要成分 是氮气和氧气.那么大气氮气分子数密度与氧气分子数密度的比值随高度如何变 化
参考解答 解题分析压强随高度变化服从玻尔兹曼分布,将理想气体的压强公式代入压
得罐中剩余氮气的质量为
m MpV 2.8102 4.052106 5.0102 kg 2.31kg
RT
8.31 293.15
用掉氮气的质量为 m m m (5.63 2.31)kg 3.32kg .
(3)用掉的氮气在1.013105 Pa 和 20℃时所占的体积
V mRT 3.328.31 293.15 m3 2.85m3 pM 1.013105 2.8102
×1028m-2s-1
4×103Pa 3. (本题 4 分)储有氢气的容器以某速度 v 作定向运动,假设该容器突然停止,气体 的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上 升,则容器作定向运动的速度 v=____________m/s,容器中气体分子的平均动能 增加了_____________J。 (普适气体常量 R=·mol-1·K-1,波尔兹曼常 k=×10-23J·K-1,氢气分子可视为刚性分子。) 答案::121
f
(2 v
A
)a
a
BC
O
v
2v
0
v
参考解答
0
解题分析分布函数曲线下的总面积就是总分子数 N,由此可定出 a 的数值.
然后就可以根据图的曲线分段写出分布函数.最后由分布函数求出与速率有关的
统计平均值.
解题过程 (1)曲线 OABC 下的面积为总分子数 N. 由归一化条件
NOA NAB NBC 1 , av0 3av0 av0 1, a 2N .
量小,所以氮气分子比氧气分子质量小,氮气分子数密度随高度下降比氧气分子