第讲两个重要极限极限存在准则

合集下载

10-第10讲两个重要极限、极限存在准则

10-第10讲两个重要极限、极限存在准则
上页 下页 结束
二.重要极限
1. 重要极限 sin x lim 1 x 0 x
2. 重要极限
1 1 e lim x x
x
上页
下页
结束
sin x 1. 重要极限 lim 1 x0 x 证 作一单位圆 ,
y
设 AOB x ,
2 从图中可看出: 先令 0 x
1 ( sin 1 是有界量 ) x
1 1 lim sin x x sin x 0 x x 1 1 lim sin x lim x sin 1 x 0 x x 0 x
解 (2)
1 sin 1 x 1 lim x sin lim x x 1 x x
再令 u t 1 , 则 t 时 , u , 且
1 1 lim 1 lim 1 x x u u
x
u
1 1 e u
上页 下页 结束
1 第三步:证明 lim 1 e x x
e
1 ( x)
k
( x ) 0
lim (1 k ( x) )
e
k
其中, k≠ 0 为常数.
( x) 0 表示在某极限过程中 ( x)的极限为零 .
( x) 表示在某极限过程中 ( x)的极限为 .
上页 下页 结束
例9
例10 例11 例12
3 求 lim 1 x x
上页
下页
结束
1
例13

求 lim(cosx) x 0

1
x2
(1 )
常用的方法
1 x2

x 0 时, cos x 1

1.6极限存在准则 两个重要极限

1.6极限存在准则 两个重要极限

1 x
)
x
1
2. (1 + 0 ) 趋势
( 1+ x )

x ( 1+
1
3.
x
x
)
x
8
1 − cos x 例3 求 lim . 2 x→0 x
x 2 x 2 sin sin 1 2 = lim 2 解 原式 = lim x→0 x2 2 x →0 x 2 ( ) 2 x sin 1 2 )2 1 2 1 . = lim( = ⋅1 = x→0 x 2 2 2 2
sin x “配” 配 x
2. 三相同 3. x → 0
lim
x→0
sin x x
7
1 x lim(1 + x ) = lim(1 + ) = e x→0 x →∞ x
f ( x )g ( x ) 含
1 x
(1 + 0)∞ 的
型:
1. 倒数关系 ( 1+ x )
( 1+
1 x 1 x
方 法

(1+ x) , 1x (1+ ) x
13
思考题
1、求极限 、
x→+∞ →+∞ x→+∞ →+∞
lim 3 x + 9 x
(
)
1 x
答: lim 3 x + 9 x
(
)
1 x
= lim 9
x→+∞ →+∞ 1 x 3 3x ⋅ x
( )
x
1 x
1 + 1 x 3
1 x
1 = 9 ⋅ lim 1 + x x →+∞ 3

极限存在准则 两个重要极限

极限存在准则 两个重要极限
显然 xn+1 > xn , ∴ {xn } 是单调递增的 ;
12/19/2010 10:04 PM
1 1 1 1 2 n −1 xn = 1+ 1+ (1− ) +L+ (1− )(1− )L(1− ). 2! n n! n n n
n→∞
12/19/2010 10:04 PM
令 lim xn = A, 对递推公式
n→∞
xn = a + xn−1 的两边取极限
lim xn = lim a + xn−1 ⇒ 1 ± 1 + 4a 4a , A = a + A ⇒ A − A−a = 0⇒ A = 2
2
n→∞
n→∞
存在, 因为 xn > 0, 且 lim xn存在,则 lim xn = A ≥ 0,
类似地, 类似地,
xn +1 1 = 1 + n+1
n +1
1 1 = 1 + 1 + (1 − ) +L 2! n+1
1 1 2 n−1 )(1 − )L(1 − ) + (1 − n! n+1 n+1 n+1 1 1 2 n (1 − )(1 − )L(1 − ) + ( n + 1)! n+1 n+1 n+1
1 − cos x 1 = 1 ⋅ lim = . 2 x →0 2 x
12/19/2010 10:04 PM
sin 3 x . 例11 求 lim x →π tan 5 x 解 令x = π − t ⇒ t = π − x , 当x → π 时 ⇒ t → 0, 则 sin ( 3π − 3t ) sin 3 x lim = lim x →π tan 5 x t → 0 tan ( 5π − 5t )

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限第一个极限存在准则是柯西-斯维亚切斯极限存在准则(Cauchy-Schwarz Limit Existence Criteria)。

其表述为:对于一个函数 f(x),如果对于任意的ε>0,存在一个δ>0,使得当 0<,x-a,<δ 时,总有,f(x)-f(a),<ε,则函数 f(x) 在点 a 处存在极限。

第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。

其表述为:如果对于一个函数 f(x),在点 a 的一些邻域内 f(x) 有界,即存在一个常数 M>0,使得对于所有的x∈(a-δ,a+δ) 有,f(x),≤M,则函数 f(x) 在点 a 处存在极限。

这两个极限存在准则都用于判断函数在其中一点处的极限是否存在。

柯西-斯维亚切斯极限存在准则要求函数在该点的极限存在时,对于任意给定的ε>0,都能找到对应的δ>0,使得函数值与极限值的差小于ε。

而海涅定理则要求函数在该点附近有界,即函数在该点附近的函数值都不超过一些常数M。

这两个定理的应用范围和方法略有不同。

除了极限存在准则外,还有两个重要的极限:无穷小与无穷大。

无穷小是指极限趋近于零的数列或函数。

对于一个数列 {a_n},如果对于任意的正数ε>0,存在正整数 N,使得当 n>N 时,有,a_n,<ε,则该数列是无穷小。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=0,则该函数在点 a 处是无穷小。

无穷大则是指极限趋于无穷的数列或函数。

对于一个数列 {a_n},如果对于任意的正数 M>0,存在正整数 N,使得当 n>N 时,有,a_n,>M,则该数列是无穷大。

对于一个函数 f(x),如果在其中一点 a 处,有lim(x→a) f(x)=∞(或表示为lim(x→a) ,f(x),=∞),则该函数在点 a 处是无穷大。

1.4 极限存在准则与两个重要极限

1.4 极限存在准则与两个重要极限

( A) e −2; (C ) 0;
2
§1.4 极限存在准则与两个重要极限
思考练习
选择
1 ( 1) lim x sin = ( C ). x →∞ x ( A) ∞; ( B ) 不存在; (C ) 1; ( D ) 0.
(2)lim ( 1 − x ) )
x →0 − 2 x
=( D )
( B ) ∞; ( D) e .
上页 下页 返回
U 准则Ⅰ′ 如果当 x ∈ ( x0 , δ 0 )(或 x > M )时,有 准则Ⅰ′
(1) g ( x ) ≤ f ( x ) ≤ h( x ), ( 2) x→ x g( x ) = A, x→ x h( x ) = A, lim lim
( x→∞ )
0
( x →∞ )
0
存在, 那么 lim f ( x )存在, 且等于 A.
§1.4 极限存在准则与两个重要极限
一、极限存在准则 二、两个重要极限
sin x lim =1 x→0 x
1n lim(1 + ) = e n→∞ n
上页 下页 返回
§1.4 极限存在准则与两个重要极限
一、极限存在准则
1.夹逼准则 1.夹逼准则
准则Ⅰ 满足下列条件: 准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:
= e −2 .
上页 下页 返回
§1.4 极限存在准则与两个重要极限
例5
3− x x ) . 求 lim( x →∞ 2 − x
1 x 解 原式 = lim(1 + ) x →∞ 2− x
1 2− x 1 2 ) ⋅ (1 + ) = lim (1 + x →∞ 2− x 2− x

§1-7j极限存在准则与两个重要极限

§1-7j极限存在准则与两个重要极限

, sin x 0 , sin x x tan x 2 sin x 1 1 cos x , x

1
x 1 , sin x cos x
1式 也 成 立 .
lim cos x 1
x 0
x 0
sin x 1. 由夹逼准则知 lim x
推广:
lim
sin
x 1 解 lim x x 1
x
x x x x lim ( ) ( ) 1 1 x x x 1 x 1 解 lim lim lim x 1 x e x x 1 x x x (1 ) lim x x x 1 x 1
n 2 2 2 2 2

存在 , 并求极限. 1 1 1 2 2 k 1,2, , n, 2 2 n k n2 12 n n 1 1 1 n 1 n 2 2 2 2 2 2 2 2 n 1 2n n n n 1 n 2 n n
12
t年末的本利和为
r mt Am (t ) A0 (1 ) m
若期数无限增大,即令 m , 则表示利息随时 计入本金,这样t年末本利和为
A(t ) lim Am (t ) lim A0 (1
m m
r mt ) m
r m rt = A0 lim (1 ) r A0 e rt m m
8
1 1 1 2. lim 1 e lim 1 e lim( 1 x ) x e n x x 0 n x
n
x
利用准则2,可以证明第二个重要极限
特点 1.幂指函数; 2.底数是1与无穷小量之和; 3.指数是无穷大量,且与底数中的无穷小量成倒数关系.

高数第-章极限存在准则两个重要极限PPT课件

高数第-章极限存在准则两个重要极限PPT课件
2023
高数第-章极限存在准 则两个重要极限ppt 课件
https://
REPORTING
2023
目录
• 极限存在准则概述 • 第一个重要极限:夹逼准则 • 第二个重要极限:单调有界准则 • 极限存在准则的深入探讨 • 两个重要极限的拓展与应用 • 课程总结与回顾
2023
学习方法与技巧分享
深入理解概念
通过反复阅读教材和参考书籍,加深对极限存 在准则和两个重要极限的理解。
多做练习题
通过大量的练习题,熟练掌握求解函数极限的 方法和技巧。
归纳总结
及时归纳总结学习过程中的重点和难点,形成自己的知识体系。
下一步学习计划与建议
深入学习后续章节
在掌握本章知识点的基础上,继续深入学习后续章节,如导数、 微分等。
两个重要极限的引入
第一个重要极限
lim(sinx/x) = 1 (x->0)。
第二个重要极限
lim[(1 + 1/x)^x] = e (x->∞)。
引入原因
这两个极限在微积分学中具有重要地位,是求解许多复杂极限问题的基础。
应用举例
利用这两个重要极限可以求解诸如三角函数、指数函数、对数函数等的极限问题。
工程学
在工程学中,两个重要极限被用于分析和设计各 种工程结构,如桥梁、建筑、机械等,以确保其 稳定性和安全性。
经济学
在经济学中,两个重要极限被用于研究和分析市 场供需关系、价格变动等经济现象,为经济政策 制定提供理论支持。
两个重要极限的拓展形式
多元函数极限
将两个重要极限的概念拓展到多元函数,研 究多元函数在某一点或某一区域内的极限行 为。
2023
PART 03

极限存在准则 两个重要极限

极限存在准则  两个重要极限

第二个重要极限:勇气极限
勇气极限是指我们所能承受的恐惧和心理压力的极 限。了解并逐步超越这个极限,可以使我们在挑战 中变得无所畏惧。
重要性说明
1 激发潜力
了解重要极限能激发我们 内在的潜力,鼓励我们尝 试新事物并突破自身的局 限。
2 规避风险
重要极限的认识有助于我 们规避风险,避免陷入危 险和不理智的决策中。
极限存在准则:两个重要 极限
在极限存在的世界里,我们要探讨两个重要极限:极限存在准则以及第一个 和第二个重要极限。让我们一同揭开生活中最极致的部分。
极限存在准则
1
什么是极限存在准则?
极限存在准则是指在一定条件下,存在着极限情况的规律和约束。它定义了事物 的极限状态和行为。
2
为什么极限存在准则重要?

3 追求卓越
超越重要极限是追求卓越 的关键一步,让我们不断 学习、成长和创新。
实际应用
运动训练
运动训练中,了解和超越个人身体极限是提高 体能和成绩的关键。
领导能力
领导者需要超越自身能力和局限,带领团队不 断创新和突破。
创业企业
创业企业需要超越市场的竞争和资源限制,寻 找新的商业机会和创新解决方案。
科学研究
科学研究需要不断突破知识和技术的边界,发 现未知领域和新的发现。
总结和结论
极限存在准则以及两个重要极限的认识,可以帮助我们更好地理解和应对生活中的极端情况和挑战。通过超越 这些极限,我们能够实现更高的成就和创造。
极限存在准则能帮助我们了解事物的极端表现和局限,提醒我们在决策和行动中 要注意避免超越这些极限。
3
应用领域
极限存在准则广泛应用于科学研究、工程设计、金融市场和人类行为等领域,在 寻找平衡和解决问题时发挥着关键作用。

高数同济§1.6 极限存在准则两个重要极限

高数同济§1.6 极限存在准则两个重要极限
1 = lim (1 - t +1) -(t +1) t +
从而有
= lim ( t +
t +
-1 t (t +1) t +1
)
1) t +1 = lim (1 + t t +
= lim [(1 + 1)t (1 + 1)] = e t t

1) x lim (1 + x x
n1 = 1 + 1! n
xn+1 = 1 + 1 +
1 (1 - 1 ) + 1 (1 - 1 )(1 - 2 ) + 2! n+1 3! n+1 n+1
大 大
1 + ( n+1)! (1 - n1 1)(1 - n2 1)(1 - nn 1) + + +

比较可知
首页
xn xn+1 ( n = 1, 2 , )
那么数列{xn }的极限存在 且 lim xn = a
由条件(2) e 0 N 0 当nN 时 有 |yn-a|e 及|zn-a|e 即有 a-eyna+e a-ezna+e 由条件(1) 有 a-eynxnzna+e 即 |xn-a|e 这就证明了 lim xn =a 简要证明
6.lim(1 + x ) =
x 0 1 x
1 x 5.lim(1 - ) = x x
1 x x 0
e
-1
;
e;
7.lim(1 - x ) = e -1 .
首页 上页 返回 下页 结束

高等数学 第1章 第七节 极限存在准则 两个重要极限

高等数学 第1章 第七节 极限存在准则  两个重要极限


lim
n
x n1
lim n
6 xn ,
A
6 A,
解得 A 3或A 2,(舍去)
lim n
xn
3.
14
3.两个重要极限的应用
例6: 求 lim tan x 1
x0 x
可作为公式
lim
x
s
in u x ux
1
lim ux 0
x
解: lim tan x lim sin x 1 lim sin x lim 1 11 1 x0 x x0 x cos x x0 x x0 cos x
1 n2 1
n2
1
22
n2
1
n2
n n2 1
,
1
lim 1 0, n 2n
lim n n n2 1
lim n
n
1
1
由夹逼定理知:
n2
0 0, 10
lim n
n
1 2
1
n2
1 22
n2
1 n2
存在, 且
lim n
n
1 2
1
n2
1
22
n2
1
n2
0.
8
例2 用夹逼准则证明:
lim sin x 1.
1yn xn zn n 1,2,3,,
2
lim
n
yn
a,
lim
n
z
n
a,
则数列x
n




在,

lim
n
xn
a.
准则1 若
1当x
U
x

高数上册第一章第六节极限存在准则两个重要极限

高数上册第一章第六节极限存在准则两个重要极限

【几何解释】
单调减少
单调增加
广义单调数列
*
相应地,函数极限也有类似的准则
统称为单调有界准则
准则Ⅱ及
【准则 】
准则
*
【补例2】
【证】 (舍去) 递推公式 注意到
*
【说明】
该方法只有在证明了极限存在时,才能由递推公式,通过解方程的方法求极限,否则可能导致荒谬的结论

①式两端取极限后 得

从而得
矛盾
*
【例4】
【解】 【例5】 【解】
*
【例6】
【解】 【例7】 【解】
*
三、小结
【两个准则】
【两个重要极限】 夹逼准则; 单调有界准则 .
*
【思考题】
求极限
*
【思考题解答】
抓大头
*
二、两个重要极限
三、小结 思考题
第六节 极限存在准则 两个重要极限
一、极限存在准则
一、极限存在准则
【证】
【夹逼准则】
*
上两式同时成立,
上述数列极限存在的准则可以推广到函数的极限
【注意】
02
利用夹逼准则Ⅰ关键是将xn作适当缩放,得到极限容易求的数列yn与zn,且极限相等.
准则 Ⅰ和准则 Ⅰ'称为夹逼准则.
利用夹逼准则Ⅰ′关键是对不易求极限的f(x)作适当缩放,得到极限容易求的g(x)与h(x),且极限相等.
*
【补例1】
【解】 由夹逼准则得 抓大头
*
【练习】
[提示] [提示] [提示]单调有界准则
*
[提示] [提示] 由夹逼定理得 【注】记住[x]的运算性质: 当 x > 0 时
2.【单调有界准则】

极限存在准则两个重要极限公式

极限存在准则两个重要极限公式

夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
极限公式: lim sin x 1 x0 x
证:

x
(
0
,
2
)
时,
BD
1x
oC
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积

1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
1. 单调有界准则
数列 xn : 单调增加 x1 x2 xn xn1 ,
单调减少 x1 x2 xn xn1 ,
准则I 单调有界数列必有极限 单调上升有上界数列必有极限
说 明: 单调下降有下界数列必有极限 (1) 在收敛数列的性质中曾证明:收敛的数列一定 有界,但有界的数列不一定收敛.
1
1 1 n1 n 1
1 yn1
由于数列 yn 是单调增加的,所以数列 zn 是单调减少的.

xn
1
1
n
n
1
1
ห้องสมุดไป่ตู้n1
n
zn
z1
4
则 2 xn 4. 综上,根据极限存在准则Ⅰ可知,数列是
收敛的.
2023年12月9日星期六
4
目录
上页
下页
返回
通常用字母 e 来表示这个极限,即
lim
n
1
1
n
)
( n 1, 2,
), 且
x1 0,
a0,

lim
n
xn
.
利用极限存在准则

极限存在准则与两个重要极限

极限存在准则与两个重要极限
x 5 2012 x 1006 1006 x 5 = lim(1 ) e 2012 e c x x5
c 2012
15
例20. 对第一章中的例19,若即时产生即使结算(按连 续复利计算),求银行t期末的本利和.按连续复利(将利 息记入本金,时刻结算本利和的方法)计算,实质上就是 每期的结算次数 m→∞ 时的本利和, 即
an 1 1 1 1 1 2! 3! n! 1 1 1 11 1 2 2 3 ( n 1)n 1 1 1 1 1 1 1 (1 ) ( ) ( ) 2 2 3 n1 n 1 3 3. n
故{an} 有上界, 从而 lim(1 n
tan x sin x 1 lim 3 x 0 1 sin x x sin x 1 cos x 1 1 lim x 0 x x2 cos x(1 sin x ) 2
1 1 tan x lim( ) e2 x 0 1 sin x
1
1
13
1 x2 (5). lim(cos ) . x x
r mt lim A0 (1 ) A0e rt m m
16
为使计算简化, 我们给出(不证明)上面公式的一 个对“1∞” 型非常适用的结论: 若 lim ƒ(x) = 0 , lim g(x) = ∞ 且 lim ƒ(x)g(x) = m, 则
lim[1 f ( x)]g ( x ) e m
11
例18.求下列极限
1 5 x2 (1). lim(1 ) ; x x
§2.4 极限存在准则与两个重要极限
本节先介绍极限存在准则利用它们来导出两个重 要极限. 一.极限存在准则 准则І (夹逼定理) 若 x U ( x0 , ) (或 x M ) , 均有 g(x) ≤ ƒ(x) ≤ h(x) 且 lim g(x) = lim h(x) = A, 则有 lim ƒ(x) = A.

高等数学1.6极限存在准则、两个重要极限

高等数学1.6极限存在准则、两个重要极限

二、两个重要极限
例4
1 cos x 求 lim . 2 x0 x
2 x x 2 sin 2sin 2 1 lim 2 解 原式 lim 2 x 0 2 x x 0 x 2 2 2
0 0
sin x lim 1 x 0 x
lim cos x 1,
x 0
x x0 x x0
lim f ( u ) A, 则 lim f [ g ( x )] A lim f ( u )
u a
证明
lim(1 x ) e
x 0
1 x
x x0 1 x
u a
1 1 令 x , lim(1 )t = lim(1 x ) t t t x0
x x0 ( x ) x x0 ( x )
f ( x) lim h( x ) A, 那末 xlim x
( x)
0
存在, 且等于 A 上述两准则称为两边夹准则.
例1 求 lim( n 解:
1 n 1
2

1 n 2
2

1 n n
2
).
n n n
2
n
x 1 sin x 1, cos x 1 sin x cos x x
A
下面证 lim cos x 1,
x0
2 x x x 2 2 1 cos x 2 sin 2( ) , 2 2 2
0 cos x 1 x2 lim 0, lim(1 cos x ) 0, x0 x0 2 sin x lim cos x 1, lim1 1, lim x 0 x0 x0 x
(2)
1 x lim (1 ) e x x

1.4两个重要极限

1.4两个重要极限

x
于是
3 x lim (1 + ) = lim(1 + t ) t = lim[(1 + t ) t ]3= [lim(1 + t ) t ]3 = e 3 x →∞ t →0 t →0 t →0 x x 3 x 3 3 3 或 lim(1 + ) = [lim(1 + ) ] = e3 x →∞ x →∞ x x
π
ESC
一. 极限的四则运算法则 二.第一个重要 极限 第一个重要
x 1 2 cos 另一方面, x = 1 − 2 sin > 1 − x ,于是有 另一方面, 2 2 1 2 sin x 1 − x < cos x < <1. 2 x
2
1 2 由准则Ⅰ 因为 lim (1 − x ) = 1 ,由准则Ⅰ可得 x →0 2 sin x =1. lim x →0 x
n →∞
ESC
二.第一个重要 极限 第一个重要
sin x =1 1. lim x→0 x
(1.4.1)
证 因为 sin( − x) = − sin x = sin x ,所以 −x −x x 由正值趋于零的情形. 只讨论 x 由正值趋于零的情形. 作单位园O 作单位园O, 设圆心角 ∠AOB = x ,延长 OB交过 A点的切线于于 D , 面积< 则 ∆AOB 面积<扇形 AOB 面积< 面积. 面积< ∆AOD 面积.即 ESC
ESC
一. 极限的四则运算法则 二.第二个重要 极限 第二个重要
lim x 2. x→∞(1+ 1)x = e
表1
(1.4.7)
1 x x → ∞ 时 (1 + ) 之值的变化情况 x

1.6极限存在准则两个重要极限

1.6极限存在准则两个重要极限

准则1:若数列}{n x 、}{n y 、}{n z 满足以下条件:(i ) N n ∈∃0,当0n n >时,有n n n z y x ≤≤; (ii )a y n n =∞→lim ,a z n n =∞→lim 。

那么数列}{n x 极限存在,且a x n n =∞→lim 。

证明:因为a z y n n n n ==∞→∞→lim lim ,所以对0,01>∃>∀N ε,当1N n >时,有ε<-a y n ,即εε+<<-a y a n ,对2N ∃,当2N n >时,有ε<-a z n ,即εε+<<-a z a n ,又因为n n n z x y ≤≤,所以当},{21N N Max N n =>时,有εε+<≤≤<-a z x y a n n n ,即有:εε+<<-a x a n ,即ε<-a x n ,所以 a x n n =∞→lim 。

准则1′如果函数)(),(),(x h x g x f 满足下列条件:(i )当))(,(0M x r x U x >∈∧时,有)()()(x h x f x g ≤≤。

(ii )当)(0∞→→x x x 时,有A x h A x g →→)(,)(。

那么当)(0∞→→x x x 时,)(x f 的极限存在,且等于A 。

第一个重要极限:1sin lim0=→xxx作为准则I ′的应用,下面将证明第一个重要极限:1sin lim 0=→xxx 。

证明:作单位圆,如下图: 设x 为圆心角AOB ∠,并设20π<<x 见图不难发现:AOD AOB AOB S S S ∆∆<<扇形,即:x x x tan 2121sin 21<<,即 x x x tan sin <<, (因为20π<<x ,所以上不等式不改变方向,若02<<-x π,不等式也成立)当x 改变符号时,x x x sin ,cos 及1的值均不变,故对满足20π<<x 的一切 x ,有1si n co s <<x xx 。

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限

两个极限存在准则和两个重要的极限1.两个极限存在准则(1) 夹逼准则:设a, b, c为实数,如果函数f(x)在a的一些左邻域内对于一切x都有h(x)≤f(x)≤g(x),且lim[x→a]h(x)=lim[x→a]g(x)=L,则必有lim[x→a]f(x)=L。

夹逼准则的本质是通过构造两个函数作为边界来确定原函数的极限。

(2) 单调有界准则:设函数f(x)在(a, b)上单调递增(递减),且在(a, b)上有界,则必有lim[x→a]f(x)=sup{f(x)}(或lim[x→a]f(x)=inf{f(x)})。

单调有界准则的基本思想是通过函数的单调性和有界性来确定极限。

(1) 无穷小极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=0,如果对于任意正数ε,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有,f(x),<ε,那么称函数f(x)在x=a处的极限为0。

无穷小极限的重要性在于它在微积分中有广泛应用。

例如,微分定义中的导数可以看作是函数在其中一点的极限,这也符合函数在该点的变化趋势比较明显。

无穷小极限的概念使得我们能够更好地描述和理解函数在其中一点的变化情况。

(2) 无穷大极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=∞,如果对于任意正数M,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有f(x) > M,那么称函数f(x)在x=a处的极限为无穷大。

无穷大极限的重要性在于它可以帮助我们研究函数在其中一点的增长速度和趋势。

例如,在极限定义中,我们可以通过无穷大极限来刻画函数在其中一点的无限增长或无限逼近的情况。

此外,无穷大极限也在微积分中的积分定义中有重要的应用,帮助我们理解函数的积分和面积的概念。

综上所述,极限的存在准则和重要的极限是微积分中的重要概念。

了解它们的定义和应用可以帮助我们更好地理解和分析函数在其中一点的变化情况,为进一步研究微积分和数学分析打下坚实的基础。

高等数学1.7 极限存在准则 两个重要极限

高等数学1.7 极限存在准则  两个重要极限
即|x n-a|<e .这就证明了 lim x n=a . n
一、准则 I
准则 I: 如果数列{xn }、{yn}及{zn}满足下列条件:
( ynxnzn(n=1,2,3,…),
lim (2) lim yn=a,n zn=a,
n
lim 那么数列{xn }的极限存在,且 x n=a . n

例8
sin x . x x tan x 求 lim . x0 x 1 - cos x 例 2 求 lim . 2 x 0 x
求 lim
5 求 lim
6
7
7 x + 5x - 3 3x 2 - 2 x - 1 求 lim . x 2 x 3 - x 2 + 5 2x 3 - x 2 + 5 求 lim . 2 x 3 x - 2 x - 1
例2 求lim
1 - cos x . 2 x 0 x
2

x sin x 2 x sin 2 sin 1 1 1 - cos x 2 2 = lim 2 = lim lim = lim x0 x0 x2 2 x 0 1 2 2 x 0 x x2 2 2 1 2 1 = 1 = . 2 2
n
根据准则II,数列{x n}必有极限. 这个极限我们用e 来表示.即
lim 1 + n 1 =e . n
n
e 是个无理数,它的值是e=2.718281828459045 ···.
还可证明
1 lim1 + =e . x x
x
第二个重要极限: lim1 + x
准则 I: 如果函数g(x)、f(x)及h(x)满足下列条件:

高数第一章极限存在准则 两个重要极限

高数第一章极限存在准则 两个重要极限

x0
x
2. lim xsin 1 __1__ ;
x
x
4. lim (1 1)n _e___1;
n n
27
作业
P56 1 写在书上 ; 2; 3;4 .
28
x
1 x
)
x

e
说明:
此极限也可写为
1
lim (1 z) z
e
z0
18
例7 已知 解: 原式 =
c ln 4
求 C。
ec 4
19
例8 求下列极限
解: 令 t x , 则
lim (1
t

1t )t

lim
t
1
解 原式=
说明
:若利用

lim (1
( x)
1n)]

e
lim (1
x
1x) x

e
17

时, 令 x (t 1), 则
从而有

lim (1
t

t
11)(t
1)
tlim(tt 1)(t1)

t
lim (1


1t )t
1

t
lim [(1


1t )t
(1

1t )]

e

lim (1

k

lim
x0
sin k
k x
x
k
2.
lim tan x x0 x

lim x0
sin x
x
1 cos
x

六节极限存在准则两个重要极限

六节极限存在准则两个重要极限

证明:必要性
| xn xm |
充分性(不证) 见参照书《数学分析》。
柯西极限存在准则也称为柯西审敛原理。
三、小结
1.两个准则 2.两个主要极限
sin x lim 1 x0 x
lim(1 1 )n e
n
n
lim (1 1 )x e
x
x
lim (1 1 )x e
x
x
lim(1 1 )x e
2
x
1
sin lim(
2 x0 x
2
)2
1 2
12
1 2
2
例7 求 lim(1 1 )x
x
x

原式 lim[(1 1 ) x ]1 lim
x
x
x
(1
1 1
) x
1 e
x
例8 求 lim( 3 x )2x x 2 x
解 原式 lim[(1 1 ) x2 ]2 (1 1 )4 e2
x
x
lim (1 1 )x e 令 t 1 ,做换元,得
x
x
x
1
lim(1 x) x
lim(1 1)t
e
x 0
t
1
t
lim(1 x) x e x0
tan x 例4 求 lim
x0 x
sin x

tan x lim x0 x
lim x 0
cos x x
sin x 1 lim( )
即 a yn a (1)
lim n
zn
a
0,
N 2
0 ,使得当 n
N

2
就有 zn a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
1 2
2
例6
求 lim sin x
x x
解 令 t x , 则 x 时, t 0
故 lim sin x lim sin(t )
x x t 0
t
lim sin t 1 t0 t
2. 重要极限
lim 1 x
1 x
x
e
1
lim(1 x)x e
x0
特别重要啊!
lim 1 x
xx0
xx0
2 0, 当 0 | x x0 | 2 时, | h(x) a | 当 0 | x x0 | 3 时, | g(x) a | . 即 a g(x) a .
取 min{1,2,3}, 则当 0 | x x0 | 时,
第二章 函数的极限与连续性
第六节 极限存在准则、 两个重要极限
一.夹逼定理 二.单调收敛准则
三.两个重要极限
一.夹逼定理
y
看懂后, 用精确地语言描述它.
y h(x)
y a
y f (x) y a y a
y g(x)
O
x0 x0 x0
x
函数极限的夹逼定理
定理
设 x Uˆ (x0, ) ( | x | X ) 时, 有
lim f (x) sup f (x) .
设在某极限过程中,函数 f (x)单调减少且有下界, 则在该极限过程中函数的极限存在 :
lim f (x) inf f (x) .
一般说成: 在某极限过程中,单调有界的函数必有极限.
二.重要极限
1. 重要极限 limsin x 1 x0 x
2. 重要极限
g(x) f (x) h(x) .
若 lim g(x) lim h(x) a , 则必有
x x0 ( x)
x x0 ( x)
lim f (x) a .
x x0 ( x)
证 只证 x x0 的情形 .
设 g(x) f (x) h(x) x U( x0,1) , 且
lim g(x) lim h(x) a , 则 0 ,
x0
lim sin x 1 x0 x
一般地 lim sin k(x) k (x)0 (x)
其中, k ≠0 为常数.
(x) 0 表示在某极限过程中(x)的极限为零.
例2
求 lim tan x x0 x
解 lim tan x lim sin x 1
x0 x
x0 x cosx
lim sin x lim 1 1 x0 x x0 cosx
a g(x) f (x) h(x) a ,
即 lim f (x) a . xx0
例1 解
证明: lim sin x 0. x0
由sin x的定义, 当0 x 时有
2
0 sin x x,
夹逼定理
而 lim x 0, 所以, lim sin x 0.
x0
x0
例2 解
2
22
2
故当 0 x 时, 1 x 1
2
sin x cos x
即有 cos x sin x 1, x
由sin x 与cos x 的奇偶性可知:
当 0 | x | 时 , cos x sin x 1 成立 .
2
x
由 limcos x 1, lim1 1 及夹逼定理 , 得
x0
1
21!1
1 n
31! 1
1 n
1
2 n
n1! 1
1 n
1
2 n
1
n
n
1
,
类似地, 有
xn1
1
1
n1
n 1
1
1
21!1
n
1
1
31! 1
n
1
11
n
2
1
n1! 1
n
1
11
n
2
1
然后看 y sin x 的图形. x
y
1
y sin x x
2
O
2
x
证 运用夹逼定理, 关键在于建立不等式.
作一单位圆 ,
y
设 AOB x ,
先令 0 x
2 从图中可看出:
AD
sin x tan x
x
1
O
Bx
AOB面积 扇形AOB面积 DOB面积
即 1 sin x 1 x 1 tan x (0 x ) .
1 x
x
e
1
lim(1 x)x e
x0
变量代换 y1 x
下面先证明
lim 1
1 x
e
x x
证明数列
1
1 n
n
收敛.
证 由中学的牛顿二项式展开公式
xn
1
1 n
n
1 n 1 1! n
n(n 2!
1)
1 n2
n(n
1)(n 3!
2)
1 n3
n(n
1)
(n n!
(n
1))
1 nn
1
例3
求 lim sin 5x
x0 x
解 lim sin 5x lim 5sin 5x
x0 x
x0 5x
5lim sin u 5 . (u 5x) u0 u
或直接用公式 lim sin a(x) a (a 0) : (x)0 (x)
limsin 5x 5 . x0 x
例4
求 lim sin 3(x a) xa x a
解 x a 时, (x) = x a 0 ,
故 lim sin 3(x a) 3.
xa x a
例5

lim
x0
1
cos x2
x

1 cosx
lim
x0
x2
lim
x0
2 s in 2 x2
x 2
1 sin 2 x lim 2 2
x0 x 2 2
1 2
lim x0
sin x
x 2

lim
x0
x
2 x
.
由取整函数的定义, 有
故当 x 0 时,
2 x
1
2 x
2 x
,
2 x x2x 2;
当 x 0 时, 2 x x2x 2,
夹逼定理

lim(2 x) 2,
x0
所以,
lim
x0
x 2x
2.
二.单调收敛准则
设在某极限过程中,函数 f (x)单调增加且有上界, 则在该极限过程中函数的极限存在 :
lim1 x
1 x
x
e
1. 重要极限 lim sin x 1 x0 x
首先看看在计算机上 进行的数值计算结果:
x 0
0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 0.00000001
sin x 1
x 0.9983341664682815475018 0.9999833334166664533527 0.9999998333333416367097 0.9999999983333334174773 0.9999999999833332209320 0.9999999999998333555240 1.0000000000000000000000
相关文档
最新文档