激光焊接原理及工艺应用资料 共45页
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 受激吸收
– 受激吸收就是处于低能态的原子吸收外界辐射而跃迁到高能态。
– 电子可通过吸收光子从低能级跃迁到高能级。
• 受激辐射
– 受激辐射是指处于高能级的电子在光子的“刺激”或者“感应”下,跃迁到低能级,并 辐射出一个和入射光子同样频率的光子。受激辐射的最大特点是由受激辐射产生 的光子与引起受激辐射的原来的光子具有完全相同的状态。它们具有相同的频率 ,相同的方向,完全无法区分出两者的差异。这样,通过一次受激辐射,一个光 子变为两个相同的光子。这意味着光被加强了,或者说光被放大了。这正是产生 激光的基本过程。
泵浦灯
氙灯为惰性气体放电灯, 我们使用的灯的形状多为 直管形。其结构一般都是 由电极、灯管和充入的氙 (Xe)气体组成。电极是 用高熔点、高电子发射率, 又不易溅射的金属材料制 成。灯管用机械强度高、 耐高温、透光性好的石英 玻璃制成。灯管内充入氙 气。
Nd:YAG激光棒
Nd:YAG(掺钕的钇 铝石榴石)是目前最常 用的一类固体激光器。 YAG是一种立方结构晶 体,质地很硬、光学质 量好、热导率高。用三 价钕代替了晶体中部分 的三价钇,因此称为掺 钕的钇铝石榴石。
但在热平衡条件下,原子几乎都处于最低能级(基态)。因此,如何 从技术上实现粒子数反转则是产生激光的必要条件。这需要利用激活 媒质。所谓激活媒质(也称为放大媒质或放大介质),就是可以使某 两个能级间呈现粒子数反转的物质。它可以是气体,也可以是固体或 液体。用二能级的系统来做激活媒质实现粒子数反转是不可能的。要 想获得粒子数反转,必须使用多能级系统。
• 2、激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体 系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用 具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照 射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式 被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“ 泵浦”以维持处于上能级的粒子数比下能级多。
激光谐振腔
• 光学谐振腔
L
图2-6
M1100%
图2-7 构
M298% 谐振腔结
激光谐振腔
G1*G2=(1-d2/f-b/R1)*(1-d1/f-b/R2) 其中,f:棒的热焦距 d1:棒中心到半反的距离 d2:棒中心到全反的距离 R1:全反曲率半径 R2:半反曲率半径 b=d1+d2-d1d2/f
• 稳定腔: 0< G1*G2<1 • 介稳腔: G1*G2=1或G1*G2=0 • 非稳腔: G1*G2<0或G1*G2>1
激光特点
• 相干性好: 普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透
• 跃迁
电子可以通过吸收或释放能量从一个能级跃迁到另一个能级。例如当电子吸收了 一个光子时,它便可能从一个较低的能级跃迁至一个较高的能级。同样地,一个 位于高能பைடு நூலகம்的电子也会通过发射一个光子而跃迁至较低的能级。在这些过程中, 电子释放或吸收的光子能量总是与这两能级的能量差相等。由于光子能量决定了 光的波长,因此,吸收或释放的光具有固定的颜色。
• 自发辐射
– 是指高能级的电子在没有外界作用下自发地迁移至低能级,并在跃迁时产生光( 电磁波)辐射,辐射光子能量为hυ=E2-E1,即两个能级之间的能量差。
• 粒子数反转
• 一个诱发光子不仅能引起受激辐射,而且它也能引起受激吸收,所以 只有当处在高能级的原子数目比处在低能级的还多时,受激辐射才能 超过受激吸收,而占优势。由此可见,为使光源发射激光,而不是发 出普通光的关键是发光原子处在高能级的数目比低能级上的多,这种 情况,称为粒子数反转。
激光焊接原理及工艺应用
1、激光原理及特性
什么是激光?
LASER是英文的“受激辐射光放大”的首字母缩写。
镭射=激光=LASER
激光产生的原理
• 能级
物质是由原子组成,而原子又是由原子核及电子构成。电子围绕着原子核运动。 而电子在原子中的能量不是任意的。描述微观世界的量子力学告诉我们,这些电 子会处于一些固定的“能级”,不同的能级对应于不同的电子能量,离原子核越 远的轨道能量越高。此外,不同轨道可最多容纳的电子数目也不同,例如最低的 轨道(也是最近原子核的轨道)最多只可容纳2个电子,较高的轨道上则可容纳8 个电子等等。
• 3、谐振腔
有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐 射强度很弱,无法实际应用。还需要将辐射的光进行放大,于是人们就想到 了用光学谐振腔进行放大。
所谓光学谐振腔,实际是在激光器两端,平行装上两块反射率很高的镜片, 一块为全反射镜片,一块为部分反射、少量透射镜片。全反射镜片的作用是 将入射的光全部按原路径反射回去,部分反射镜片的作用是将能量未达到一 定限度的部分光子按原路径反射回去,而达到一定能量限度的光子则透射而 出。这样,透射而出的这部分光子就成为我们需要的,经过放大了的激光; 而被反射回工作介质的光,则继续诱发新一轮的受激辐射,光将逐渐被放大 。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生 强烈的激光,直到能量达到一定的限度,从部分反射镜片中输出。
三能级结构
• 当粒子受外界能量激励从E1到E3,由于E3能级寿命短,很快转移到 E2上,因能级E2为亚稳态,在E2、E1间实现粒子数反转分布。下能 级E1为基态,通常总是积聚着大量的粒子,因此要实现粒子数反转, 必须将半数以上的基态粒子激发到E2上,所以,外界激励就需要有相 当强的能力。
四能级结构
• 常见激光器中,掺钕钇铝石榴石(简Nd3+:YAG)激光器,氦氖激光 器和二氧化碳激光器也都属四能级系统激光器。需要指明,以上讨论 的三能级系统和四能级系统都是对激光器运转过程中直接有关的能级 而言,不是说某种物质只具有三个能级或四个能级。
激光产生条件
• 1、激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半 导体。关键是能在这种介质中实现粒子数反转,以获得产生激光的必 要条件。显然,亚稳态能级的存在,对实现粒子数反转是非常有利的 。