实验四 三点式正弦波正弦波振荡器

合集下载

正弦波振荡器实验报告(高频电路)

正弦波振荡器实验报告(高频电路)

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。

三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。

用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。

说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。

利用模块上编码器调整与鼠标调整其效果完全相同。

用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。

我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。

本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。

2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。

)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。

开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。

调整2W4使输出幅度最大。

(用鼠标点击2W4,且滑动鼠标滑轮来调整。

)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。

LC三点式正弦波振荡器实验

LC三点式正弦波振荡器实验

4.回路Q值和IEQ对频率稳定度的影响
1)Q值变化时,对振荡频率稳定度的影响
,IEQ=2mA,CT=100pF, 分别改变R值,使其值分别为1KΩ、10KΩ、110KΩ, 记录电路的振荡频率, 注意观察频率显示后几位数 的跳动情况。填入表1-37中,并说明R取哪种值的情 况下稳定度最好。
C 100pF 测试条件: C ' 1200pF
图3-1:LC三点式振荡器基本组成形式
图1-83:LC三点式振荡器基本组成形式
本实验主要研究电容三点式振荡器, 电路如图1-84所示。
2. 基本工作原理:
电路采用串联式电容反馈三 点式振荡器的改进型电路,也称 克拉波电路。采用分压式电流负 反馈偏置电路,调整RP可获得合 适的静态工作点。C1,C2为交流 耦合电容,正反馈电压取自C,两 端,改变C和C,的比值,可以改 变反馈深度,以满足振荡的振幅 条件。 此电路的振荡频率为:
5.选做内容:石英晶体-振荡器
1)按要求连好电路
2)静态工作点测试,记录IEQmin、IEQmax; 3)测量当工作点在上述范围内(至少3个点) 的振荡频率及振荡幅度(RL取110KΩ); 4)RL分别取110K Ω ,10K Ω ,1K Ω时, 测出振荡频率f,并观察频率的稳定度。 (与LC三点式振荡器相比较)。
取:CT=100pF, C、C’分别为下列三组数据:
C=C3=100pF,C’=C4=1200pF; C=C5=120pF,C’=C6=680pF; C=C7=680pF,C’=C8=120pF 调节电位器Rp ,使IEQ(静态值,即断开C1后 调IEQ,调好后再接上C1),分别为0.5,0.8,2.0, 3.0,4.0所标各值,用示波器分别测出各个振荡幅 度(峰峰值)。将所得的值填入表1-36中。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。

实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。

关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。

二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。

其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。

同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。

其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。

三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。

4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。

图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。

4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。

正弦波振荡器在电子技术领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。

在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

此实验只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。

此实验只介绍正弦波振荡器。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。

b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。

当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。

模拟电子实验报告四-正弦波振荡器

模拟电子实验报告四-正弦波振荡器

模拟电子实验报告四-正弦波振荡器
正弦波振荡器是一种重要的电子器件,被广泛应用在各类电子系统中,本实验旨在使用非线性元件(晶体管)构建一个正弦波振荡电路,并且研究其工作的电压、频率和幅值等参数,以更好地理解振荡器的工作原理及应用原理。

实验准备:
操作板、非线性元件(晶体管)、电阻、电感及相关测量仪器等必备设备和元件。

实验步骤:
(1)首先,将晶体管接入操作板,并将相关电阻、电感及元件安装到板上,确保晶体管正确连接。

(2)通过对各参数(电阻,电感,电压等)的测量,确定其输出正弦波的振荡幅度以及振荡频率。

(3)设定相关电阻,电感,电压,测量振荡器的输出正弦波电压,记录测量数据。

(4)重复以上测量过程,在不同的参数条件下,测量不同的振荡参数,观察其变化情况,对照实验仪表的读数,检查测量结果的准确性。

实验结果:
随着振荡电路电压及其他参数的变化,晶体管输出正弦波的幅度、频率也发生变化。

当晶体管工作在20 V电压下,输出正弦波的幅度为2 V,频率为295 Hz。

当晶体管工作在30 V电压时,输出正弦波的幅度为2.5 V,频率为325 Hz。

当晶体管工作在40 V电压时,输出正弦波的幅度为3 V,频率为355 Hz。

通过本次实验,发现晶体管输出正弦波的幅度和频率随着电压的变化而变化,且随着电压的增加,频率有逐渐增加的趋势。

由此可见,正弦波振荡电路是一个复杂但可靠稳定的电子系统,能够实现预期的输出结果,这是通过对相关参数进行优化来实现的。

此外,它也可以应用于多种电子系统,作为信号源,应用较为广泛。

实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告

实验四LC正弦波振荡电路实验,高频电子线路,南京理工大学紫金学院实验报告

高频实验报告实验名称:LC正弦波振荡电路实验姓名:学号:班级:通信时间:2014.01南京理工大学紫金学院电光系一、 实验目的1.进一步学习掌握正弦波振荡电路的相关理论。

2.掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能;熟悉静态工作点、耦合电容、反馈系数、等效Q 值对振荡器振荡幅度和频率的影响。

3.熟悉LC 振荡器频率稳定度,加深对LC 振荡器频率稳定度的理解。

二、实验基本原理与电路1. LC 振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。

LC振荡器是指振荡回路是由LC元件组成的。

从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。

如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。

在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。

普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。

当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。

为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图2-1和2-2所示。

串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:图2-1克拉泼振荡电路C LCC L图2-2西勒振荡电路∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。

实验四 三点式正弦波振荡器

实验四 三点式正弦波振荡器

实验四 三点式正弦波振荡器一、实验目的1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2.通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3.研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1.熟悉振荡器模块元件及其作用。

2.进行LC 振荡器波段工作研究。

3.研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4.测试LC 振荡器的频率稳定度。

三、基本原理图6-1 正弦波振荡器(4.5MHz )将开关S2的1拨下2拨上,S1全部断开,由晶体管3Q 和13C 、20C 、10C 、CC1、2L 构成电容反馈三点式振荡器的改进型振荡器—─西勒振荡器,电容CC1可用来改变振荡频率。

)1(211020CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数12.04701001613≈==C C F振荡器输出通过耦合电容3C (10P )加到由2Q 组成的射极跟随器的输入端,因3C 容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号1Q 调谐放大,再经变压器耦合从J1输出。

R5510C20.1uC810PC310PC7100PR14510R110KR610KC927P1243S1R910K R133.3KR710K W120KC121000PC1047PR118.2KR410KC140.1uC16470P R101K C10.1uR310KQ23DG130DJ21TH2C110.1uR83.3K R22KW25KQ13DG130DJ11TH1C6330PC40.1uT1T601C170.01uC151000PL122uH1243S2CC13-25PL222uHCRY14.1943M Q33DG130DC13100PRA1100KE1100u/16VC180.1u+12VC50.1u +12VR122KLED1LED(R)POWER1+12V_INTP1TP2TP3TP6TP7TP4TP5D2BB149D1BB149+12V音频输入输出频率幅度1TH3CON11TH4CON1四、实验步骤1.根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

电子电路综合实验-LC正弦波振荡器报告

电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。

由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。

2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。

实验四_正弦波振荡器实验

实验四_正弦波振荡器实验

实验四 正弦波振荡器实验一、实验目的1、学习用集成运放构成正弦波发生器。

2、学习波形发生器的调整和主要性能指标的测试方法。

二、实验仪器模拟电路箱( )、数字万用表( )、双踪示波器( )、信号发生器( )等三、实验原理图4-1为RC 桥式正弦波振荡器。

其中RC 串、并联电路构成正反馈支路,同时兼作选频网络,R 1、R 2、R w 及二极管等元件构成负反馈和稳幅环节。

调节电位器R w ,可以改变负反馈深度,以满足振荡的振幅条件和改善波形。

利用两个反向并联二极管D 1、D 2正向电阻的非线性特性来实现稳幅。

D 1、D 2采用硅管(温度稳定性好),且要求特性匹配,才能保证输出波形正、负半周对称。

R 3的接入是为了削弱二极管非线性的影响,以改善波形失真。

电路的振荡频率 RC f o π21=起振的幅值条件 21≥R R f图4-1 RC 桥式正弦波振荡器式中)(32D w f R R R R R ++=,D R 为二极管正向导通电阻。

调整反馈电阻f R (调w R ),使电路起振,且波形失真最小。

如不能起振,则说明负反馈太强,应适当加大f R 。

如波形失真严重,则应适当减小f R 。

改变选频网络的参数C 或R ,即可调节振荡频率。

一般采用改变电容C 作频率量程切换,而调节R 作量程内的频率细调。

四、实验内容按图4-1连接实验电路,输出端接示波器,实验步骤如下:(1)接通土12V 电源,调节电位器R w ,使输出波形从无到有,从正弦波到出现失真。

描绘o U 的波形,记下临界起振、正弦波输出及失真情况下的R w 值,分析负反馈强、弱对起振条件及输出波形的影响。

(2)调节电位器R w ,使输出电压o U 幅值最大且不失真,用数字万用表分别测量输出电压o U 、反馈电压+U 和-U ,分析研究振荡的幅值条件。

(3)用示波器测量振荡率o f ,然后改变选频网络的电阻R ,观察记录振荡频率的变化情况,并与理论值进行比较,将结果记录表4-1。

高频电容三点式正弦波振荡器课程设计报告

高频电容三点式正弦波振荡器课程设计报告

目录摘要. (I)1绪论 (1)2.1反馈振荡器的原理 (2)2.1.1原理分析 (2)2.1.2平衡条件 (3)2.1.3起振条件 (3)2.1.4稳定条件 (4)2 .2电容三点式振荡器 (4)3设计思路及方案 (6)3.1总体思路 (6)3.2设计原理 (6)3.3单元设计 (7)3.3.1电容三点式振荡单元 (7)4电路仿真与实现 (10)4.1基于 NI.Multisim.V10.0.1软件的电路仿真 (10)5心得体会 (14)摘要在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。

高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。

高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。

振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。

所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。

本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。

并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。

使用实验要求的电源和频率计进行验证,实现了设计目标。

关键字:通信高频信号电容正弦波振荡器1绪论在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。

振荡器简单地说就是一个频率源,一般用在锁相环中能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。

详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。

一般分为正反馈和负阻型两种。

所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。

能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。

一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。

实验三、四 LC正弦波振荡器-混频器

实验三、四   LC正弦波振荡器-混频器

实验三 LC 正弦波振荡器一、实验目的1.掌握常用正弦波振荡器(如基本电感三点式振荡器、电容三点式振荡器、克拉泼振荡器、西勒振荡器)的基本工作原理及特点。

2.掌握正弦波振荡器的基本设计、分析和测试方法。

3.研究不同反馈系数、不同静态工作点对正弦波振荡器的起振、振荡幅度和振荡波形的影响。

观察外界因素变化对振荡幅度、振荡频率的影响。

4.掌握用Multisim 仿真各种类型的正弦波振荡器,测试振荡器的振荡频率。

二、预习要求1.复习LC 正弦波振荡器的工作原理,了解反馈元件、回路元件、和晶体管直流工作点对振荡器工作的影响,了解提高频率稳定度的措施。

2.根据测试电路的交流通路,估算振荡频率。

3.对照测试电原理图、熟悉电路中各元件的位置、作用,弄懂电路原理。

三、实验内容及步骤1.电感三点式正弦波振荡器的Multisim 仿真。

在Multisim 电路窗口中,创建如图3-1所示的电感反馈振荡电路,其中晶体管T1选用2N2222A 晶体管。

图3-1 电感三点式振荡电路理论计算谐振频率CL L f )2121+=(π=(1)利用Simulate菜单中的Analyses中的进行直流分析(2)示波器显示电感三点式反馈振荡器的输出的信号波形(3)数字频率计(4)改变C2,,如C2=10pF时,此时计算的理论振荡频率为:频率计显示附加题:若在三极管的发射极串接一1kHz的电位器(交流负反馈电阻),逐渐加大交流反馈量,用虚拟示波器观察输出波形的变化,记录变化情况并说明原因。

2、克拉泼电路的仿真在Multisim 电路窗口中,创建如图3-2所示的克拉泼振荡电路,其中晶体管T 1选用2N2222A 晶体管。

图3-2 教材图4-19克拉泼正弦波振荡器 理论计算谐振频率L C C C f )21421串串(π==(1)利用Simulate 菜单中的Analyses 中的进行直流分析(2)示波器显示教材图4-19克拉泼正弦波振荡器的输出的信号波形(3)用虚拟示波器—数字频率计测试电路的振荡频率。

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告姓名:学号:班级:一、实验目的1.掌握LC三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡电路设计及电参数计算。

2.掌握振荡回路Q 值对频率稳定度的影响。

3.掌握振荡器反馈系数不同时,静态工作电流IEQ对振荡器起振及振幅的影响。

二、实验电路图三、实验内容及步骤1. 利用EWB软件绘制出如图1.7的西勒振荡器实验电路。

2. 按图设置各个元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率,并做好记录3. 改变电容C 6的值,观察频率变化,并做好记录。

填入表1.3中。

4.改变电容C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。

填入表1.3中。

5.将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。

填入表1.4中。

四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图(2)交流通路图2、改变电容C 6的值时所测得的频率f的值如下:3、C4 0.033μF 0.33μF 0.01μFC6(pF)270 470 670 270 470 670 270 470 670F(Hz)494853.5 403746.8 372023.8 32756.8 32688.2 32814.4 486357.7 420875.4 373357.2(1)、当C4=0.033uF时:C6=270pF时,f=1/T=1000000/2.0208=494853.5HZC6=470pF 时,f=1/T=1000000/2.4768=403746.8HZC6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ(2)、当C4=0.33uF时:C6=270pF时,f=1/T=1000000/30.5280=32756.8HC6=470uF时,f=1/T=1000000/30.5921=32688.2HZC6=670uF时,f=1/T=1000000/30.4744=32814.4HZ(3)、C4=0.01时:当C6=270uF时,f=1/T=1000000/2.0561=486357.7HZ当C6=470uF时,f=1/T=1000000/2.3760=420875.4HZ当C6=670uF时,f=1/T=1000000/2.6784=373357.2HZ2、将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)50 40 30 20 10 0F(HZ)403746.8 416666.7 420875.4 425170.1 422582.8 529553.3 (1)、当Rp=50k时,f=1/T=1000000/2.4768=403746.8HZ(2)、当Rp=40k时,f=1/T=1000000/2.4000=416666.7HZ(3)、当Rp=30k时,f=1/T=1000000/2.3760=420875.4HZ(4)、当Rp=20k时,f=1/T=1000000/2.3520=425170.1HZ(5)、当Rp=10k时,f=1/T=1000000/2.3664=422582.8HZ(6)、当Rp=0k时,f=1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当C4较大(既为0.33PF)时,不管C6如何变化,电路所输出的波形的频率比较稳定,而且没有失真。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常用的电子电路,用于产生稳定的正弦波信号。

本文将从原理、电路设计和调试三个方面对电容三点式正弦波振荡器进行浅析。

一、原理电容三点式正弦波振荡器的原理是利用RC电路的充放电过程产生正弦波信号。

其电路由一个放大器、两个电容和四个电阻组成。

二、电路设计1. 放大器设计放大器部分通常采用运放作为放大器,通过选择合适的运放电路配置来实现放大器的设计。

根据具体要求选择合适的运放型号以及工作电压,同时要注意运放的输入偏置电流、增益带宽乘积等参数。

2. 电容配置电容是决定振荡频率的关键元件。

在电容三点式正弦波振荡器中,通常采用串联或并联电容的方式来决定振荡频率。

如果选择串联电容,需要注意电容的耐压和容值;如果选择并联电容,要注意电容的阻抗和容值。

3. 电阻选择电阻是为了限制电流流过电容,并且影响振荡的稳定性。

根据具体要求来选择合适的电阻值,通常在几千欧姆至几十千欧姆之间。

三、调试电容三点式正弦波振荡器的调试主要包括调整电容和电阻的数值以及运放的工作点等。

具体步骤如下:1. 先选择一个合适的放大器供电电压,一般选择正负12V或正负15V。

2. 根据要求选择合适的运放型号,放入电路中。

3. 根据振荡频率的要求选择合适的电容,并在电路中连接好。

4. 根据需要选择合适的电阻,并与电容一起连接在电路中。

5. 连接好电路后,接入电源进行调试。

可以通过示波器观察输出波形,根据需要调整电阻和电容的数值,直到得到满意的正弦波输出。

总结:电容三点式正弦波振荡器是一种常用的电子电路,通过RC电路的充放电过程产生正弦波信号。

在设计和调试过程中需要注意选择合适的放大器、电容和电阻,并根据实际要求进行调整,以获得稳定的正弦波输出。

实验报告四.改进式电容三点式正弦波振荡器软件仿真

实验报告四.改进式电容三点式正弦波振荡器软件仿真

实验报告四改进型电容三点式正弦波振荡器仿真班级:通信162班姓名:曾华兆学号:6110116078 实验日期:2018.12.3一、实验目的1、掌握改进型电容三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、熟悉克拉泼振荡器与西勒振荡器模块各元件及其作用。

三、实验原理与分析1.克拉泼振荡器仿真克拉泼振荡器仿真电路如图1所示。

与普通电容三点式振荡电路比较,仅是在谐振回路电感支路中串接了一个电容C4.由于C4<<C2,C4<<C3,C2、C3可以忽略不计,谐振回路的总电容C≈C4,因此振荡器的振荡频率f可近似为f0≈12π√LC4由此可见,比晶体管极间电容大很多的C2、C3对振荡频率f0的影响显著减小,故与C2联的晶体管极间电容对振荡频率f0的影响也就很小,振荡频率的稳定度也就提高。

但接入C4后,晶体管的等效负载减小,放大器的放大倍数下降,振荡器输出信号幅值减小,且C4愈小,放大倍数愈小。

若C4过小,振荡器将因不满足振幅起振条件而停止振荡。

该振荡电路仅适用于频率调节范围很小的振荡器。

运行仿真,用频率计检测的振荡器输出信号频率如图2所示,用示波器检测的振荡器输出信号电压波形如图3所示,用瞬态分析功能检测的振荡器起振瞬间的输出信号电压波形如图4所示。

依据图1所示的电路参数,理论估算振荡频率约为15.92MHz,仿真检测频率约为16.658Mhz。

这是由于理论估算忽略了晶体管极间电容和C2、C3对振荡频率的影响以及测量误差所致。

另外,为了满足高频振荡需要、减小误差,可双击品体管电路符号,单击其数值下拉菜单中的编辑模型选项,查看晶体管的电路模型技术参数,选择极间电容较小的管型。

图1图2图3图42.西勒振荡器仿真在图1所示的克拉泼振荡电路中,C4取值减小会导致放大器的放大倍数减小,为了改善这个问题,有西勒( Seiler)振荡器仿真电路如图5所示。

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计

浅析电容三点式正弦波振荡器的设计电容三点式正弦波振荡器是一种常见的电路设计,用于产生正弦波信号。

它由几个关键的元件组成,包括电容器、电阻和放大器。

在本文中,我们将浅析电容三点式正弦波振荡器的设计原理和关键要点。

一、电容三点式正弦波振荡器的基本原理电容三点式正弦波振荡器的基本原理是利用正反馈和负反馈的相互作用,使得电路中的电压和电流产生周期性的变化,从而产生正弦波信号。

它的基本电路图如下图所示:在这个电路中,电容C和电阻R1构成了反馈回路,而放大器的输出端与反馈回路连接,形成了一个反馈环。

当电路处于稳定工作状态时,输出端将会产生一个频率稳定的正弦波信号。

1. 选择合适的放大器放大器是电容三点式正弦波振荡器中的核心元件,它负责放大反馈回路中的信号,并使电路产生振荡。

常用的放大器类型包括晶体管放大器、运放放大器等。

在选择放大器时,需要考虑其增益、频率响应和功率等参数,以确保电路的稳定工作。

2. 确定反馈回路的参数反馈回路中的电容和电阻参数直接影响着电路的振荡频率和稳定性。

通常情况下,我们可以根据振荡频率的需求来选择合适的电容和电阻数值。

也需要注意电容的漏电流和电阻的温度漂移等因素,以确保电路性能的稳定性。

3. 考虑电源和地的影响电容三点式正弦波振荡器的稳定性也受到电源和地的影响。

在设计电路时,需要充分考虑电源的稳定性和地线的布局,以减小电路受到干扰的可能性。

4. 进行仿真和调试在进行实际的电路设计和制作之前,通常会先进行仿真和调试。

通过仿真软件,可以快速地验证电路设计的正确性,并进行参数调整和优化。

在实际制作电路时,也需要进行严密的调试工作,以确保电路能够正常工作。

电容三点式正弦波振荡器在电子领域有着广泛的应用。

它主要用于产生频率稳定的正弦波信号,可以作为测量仪器的驱动源,也可以用于音频信号发生器、通信设备、调频电路等领域。

在实际应用中,电容三点式正弦波振荡器的性能稳定性和频率稳定性至关重要。

对于其设计和制作来说,需要特别注意电路的参数选择、电源和地的布局等关键要点,以确保电路的性能和可靠性。

三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据

三点式正弦波振荡器实验数据引言三点式正弦波振荡器实验是电子工程学中的一项基础实验,用于研究电路中的振荡现象。

本文将详细介绍该实验的原理、实验装置、实验过程和实验数据分析,并对实验结果进行深入探讨。

一、实验原理正弦波振荡器是一种能够产生稳定频率和振幅的信号源。

它由三个主要部分组成:放大器、反馈网络和频率稳定电路。

1.1 放大器在正弦波振荡器中,放大器起到放大信号的作用。

放大器通常采用共射放大器或共基放大器的形式,工作在其放大区间。

1.2 反馈网络反馈网络是正弦波振荡器中的关键组成部分,它将部分输出信号反馈到放大器的输入端,从而形成正反馈回路,使得系统产生振荡。

1.3 频率稳定电路频率稳定电路用于保持振荡器的输出频率稳定。

最常见的频率稳定电路是RC网络,通过调节电容或电阻的值可以改变振荡器的频率。

二、实验装置本实验使用的实验装置主要包括示波器、信号发生器和三点式正弦波振荡器电路。

2.1 示波器示波器用于显示电路的波形,是本实验中不可缺少的仪器之一。

示波器可以测量电压和时间的关系,并以波形的形式显示出来。

2.2 信号发生器信号发生器用于产生稳定的正弦波信号,作为振荡器电路的输入信号。

信号发生器具有可调节频率和振幅的功能,可以为实验提供所需的输入信号。

2.3 三点式正弦波振荡器电路三点式正弦波振荡器电路是本实验的核心部分。

它由放大器、反馈网络和频率稳定电路组成,可以产生稳定的正弦波信号。

三、实验过程3.1 实验准备首先,将示波器和信号发生器连接起来,并根据实验要求设置信号发生器的输出频率和振幅。

3.2 搭建电路根据实验指导书提供的电路图,搭建三点式正弦波振荡器电路。

确保电路连接正确并牢固。

3.3 调节电路打开示波器和信号发生器,逐步调节电路,使得示波器上显示出稳定的正弦波波形。

根据实验指导书中给出的方法,调节放大器、反馈网络和频率稳定电路的参数。

3.4 记录实验数据在调节电路的过程中,用示波器测量和记录各部分电路的电压和频率值。

实验4.4 LC正弦波振荡器

实验4.4  LC正弦波振荡器

实验4.4 LC 正弦波振荡器一、实验目的1、 掌握晶体管(振荡管)工作状态、反馈系数的大小对振荡幅度的影响。

2、掌握改进型电容三点式正弦波振荡器的工作原理及振荡性能的测量方法。

3、研究外界条件变化对振荡频率稳定度的影响。

4、比较LC 振荡器和晶体振荡器频率稳定度,分析影响振荡频率稳定的原因。

二、实验设备及材料高频电子实验箱、频率计、双踪示波器、数字万用表、调试工具。

三、实验原理正弦波振荡器是指振荡波形接近理想正弦波的振荡器。

产生正弦信号的振荡电路形式很多,有 RC 、LC 和晶体振荡器三种形式。

实验采用晶体管LC 三端式振荡器。

LC 三端式振荡器的基本电路如图(4.4.1)所示:根据相位平衡条件,图4.4.1三端式振荡器交流等效电路的三个电抗,X 1、X 2必须为同性质的电抗,X 3必须为异性质的电抗,且应满足下列关系式:X 3 = -(X 1+X 2) (4-4-1)式(4-4-1)为LC 三端式振荡器相位平衡条件的判断准则。

若X 1和X 2均为容抗,X 3为感抗,则为电容三端式振荡电路;若X 1和X 2均为感抗,X 3为容抗,则为电感三端式振荡器。

1、电容三端式振荡器的工作原理共基电容三端式振荡器的基本电路如图4.4.2所示。

图中C 3为耦合电容,与发射极连接的两个电抗元件为同性质的容抗元件C 1和C 2,与基极连接的为两个异性质的电抗元件C 2和L ,根据判别准则,该电路满足相位条件。

要产生正弦振荡,还须满足振幅起振条件,即:A U ·F >1 (4-4-2)图4.4.1 三端式振荡器的交流等效电路171式(4-4-2)中,A U 为电路刚起振时,振荡管工作状态为小信号时的电压增益;F 为振荡器的反馈系数。

设y rb ≈0、y ob ≈0,画出y 参数等效电路,如图4.4.3所示。

图中G O 为振荡回路的损耗电导,G L 为负载电导。

图4.4.3 共基组态振荡器简化Y 参数等效电路由图4.4.3可求出小信号电压增益A O 和反馈系数F 分别为Y y V V A fb i-== 00 1120jx Z Z V V Ff+== 12311jx Z jx G Y p +++='2211221111wC x wC x jx g Z ib -=-=+=2'203C C C G G G Lx i Lp +=+==ω图4.4.2 共基组态的“考华兹”振荡器经运算整理得y -Z Z fb12200jNM jx Y y F A T fb +=+∙-=∙= 321321312111,x x x x x x G g N g x x G x x g G M p ib ib p ib p ---∙=+++= 当忽略y fb 的相移时,根据自激条件应是N =0 及 122>=+=My NM y T fb fb (4-4-3)由N =0,可求出起振时的振荡频率,即011321321=---∙x x x x x x G g p ib 则X 1X 2X 3g ib G p =X 1+X 2+X 3将X 1X 2X 3的表示式代入上式,得:'21121C C G g LC f p ib g +=π忽略晶体管参数的影响,得到振荡频率近似为LCf g π21=(4-4-4)式(4-4-4)中,C为振荡回路的总电容 21'21C C C C C +=由式(4-4-3)求M ,当'2C g ib ω<<时'222111C j g jx g Z ib ib ω+=+=则反馈系数可近似表示为:'2'21112'211201C C C C C jwC jwC jwC jx Z Z V VF f =+=+≈+== (4-4-5)则 ib p ib p g x x G x x g G M 3121+++=p ib p ib G C C C g C C C x x G x x g 1'21'2112131)1()1(+++=+++=p ib G Fg F 1+∙=由式(4-4-3)得到满足起振振幅条件的电路参数为:173p ib fb G Fg F Y 1+∙> (4-4-6) 式(4-4-6)是满足起振条件所需要的晶体管最小正向传输导纳的值。

正弦波振荡器实验内容和实验步骤

正弦波振荡器实验内容和实验步骤

正弦波振荡器实验内容和实验步骤下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!正弦波振荡器实验详解引言正弦波振荡器是电子电路中常见的一种基本元件,用于产生频率稳定的正弦波信号。

电容三点式正弦波振荡器的设计

电容三点式正弦波振荡器的设计

2011~2012 学年第二学期《高频电子技术》课程设计报告题目:电容三点式正弦波振荡器的设计专业:电子信息工程班级:10信息1班姓名:王高登何庆林刘慧平指导教师:**电气工程系2012年12月20日任务书摘要在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。

高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。

高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。

振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。

所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。

本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。

并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。

使用实验要求的电源和频率计进行验证,实现了设计目标。

关键字:高频信号,电容,正弦波,振荡器目录第一章绪论----------------------------------------------------------------5第二章电路设计及原理分析--------------------------------------------------62.1 电路的设计---------------------------------------------------------62.2 电路原理及分析-----------------------------------------------------62.3 改进电容式三点电路-------------------------------------------------9 第三章电路元件和参数的确定-----------------------------------------------12 第四章实验仿真及结果误差分析---------------------------------------------13 4.1 电路原理图--------------------------------------------------------13 4.2 实验仿真----------------------------------------------------------13 4.3 实验结果及误差分析------------------------------------------------14 第五章结束语-------------------------------------------------------------15参考文献------------------------------------------------------------------16 附录:元器件列表----------------------------------------------------------17第一章绪论在模拟电子电路中,常常需要各种各样波形的信号,如正弦波,矩形波,三角波和锯齿波等。

规范三点式LC正弦波振荡器

规范三点式LC正弦波振荡器

(规范)三点式LC正弦波振荡器三点式LC正弦波振荡器高频电子线路课程设计报告设计题目:三点式LC正弦波振荡器系部:学生姓名:20__年月“高频电子线路”课程设计任务书1.时间:20__年06月6日~20__年06月10日2.课程设计单位:学校3.课程设计目的:掌握“高频电子线路”课程的基本概念、基本原理,加深对高频电子系统的工作原理和电路调试方法的理解。

4.课程设计任务:①了解电路图绘制软件的相关常识及其特点;②熟悉电路图绘制软件的使用方法;③理解高频电子系统的布局布线规则;④作好实习笔记,对自己所发现的疑难问题及时请教解决;⑤联系自己专业知识,熟练设计高频电子线路的,总结自己的心得体会;⑥参考相关的的书籍、资料,认真完成实训报告。

⑦作好笔记,对自己所发现的疑难问题及时请教解决;⑧联系自己所学知识,总结本次设计经验;⑨认真完成课程设计报告。

高频课程设计报告振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。

凡是可以完成这一目的的装置都可以作为振荡器。

一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。

放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。

正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。

选频网络则只允许某个特定频率f0能通过,使振荡器产生单一频率的输出。

振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压Uf和输入电压Ui要相等,这是振幅平衡条件。

二是Uf和Ui必须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。

一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。

振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。

功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 三点式正弦波振荡器
一、实验目的
1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容
1. 熟悉振荡器模块各元件及其作用。

2. 进行LC 振荡器波段工作研究。

3. 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4. 测试LC 振荡器的频率稳定度。

三、基本原理
图6-1 正弦波振荡器(4.5MHz )
将开关S2的1拨上2拨下, S1全部断开,由晶体管Q 3和C 13、C 20、C 10、CCI 、L 2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)
(21
1020CCI C L f +=
π
振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数: F=
12.0470
56
2013≈=C C
振荡器输出通过耦合电容C 3(10P )加到由Q 2组成的射极跟随器的输入端,因C 3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号Q 1调谐放大,再经变压器耦合从J1输出。

四、实验步骤
1. 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2. 研究振荡器静态工作点对振荡幅度的影响。

1) 将开关S2的1拨上,S1全拨下,构成LC 振荡器。

2) 改变上偏置电位器R A1,记下发射极电流I eo (=
10
R V e
),并用示波器测量对应点的振荡幅度V P-P (峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。

分析输出振荡电压和振荡管静态工作点的关系,分析思路:静态电流I CQ 会影响晶体管跨导gm ,而放大倍数和gm 是有关系的。

在饱和状态下(I CQ 过大),管子电压增盖A V 会下降,一般取I CQ =(1~5mA )为宜。

3. 分别用5000p 和100p 的电容并联在C20两端,改变反馈系数,观察振荡器输出电压的大小。

(选做) 1) 计算反馈系数
2) 用示波器记下振荡幅度值 3) 分析原因
五、实验报告要求
1.记录实验箱序号
2.分析静态工作点、反馈系数F 对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。

3.计算实验电路的振荡频率f o ,并与实测结果比较。

六、实验仪器
1.高频实验箱 1台 2.双踪示波器 1台 3.万用表 1块。

相关文档
最新文档