科氏质量流量计
科氏质量流量计的介绍教案资料
![科氏质量流量计的介绍教案资料](https://img.taocdn.com/s3/m/2eb6902aa517866fb84ae45c3b3567ec102ddcaa.png)
传感器推荐安装方向
液体
气体
浆液
同样可用于液体或气体 , 或者当要求自排空时.
流量管朝下 流量管朝上
对 于 小 口 径 ELITE 传 感 器 , 当 用 于 浆 液 时 也推荐流量管朝上.
旗式
将 液 体 或 浆 液 向 上 打 (如 图 示 ). 将气体向下打.
传感器管道安装的建议
流向
下游阀 弯头 • 避 免 扭 曲 /弯 曲 应 力 • 下游阀用于调零 • 弯头避免冷凝水进入接线盒 • 传 感 器和 变 送 器 之 间最 长 电 缆 限制 1000 ft (300 m )
DN40
DN25,DN80
准确度等级
0.1
0.15,0.2,0.5,1.0
0.5
重复性
0.1%
0.075%,0.1%,0.25% 0.3% ,o.5%
密度(g/cm3)
±0.001
±0.001
±0.001
最高工作压力( 10 MPa)
4,6,10,25
34.5
接液材质
316L
304,304L,316, 316L,哈氏合金
科氏质量流量计的介绍
1.基本介绍-分类
1、间接式质量流量计 (1) 压力温度补偿式差压流量计 (2) 压力温度补偿式体积流量计 2、直接式质量流量计 (1) 热式质量流量计(TMF)
a、 托马斯流量计 b、 边界层流量计 c、 旁路管流量计 (2) 冲量式质量流量计(冲板) (3) 差压式质量流量计(孔板+定流量泵) (4) 双涡轮式质量流量计 (5) 科里奥利式
1.基本介绍-为什么要测量质量流量
温度/ 压1 体积 1
质量 2 体积 2
1.基本介绍-直接测量
科氏力质量流量计测量原理
![科氏力质量流量计测量原理](https://img.taocdn.com/s3/m/8e882e69326c1eb91a37f111f18583d048640f76.png)
科氏力质量流量计测量原理
科氏力质量流量计也叫弹性体科氏力质量流量计,是一种普通用于测量工业流体的流量仪表。
它可以测量几乎所有类型的流体,包括粘性流体和高温高压流体。
它的原理是利用流量分散在金属弹性体上,引起位移,转化为传感器反馈的电信号,然后通过计算机出来流量值。
测量原理是:利用一块科氏体通过流体流量在表面产生的剪切力,通过科氏体的抗剪力的变化引起的变形,以及位移传感器的变化,从而来测量流量大小。
流量的变化不会影响科氏体的变形量,只要输入压力变化,就能测量出流量的大小。
科氏力质量流量计的优点是精度高,受环境温度变化的影响小,实际应用中通常温度范围在-40到+200度之间。
另外,它不但可以测量粘性流体,而且具有良好的耐磨性能,不容易出现故障,使用周期长。
2024年科氏质量流量计市场发展现状
![2024年科氏质量流量计市场发展现状](https://img.taocdn.com/s3/m/13c09dcfbdeb19e8b8f67c1cfad6195f312be831.png)
2024年科氏质量流量计市场发展现状1. 简介科氏质量流量计是一种广泛应用于流体工程领域的测量仪器,用于测量在单位时间内通过管道的质量流量。
它通过测量流体通过管道时导致的温度差异,以及与流体流速成正比的热散失进行测量。
科氏质量流量计具有高精度、宽测量范围和不受流体状态变化影响等特点,在工业、石油化工、医药、食品等领域得到广泛应用。
2. 市场规模根据市场调研数据,科氏质量流量计市场在过去几年中保持了稳定增长。
全球科氏质量流量计市场规模从2016年的XX亿美元增长到2020年的XX亿美元,复合年增长率约为XX%。
预计到2025年,市场规模将进一步扩大,达到XX亿美元。
3. 发展动态3.1 技术创新科氏质量流量计市场的发展受到技术创新的推动。
近年来,随着纳米技术、物联网和人工智能等技术的迅速发展,科氏质量流量计的精度和稳定性得到了显著提升。
新型材料的应用和传感器技术的改进,使得科氏质量流量计在高温、高压、腐蚀等恶劣环境中具有更好的适应性,推动了市场需求的增长。
3.2 应用领域扩展科氏质量流量计的应用领域也在不断扩展。
传统的工业和石油化工行业仍然是市场的主要需求来源,但医药、化妆品、食品等行业对精度和卫生要求较高的领域也开始广泛采用科氏质量流量计。
随着环保意识的提高,水处理、废水处理等行业对流量计的需求也在增加。
4. 市场竞争科氏质量流量计市场竞争激烈,主要厂商包括Emerson Electric、Endress+Hauser、Siemens、ABB等。
这些厂商通过不断推出新产品和提供完善的售后服务来提高市场份额。
此外,市场还存在一些地区性的厂商,提供定制化产品和本地化服务,与大型厂商形成一定的竞争。
5. 市场前景科氏质量流量计市场前景广阔。
随着工业自动化水平的提高、环保要求的加强以及新兴领域的发展,对科氏质量流量计的需求将持续增长。
预计未来几年市场规模将继续扩大,同时竞争也将更加激烈。
技术创新和产品性能的提升是厂商获取市场份额的关键。
科氏质量流量计介绍
![科氏质量流量计介绍](https://img.taocdn.com/s3/m/10d5bf7730126edb6f1aff00bed5b9f3f80f7273.png)
科氏质量流量计介绍科氏质量流量计是一种用于精确测量流体质量流量的仪器。
相比于传统的体积流量计,科氏质量流量计通过测量流体的质量变化来计算流体的质量流量,具有更高的准确性和稳定性。
科氏质量流量计广泛应用于工业生产过程中,特别是对流体质量流量进行控制和计量的场合。
科氏质量流量计的工作原理是基于科氏效应。
当流体通过科氏质量流量计的传感器装置时,会在装置中产生震荡。
这种震荡会改变装置上两个振动管的共振频率。
根据科氏质量流量计的设计和构造,探测系统可以观察到这种频率变化,并将其转化为流体的质量流量值。
科氏质量流量计的结构通常由两个装置组成:传感器装置和转换装置。
传感器装置由两个平行排列的U型震荡管组成。
流体通过这两个管道之间的空间,使得震荡管在频率上产生变化。
传感器装置可以灵活地安装在各种类型的管道上,便于测量不同流体的质量流量。
转换装置通常由放大器、滤波器和计算器等元件组成。
它主要负责将传感器装置的输出信号进行处理,并将其转换为质量流量值显示或输出给控制系统。
科氏质量流量计的优点之一是其高度准确的测量性能。
传统的体积流量计通常受到温度、压力和流体变化等因素的影响,从而导致测量结果的不准确。
科氏质量流量计则通过直接测量流体的质量变化,可以准确地测量流体的质量流量,无论流体的密度和粘度如何改变。
此外,科氏质量流量计还具有快速响应的特点。
由于其结构简单、体积小,它可以迅速适应流体流量的变化,实现实时的质量流量测量和控制。
此外,科氏质量流量计还具有良好的可靠性和耐久性。
传感器装置采用高强度的材料制造,可以耐受高流速和高压力的环境。
其内部没有移动部件,因此不易磨损或损坏。
这使得科氏质量流量计具有长寿命和高可靠性的特点,可以在恶劣的工作条件下稳定运行。
总的来说,科氏质量流量计是一种可以准确、快速地测量流体质量流量的仪器。
它具有高度准确的测量性能、快速响应、广泛的适用性和良好的可靠性等特点。
随着工业自动化水平的提高,科氏质量流量计在工业生产流程中的应用也越来越广泛。
科氏力质量流量计的原理及应用
![科氏力质量流量计的原理及应用](https://img.taocdn.com/s3/m/6ddaa54a03768e9951e79b89680203d8cf2f6a40.png)
科氏力质量流量计的原理及应用科氏力质量流量计简介科氏力质量流量计是一款高精度、高稳定性的流量计,它采用科氏效应,通过测量流体的动能和热能来计算流体质量流量,因此不需要校正密度等参数,适用于各种流体介质的计量。
科氏力质量流量计目前被广泛应用于石油、化工、电力、冶金、轻工、制药、食品、航空航天等行业。
科氏力质量流量计的原理科氏力质量流量计的核心原理是科氏效应,也称为焦耳-汤姆孙效应,它是一种在流体中产生的涡旋运动,将流体的动能和热能转换成压力。
科氏力质量流量计通过在流体管道内安装一个成对的科氏螺旋体,当流体通过时,科氏螺旋体会将流体分割成成对的螺旋流,由于科氏效应的作用,螺旋流会在周向生成压力差。
与此同时,流体的动能和热能被转换成压力,同时在叶轮上形成了一个旋转力矩。
流体质量流量可以通过爆炸式减压阀展开的压力波信号预测,在管道上安装的传感器可以测量叶轮的旋转速度,由此可以计算出流体的质量流量。
科氏力质量流量计的优点1.高精度性。
科氏力质量流量计可以高精度地测量流体的质量流量,其在低流速和高流速时都具有高稳定性和精度。
2.使用广泛。
科氏力质量流量计可以用于各种流体介质的计量,无需校正密度等参数,适用于各种流场形式。
3.自清洁性能。
科氏力质量流量计采用特殊的设计,使其具有自清洁性能,能够避免积存。
4.处理能力强。
科氏力质量流量计能够检测多种流体介质、高温、高压、酸性和碱性等环境下的流量,具有很好的适应性和处理能力。
5.维护简单。
科氏力质量流量计无动态零部件,无需要维护的对象,这减少了维护成本和时间。
科氏力质量流量计的应用1.石油和化工工业。
科氏力质量流量计对于石油和化工工业中的油、气等介质流量的测量非常有优势,能够大幅提高生产效率和产品质量。
2.电力、冶金、轻工、制药、食品行业。
科氏力质量流量计也适用于电力、冶金、轻工、制药、食品等行业应用,能够适应流量测量的多种应用场景。
3.研究领域。
科氏力质量流量计也被广泛应用于研究领域,例如地质固体流、气动力学、空气动力学等等。
科氏流量计的种类
![科氏流量计的种类](https://img.taocdn.com/s3/m/d0b68bf9f021dd36a32d7375a417866fb84ac089.png)
科氏流量计的种类
科氏流量计的种类如下:
1. 热式科氏质量流量计:这种流量计通过加热元件和感应元件的不同温度变化来测量气体流量。
其优点是测量范围广、适应性强,普遍应用于气态化工流程中。
2. 金属管式科氏质量流量计:这种流量计利用一个弯曲的金属管,在中间设置温度计和发热器,通过测量温差来计算气体的质量流量。
这种流量计在高温、高压环境下依旧具有较好的测量精度。
3. 其他种类:包括重力式质量流量计、超声波质量流量计、磁滞质量流量计、涡街质量流量计、电磁式质量流量计等。
总的来说,科氏流量计的应用十分广泛,且根据具体的使用环境,可选择不同种类的科氏流量计。
科氏质量流量计信号处理方法探究
![科氏质量流量计信号处理方法探究](https://img.taocdn.com/s3/m/0f5abbbe18e8b8f67c1cfad6195f312b3069eb60.png)
DCWTechnology Study技术研究17数字通信世界2024.02科氏质量流量计是一种利用科里奥利效应原理直接测量管道流体质量流量的仪器,由传感器与变送器两部分组成。
其中,传感器通过法兰连接到管道,用于检测流体介质信号;变送器主要用于驱动传感器振动,对传感器输出的信号进行转换和处理,并将检测出的质量流量信号传到上位机控制系统中。
目前,科氏质量流量计被广泛应用于石油化工生产装置中,可以满足对流体质量流量的测量要求。
随着社会发展和人们对流量测量精度需求的提高,对科氏质量流量计数字信号处理方法也提出了更高的要求。
对于科氏质量流量计,相位差与质量流量存在比例关系。
通过测量相位差的大小,可以计算出流体的质量流量。
当前科氏质量流量计的信号处理方法主要针对相位差的估计方法,常用频谱分析法[1]、相关法[2]和时域法[3]对相位差进行分析。
采用合适的方法可以减小对质量流量的测量误差。
本文将对DFT 估计法、相关法和希尔伯特变换法的原理及发展过程进行介绍。
1 DFT相位差估计法DFT 相位差估计法是一种传统且高效的数字信号处理方法,能满足对相位差计算的基本要求。
该方法首先对两路信号进行离散傅里叶变换,得到在频域上的幅度和相位信息,然后利用频谱特性计算相位差。
DFT 算法能较好地消除谐波、噪音等对系统性能的干扰,能在较低的信噪比情况下对系统进行频率、相位的检测。
DFT 相位差估计法在对非整周期信号进行计算时会产生频谱泄漏现象,导致相位差估计结果的准确性受到影响。
另外,如果信号存在噪声或者频率偏移较大,会在频域上出现额外的能量分布,使信号频率和相位计算结果包含较大误差。
鉴于DFT 在计算非整周期信号时会产生频谱泄露现象,并在相位计算中引起严重误差的问题,美国和国内的一些研究人员建议使用频率扫描[4]的方法来实现DFT 的整周期截断。
但由于该算法对硬件资源的要求科氏质量流量计信号处理方法探究徐 媛,代显智(西华师范大学电子信息工程学院,四川 南充 637009)摘要:科氏质量流量计因能实现高精度的直接质量流量测量,成为目前国内外发展最为迅速的流量计之一。
科氏力质量流量计测量管形状
![科氏力质量流量计测量管形状](https://img.taocdn.com/s3/m/e9a3a033178884868762caaedd3383c4ba4cb454.png)
科氏力质量流量计测量管形状
科氏力质量流量计是一种常用的流量测量仪表,它利用科氏力原理来测量流体的质量流量。
在科氏力质量流量计中,测量管的形状对于测量精度和稳定性起着至关重要的作用。
测量管的形状对流体的流动特性有着直接的影响。
一般来说,科氏力质量流量计的测量管是呈现一定的弯曲形状,这种形状有助于使流体在管内形成旋涡,从而增加科氏力的作用范围,提高测量的精度和稳定性。
此外,测量管的形状还需考虑流体的物理性质和流动状态。
例如,对于高粘度的流体,测量管的形状需要设计成能够减小阻力、降低流体流动的能量损失,从而提高测量的准确性。
另外,测量管的形状还需考虑流体的流速范围。
不同的流速范围需要不同的测量管形状来适应,以确保在不同流速下都能够保持测量的准确性和稳定性。
总之,科氏力质量流量计的测量管形状对于测量精度和稳定性
有着重要的影响。
合理的测量管形状设计能够有效地提高测量的准确性和稳定性,从而更好地满足工业生产对流量测量的需求。
2024年科氏质量流量计市场分析现状
![2024年科氏质量流量计市场分析现状](https://img.taocdn.com/s3/m/5700ae41773231126edb6f1aff00bed5b8f37346.png)
2024年科氏质量流量计市场分析现状引言科氏质量流量计是一种常用于测量气体或液体质量流量的传感器。
它通过测量流体通过管道的动量变化来确定流量。
在过去几十年中,科氏质量流量计在工业领域得到了广泛应用,并逐渐取代了传统的体积流量计。
本文将对科氏质量流量计的市场分析现状进行探讨。
市场规模和趋势科氏质量流量计市场从2015年至今呈现出稳步增长的态势。
根据市场研究公司的数据,2019年全球科氏质量流量计市场规模超过10亿美元。
预计到2025年,市场规模将达到15亿美元以上。
市场增长的主要驱动力是工业领域对流量测量的需求不断增加。
随着工业自动化水平的提高,流量测量在生产过程中的重要性不断凸显。
科氏质量流量计作为一种准确性高、稳定性好的流量测量装置,因其优越的性能而受到广泛关注和应用。
另外,环境监测市场对科氏质量流量计的需求也在不断增加。
科氏质量流量计能够精确测量气体或液体的流量,因此在环境监测领域具有广阔的应用前景。
随着环境保护和污染治理的重视程度不断提高,科氏质量流量计市场前景更加乐观。
市场竞争格局目前,全球科氏质量流量计市场上主要的竞争厂商有Emerson Electric、Siemens、Yokogawa Electric等。
这些厂商在科氏质量流量计领域拥有较强的技术实力和市场份额。
竞争格局主要体现在技术创新和产品性能上。
为了在市场上占据优势,各家厂商不断加大对科研技术的投入,推出更加高效、精确的科氏质量流量计产品。
此外,服务也是竞争的重要方面,厂商通过提供技术支持、维护保养等服务,提高客户满意度和忠诚度。
另外,市场准入门槛较高,新进厂商进入市场较为困难。
因为科氏质量流量计的研发和生产需要掌握复杂的流体力学和计算机控制技术,而且市场需求相对稳定,新进厂商很难与已有厂商竞争。
市场应用领域科氏质量流量计主要应用于石油化工、制药、食品饮料、水处理等领域。
在石油化工领域,科氏质量流量计被广泛应用于油气管道、炼油厂和化工生产线等场景,用于监测和控制油气、化工液体的流量。
科氏质量流量计原理
![科氏质量流量计原理](https://img.taocdn.com/s3/m/4501e93ef56527d3240c844769eae009591ba268.png)
科氏质量流量计原理
科氏质量流量计是一种用于测量流体质量流量的仪器,它是基于科氏效应原理
工作的。
科氏质量流量计通过测量流体通过管道时的压力差来确定流体的质量流量,它可以用于气体和液体的测量,并且在工业领域有着广泛的应用。
科氏效应是指在流体通过弯曲管道时,流体中的质量会受到离心力的作用而产
生偏转,这种偏转会导致管道内部产生压力差。
科氏质量流量计利用这种压力差来测量流体的质量流量,其原理是基于质量守恒定律和动量守恒定律。
在科氏质量流量计中,流体首先通过一个弯曲管道,这会导致流体产生偏转并
产生压力差。
然后,流体通过一个测量装置,该装置可以测量流体通过时的压力差,并将其转换为质量流量的值。
最后,通过计算和校准,就可以得到准确的流体质量流量值。
科氏质量流量计的工作原理非常简单,但是其测量精度非常高。
它可以测量各
种类型的流体,包括腐蚀性流体、高温高压流体等,而且不受流体密度、粘度、温度等因素的影响。
因此,在化工、石油、冶金等领域都有着广泛的应用。
除此之外,科氏质量流量计还具有响应速度快、结构简单、维护成本低等优点。
它可以实现在线测量,并且可以与计算机、PLC等设备进行联网,实现自动化控
制和数据采集。
这些特点使得科氏质量流量计成为工业自动化领域中不可或缺的重要仪器。
总之,科氏质量流量计是一种基于科氏效应原理的流体质量流量测量仪器,其
原理简单而精准,具有广泛的应用前景和发展空间。
随着工业自动化水平的不断提高,科氏质量流量计必将在工业生产中发挥越来越重要的作用。
科氏力质量流量计的工作原理和典型结构特性
![科氏力质量流量计的工作原理和典型结构特性](https://img.taocdn.com/s3/m/22f687d3f18583d048645986.png)
科氏力质量流量计的工作原理和典型结构特性中国计量研究院流量室李旭一、 工作原理如图一所示,截取一根支管,流体在其内以速度✞从✌流向 ,将此管置于以角速度▫旋转的系统中。
设旋转轴为✠,与管的交点为 ,由于管内流体质点在轴向以速度✞、在径向以角速度▫运动,此时流体质点受到一个切向科氏力☞♍。
这个力作用在测量管上,在 点两边方向相反,大小相同,为:↗☞♍ = ▫✞↗❍因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。
这就是科里奥利质量流量计的基本原理。
图1 科里奥利力的形成图2 早期科氏力质量流量计二、 结构早期设计的科氏力质量流量计的结构如图 所示。
将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。
这种流量计只是在试验室中进行了试制。
在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。
以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。
由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。
测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。
我们常见的测量管的形式有以下几种: 形测量管、✞形测量管、双☺形测量管、 形测量管、单直管形测量管、双直管形测量管、 形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。
. 形测量管质量流量计如图 所示,这种流量计的测量系统由两根平行的 形测量管、驱动器和传感器组成。
管的两端固定,管的中心部位装有驱动器,使管子振动。
在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。
质量流量与这两点测得的振荡频率的相位差成正比。
图 形质量流量计结构这种质量流量计的工作原理及工作过程,如图 所示。
图 无流动时位移传感器的输出当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。
科氏质量流量计原理
![科氏质量流量计原理](https://img.taocdn.com/s3/m/275a2335f02d2af90242a8956bec0975f465a4b1.png)
科氏质量流量计基本原理科氏质量流量计(Coriolis mass flowmeter)是一种通过测量流体的质量流量来确定流体体积流量的仪器。
它利用了科氏力的作用原理,能够实时测量出流体的质量流量并提供高精度的测量结果。
科氏质量流量计基本原理如下:1. 流体介质进入流量计流体介质通过流量计的进口进入流量计,流体流经振动管。
2. 振动管振动流体进入振动管后,振动管开始振动。
振动管通常是由一对共面的弯曲弹性管组成的。
这两个弯曲弹性管通过支撑结构固定在流量计中,使得它们可以在一个特定的频率和相位差下振动。
振动过程中,二者之间形成了相位差,且相对位移存在差异。
3. 科氏力产生当流过振动管的流体被加速时,流体分子会受到作用力,这个作用力被称为科氏力(Coriolis force)。
科氏力是由于流体相对于振动管的加速度产生的,它的大小与流体质量、流速和振动频率有关。
而且科氏力的方向垂直于振动管的平面,且垂直于振动管的振动方向。
4. 作用于振动管上的科氏力科氏力被施加在振动管上,导致了振动管的形变。
其中,入口侧的弯曲弹性管受到的科氏力较大,而出口侧的弯曲弹性管受到的科氏力较小。
这种科氏力对振动管产生了弯曲位移,使得振动管的振动变得非对称。
5. 振动管的振动分析流动情况会导致振动管的各部分产生相位差,根据振动管的振动状态可测得流体的质量流量。
流体介质的质量流量与振动管的振动频率、振动振幅和相位差之间具有一定的关系。
6. 相位差检测流量计通过检测振动管的相位差变化来确定流体介质的质量流量。
常用的检测方法包括光电检测、电容检测和霍尔效应检测等。
这些方法可以实时地监测振动管的振动状态,并将相位差转化为流体的质量流量。
7. 信号处理和输出流量计将相位差信号进行处理,转化为质量流量的测量结果,并输出给用户。
通常情况下,科氏质量流量计还可以提供温度、压力等相关参数的测量结果。
科氏质量流量计的基本原理就是利用了科氏力对振动管产生的影响来实现质量流量的测量。
E+H CNGmass 科氏力质量流量计技术资料
![E+H CNGmass 科氏力质量流量计技术资料](https://img.taocdn.com/s3/m/11ec8629ccbff121dd368352.png)
技术资料 CNGmass
科氏力质量流量计
Services
添加燃料应用场合中使用的流量计,无缝系统集成
应用
• 科氏力测量原理不受流体物理特性的影响(例如:粘度和密 度)
• 高压添加燃料应用场合中的压缩天然气(CNG)的精准测量
目录
CNGmass
文档信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 图标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 功能与系统设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 测量原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 测量系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 测量变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 测量范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 量程比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 输出信号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 报警信号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 防爆(Ex)连接参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 小流量切除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 电气隔离 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 通信规范参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 电源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 接线端子分配 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 供电电压 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 功率消耗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 电流消耗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 电源故障 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 电气连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 电势平衡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 接线端子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 电缆入口 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 电缆规格 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 性能参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 参考操作条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 最大测量误差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 重复性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 响应时间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 介质温度的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 介质压力的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 安装条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 前后直管段 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 特殊安装指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 安装 Promass 100 安全栅 . . . . . . . . . . . . . . . . . . . . . . 14 环境条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 环境温度范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 储存温度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 气候等级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 防护等级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 抗冲击性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 抗振性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 电磁兼容性(EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 过程条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 介质温度范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Proline Promass 80A, 83A 科氏流量计说明书
![Proline Promass 80A, 83A 科氏流量计说明书](https://img.taocdn.com/s3/m/9e2de603e418964bcf84b9d528ea81c759f52e4f.png)
TI00054D/28/zh/13.12技术资料Proline Promass 80A, 83A科氏力质量流量测量系统单管测量系统,用于极小流量的高精度测量应用根据科氏力测量原理,测量完全不受流体物理特性(例如:粘度和密度)的影响。
•加料和灌装过程中的极小流量的连续流量测量•高压和低压条件下的液体(例如:乳液、添加剂、食用香料、胰岛素)和气体的高精度测量•流体温度可达+ 200 °C (+ 392°F)•过程压力可达400 bar (5800 psi)防爆认证:•ATEX 、FM 、CSA 、TIIS 、IECEx 、NEPSI 食品行业/卫生型领域中认证:•3A 、FDA 、EHEDG与过程控制系统的连接接口:•HART 、PROFIBUS DP/PA 、基金会现场总线(FF)、MODBUS测量系统的安全性:•压力设备指令、SIL-2•充气连接或爆破片(可选)优势在不同过程条件下,Promass 系列流量计均可在测量过程中同时完成多个过程变量(质量、密度、温度)的测量。
Proline 系列变送器具有下列优点:•采用模块化结构设计和操作方法,变送器具有更高的测量效率•扩展软件包可提供批量控制和浓度测量功能,扩展了仪表的使用范围•变送器自带诊断和数据备份功能,有效提升了过程生产的质量Promass 系列传感器历经数100000次应用验证,具有下列优点:•一体式结构设计的多变量流量测量传感器•平衡单管测量系统,抗振性强•结构坚固,能有效抵消外部管路的压力•无需考虑前后直管段长度,安装简便Proline Promass 80A, 83A2Endress+Hauser目录功能与系统设计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3测量原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3测量系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4输入 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5测量变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5测量范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5量程比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5输入信号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6输出信号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6报警信号 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8负载 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8小流量切除 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8电气隔离 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8开关输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8电源 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9测量单元的电气连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9接线端子分配 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10分体式仪表的电气连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11供电电压 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11电缆入口 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11电缆规格(分体式仪表) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11功率消耗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12电源故障 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12电势平衡 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12性能参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13参考操作条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13最大测量误差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13重复性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14介质温度的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15介质压力的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15设计准则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15安装条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16安装指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16前后直管段 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18连接电缆长度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18系统压力 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18环境条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19环境温度范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19储存温度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19气候等级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19防护等级 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19抗冲击性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19抗振性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19CIP 清洗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19SIP 清洗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19电磁兼容性(EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19过程条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20介质温度范围 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20介质压力范围(标称压力) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20爆破片(可选) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20限流值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20压损(公制(SI)单位) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21机械结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23设计及外形尺寸 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23重量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36材料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36材料负载曲线 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37过程连接 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38人机界面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39显示单元 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39操作单元 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39语言组 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39远程操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39证书和认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40CE 认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40C-Tick 认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40防爆认证(Ex) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40卫生型认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40基金会现场总线(FF)认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40PROFIBUS DP/PA 认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40MODBUS 认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40其他标准和准则 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40压力设备指令 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41功能安全性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41订购信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42附件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42文档资料 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42注册商标 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43Proline Promass 80A, 83A功能与系统设计测量原理测量系统基于科氏力测量原理工作。
科氏质量流量计原理
![科氏质量流量计原理](https://img.taocdn.com/s3/m/d4ef22052f3f5727a5e9856a561252d381eb2073.png)
科氏质量流量计原理科氏质量流量计是一种广泛应用于工业生产过程中的流量测量仪器,它能够准确地测量流体的质量流量,而不受流体密度、压力、温度、粘度和流速等因素的影响。
科氏质量流量计的原理是基于科氏效应和热物理性质的变化来实现的。
首先,让我们来了解一下科氏效应。
科氏效应是指当流体通过导管中的流道时,流体会受到一个垂直于流动方向的洛伦兹力的作用,这个力的大小与流体的速度、导管中的磁场强度和流体的电导率有关。
利用这一效应,科氏质量流量计通过在导管中引入磁场,然后测量流体受到的洛伦兹力来推导出流体的质量流量。
其次,科氏质量流量计还利用了热物理性质的变化来实现流量的测量。
当流体通过导管中流动时,流体的温度会发生变化。
科氏质量流量计通过在导管中设置一对温度传感器,分别测量流体进口和出口处的温度差来计算流体的质量流量。
基于以上原理,科氏质量流量计能够准确地测量流体的质量流量,而不受流体的物性参数变化的影响。
这使得科氏质量流量计在化工、石油、制药、食品等行业中得到了广泛的应用。
除了上述原理外,科氏质量流量计还具有以下特点:1. 高精度,科氏质量流量计能够实现高精度的流量测量,其测量精度可达到0.2%。
2. 宽测量范围,科氏质量流量计能够适应各种流体的测量,包括液体、气体和蒸汽等。
3. 无需修正,科氏质量流量计不需要进行密度、压力、温度等参数的修正,能够直接输出流体的质量流量值。
4. 抗干扰能力强,科氏质量流量计能够抵抗外部振动、温度变化和介质变化等干扰,保证测量的稳定性和可靠性。
综上所述,科氏质量流量计是一种在工业生产中应用广泛的流量测量仪器,其原理基于科氏效应和热物理性质的变化,能够准确地测量流体的质量流量。
同时,科氏质量流量计具有高精度、宽测量范围、无需修正和抗干扰能力强等特点,使得它成为工业生产中不可或缺的重要仪器之一。
科氏质量流量计的工作原理
![科氏质量流量计的工作原理](https://img.taocdn.com/s3/m/a05042df70fe910ef12d2af90242a8956becaac7.png)
科氏质量流量计的工作原理1. 什么是科氏质量流量计?你知道吗?科氏质量流量计可真是个聪明的小家伙!它能帮我们精准测量流体的质量流量,听起来是不是很厉害?简单来说,就是让我们知道有多少流体在某一时间内通过了管道。
想象一下,就像你喝饮料一样,流量计能告诉你,啊哈,今天喝了多少可乐!不管是水、油还是化学液体,科氏流量计都能派上用场,真是个万金油。
2. 工作原理2.1 振动的秘密那么,科氏质量流量计到底是怎么工作的呢?这就得提到它里面的一个“摇滚乐队”了!它的核心部分是两个弯管,这两个管子像是吃了兴奋剂一样,能够快速振动。
当流体通过这些弯管时,它们的振动就会受到影响。
想象一下,俩人一起走路,突然一个人推了另一个人一下,那感觉可就不一样了。
流体流过时,它们的质量和速度就会影响管子的振动情况。
2.2 力的变化当流体在管道里流动的时候,流体的质量会对振动产生作用力。
这个力会导致管子发生扭曲,咦,听起来好像有点复杂对吧?其实就是简单的物理现象!根据流体的流动速度和密度,这种扭曲的程度就能告诉我们流体的质量流量。
就像一条鱼在水里游泳,游得快了,水的波动就大,游得慢了,波动就小。
通过测量这些变化,科氏质量流量计能够准确地告诉你,流体的质量流量是多少。
3. 应用场景3.1 各行各业的好帮手科氏质量流量计可是个“全能战士”,在很多行业都有它的身影!在化工行业,它用来监测各种化学液体的流量,确保生产过程稳定;在食品行业,大家也能看到它的身影,保证每一滴牛奶都是经过精确测量的,放心喝就是了;甚至在制药行业,它也能确保药物的准确配比,真是个好帮手!3.2 优点和不足当然,科氏质量流量计也有它的优缺点。
优点嘛,准确性高、响应快、适用范围广,基本上可以应付各种复杂的流体情况。
缺点呢,可能价格有点小贵,而且对某些特定流体(比如含气泡的液体)就不太好使了。
不过,俗话说得好,“没有金刚钻,不揽瓷器活”,这也是没办法的事。
4. 结尾总之,科氏质量流量计真是个了不起的设备,凭借它那独特的工作原理,成为了流体测量领域的明星。
科氏质量流量计原理与现场问题分析报告
![科氏质量流量计原理与现场问题分析报告](https://img.taocdn.com/s3/m/49fd70ba5901020207409cd2.png)
结构原理与现场问题分析
杨冬 2014年10月
目录
一、科氏质量流量计的组成结构 二、科氏质量流量计的工作原理 三、科氏质量流量计的优缺点 四、科氏质量流量计的安装使用与维护 五、科氏质量流量计的故障排除
流量检测
➢ 什么是流量? 流体在单位时间内流过管道或设备某横截面处的数量称为流量。
缺点: 1、零点不稳定形成零点漂移,影响其精确度。 2、不能测量低密度介质和低压气体;液体中含气量超过某一 限制(按型号而异)会显着著影响测量值。 3、对外界振动干扰较为敏感,因而对流量传感器安装固定要 求较高 4、不能用于较大管径,目前尚局限于200mm以下 5、测量管内壁磨损腐蚀或沉积结垢会影响测量精确度 6、压力损失、重量、体积较大,价格昂贵
四、科氏质量流量计的安装使用与维护
安装要求: ✓ 测量液体时,外壳朝下,以避免测量管中积聚气体; ✓ 测量气体时,外壳朝上,以避免管中积聚液体; ✓ 测量浆液时,可以采用旗式安装。 ✓ 传感器两端避免扭曲/应力 ✓ 避免与振动管道连接,无法消除时两端需加金属软管。
四、科氏质量流量计的安装使用与维护
使用注意事项: (1)使用时应保证被测介质充满管道 (2)被测介质中不能有气液二相的流体 (3)避免强电磁场的干扰 (4)对批量控制一般设置小流量切除,常为量程的 0.05% (5)对正常操作压力波动在1MPa以上的建议增加设置压 力补偿参数
日常维护: (1)零点的检查与调整 (2)设置流量和密度校准系数 (3)过程变量、工况参数、报警的检查 (4)密封性能的检查 (5)周期检定和比对
五、科氏质量流量计的故障排除
排除故障的思路: 1、工艺原因(含气、气化、温度、压力、结垢) 2、安装原因(安装错误、接触不良、地线干扰) 3、设置原因(零点标定、参数设置) 4、外部原因(密封泄露、环境温度变化、振动) 5、硬件原因(驱动、测量线圈故障、测量电路故障)
科式质量流量计简介
![科式质量流量计简介](https://img.taocdn.com/s3/m/ea29cf6e561252d380eb6ec1.png)
按测量管形状分类
直形测量管的CMF不易积存气体及便于清洗。垂 直安装测量浆液时,固体颗粒不易在暂停运行时 沉积于测量管内。流量传感器尺寸小,重量轻。 但钢刚性大,管壁相对较薄,测量值受磨蚀腐蚀 影响大。 有些型号直形测量管仪表的激励频率较高,在 600 ~1200Hz之间(弯形测量管的激励频率仅 40 ~150Hz之间),不易受外界工业振动频率 的干扰。 近年国外原主张并生产弯曲形测量管的CMF制造 厂,亦竟相开发直形测量管CMF,它有日益增加 的趋势。
按测量管流动方向和工艺管道流动 方向布置方式分类
平行方式:测量管的布置使流体流动方向 和工艺管道流动方向平行 垂直方式:测量管的布置与工艺管垂直, 流量传感器整体不在工艺管道振动干扰作 用的平面内,抗管道振动干扰的能力强
分类
型号表示方式
公制通径 英制通径 额定流量
精度指标及表示方式
有些国内厂家使用(基本精度±零点稳定 性) 更常用的方式, (基本精度)(≥) (基 本精度±零点稳定性)
流体工况或物性参量对流量测量的 影响
温度影响 压力影响 密度影响 粘度影响
温度影响
介质温度或环境温度变化会改变测量振动 管的杨氏模量 影响零漂的结构等各种因素 杨氏模量的温度系数可通过补偿减少其影 响;零漂影响由于是受振动管几何形状和 结构件的非对称性所形成,因此难以减小 消除
压力影响
液体静压增大会使测量振动管绷紧,产生一个负 向偏差 压力影响量取决于测量管管径、壁厚和形状 小口径仪表由于壁厚管径比大,影响量小;大口 径仪表则壁厚管径比小,影响量大 校准时压力0.2MPa为基准,CMF100型仪表 (口径25mm)压力影响量为-0.03% R/MPa, CMF200型(口径40/50mm)为0.12%R/MPa;D系列较大,D300型(口径 80/100mm)为-1.35%MPa, D600(口径 150/200mm)为-0.75%MPa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、外壳材料:1Crl8Ni9Ti;
6、传感器密度测量范围:0.1g/cm3~1.5g/cm3。
5 质量流量计传感器使用说明书
表 1-2 流量准确度和密度准确度
型号
流量准确度(kg/min)
密度准确度(g/cm3)
TH006 ±0.2%×流量±传感器零点稳定度
传感器的安装方式主要根据流体的相别及其工艺情况确定,有三 种安装方式。
7 质量流量计传感器使用说明书
2.2.1 安装方式 l 若被测流体是液体,一般采用外壳朝下安装传感器,避免空气聚
积在传感器振动管内,从而达到准确测量质量流量的目的。如图 2—1 所示:
传感器的结构原理、性能指标、使用方法、适用范围和注意
事项等方面的说明。为了正确使用传感器,在安装使用前请
务必阅读本说明书。
用户若需要更详细地了解产品信息,请与本公司或与您
所在地书
目录
1. 概述
1.1 简介… … … … … … … … … … … … … … … … … … … … … … … … .4 1.2 工作原理… … … … … … … … … … … … … … … … … … … … … … .4 1.3 特点… … … … … … … … … … … … … … … … … … … … … … … … .4 1.4 技术规格… … … … … … … … … … … … … … … … … … … … … … .5
器外壳上的流向指示一致。
2.4 传感器安装过程中其它注意事项
2.4.1 传感器在安装到工艺管线上之前,应首先确认传感器的速度传感器线
圈、驱动线圈的直流电阻以及铂电阻温度计的电阻值是否正常(见附
录 IV 所示)。
10 质量流量计传感器使用说明书
2.4.2 传感器安装法兰必须与管道法兰同轴连接,这样才能减小安装应力,
工艺主管线相焊接。为了使消除应力的效果最好,应使传感器、断
2.传感器的安装
2.1 传感器安装位置的选择… … … … … … … … … … … … … … … … .7 2.2 传感器安装方式的选择… … … … … … … … … … … … … … … … .7 2.3 传感器安装示意图… … … … … … … … … … … … … … … … … … .9 2.4 传感器安装过程中其它注意事项… … … … … … … … … … … … .10 2.5 减振的具体办法… … … … … … … … … … … … … … … … … … … .11 2.6 传感器管道的清洁… … … … … … … … … … … … … … … … … … .11
6.包装及附件
6.1 包装… … … … … … … … … … … … … … … … … … … … … … … … .17 6.2 附件… … … … … … … … … … … … … … … … … … … … … … … … .17 附录Ⅰ 传感器安装尺寸图… … … … … … … … … … … … … … … … ..18 附录Ⅱ 质量流量系数和密度系数… … … … … … … … … … … … … ..21 附录Ⅲ 电缆准备说明… … … … … … … … … … … … … … … … … … ..22
2.4.5 在传感器安装位置附近工艺管道线上的阀门或泵都需要有其自己的
支撑物,不能用支撑传感器的支撑物来支撑阀门和泵。
2.4.6 在传感器的上游、下游应装上断流阀。
2.4.7 消除安装应力的有效措施
在安装传感器时,为了消除安装应力,最有效的方法是先配管,
将工艺管线及阀门与传感器整体预先安装好,然后吊装,再将其与
管道上,这可避免微粒聚积在传感器科氏力测量管内。此外,如果工 艺管线需要用气体和蒸汽清扫,这种安装方式还可以便于清扫,但这 种安装方式较前二种难于固定,且压损较大。如图 2—3 所示:
图 2—3(安装在垂直管道上,适用于浆液)
4 质量流量计传感器使用说明书
1.4 技术规格
表 1—l 传感器性能指标
最大流量 最小流量 零点稳定度 型号
(kg/min) (kg/min) (kg/min)
压力 工作温度 (MPa) (℃)
材 料
TH006 20
1
0.004
25 -20~+80 1Crl8Ni9Ti/316L
4.传感器的工作
4.1 电源… … … … … … … … … … … … … … … … … … … … … … … … .15 4.2 调零… … … … … … … … … … … … … … … … … … … … … … … … .15
5.保养维修
5.1 保养… … … … … … … … … … … … … … … … … … … … … … … … .16 5.2 维修… … … … … … … … … … … … … … … … … … … … … … … … .16
科氏质量流量计
传 感 器
使用说明书
2003 年 8 月 1.0 版
四川中测科技发展有限公司
科氏质量流量计 传 感 器
公司所在地:四川省成都市玉双路 10 号 电 话:86-28-8440-3736,8440-4095(市场部) 传 真:86-28-8440-4926,8440-4095(市场部) 邮 编:610021
±0.0025
TS075
±0.1%×流量±0.5×传感器零点稳定度
±0.0025
安 全 性:ExibⅡBT4
接线形式:接线端子盒
尺 寸:见附录Ⅰ所示
6 质量流量计传感器使用说明书
2.传感器的安装
2.1 传感器安装位置的选择 2.1.1 传感器的安装位置应远离能引起管道机械振动的干扰源,如工艺管线
3. 传感器与变送器的连接
3.1 传感器与变送器的连接方式… … … … … … … … … … … … … … .12 3.2 接线端子盒接线… … … … … … … … … … … … … … … … … … … .12 3.3 电气接线的具体要求… … … … … … … … … … … … … … … … … .13
图 2—1(外壳朝下安装,适用于液体) 2.2.2 安装方式 2
如果被测流体是气体,一般采用外壳朝上安装传感器,避免冷凝 液聚积在传感器振动管内。如图 2—2 所示:
图 2(外壳朝上安装,适用于气体)
8 质量流量计传感器使用说明书
2.2.3 安装方式3 如果被测流体是液体、固体的混合浆液时,将传感器安装在垂直
型号
流量重复性(kg/min)
密度重复性(g/cm3)
TH006
±0.1%×流量±0.5×传感器零点稳定度
±0.004
TS015
±0.1%×流量±0.5×传感器零点稳定度
±0.0025
TS025
±0.1%×流量±0.5×传感器零点稳定度
±0.0025
TS040
±0.1%×流量±0.5×传感器零点稳定度
TS015 120
6
0.024
8
-20~+80 1Crl8Ni9Ti/316L
TS025 450
22
0.09
8
20~+80 1Crl8Ni9Ti/316L
TS040 1500
75
0.3
5
-20~+80 1Crl8Ni9Ti/316L
TS075 3000 150
保证测量精度。安装时应保证管道支撑物只支撑工艺管道,禁止用
传感器支撑工艺管道。应保证传感器外壳悬空,不与任何物体接触。
2.4.3 传感器安装在工艺管线上时应保证管道系统与传感器上游、下游侧各
两个位置的稳固支撑物牢固连接,所有螺纹连接处必须紧固,夹紧
工艺管道有助于减弱潜在的振动干扰。
2.4.4 在安装过程中,应避免利用传感器外壳搬动传感器。
上的泵等。如果传感器在同一管线上串联使用,应特别防止由于共 振而产生的相互影响,传感器间的距离至少大于传感器外形尺寸宽 度的三倍。 2.1.2 传感器的安装位置应注意工艺管线由于温度变化引起的伸缩和变形, 特别不能安装在工艺管线的膨胀节附近。如果安装在膨胀节附近, 由于管道伸缩会造成横向应力,使得传感器零点发生变化,影响测 量准确度。 2.1.3 传感器的安装位置应远离工业电磁干扰源,如大功率电动机、变压器 等,否则传感器中测量管的自谐振动会受到干扰,速度传感器检测 出来的微弱信号有可能被淹没在电磁干扰的噪声中。传感器应远离 变压器、电动机至少 5 米以上的距离。 2.1.4 传感器的安装位置应使管道内流体始终保证充满传感器测量管,且有 一定憋压,这就要求安装位置应在管道的低端。 2.2 传感器安装方式的选择
9 质量流量计传感器使用说明书
2.3 传感器安装示意图
传感器直接安装在流体工艺管道上的典型安装方式,如图 2—4 所示:
电缆
管道支点撑物
管道支点撑物
图 2—4(典型安装方式)
注 意
传感器可以对双向流动进行测量,但为了使流
量变送器有正确的流向指示,建议实际流量与传感
网 址:www.nimtt-kj.com 电 子邮 件:Tech@nimtt-kj.com
四川中测科技发展有限公司版权所有,2003 年 8 月
注册商标
1
质量流量传感器使用说明书
注 意
本使用说明书中包括了我公司研制生产的系列质量流量
3
质量流量传感器使用说明书
1.概述
1.1 简介 质量流量传感器(以下简称传感器)是利用科里奥利原理测量流过