第四章稳定性(轴压)
第4章结构构件的强度刚度稳定性
2、许用应力
查P12表2-2, 得:
查P45表3-11载荷组合B得:安全系数n=1.34
3、稳定性校核
由于 ,故只需按 计算整体稳定性
查P50表4-2截面属于b类,查P228附表4-2得
所以构件整体稳定性满足要求。
4.2
主要承受横向载荷的构件称为受弯构件,实腹式受弯构件简称梁,格构式受弯构件简称桁架。桁架将在后续介绍,本节仅介绍实腹受弯构件的强度、刚度及整体稳定性。
(4-2)
式中: —构件的计算长度,mm;
—许用长细比,《起重机设计规范》GB/T3811-2008规定结构构件容许长细比见表4-1;
—构件截面的最小回转半径,mm。
(4-3)
式中: —构件毛截面面积,mm2;
-构件截面惯性矩,mm4;
表4-1结构构件容许长细比
构件名称
受拉构件
受压构件
主要承载结构件
5
缀条
-缀条所在平面和x-x轴的夹角
注:1、斜腹杆与构件轴线间的倾角应保持在400~700范围内。
2、缀板组合构件的单肢长细比 不应大于40。
例题4-1
已知如图4-6所示工字形截面轴心压杆,翼缘:2-200×10 ,腹板:1-180×6,杆长 ,两端铰支,按载荷组合B求得构件轴心压力 ,钢材为Q235B钢,焊条为E43型,试验算构件强度、刚度及整体稳定性。
(2)
在起重机械结构中,理想构件是不存在的,构件或多或少存在初始缺陷。如:初变形(包括初弯曲和初扭曲)、初偏心(压力作用点与截面型心存在偏离的情况)等等。这些因素,都使轴心压杆在载荷一开始作用时就发生弯曲,不存在由直线平衡到曲线平衡的分歧点。实际轴心压杆的工作情况犹如小偏心受压构件,其临界力要比理想轴心压杆低(图4-4),当压力不断增加时,压杆的变形也不断增加,直至破坏。载荷和挠度的关系曲线,由稳定平衡的上升和不稳定平衡的下降段组成。在上升段OA,增加载荷才能使挠度加大,内外力处于平衡状态;而在下降阶段AB,由于截面上塑性的发展,挠度不断增加,为了保持内外力的平衡,必须减小载荷。因此,上升阶段是稳定的,下降阶段是不稳定的,上升和下降阶段的分界点A,就是压杆的临界点,所对应的载荷也是压杆稳定的极限承载力 (即压溃力)。
第四章 轴心受力构件
§4-6 格构式轴心受压柱的截面设计
§4-6 格构式轴心受压柱的截面设计
一、格构式轴心受压柱的组成 分肢
缀板
缀件
缀条
§4-6 格构式轴心受压柱的截面设计
二、格构式轴心受压柱的实轴和虚轴
垂直于分肢腹板平面的主轴--实轴;
垂直于分肢缀件平面的主轴--虚轴;
格构式轴心受压构件的设计应考虑:
§4-3 轴心受压构件的整体稳定
1.0
0.8 d 0.6 c b
a
0.4
0.2
0
50
100
150
200
250
(Q235)
a类为残余应力影响较小,c类为残余应力影响较大, 并有弯扭失稳影响,a、c类之间为b类,d类厚板工字 钢绕弱轴。
§4-3 轴心受压构件的整体稳定
构件长细比的确定
y x x
截面为双轴对称构件:
§4-2 轴心受力构件的强度和刚度
二、刚度计算(正常使用极限状态) 保证构件在运输、安装、使用时不会产生过大变形。
l0 [ ] i
l0 构件的计算长度;
i
I 截面的回转半径; A
[ ] 构件的容许长细比
§4-3 轴心受压构件的整体稳定
§4-3 轴心受压构件的整体稳定
强度 (承载能力极限状态) 刚度 (正常使用极限状态) 强度 轴心受压构件
轴 心 受 力 构 件
稳定
(承载能力极限状态)
刚度 (正常使用极限状态)
§4-2 轴心受力构件的强度和刚度
§4-2 轴心受力构件的强度和刚度
一、强度计算(承载能力极限状态)
N f An
其中: N — 轴心拉力或压力设计值; An— 构件的净截面面积; f— 钢材的抗拉强度设计值。 轴心受压构件,当截面无削弱时,强度不必计算。
第四章 单个构件的承载能力-稳定性
3
4
y
b)
4 2 0 1 2 3 4 a/b
腹板和翼缘板的屈曲
系数k 和a/ b的关系
如图,当 a / b > 1时,k min = 4 时。从中可以看出,减小板的长度 并不能提高板的稳定临界力,但减小板宽却可以大大提高板件临 界力。 用同样的方法可以推出三边简支,一边自由的板件临界力的计算 公式,也可表示为 π2D N cr = k 2 b
第一类稳定(弯曲失稳 弯曲失稳): 弯曲失稳
第一类稳定(杆扭转失稳 扭转失稳): 扭转失稳
第一类稳定(杆弯扭失稳 弯扭失稳): 弯扭失稳
第二类稳定:
杆件局部失稳 局部失稳: 局部失稳
4.2 轴心受压构件的整体稳定性 影响轴心受压构件的整体稳定性的主要因素有: (1)截面的纵向残余应力 (2)构件的初弯曲 (3)荷载作用点的初偏心 (4)构件的端部约束条件 当轴心受压构件的长细比比较大而截面又没 有空洞削弱时,一般不会因截面的平均应力达到 抗压强度设计值而丧失承载能力,因而不必进行 强度计算。对轴心受压构件来说,整体稳定 整体稳定是确 整体稳定 定构件截面的最重要因素。
——板的柱面刚度
t ——板厚; a、b ——受压方向板的长度、宽度 m、n——纵向及横向屈曲半波数 ——单位宽度板所受的压力 当n=1时(即在y方向为一个半波),临界力有最小值
π2 D mb a 2 π2 D Ncr = 2 ( + ) = k 2 b a mb b
k
——屈曲系数
a)
o
b
x k m=1 a 8 2 6 a
根据边界条件确定 l ox , l oy 已 知 荷 载、 截 面, 验 算 截 面 计算
Ix A
第四章-轴心受力构件
2
300
200
有重 级工 作制 吊车 旳
厂房
250
-
受压构件旳允许长细比
项次
构件名称
允许长 细比
柱、桁架和天窗架中旳杆件
1 柱旳缀条、吊车梁或吊车桁架 150 下列旳柱间支撑
支撑(吊车梁或吊车桁架下列
旳柱间支撑除外)
2
200
用以降低受压构件长细比旳杆
件
第二节 轴心受压构件旳整体稳定
3、理想构件旳弹性弯曲失稳
根据右图列平衡方程
d2y EI dx2 Ny 0
解平衡方程:得
欧拉临界力只合用
N cr
π2 EI l02
π2 E λ2
A
于材料为弹性时旳 情况,应力一旦超 出材料旳百分比极
σ cr
N cr A
π2 E λ2
限,则欧拉公式不 再合用。
4、理想构件旳弹塑性弯曲失稳
构件失稳时假如截面应力超出弹性
ix( y)
Ix( y) A
实腹式轴心受压构件旳稳定性应按下式计算:
N ≤f
A
A为杆件毛截面面积
式中 为整体稳定系数,实质是临界应力与屈
服点旳比值。柱旳临界应力与截面形状、力作用方
向等有关,
— 轴心受压构件的整体稳定系数
根据构件截面分类取由λx,λy,λyz
fy 决定的
235
max
(1)规范现对t 40mm旳轴压构件作了专门要求。同步补充了d 类
r
2Er 2
5、实际构件旳整体稳定 实际构件与理想构件间存在着初始缺陷,缺陷主要有:
初始弯曲、残余应力、初始偏心。 ⑴、初始弯曲旳影响
1.一经加载产生 挠度,先慢后快
轴心受压构件的整体稳定性
翼缘轧制边,对x轴为b类截面,查表有:x 0.934
N x x Af 0.934 8760 215 103 1759 kN
对y轴:
l0y l / 2 2.6m,i y I y A 1.25103 87.6 3.78cm
例题1:某焊接工字形截面柱,截面几何尺寸如图。柱的上、下端 均为铰接,柱高4.2m,承受的轴心压力设计值为1000kN,
钢材为Q235,翼缘为火焰切割边,焊条为E43系列,手工
焊。试验算该柱是否安全。
解解::已已知知lxl=x=lyly==44.2.2mm,,f=f=221155NN/m/mmm2。2。
1、受拉构件。
l0 [ ]
i
l0 构件的计算长度;
i
I A
(截 4 面2的) 回 转 半 径 ;
[] 构件的容许长细比,其取值详见规范或
x
l0x ix
[]
y
l0y iy
[]
l0x 构件对x轴计算长度; ix Ix / A l0y 构件对y轴计算长度; iy Iy / A
2、受压构件。 1)双轴对称截面
组合截面
格构式截面:由两个或多个型钢肢件通过缀材连接而成。
一、 强度计算
N f
An
(4 1)
N — 轴心拉力或压力设计值; An — 构件的净截面面积; f — 钢材的抗拉(压)强度设计值
轴心受压构件,当截面无削弱时,强度不必计算。
二、刚度计算: 保证构件在运输、安装、使用时不产生过大变形
y l0y iy 520 3.78 68.8 [] 150
翼缘轧制边,对y轴为c类截面,查表有:y 0.650
Ny y Af 0.658760 215103 1224kN
钢结构课件 轴心受压构件的整体稳定性
4.2.6 轴心受压构件扭转和弯扭屈曲
1、扭转屈曲
根据弹性稳定理论,两端铰支且翘曲无约束的杆件,其扭 转屈曲临界力,可由下式计算:
《钢结构稳定理论与设计》 陈骥 著
NE
fy
弹塑性阶段
N A
Nv0
W 1 N
NE
fy
相对初弯曲 ε0 = v0 / ρ = v0 / (W/A)
N [1 A 1
0
N
] NE
fy
N A
1
1000
i
1
1 N
N
E
fy
上式的解即为Perry-Robertson公式(柏利公式)
i0—截面关于剪心的极回转半径。i02
e02
ix2
i
2 y
引进扭转屈曲换算长细比z :
1、扭转屈曲
满足
I 0
z =5.07b/t
x (y) ≥ z =5.07b/t
z2
25.7
Ai02 It
25.7
Ix
Iy It
2t 2b3 12
25.7 4bt3 3
选择计算 §4.6 板件的稳定和屈曲后强度的利用
§4.3 实腹式柱和格构式柱的截面选择计算
4.3.1 实腹式柱的截面选择计算
1、实腹式轴心压杆的截面形式 ①考虑原则 ②常用截面
2、实腹式轴心压杆计算步骤
§4.3 实腹式柱和格构式柱的截面选择计算
第四章 钢结构的稳定
②型钢热轧后的不均匀冷却;
③板边缘经火焰切割后的热塑性收缩; ④构件经冷校正产生的塑性变形。其中,以热轧残余应力的影响 最大。
4.2 轴心受压构件的整体稳定性
残余应力对轴心受压构件稳定性的影响与它的分布有关。下面以 热轧制H型钢为例说明残余应力对轴心受压的影响(如下图所示)。
H型钢轧制时,翼缘端出现纵向残余压应力(图中阴影区称为I区),其余部分存在 纵向拉应力(称为Ⅱ区),并假定纵向残余应力最大值为0.3fy,由于轴心压应力 与残余应力相叠加,使得I区先进入塑料性状态而Ⅱ区仍工作于弹性状态,图(b), (c),(d),(e)反应了弹性区域的变化过程。 I区进入塑性状态后其截面应力不可 能再增加,能够抵抗外力矩(屈曲弯矩)的只有截面的弹性区,此时构件的欧拉临 界力和临界应力为:
根据上式可绘出N—V变化曲线, 如图所示。由此图可以看出:
(1)当轴心压力较小时,总挠
度增加较慢,到达 A或A’后,总
挠度增加加快。 (2)杆件开始时就处于弯曲平
衡状态,这与理想轴心压杆的直线平衡状态不同。
(3)对无限弹性材料,当轴压力达到欧拉临界力时,总挠度无限增大。 而实际材料是,当轴压力达到图中B或B'时,杆件中点截面边缘纤维屈 服而进入塑性状态,杆件挠度增加,而轴力减小,构件开始弹性卸载。
临界状态 (微弯平衡)
【又称】分岔失稳或第一类稳定问题 (bifurcation instability) 【定义】由原来的平衡状态变为一种新的微弯(或微 扭)平衡状态。 相应的荷载NE——屈曲荷载、临界荷载、 平衡分岔荷载
此类稳定又可分为两类:
稳定分岔失稳
不稳定分岔失稳
稳定分岔失稳
不稳定分岔失稳
例:求解图示刚性杆体系的临界力
第四章轴心受力构件公式整理
2 2 l b1 0yt 3 .7 1 t 52.7b14
( 4 30a )
yz
( 4 30b )
④、单轴对称的轴心受压构件在绕非对称轴以外的任意轴失稳时 ,应按弯扭屈曲计算其稳定性。
当计算等边角钢构件绕平行轴(u轴)稳 定时,可按下式计算换算长细比,并按b类 截面确定 值:
钢结构
2014-2015-2
一、强度计算(承载能力极限状态)
N f An
N—轴心拉力或压力设计值; An—构件的净截面面积; f—钢材的抗拉强度设计值。
( 4 1)
适用于fy/fu≤0.8的情况;轴心受压构件,当截面无削 弱时,强度不必计算。
二、刚度计算(正常使用极限状态)
保证构件在运输、安装、使用时不会产生过大变形。
( 4 41)
式中: 构件两方向长细比较大 值,当 30时 , 取 30;当 100时,取 100。
B、箱形截面翼缘板
b 235 13 t fy b0 235 40 t fy
( 4 42 ) ( 4 43)
b0 t
( 4 27b )
B、等边双角钢截面,图(b)
b
y
b
当 b t 0.58 l 0 y b时:
4 0 . 475 b yz y 1 2 2 l0 y t 当 b t 0.58 l 0 y b时:
y
(b)
( 4 28a )
yz
y
(C)
( 4 29a )
yz
b2 5 .1 t
2 2 l0 t 1 y 4 17 . 4 b 2
4-轴压构件
e0
N
Nk
Nu
v
A B
O
v
Nk e 0
• 初始缺陷对轴心压杆稳定极限承载力的影响: 1)初弯曲和初偏心的影响 初弯曲(初偏心)越大,则变形越大,承载力越小。 压力一开始就产生挠曲,并随荷载增大而增大。
无论初弯曲(初偏心)多么小, Ncr≤ NE
z Nk
z e0
Nk
y0 y
y
y
y
Nk
Nk e 0
N /NE
y 0=0
1.0
y 0=0.3
0.5
y 0=0.1
0
N /NE
1.0
e0 = 0
e 0 = 0.3
0.5
e 0 = 0.1
0
y
2)残余应力的影响 按有效截面的惯性矩 Ie 近似计算两端铰接的 等截面轴压构件的临界力和临界应力:
b t
Ncr
iy
I y 45833 12.5cm A 293.6
第4章 单个构件的承载力-稳定性
l0x l0 y 6m
x l0x iy 600 21.9 27.4 150 y l0y iy 600 12.5 48 150
截面对x轴和y轴都为b类
一、截面几何特性:
毛面积:A 2 50 2 501 250cm2
净面积:An A 4d0t 250 - 4 2.4 2 230.8cm2 二、截面验算:
强度:
N An
4500103 23080
195.0 N
mm2
f 205 N mm2
4.3 轴心受压构件的整体稳定
4.3.1 理想轴心受压构件
钢结构基础 陈绍蕃第三版第四章稳定性课件
mx M N f x A xW1x 1 0.8 N N Ex
对于单轴对称截面的压弯构件,除进行平面内稳定验算外,还应按 下式补充验算
mx M x N f A xW2 x 1 1.25 N N E
第4章 单个构件的承载力——稳定性
4.5.2 压弯构件在弯矩作用平面外的稳定性
第4章 单个构件的承载力——稳定性
4.5 压弯构件的面内和面外稳 定性及截面选择计算
4.5 压弯构件的面内和面外稳定性及截面选择计算
4.5.1 压弯构件在弯矩作用平面内的稳定性
• 1. 压弯构件在弯矩作用平面内的失稳现象
N e0 Mx = Ne0 NEx B A D N
x
v v A z e0 N A x y y y Nux
梁丧失整体稳定现象
4.4.受弯构件的弯扭失稳
第4章 单个构件的承载力——稳定性
4.4.2 梁的临界荷载(以均匀弯矩(纯弯曲)作用下的简支梁为例)
Mx
Mx z y
Mx v dv/dz ζ
Mx z
y
η
梁的微小变形状态简图
4.4.受弯构件的弯扭失稳
第4章 单个构件的承载力——稳定性
Mx
梁的微小变形状态简图
实腹式压弯构件在弯矩作用平面外的实用计算公式45压弯构件的面内和面外稳定性及截面选择计算????nniileigileiimtycrey02022220???????????纯弯曲作用下的临界弯矩双轴对称截面压弯构件纯弯曲作用下弯扭屈曲的临界力ncr的计算方程????0202????imnnnncrcrey?1202???nnnimnneyey?改用n1122????nnmmnncrey?相关曲线nney和mmcr的相关曲线45压弯构件的面内和面外稳定性及截面选择计算?普通工字型截面
钢结构第四章
1.轴心受压柱的实际承载力
轴心受压柱整体稳定计算:
N A f
4.23
式中N 轴心受压构件的压力设计值; A 构件的毛截面面积; 轴心受压构件的稳定系数,和截面类型、 构件长细比、所用钢种有关见附表17; f 钢材的抗压强度设计值,见附表11。
2.列入规范的轴心受压构件稳定系数
N A f
(6) 当截面有较大削弱时,还应验算净截面的强度,应使
N An f
(7) 验算刚度,柱和主要压杆,其容许长细比为[]=150, 对次要构件如支撑等则[]=200。
初定截面和长细比λ=100
查表λ→ 由 → A 计算i =l0 /λ i ,A→b, h,
A
A x 27 A1x
2 y
2 x 2 y 1
l0 x i ②求 x x ③查附表14确定分肢间距b,两分肢翼缘间的净空应大 于100mm,以便于油漆; 2 ④验算:刚度 0 x 2 x 1 [ ] 整稳 缀条柱 1 0.7max 分肢稳定: 缀板柱 0.5 1 max 1 40
失稳模式之间的耦合作用,局部和整体稳定的相关性。
4.2 轴心受压构件的整体稳定性
4.2.1 纵向残余应力对轴心受压构件整体稳定性的 影响
残余应力的测量及其分布
A、产生的原因:
①焊接时的不均匀加热和冷却; ②型钢热扎后的不均匀冷却; ③板边缘经火焰切割后的热塑性收缩; ④构件冷校正后产生的塑性变形。
2. 剪切变形对虚轴稳定性的影响 绕实轴屈曲时,剪切变形的影 响可忽略,弯曲失稳情况与实腹式 截面一样。
x
y x y
N f A
绕虚轴屈曲时,由于缀材刚
l1/2
钢结构基本原理第四章 单个构件的承载能力
第4章单个构件的承载能力--稳定性4.1 稳定问题的一般提法4.1.1 失稳的类别传统分类:分支点失稳和极值点失稳。
分支点失稳:在临界状态时,初始的平衡位形突变到与其临近的另一平衡位形。
(轴心压力下直杆)极值点失稳:没有平衡位形分岔,临界状态表现为结构不能再承受荷载增量。
按结构的极限承载能力:(1)稳定分岔屈曲:分岔屈曲后,结构还可承受荷载增量。
轴心压杆(2)不稳定分岔屈曲:分岔屈曲后,结构只能在比临界荷载低的荷载下才能维持平衡位形。
轴向荷载圆柱壳(3))跃越屈曲:结构以大幅度的变形从一个平衡位形跳到另一个平衡位形。
铰接坦拱,在发生跃越后, 荷载还可以显著增加,但是其变形大大超出了正常使用极限状态。
4.1.2 一阶和二阶分析材料力学:EI M //1+=ρ 高数:()()2/3222/1///1dx dy dx y d +±=ρ M>0 22/dx y d <0 ; M<0 22/dx y d >0 ;∴ M 与y ''符号相反()()EI M y y /1/2/32-='+''∴ (大挠度理论)当y '与1相比很小时 EI M y /-='' (1) (小挠度理论)不考虑变形,据圆心x 处 ()x h P M --=α1 一阶弯矩 考虑变形 ()()y p x h p M ----=δα2 二阶弯矩 将它们代入(1)式:()x h p y EI -=''α 一阶分析()()y p x h p y EI -+-=''δα 二阶分析边界条件: ()()000='=y y ()δ=h yEI ph 3/3αδ=()()]/)tan(3[)]3/([33kh kh kh EI ph -⨯=αδ (2) EI P k /2=由(2)有 ()∞=--32//)(t a n l i m kh kh kh kh π 得欧拉临界荷载 224/h EI P E π= 此为稳定分析过程:达临界荷载,构件刚度退化为0,无法保持稳定平衡,失稳过程本质上是压力使构件弯曲刚度减小,直至消失。
第四章稳定性(轴压)
第4章 单个构件的承载能力—稳定性
4.1 稳定的一般问题
失稳的类别 完善直杆沿轴心受压时其失稳时其平衡形式由 直变弯——分支点失稳; 实际的轴心受压杆由于存在几何缺陷(初始弯 曲),受力后,挠度不断增加,失稳时是以变 形的发展导致承载力达到极限——极值点失稳
实腹式轴心压杆的截面形式的选择
截面选择原则:
1、截面面积的分布应尽量开展,以增加截面的惯 性惯性矩和回转半径,提高它的整体稳定性和 刚度; 2、等稳定性:使两个主轴方向的稳定系数(长细 比)大致相等; 3、便于与其他构件进行连接; 4、尽可能构造简单,制造省工,取材方便。
常用的截面形式及特点:
4.3 格构式柱的截面选择计算
一、截面形式
有两个肢件,
用缀材把它们 连成整体。 缀材有缀条和 缀板两种
二、剪切变形对虚轴稳定性的影响
当格构式轴心受压杆绕实轴发生弯曲失稳时情况和实
腹式压杆一样。 当绕虚轴发生弯曲失稳时,因为剪力要由比较柔弱的 缀材负担,剪切变形较大,导致构件产生较大的附加 侧向变形,它对构件临界力的降低是不能忽略的。 采用换算长细比λox来代替对x轴的长细比λx,以此来考 虑剪切变形对格构式轴心压杆临界力的影响。 换算长细比的计算公式:4-30、4-31
角钢:单角钢截面适用于塔架、桅杆结构、起
重机臂杆以及轻型桁架中受力较小的腹杆。双 角钢能满足等稳定性的要求,常用于由节点板 连接杆件的平面桁架。 热轧普通工宇钢:制造省工,但两个主轴方向 的回转半径差别较大,适用于两个主轴方向计 算长度相差较大的情况,如:工作平台柱; 轧制H型钢:面积分布较合理,制造简单,生 产量少。轴压构件宜采用宽翼缘。 焊接工字形:在工厂制造,利用自动焊焊接所 需的尺寸,其腹板按局部稳定的要求作得很薄 以节省钢材,应用十分广泛。
4.3轴心受力构件的整体稳定性
N cr
2k
N w N Ey
N
w
N Ey 4kN w N Ey
式中 N Ey -截面对对称轴的欧拉临界力 N w -截面扭转屈曲时的临界力
y0 k 1 i 0
2
4.3 轴心受压构件的整体稳定性
4.3.4
初始缺陷对轴心压杆稳定性的影响 Nhomakorabea4.3 轴心受压构件的整体稳定性
(2) 理想轴心压杆整体稳定临界力的确定 1) 理想轴心受压构件弯曲屈曲时的临界力 欧拉公式:
2 E 2
式中
NE
2
2 l0
E-材料弹性模量; I-截面对应方向的惯性矩; L0-对应方向的杆件计算长度。
香莱理论
2 t cr 2
4.3
轴心受压构件的整体 稳定性
4.3 轴心受压构件的整体稳定性
4.3.1
概述
在荷载作用下,钢结构的外力与内力必须保持平衡。但这种 平衡状态有持久的稳定平衡状态和极限平衡状态,当结构或构
件处于极限平衡状态时,外界轻微的挠动就会使结构或构件产
生很大的变形而丧失稳定性。失稳破坏是钢结构工程的一种重 要破坏形式。
(4)无初始应力影响。
4.3 轴心受压构件的整体稳定性
实际工程中,轴心压杆并不完全符合以上条件,且它们都存在初 始缺陷(初始应力、初偏心、初弯曲等)的影响。因此把符合以上条件 的轴心受压构件称为理想轴心受压杆件。这种构件的失稳也称为屈曲。 根据构件的变形情况,屈曲有以下三种形式: 弯曲屈曲——构件只绕一个截面主轴旋转而纵轴由直线变为曲线的一种失 稳形式。这是双轴对称截面构件最基本的屈曲形式。 扭转屈曲——失稳时,构件各截面均绕其纵轴旋转的一种失稳形式。当双 轴对称截面构件的轴力较大而构件较短时或开口薄壁杆件,可能发生此 种失稳屈曲。 弯扭屈曲——构件发生弯曲变形的同时伴随着截面的扭转。这是单轴对称 截面构件或无对称轴截面构件失稳的基本形式。
第四章 轴压构件
第五章轴压构件一、选择题4.1.1(Ⅰ)工字形轴心受压构件,翼缘的局部稳定条件为,其中λ的含义为。
(A)构件最大长细比,且不小于30、不大于100 (B)构件最小长细比(C)最大长细比与最小长细比的平均值(D) 30或1004.1.2(Ⅰ)轴心压杆整体稳定公式的意义为。
(A)截面平均应力不超过材料的强度设计值(B)截面最大应力不超过材料的强度设计值(C)截面平均应力不超过构件的欧拉临界应力值(D)构件轴心压力设计值不超过构件稳定极限承载力设计值4.1.3(Ⅰ)用Q235钢和Q345钢分别制造一轴心受压柱,其截面和长细比相同,在弹性范围内屈曲时,前者的临界力后者的临界力。
(A)大于(B)小于(C)等于或接近(D)无法比较4.1.4(Ⅰ)轴心受压格构式构件在验算其绕虚轴的整体稳定时采用换算长细比,这是因为。
(A)格构构件的整体稳定承载力高于同截面的实腹构件(B)考虑强度降低的影响(C)考虑剪切变形的影响(D)考虑单支失稳对构件承载力的影响4.1.5(Ⅰ)为防止钢构件中的板件失稳采取加劲措施,这一做法是为了。
(A)改变板件的宽厚比(B)增大截面面积(C)改变截面上的应力分布状态(D)增加截面的惯性矩4.1.6(Ⅰ)为提高轴心压杆的整体稳定,在杆件截面面积不变的情况下,杆件截面的形式应使其面积分布。
(A)尽可能集中于截面的形心处(B)尽可能远离形心(C)任意分布,无影响(D)尽可能集中于截面的剪切中心4.1.7(Ⅰ)轴心压杆采用冷弯薄壁型钢或普通型钢,其稳定性计算。
(A)完全相同(B)仅稳定系数取值不同(C)仅面积取值不同(D)完全不同4.1.8(Ⅰ)计算格构式压杆对虚轴x轴的整体稳定性时,其稳定系数应根据进行计算或查表。
4.1.9(Ⅰ)实腹式轴压杆绕x,y轴的长细比分别为,对应的稳定系数分别为若则。
(D)需要根据稳定性分类判别4.1.10(Ⅰ)双肢格构式轴心受压柱,实轴为x-x轴,虚轴为y-y轴,应根据确定肢件间距离。
第四章-单个构件的承载能力-稳定性
实际结构总是存在缺陷的,这些缺陷通常
可以分为几何缺陷和力学缺陷两大类。杆件的 初始弯曲、初始偏心以及板件的初始不平度等 都属于几何缺陷;力学缺陷一般表现初始应力 和力学参数(如弹性模量,强度极限等)的不 均匀性。对稳定承载能力而言,残余应力是影 响最大的力学缺陷,它的存在使得构件截面的 一部分提前进入屈曲,从而导致该区域的刚度 提前消失,由此造成稳定承载能力的降低,所 有的几何缺陷实质上亦是以附加应力的形式促 使刚度提前消失而降低稳定承载能力的。
能力,因此,如果着眼于研究结构的极限承 载能力,可依屈曲后性能分为如下三类: (1)稳定分岔屈曲。分岔屈曲后,结构还可 以承受荷载增量。换言之,变形的进一步增 大,要求荷载增加。 (2)不稳定分岔屈曲。分岔屈曲后,结构只 能在比临界荷载低的荷载下才能维持平衡位 形。 (3)跃越屈曲。结构以大幅度的变形从一个 平衡位形跳到另一个平衡位形。
1.已知荷载、截面,验算截面。 2.已知截面求承载力。 3.已知荷载设计截面。 对于1,2两种情况,计算框图如下:
已 知 荷 载、 截 面, 验 算 截 面
根据边界条件确定 lox , loy
计算 A, Ix , I y
已
知
ix
Ix A
, iy
Iy A
截 面
求
x
l ox ix
, y
l oy iy
k ——屈曲系数
o
a)
y
b)
a a
腹板和翼缘板的屈曲
b1 =b/2
b
x k
m=1
8 23 4
6
4
2
0
1 2 3 4 a/b
系数k和a/b的关系
如图,当 a/b1 时km , in4时。从中可以看出,减小板的长度 并不能提高板的稳定临界力,但减小板宽却可以大大提高板件临 界力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式使用说明:
(1)截面分类:见教材表4-4,第97页;
构件长细比的确定
①、截面为双轴对称或极对称构件:
x
y
x
y
x l ox i x
y l oy i y
对于双轴对称十字形截面,为了防止扭转 y 屈曲,尚应满足: b t x 或 y 5.07 b t x x b t 悬伸板件宽厚比。 y ②、截面为单轴对称构件:
1.
2.
3.
弯曲失稳--只发生弯曲变形,截面只绕一个主轴旋转,杆 纵轴由直线变为曲线,是双轴对称截面常见的失稳形式;
扭转失稳--失稳时除杆件的支撑端外,各截面均绕纵轴扭 转,是某些双轴对称截面可能发生的失稳形式;
弯扭失稳—单轴对称截面绕对称轴屈曲时,杆件发生弯曲变形的同
时必然伴随着扭转。
实际轴心受压构件的整体稳定计算 (弯曲屈曲)
。
cr
fy
轴心受压构件不发生整体失稳的条件为,截面 应力不大于临界应力,并考虑抗力分项系数γR后, 即为:
N cr cr f y f A R fy R N 即: f (4 24) A 稳定系数,可按截面分 类和构件长细比查 表得到。
焊接工字形:在工厂制造,利用自动焊焊接所需的尺
寸,其腹板按局部稳定的要求作得很薄以节省钢材, 应用十分广泛。
常用的截面形式及特点:
十字形截面:在两个主轴方向的回转半径是相同的,
对于重型中心受压柱,当两个方向的计算长度相同时, 这种截面较为有利。在高层钢结构中应用广泛,但要 保证不发生抗扭屈曲。
2 EI e 2 EI I e N cr 2 2 I l l 2 E Ie cr 2 I
以忽略腹板的热轧H型钢柱为例, 推求临界应力:
当σ>fp时,截面出现塑性区,应 力分布如图。 柱屈曲可能的弯曲形式有两种: 沿强轴(x轴)和沿弱轴(y轴) 因此,临界应力为:
x y
N
eo 0
(4 22)
其压力—挠度曲线如图:
曲线的特点与初弯曲 N N e0=0 压杆相同,只不过曲线过 1.0E 圆点,可以认为初偏心与 B e0=3mm 初弯曲的影响类似,但其 A B’ 影响程度不同,初偏心的 A’ 影响随杆长的增大而减小, 初弯曲对中等长细比杆件 0 影响较大。 v 我国的规范将二者缺 仅考虑初偏心轴心压杆的 压力—挠度曲线 陷合二为一,以初弯曲代 替初偏心的影响。
对于框架柱和厂房阶梯柱的计算长度取 值,详见有关章节。
轴心受压构件整体稳定计算
弹性屈曲(失稳)和弹塑性 屈曲(失稳) 屈曲形式: 弯曲屈曲:只发生弯曲变形, 杆件的截面只绕一个主轴旋 转,杆的纵轴由直线变为曲 线。 扭转屈曲:失稳时杆件除支 承端外各截面均绕纵轴扭转。 弯扭屈曲:杆件在发生弯曲 变形的同时伴随着扭转。
(4 10)
fy
b
c’ σrc σrt
σ1
t
h
x
x
t
y
显然,残余应力对弱轴的影 响要大于对强轴的影响(k<1)。
分析得到:
kb b
a a’ c
残余应力使构件提前进入塑性 状态,而对弹性状态无影响;
残余应力的存在使得由I降低到 Ie,,使得抗弯刚度降低了,其稳 定承载能力也就降低了; 残余应力对截面的弱轴的影响 比强轴要大得多; 残余应力对截面的强度无影响。
第4章 单个构件的承载能力—稳定性
4.1 稳定的一般问题
失稳的类别
完善直杆沿轴心受压时其失稳时其平衡形式由
直变弯——分支点失稳;
实际的轴心受压杆由于存在几何缺陷(初始弯
曲),受力后,挠度不断增加,失稳时是以变 形的发展导致承载力达到极限——极值点失稳
现在钢结构的分类方式是以屈曲后的性能如何进 行分类 :
1、残余应力的影响 (1)残余应力产生的原因及其分布 A、产生的原因 ①焊接时的不均匀加热和冷却; ②型钢热轧后的不均匀冷却; ③板边缘经火焰切割后的热塑性收缩; ④构件冷校正后产生的塑性变形。
实测的残余应力分布较复杂而离散,分析
时常采用其简化分布图(计算简图):
典型截面的纵向残余应力的分布:
(3)、仅考虑残余应力影响的轴压柱的临界应力
N NE 1.0
v0=0 v0=3mm
0.5
0
v
结论:1、当N=NE时,νm将无限增大,其物理意义 就是杆件的刚度随其所受压力的增大而不断退化,当 N达到临界力NE时,杆件的刚度退化为零,杆件无法 再保持稳定的平衡了。 2、初弯曲使轴心受压杆件的整体稳定承载力降低了。 我国规范将初弯曲取为杆长的1/1000。
的约束影响。这种约束作用要从结构的整体分 析来确定;
相关性:不同失稳模式的耦合作用
4.2 轴心受压构件的整体稳定性
实际轴心受压柱的受力性能受许多因素的影响, 主要的因素有截面中的残余应力,杆轴的初弯 曲,荷载作用点的初偏心以及杆端的约束条件 等。这些因素的影响是错综复杂的,其中残余 应力,初弯曲和初偏心都是不利的因素,并被 看作是轴心压杆的缺陷;而杆端约束有有利的 一面,也有不利的一面。
2. 常用的截面形式及特点:
角钢:单角钢截面适用于桁架中受力较小的腹杆。双
角钢能满足等稳定性的要求,常用于由节点板连接杆 件的平面桁架。
热轧普通工字钢:制造省工,适用于两个主轴方向计
算长度相差较大的情况,如:工作平台柱;
轧制H型钢:面积分布较合理,制造简单,生产量少。
轴压构件宜采用宽翼缘。
绕非对称轴 轴: x l ox i x x
绕对称轴y轴屈曲时,一般为弯扭屈 曲,其临界力低于弯曲屈曲,所以计 算时,以换算长细比λyz代替λy 。 计算公式如下:
x
y
x
y
轴心受压构件的稳定承载力与那些因 素有关?
1. 构件的几何形状与尺寸:影响屈曲形式,而
屈曲形式对构件的稳定承载力有直接关系。 2. 杆端约束程度:约束程度愈高,则承载力愈 高。 3. 残余应力、初弯曲、初偏心:残余应力的分 布位置和大小对轴心受压构件的稳定承载力 影响很大。初弯曲和初偏心对轴心受压构件 的稳定承载力影响本质是相同的。 4. 钢材的强度:构件在弹性阶段屈曲时与强度 无关,而在弹塑性阶段屈曲时,强度高的构 件比强度低的构件临界力要高。
圆管截面:轴心压杆的承载能力较高,轧制钢管取材
不易,应用不多。焊接圆管压杆用于海洋平台结构, 因其腐蚀面小又可作成封闭构件,比较经济合理。
方管或由钢板焊成的箱形截面:因其承载能力和刚度
都较大,虽然和其他构件连接构造相对复杂些,但可 用作轻型或高大的承重支柱。
稳定分岔屈曲——平板;延性破坏的特征;
不稳定分岔屈曲——园柱壳体、短粗园管压杆、
薄壁方管压杆等;脆性破坏的特征;
跃越屈曲——拱矢较小的坦拱、扁球顶盖等;
脆性破坏的特征;
从完善构件的稳定分析到有缺陷的实际杆件的稳 定分析,这一思路贯穿各类构件的稳定分析中。
一阶分析、二阶分析
一阶分析:不考虑变形对外力效应的影响。例
纵向残余应力
残余应力是杆件截面内存在的自相平衡的初始应力。 残余应力有平行于杆轴方向的纵向残余应力和垂直于
杆轴方向的横向残余应力两种。横向残余应力的绝对 值一般很小,而且对杆件承载力的影响甚微,故通常
只考虑纵向残余应力。
初 始 缺 陷
力学缺陷:残余应力、材料不均匀等。 几何缺陷:初弯曲、初偏心等;
1、实际轴心受压构件的临界应力
确定受压构件临界应力的方法,一般有: (1)屈服准则:以理想压杆为模型,弹性段以欧拉临 界力为基础,弹塑性段以切线模量为基础,用安全系 数考虑初始缺陷的不利影响; (2)边缘屈服准则:以有初弯曲和初偏心的压杆为模 型,以截面边缘应力达到屈服点为其承载力极限; (3)最大强度准则:以有初始缺陷的压杆为模型,考 虑截面的塑性发展,以最终破坏的最大荷载为其极限 承载力; (4)经验公式:以试验数据为依据。
杆端约束对轴心受压杆件的整体稳定性的影响
实际压杆并非全部铰支,对于任意支承情况的 压杆,其临界力为:
N cr
2 EI 2 EI 2 2 l0 l
式中:l 0 杆件计算长度, 0 l; l
计算长度系数,取值如 下表。
l0 的物理意义:将具有端部约束的杆件比拟为承载 力相同而长度不同的两端铰接构件看待。
3、折算模量计算压杆的非弹性稳定临界力:
Nr
2 Er I
l
2
Et I1 EI 2 Er I
经过实验发现临界力达不到Nr,但接近Nt。
4、新切线模量理论:应用在钢结构的稳定分析中。
稳定问题的多样性、整体性、相关性
多样性:失稳形式不只一种; 整体性:对一个杆件的分析,应考虑其他杆件
初偏心对轴心受压杆件的整体稳定性 的影响 b) N e a) N
o
0
以两端铰接的、具有初偏心的弹
性轴心压杆为例,建立平衡微分 方程: x
EIy" Ny Ne0
x y
l
y0
y x
l
所以,压杆长度中点(x=l/2) y 最大挠度v: N
v y max N 1 e 0 sec 2 NE
根据前述压杆屈曲理论,当 应力;
N A fp
或 p E f p 时,可采用欧拉公式计算临界
当 或 p E f p 时, N A fp 截面出现塑性区,由切线模量理论知,柱屈曲 时,截面不出现卸载区,塑性区应力不变而变 形增加,微弯时截面的弹性区抵抗弯矩,因此, 用截面弹性区的惯性矩Ie代替全截面惯性矩I, 即得柱的临界应力:
4.3实腹式柱和格构式柱的截面选择计算