实变函数论课件4 n维空间中的点集、聚点、内点、界点
实变函数论之集合与点集
实变函数论之集合与点集集合与点集实变函数论作为现代分析数学的基础,其知识结构是建立在集合论之上的.集合论产生于19世纪70年代,由德国数学家康托尔(Cantor)创立,它是整个现代数学的开端及逻辑基础.作为本科教材,本章只介绍必需的集合论知识,而不涉及有关集合论公理的讨论.1.1 集合及相关概念大家在中学就认识了集合这个概念.所谓集合,是指具有某种特定性质的对象的全体.集合中的对象称为该集合的元素.集合通常用大写英文字母A,B,C,…表示;元素通常用小写英文字母a,b,c,…表示.今后用一些特殊的记号表示特殊的集合:R表示全体实数形成的集合;C 表示全体复数形成的集合;N,Z,Q分别表示自然数集、整数集和有理数集.另外,不含任何元素的集合称为空集,用记号表示.集合的具体表示方法一般有两种:一种是枚举法,如集合{1,2,3,4,5}; 一种是描述法,例如,大于20的自然数组成的集合,可写为{x|x>20,且x为自然数}.一般地,若A是具有某种性质P的元素组成的集合,通常记为A={x|x具有性质P}.对于给定的某集合A及某对象a,若a 是A中的元素,就说a属于集合A,记为a∈A;否则,就说a不属于集合A,记为a A.给定两个集合A和B,若A中的元素都属于B,则称A是B的子集,记为A B 或B A;进而,若同时有A B和B A,则A=B.对于任意的非空集合A,空集和A当然是A的子集,这两个子集称为平凡子集.除此之外的子集称为真子集.例1.1.1 写出{1,2,3}的所有子集,由此计算{1,2,…,n}的子集的个数,其中n∈N.{1,2,3}的所有子集是:,{1,2,3},{1},{2},{3},{1,2},{1,3},{2,3},第1章集合与点集1.1 集合及相关概念共23=8个.一般地,{1,2,…,n}的子集的个数是:C0n+C1n+…+C n n=2n,其中C k n=n!k!(n-k)! (k∈{0,1,…,n})为组合数公式.任给集合A,它的所有子集构成的集合称为它的幂集,记为2 A.1.1.1 集合的运算我们知道,数可以进行运算,并由此生成新的数.类似地,集合之间也可以进行运算, 并由此生成新的集合.其中,最常用的运算有“并”、“交”、“差”三种.定义1.1.1 任意给定集合A和B,集合{x|x∈A或x∈B}称为A与B 的并集,并集也称为和集,记为A∪B,或A+B;集合{x|x∈A且x∈B}称为它们的交集,交集也称为积集,记为A∩B,或AB; 推而广之,给定集合族{Aα}α∈Γ,其中Γ是指标集,则此集合族的并集与交集分别为∪α∈ΓAα={x|α∈Γ,x∈Aα}; (1.1)∩α∈ΓAα={x|α∈Γ,x∈Aα}. (1.2) 集合{x|x∈A且x B}称为A与B的差集,又称补集,记为A\\B,或A-B.注意:一般来说(A-B)∪B未必等于A.如果已知A B,则A-B称为B相对于A的余集,记为AB,特别地,如果我们在某一问题中所考虑的一切集合都是某一给定集合S的子集时,集合B相对于S的余集就简称为B的余集, SB 简记为B c.而集合(A-B)∪(B-A)称为A与B的对称差,记为A△B.例 1.1.2 设A j=x0≤x≤1+1j,j=1,2,…,B i=x-1+1i≤x≤1-1i,i=1,2,…,C k=x-1k<x∩nj=1A j=x0≤x≤1+1n, ∪mi=1B i=x-1+1m≤x≤1-1m,∩pk=1C k=x-1p<x<1p.其中n,m,p∈N.由此知∩∞j=1A j={x|0≤x≤1}, ∪∞i=1B i={x|-1<x集合的并、交、差(补)运算满足下面的运算律:定理1.1.1 (1) 交换律A∪B=B∪A, A∩B=B∩A;特别地A∩A=A, A∪A=A, A∪=A, A∩=.(2) 结合律A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C.(3) 分配律A∩(B∪C)=(A∩B)∪(A∩C);一般地A∩∪α∈ΓBα=∪α∈Γ(A∩Bα).(4) 大小关系(A∩B)A(A∪B).(5) 若AαBα,α∈Γ,则∪α∈ΓAα∪α∈ΓBα, ∩α∈ΓAα∩α∈ΓBα;特别地,若AαC或C Bα,α∈Γ,则∪α∈ΓAαC, C∩α∈ΓBα.证明下面仅证A∩∪α∈ΓBα=∪α∈Γ(A∩Bα).任取x∈A∩∪α∈ΓBα,则x∈A且α0∈Γ,使得x∈Bα0,于是x∈∪α∈Γ(A∩Bα),由x的任意性得A∩∪α∈ΓBα∪α∈Γ(A∩Bα).反过来,任取x∈∪α∈Γ(A∩Bα),则α0∈Γ,使得x∈A∩Bα0,即x∈A且x∈Bα0,从而x∈A 且x∈∪α∈ΓBα,故x∈A∩∪α∈ΓBα,由x的任意性得∪α∈Γ(A∩Bα)A∩∪α∈ΓBα.综合起来,等式成立.□以下给出关于余集计算的部分性质. 定理1.1.2 (1) A-B=A∩SB;(2) 若A B,则SA SB,B\\A=B∩A c;(3) 对偶律(德摩根(De Morgan)律)若A,B X,则(A∪B)c=A c∩B c, (A∩B)c=A c∪B c.一般地∩α∈ΓAαc=∪α∈ΓA cα,∪α∈ΓAαc=∩α∈ΓA cα.证明下面仅证对偶律:若A,B X,则(A∪B)c=A c∩B c,其余结合相关定义类似可得.事实上,由补集定义,(A∪B)c={x|x∈X且x A∪B}={x|x∈X,x A且x B}={x|x∈X,x∈A c且x∈B c}=A c∩B c.□德摩根律使我们通过余集的运算把并集变为交集,把交集变为并集.这种转化在集合的运算及论证中是很有用的.1.1.2 集合列的上极限和下极限众所周知,数列可以讨论极限.类似地,集合列也可以讨论极限.以下我们给出集合列及其极限的定义.定义1.1.2 一列集合{A n} (n=1,2,…)称为集合列,也可记为{A n}∞n=1.属于上述集合列中无限多个集的元素的全体所形成的集称为该集合列的上极限,或称为上限集,记为lim n→∞A n,或lim n→∞ sup A n;对于上述集合列,那些除了有限个下标外,属于该集合列中每个集合的元素的全体形成的集称为这个集合列的下极限,或称为下限集,记为</x</x<1p.</xlim n→∞A n或lim n→∞ inf A n.等价地,lim n→∞ sup A n={x|对于任意的自然数n,存在k≥n,使得x∈A k},lim n→∞ inf A n={x|存在n0∈N,当n≥n0时,x∈A n}.由此知,lim n→∞ inf A n lim n→∞ sup A n.进而,对于给定集合列{A n},若其上、下极限相等,则称集合列{A n}收敛,其极限即为它的上(或下)极限,记为lim n→∞A n.集合列的上(下)极限可以用“并”与“交”运算来表达. 定理1.1.3 给定集合列{A n},则lim n→∞sup A n=∩∞n=1∪∞k=nA k, lim n→∞ inf A n=∪∞n=1∩∞k=nA k.证明利用lim n→∞sup A n={x|n∈N,k≥n,使得x∈A k} (1.3)来证明关于上极限的等式,关于下极限的情况可类似证得.记A=lim n→∞sup A n,B=∩∞n=1∪∞m=nA m.事实上,设x∈A,则对任意取定的n,存在m>n,使得x∈A m,即对任意n,总有x∈∪∞m=nA m,故x∈B,继而A B.反之,设x∈B,则对任意的n>0,总有x∈∪∞m=nA m,即总存在m(m≥n),使得x∈A m,故x∈A,继而B A,从而A=B,另一等式可同样证明.□若集合列{A n}满足:A n A n+1,n∈N,则称{A n}是单调增加集合列;若A n A n+1,n∈N,则称之为单调减少集合列.统称为单调集合列.由定理1.1.3易知,单调集合列是收敛的.具体地,若{A n}为单调增加集合列,则lim n→∞A n=∪∞n=1A n;若{A n}为单调减少集合列,则lim n→∞A n=∩∞n=1A n.例 1.1.3 设{A n}是如下一列点集:A2m+1=0,2-12m+1〗, m=0,1,2,…,A2m=0,1+12m〗, m=1,2,….我们来确定{A n}的上、下极限.因为闭区间\中的点属于每个A n,n=1,2,…,而对于开区间(1,2)中的每个点x,必存在自然数N(x),使得当n>N(x)时,有1+12nN(x)时,x A2n,但x∈A2n+1.换言之,对于开区间(1,2)中的x,具有充分大的奇数指标的集合都含有x,即{A n}中有无限多个集合含有x,而充分大的偶数指标的集合都不含有x,即{A n}中不含有x的集合不会是有限个.又区间\lim n→∞ sup A n=\n→∞ inf A n=\.例1.1.4 设{A n}为:当n=2k时,A2k=(x,y)0≤x≤2k,0≤y≤12k, k∈N;当n=2k+1时,A2k+1=(x,y)0≤x≤12k+1,0≤y≤2k+1, k∈N.则lim n→∞ sup A n={(x,0)|x≥0}∪{(0,y)|y≥0}; lim n→∞ inf A n={(0,0)}.定义1.1.3 设A,B是两个集合,称一切有序“元素对”(x,y)(其中x∈A,y∈B)形成的集合为A与B的直积集或笛卡儿(Descartes)积,记为A×B,即A×B={(x,y)|x∈A,y∈B},其中(x,y)=(x′,y′)是指x=x′,y=y′,X×X也记为X 2.例 1.1.5 设A={1,2,3},B={4,5},则A×B={(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.例1.1.6 \×\为平面上单位闭正方形.例1.1.7 Q×Q=Q Q2为平面上有理点集.习题习题1. 试证:(1) A∩(B∪C)=(A∩B)∪(A∩C);(2) (A\\B)∪B=(A∩B)\\B的充要条件是B=;(3) A-(B-C)=(A-B)∪(A∩C).2. 证明:(1) A△B=B△A;(2) (A△B)△C=A△(B△C);(3) A∩(B△C)=(A∩B)△(A∩C);(4) 对任意的A,B,存在C使得A△C=B.3. 设{A n}是一集合列,作B1=A1,B n=A n-∪n-1k=1A k,n=2,3,…,试证{B n}互不相交,且∪ni=1A i=∪nj=1B j,n=1,2,…,∞.4. 设f(x),g(x)是点集E上定义的两个函数,a,k为任意实数,但k≠0.则(1) {x: f(x)≥a}=∩∞n=1x: f(x)>a-1n;(2) {x: |f(x)g(x)|>a}{x: |f(x)|>k}∪x: |g(x)|>ak.5. 试证:(1) ∪∞i=1(A\\B i)=A∩∞i=1B i; (2) ∩∞i=1(A\\B i)=A∪∞i=1B i.6. 设A2n-1=0,1n,A2n=(0,n),n=1,2,….求出集合列{A n}的上限集和下限集.7. 设A n=E,n=2k-1,F,n=2k, k=1,2,…,求集合列A n的上限集和下限集.8. 设A n=mn: m为整数,n=1,2,…,试证lim n→∞ supA n=Q,lim n→∞ inf A n=Z.9. 设{f n(x)}是\上的一列函数,且存在E\使得lim n→∞f n(x)=1, x∈\\\E,0, x∈E.令E n=x∈\: f n(x)≥12,求集合lim n→∞E n.10. 设{f n(x)}以及f(x)是定义在R上的实值函数,则使{f n(x)}不收敛于f(x)的一切点x所形成的集合为∪∞k=1∩∞N=1∪∞n=Nx: |f n(x)-f(x)|≥1k. 11. 设εk>0 (k=1,2,…) ,εk随着k→∞单调下降趋于0.f(x),f n(x) (n=1,2,…)定义在E上,lim n→∞f n(x)=f(x)(x∈E),试证:对任意的a有(1) E\=∪∞k=1lim n→∞E\;(2) E\=∩∞k=1lim n→∞E\;(3) E\=∪∞k=1lim n→∞E\.注: E\={x∈E|f(x)>a}.1.2 映射、基数与可数集1.2 映射、基数与可数集我们都知道,实数是可以比较大小的,那么自然地联想一下,集合有没有大小的差别呢?直观地想,如果是有限集合,可能集合元素的个数多集合就大,那么对于含有无限个元素的集合,集合的大小该怎么比较呢?全体实数构成的集合就一定比全体正实数构成的集合大吗?在对集合的定义和基础运算有了一定的了解之后,我们接下来就介绍一下用以刻画集合大小的概念:基数.在此之前,我们要引入映射的概念,本节的最后,我们还将向大家介绍一种最常见的集合:可数集.1.2.1 映射大家都熟悉函数概念,下面要讲到的映射是函数概念的抽象化.定义1.2.1 给定两个非空集合X,Y,若对于X中每个元素x在Y中都存在唯一的元素y与之对应,则称这个对应为映射.若用φ表示这种对应,则记为φ: X→Y并称φ是从X到Y的一个映射.此时,x∈X在Y 中对应元y称为x在映射φ下的像,x称为y的一个原像,记为y=φ(x).进而,y的原像集为{x|y=φ(x),x∈X},记为φ-1(y).φ(X)={y|y=φ(x),x∈X}Y称为映射φ: X→Y的值域,而X为定义域.特别地,若φ(X)=Y,则称映射φ是满射,也称为到上的映射(X到Y 上的映射);若对于每个y∈φ(X)其原像集φ-1(y)是单点集,等价地,若x1,x2∈X,当φ(x1)=φ(x2)时必有x1=x2,则称该映射是单射,也称为一一映射.注1.2.1 一一映射存在逆映射,即φ-1: φ(X)→X,φ-1(y)=x,当φ(x)=y 时.进而,到上的一一映射称为双射,也称为一一对应.给定映射φ: X→Y,及A X,Bφ(X),则A的像集为φ(A)={y|y=φ(x),x∈A},B的原像集为φ-1(B)={x|φ(x)∈B}.综上易得下面关于映射与集合的并和交运算的关系式:φ∪α∈ΓAα=∪α∈Γφ(Aα), φ∩α∈ΓAα∩α∈Γφ(Aα);φ-1∪α∈ΓAα=∪α∈Γφ-1(Aα), φ-1∩α∈ΓAα=∩α∈Γφ-1(Aα).例1.2.1 给定非空集合X,定义其非空子集A上的特征函数为χA(x)=1,x∈A,0,x A.于是A→χA是从X的幂集2X到{0,1}上的映射.而且可以利用特征函数来反馈集合本身的特征:χA(x)≤χB(x)A B,χA(x)χB(x)=0A∩B=.1.2.2 基数给定一个集合,若它只含有限个元素则称为有限集;否则,就称为无限集.对于有限集来说,若不考虑元素的具体特性,则所含元素的个数是一个基本而重要的量,因与元素个数有关的问题一般会涉及元素个数的比较.两个有限集是否含有相同数量的元素可用能否建立一一对应来衡量.受此启发,尽管对于无限集来说谈论个数没有实际意义,但比较两个无限集所含元素的多少,仍然可以用能否建立一一对应来度量.定义1.2.2 给定集合A,B,若存在从A到B的一一对应,则称集合A 与B对等,记为A~B.对等关系有下述性质. 定理1.2.1 任给集合A,B,C,有(1) (自反性)A~A;(2) (对称性)若A~B,则B~A;(3) (传递性)若A~B,且B~C,则A~C.符合上述三条的关系称为等价关系.因此,集合之间的对等是一种等价关系.下面,我们描述性地给出集合基数的概念.定义1.2.3 设A,B为给定两个集合,如果A~B,那么就称集合A与集合B的基数或者势相同.记为=.因此,对等的集合具有相同的基数(势).特别地,当A是非空有限集时,则存在某自然数n0使得A与{1,2,…,n0}一一对应,而{1,2,…,n0}由n0唯一确定,于是可以认为=n0.由此知,基数(势)的概念是通常元素个数的推广.以下给出一些常见的集合的例子.例1.2.2 (0,1)~R.事实上,令φ:x→tanπx-π2,则易知φ建立了(0,1)与R之间的一一对应.例1.2.3 任意两个圆周上的点集具有相同的基数.事实上,不妨令任给的两个圆同圆心,于是让从圆心出发的同一条射线与两个圆的交点相互对应,则该对应是一一对应.有了集合大小的概念--基数,接下来,我们给出基数大小比较的法则.定义1.2.4 给定两个集合A和B,若存在B的子集B1使得A~B1,则称A的基数不大于B的基数,记为≤;若≤,并且≠,此时称A的基数小于B的基数,记为<.自然数可以比较大小,类似地,基数也可以比较大小.即,对于任意给定的两个基数α,β,关系式α<β,α=β,α>β,这三者中有且仅有一式成立.证明要涉及集合论的公理系统,超出本教材范围,故略.对于自然数a,b,若a≤b且b≤a则a=b.对于基数也有类似的结论,也就是说集合的大小在某种意义下也是可以比较的. 定理1.2.2(伯恩斯坦(Bernstein)定理)给定集合A,B,若≤且≥,则=.证明由题设,存在双射φ: A→φ(A)B,及双射ψ: B→ψ(B) A.下面用迭代法寻找A′A及B′B,使得φ(A′)=B\\B′,同时ψ(B′)=A\\A′.为此,考虑下面的方程组:φ(A′)=B\\B′, ψ(B′)=A\\A′,等价地A′=A\\ψ(B′), B′=B\\φ(A′). (1.4) 为了求解方程组(1.4),运用迭代法,逐次作A1=A\\ψ(B), B1=B\\φ(A1),A2=A\\ψ(B1), B2=B\\φ(A2),A n=A\\ψ(B n-1), B n=B\\φ(A n),由上述构造知,A i A,B i B,i=1,2,….注意到ψ是一一映射,于是有ψ∩∞i=1B i=∩∞i=1ψ(B i),再结合德摩根律,有∪∞i=1A i=∪∞i=1(A\\ψ(B i-1))=A∩∞i=1ψ(B i-1)=Aψ∩∞i=1B i-1=Aψ∩∞i=1B i,此处记B0=B.类似地,可得∩∞i=1B i=∩∞i=1(B\\φ(A i))=Bφ∪∞i=1A i.从而,式(1.4)有解A′=∪∞i=1A i, B′=∩∞i=1B i.定义映射Φ(x)=φ(x),x∈A′,ψ-1(x),x∈A\\A′.由上述构造知,φ(A′)=B\\B′,ψ-1(A\\A′)=B′,于是Φ是满射.至于Φ的单射性由φ及ψ的单射性即得.因此,Φ是从A到B上的一一对应.从而,A~B.□推论1.2.1 设A B C,A~C,则A~B,B~C.证明以A~B为例,设φ是A和C之间的一个一一对应,令A*={x: x∈A,φ(x)∈B},则A*A,A*~B,取B*=A,则自然有B*~A.于是由伯恩斯坦定理有A~B.1.2.3 可数集本小节我们给出最常见的一种无穷集合--可数集的定义,并研究其相关性质.定义1.2.5 与自然数集对等的集合称为可数集,或称为可列集.于是任意的可数集A均可写成A={a1,a2,…,a n,…},反之,这种形式的集合均为可数集.可数集的基数记为0.下面的定理表明,可数集的基数在无限集中是最小的. 定理1.2.3 任意无限集均包含可数子集.证明设A是任意给定的无限集,任意取定a1∈A,因A\\{a1}仍然是无限集,再任意取定a2∈A\\{a1},依次类推,在A\\{a1,a2}中取出a3,…,在A\\{a1,a2,…,a n}中取出a n+1,照此继续,即得A的可数子集{a1,a2,…,a n,…}.进一步,我们有下述定理.□ 定理1.2.4 若X是一个无限集,Y是有限集或可数集,则X∪Y=.证明因X∪Y=X∪(Y\\X),故不妨设X∩Y=.若Y是可数集,记Y={y1,y2,…}.由于X是无限集,由定理1.2.3知,X有可数子集X1={x1,x2,…},于是有分解X=X1∪(X\\X1).令φ: X∪Y→X,使得φ(x n)=x2n,φ(y n)=x2n-1,n=1,2,…;φ(x)=x,x∈X\\X 1.由此构造知φ是X与X∪Y之间的一一对应;若Y为有限集,则对应的X1取为与Y有相同个数的X中的有限集,然后类似于上面的证明即得.□众所周知,有限集不可能和它的任意真子集建立一一对应关系.无限集与有限集的本质区别就在于此,即下面的定理. 定理1.2.5 集合X是无限集的充要条件是,存在X的真子集Y有Y~X.证明因若X是有限集时,X不可能与它的任意真子集对等,由此得证充分性;下证必要性:任取X的一个有限子集A,因X是无限集,故X\\A 亦是无限集,利用定理1.2.4得,X\\A=(X\\A)∪A=,记Y=X\\A,得证.□下面一系列定理关心的是集合及其子集的可数性问题. 定理1.2.6 可数集的子集如果不是有限集,则一定是可数集.证明设A是可数集,A1是A的一个无限子集.首先,因A1A,故A1≤;其次,因A1是无限集,由定理1.2.3可知,≤A 1.于是由伯恩斯坦定理得,A1=,即A1是可数集.□ 定理1.2.7 设A为可数集,B为有限或可数集,则A∪B为可数集.证明设A={a1,a2,…},B={b1,b2,…,b n}或B={b1,b2,…,b n,…}.(1) 先设A∩B=,由于可数集总可排成无穷序列,当B有限时,A∪B={b1,b2,…,b n,a1,a2,…};当B可数时,A∪B={a1,b1,a2,b2,…,a n,b n,…},可见A∪B总可以排成无穷序列,从而是可数集.(2) 一般情况下,此时令B*=B-A,则A∩B*=, A∪B*=A∪B.由于B至多可数,故B*作为B的子集,也至多可数(有限集或可数集),由(1)的证明知,A∪B*可数,故A∪B也可数.□推论1.2.2 设A i(i=1,2,…,n)是有限集或可数集,则∪ni=1A i也是有限集或可数集,但如果至少有一个A i是可数集,则∪ni=1A i必为可数集. 定理1.2.8 可列个可数集的并集是可数集.证明设{A n} (n=1,2,…)是一列可数集.(1) 先设A i∩A j=(i≠j),因为A i都是可数集,于是可记A n={a n1,a n2,…,a nk,…}, n,k=1,2,…, 从而∪∞n=1A n中元素可按下述方式排成一列:∪∞n=1A n={a11,a21,a12,a31,a22,a13,a41,…,a ij,…},规则是:a11排第一位,当i+j>2时,a ij排在第j+∑i+j-2k=1k位.因此∪∞n=1A n是可数集(注:当部分A i是有限集时仍适用).(2) 一般情况下,各A i可能相交,令A*1=A1,A*i=A i-∪i-1j=1A j (i≥2),则A*i∩A*j=(i≠j)且∪∞i=1A i=∪∞i=1A*i.由A i可数易知A*i都是有限集或可数集,如果只有有限个A*i不为空集,则由推论1.2.2 易知∪∞i=1A*i为可数集(因为至少A*1=A1为可数集);如果有无限多个(必为可数个)A*i不为空集,则由(1)知∪∞i=1A i=∪∞i=1A*i也是可数集,故在任何场合∪∞n=1A n都是可数集.□推论1.2.3 (1) 有限集与可数集的并是一可数集;(2) 有限个可数集的并是一可数集;(3) 可数个互不相交的非空有限集的并是一可数集;(4) 可数个可数集的并是一可数集.例1.2.4 整数集,有理数集均为可数集.事实上,整数集Z=N∪(-N),其中-N为负自然数全体的集合. 因映射f: N→-N,f(n)=-n,建立了N与-N 之间的一一对应,故-N是可数集.于是由定理1.2.7知Z是可数集.对于有理数集,记Q+为正有理数全体的集;Q-为负有理数全体的集,于是Q=Q+∪Q-∪{0}.令A n=1n,2n,3n,… (n=1,2,…),则A n (n∈N)是一列可数集,而Q+=∪∞n=1A n,从而由定理1.2.8知Q+亦可数;又Q-与Q+通过映射f(x)=-x (x∈Q+)建立了一一对应,于是Q-也可数.再利用定理1.2.7即得Q是可数集.由例1.2.4易得下面一些今后很有用的结论:有理系数多项式全体所构成的集合是可数集;R中无限个互不相交的开区间所形成的集是可数集.事实上,在每一个开区间中任意取定一个有理数,由题设可知开区间与取定的有理数是一一对应的.因此这些有理数形成Q的一个无限子集,记为Q1,由定理1.2.6得Q1可数,从而得证.注1.2.2 若A中每个元素可由n个互相独立的记号一对一地加以决定,各记号跑遍一个可数集,即A={a x1,x2,…,x n|x k=x k(1),x k(2),x k(3),…;k=1,2,…,n},则A为可数集.例1.2.5 元素(n1,n2,…,n k)是由k个正整数所组成的集合,其全体构成一可数集A={(n1,n2,…,n k)|n i∈Z+}.例 1.2.6 整系数多项式a0x n+a1x n-1+…+a n-1x+a n的全体是一可数集.记a a0,a1,…,a n=a0x n+a1x n-1+…+a n-1x+a n,则整系数多项式的全体可记为∪∞n=1A n,为可数集,其中A n={a a0,a1,…,a n}.代数数的全体是一个可数集(所谓代数数,就是整系数多项式的根).事实上,整系数多项式的全体可数,而每一个整系数多项式只有有限个根,故代数数的全体是一个可数集.例1.2.7 N与R不对等,即N≠R.若不然,存在N与R的一个一一对应,将与N中n对应的元素(n)记为r n,则R上至少有一个单位长度的区间不含r1,不妨设此区间为I1=\,将\分为三等分,则0,13〗,23,1〗中至少有一个不含r2,以I2表示这个区间,将I2三等分,其左、右两个区间中至少有一个区间不含r3,记为I3,依此类推,可得一串闭区间{I n},满足:(1) I1I2I3…,且I n的长度趋于0;(2) r n I n,n=1,2,….由闭区间套定理知∩∞i=1I n≠,但对任意的m,r m∩∞i=1I n,换言之,∩∞i=1I n不在R中,这是不可能的.这一矛盾说明,N与R不可能对等.例1.2.8 R上任一单调函数的不连续点全体的集至多可数,即或为空集,或为有限集,或为可数集.不妨设f(x)是单调递增函数.若f(x)在R上连续,则其不连续点集为空集;若存在间断点x1,由柯西(Cauchy)收敛原理可知,f(x1-0)与f(x1+0)均存在,于是f(x1-0)=lim x→x1-f(x)<lim x→x1+f(x)=f(x1+0).表明x1对应开区间(f(x1-0),f(x1+0)).对于两个不同间断点x1和x2,由函数f(x)的单调性可得,开区间(f(x1-0),f(x1+0))与(f(x2-0),f(x2+0))互不相交.进而,由上面的分析知,f(x)的不连续点集与上述开区间形成的集合之间存在一一对应,于是,或为有限集,或为可数集.1.2.4 不可数集与连续基数对于一个无限集,若不是可数集,则称之为不可数集. 定理1.2.9 开区间(0,1)是不可数集.证明用反证法:假若(0,1)是可数集,则可记(0,1)={a(1),a(2),a(3),…}.而每个a(i) (i=1,2,…)均可按下述方式唯一表示成十进制纯小数:a(1)=0.a(1)1a2(1)a3(1)…,a(2)=0.a(2)1a(2)2a3(2)…,a(3)=0.a1(3)a(3)2a3(3)…,规定,上述各数不能从某位起全为0.令0.b1b2b3…满足:b n=1,当a(n)n≠1;b n=2,当a(n)n=1. 由上述构造知,0.b1b2b3…∈(0,1),但0.b1b2b3…{a(1),a(2),a(3),…}这与假设(0,1)={a(1),a(2),a(3),…}矛盾.□由前面的例1.2.2及定理1.2.9得,实数集R是不可数集.今后用c表示实数集R的基数,称之为连续基数(势).而且由定理1.2.9知c>0.例1.2.9 (a,b)=c,其中a,b∈R.事实上,令φ(x)=a+x(b-a),x∈(0,1),则φ建立了(0,1)与(a,b)之间的一一对应,于是(a,b)=(0,1)=c.类似地,可证(-∞,0)=(0,+∞)=\=(a,b\]=\=\=(0,1)=c.下面的定理关心的是连续基数的性质问题. 定理 1.2.10 设A1,A2,…,A n,…是一列互不相交的集合,它们均有连续基数,则并集∪∞n=1A n也有连续基数.证明注意到\N及\N,故∪∞n=1A n~∪∞n=1\即∪∞n=1A n有连续基数.□由定理1.2.10易知,平面R2有连续基数,即R2=c. 类似地有R n=R∞=c,此处R∞是指可数个R的笛卡儿积.定理1.2.3告诉我们,可数集在无限集中间基数最小,那么有没有最大的基数呢?答案是否定的,即下面的结论. 定理1.2.11 任给一个非空集合A,2A是其幂集,即由A的所有子集形成的集合.则2A>.证明假若A~2A,则存在一一对应φ: A→2 A.于是对于每个a∈A,都唯一存在A的子集φ(a)与之对应.作A的子集A0={x∈A|xφ(x)}.根据假定,应有A中元素a0与A0对应.由此,若a0∈A0,则与A0的定义矛盾;若a0A0,则由A0的定义知a0又应该属于A0,矛盾.于是A与2A不对等.进而,单点集全体形成2A的真子集,记为A ~,显然A ~~A,因此2A>.□例1.2.10 {0,1}N=c,其中{0,1}N记从自然数集N 到两点集{0,1}的所有映射形成的集.事实上,对于任意的f∈{0,1}N,令φ: f→∑∞n=1f(n)2n,则φ是从{0,1}N到(0,1\]的一一映射,于是有{0,1}N≤(0,1\];另一方面,每个x∈(0,1\]均可唯一表示(规定下面二进制表达式中必须出现无限多个1)为x=∑∞n=1x n2n, x n∈{0,1}.令f x(n)=x n,n∈N,则f x∈{0,1}N.进而,定义映射φ: x→f x,x∈(0,1\],则φ是从(0,1\]到{0,1}N的一一映射,于是有(0,1\]≤{0,1}N,再利用伯恩斯坦定理即得{0,1}N=(0,1\]=c.注意到N=0,例1.2.10用记号表示,即20=c.既然没有最大的基数,那么限定在0与c之间情况又如何呢?集合论的奠基者康托尔于1878年提出下面的猜想:在0与c之间没有基数存在,即不存在集合X,使得0<习题习题1. 设f: X→Y是一个满射,证明下列3个命题等价:(1) f是一一映射;(2) 对任意的A,B X,有f(A∩B)=f(A)∩f(B);(3) 对任意的A,B X,若A∩B=,则f(A)∩f(B)=.2. 设f: X→Y,证明f是满射的充要条件是,对任意的A Y,有f(f-1(A))=A.3. 设映射f: X→Y,AαX,BαY,α∈I(I为指标集),试证:(1) f∪α∈IAα=∪α∈If(Aα);(2) f∩α∈IAα∩α∈If(Aα);(3) 若Bα1Bα2,则f-1(Bα1)f-1(Bα2),αi∈I,i=1,2;(4) f-1∪α∈IBα=∪α∈If-1(Bα);(5) f-1∩α∈IBα=∩α∈If-1(Bα);(6) f-1(Y-Bα)=f-1(Y)-f-1(Bα).4. 设E是X的子集,定义在X上的特征函数为χE(x)=1,x∈E,0,x∈X-E.如果A,B,A n(n=1,2,…)都是X的子集.证明:(1) χA∪B(x)=χA(x)+χB(x)-χA(x)·χB(x);(2) χA∩B(x)=χA(x)·χB(x);(3) χA-B(x)=χA(x)(1-χB(x));(4) χlim n→∞ sup A n(x)=lim n→∞ sup χA n(x);(5) χlim n→∞ inf A n(x)=lim n→∞ inf χA n(x).5. 设A1A2,B1B2,φ1,φ2分别是A1到B1,A2到B2的一一映射,问是否一定存在A2\\A1到B2\\B1的一一映射?6. 试构造(0,1)与\7. 试构造出一个从无理数集Q c到实数集R之间的一一映射.8. 试证:若集合A中每个元素由n个独立的记号决定,各记号跑遍一可数集B,即A={a x1x2…x n|x k∈B,k=1,2,…,n},则A为可数集.9. 平面点集A中任意两点之间的距离都大于某一固定常数d,且d>0,则A至多为可数集.10. 设A=B∪C,=c,则B与C中至少有一个集合的势为c.11. 如果A=∪∞n=1A n,=c,则至少有一个A n的势为c.12. 试证:若A B,且A~A∪C,则有B~B∪C.13. 证明: \上的全体无理数作成的集合其基数是c.14. 证明:若E是可列集,则E中存在可列个互不相交的真子集.15. 若f(x)是R上的实值函数,则集合A1={x|x∈R,f(x)在x处不连续,但右极限f(x+0)存在}是可数集.16. 证明\上的连续函数全体C\的势为c.17. 若对任意有限个x: x1,x2,…,x n,M>0,使得∑ni=1f(x)≤M成立,试证,能使f(x)≠0的x的集合至多为可数集.18. 证明(a,b)上的凸函数在除一个至多可数集的点外都是可微的.1.3 R n中的点集1.3 R n中的点集1.3.1 n维欧氏空间R n R是实数集,其几何表示即数轴;R2={(x,y)|x,y∈R}是有序实数对全体形成的集合,其几何表示即坐标平面.对于任意的x=(x1,x2),y=(y1,y2)∈R2,定义两种线性运算:(1) 加法,x+y=(x1+y1,x2+y2);(2) 数乘,αx=(αx1,αx2),α∈R.则R2关于这两种运算构成线性空间,(0,1),(1,0)是R2的一组基,因个数为两个,故R2称为二维线性空间.因平面上的点与从原点出发以该点为终点的向量一一对应,故R2又称为向量空间,其中的元素又称为向量.平面几何(欧几里得(Euclid)几何)及平面解析几何就是建立在R2基础之上的.推而广之,有下面的定义.定义 1.3.1 n维欧氏空间为集合{x=(x1,x2,…,x n)|x i∈R, i=1,2,…,n(n∈N)},记为R n,或记为R×R×…×R,共n个R.类似地,R n关于上述加法及数乘运算构成一个线性空间,e1=(1,0,…,0),e2=(0,1,0,…,0),…,e n=(0,0,…,0,1)为R n 的一组基.沿用二维线性空间的称谓,R n也称为n维向量空间,其中的元素称为点或向量.对于任意的x=(x1,x2,…,x n),y=(y1,y2,…,y n)∈R n,定义d(x,y)=∑ni=1(x i-yi)212, 则d(x,y)有下述3条性质:(1) 正定性,d(x,y)≥0,且d(x,y)=0x=y;(2) 对称性,d(x,y)=d(y,x);(3) 三角不等式,d(x,z)≤d(x,y)+d(y,z).这3条性质是距离的本质刻画,因此,上面定义的d(·)是R n上的一种距离,于是(R n,d(·))称为距离空间.性质(1), (2)由定义立得;性质(3)的证明要用到下述柯西-施瓦茨(Cauchy-Schwarz)不等式.引理1.3.1(柯西-施瓦茨不等式)。
推荐实变函数全总结课件
k 1
k 1
g
g
又B ~ A*, 所以B \ Bk ~ A* \ Ak1
3 对等与基数
1)设A,B是两非空集合,若存在着A到B的 一一映射(既单又满),则称A与B对等,
记作 A ~ B 约定 ~
注:称与A对等的集合为与A有相同的 势(基数),记作
A
势是对有限集元素个数概念的推广
2)性质
1)自反性:A ~ A;
2)对称性:A ~ B B ~ A;
3)传递性:A ~ B, B ~ C A ~ C;
基数的大小比较
1)若A ~ B,则称A B;
2)若A ~ B1 B,则称A B; 相当于:A到B有一个单射,也相当于B到A有一个满射
3)若A B,且A B,则称A B 注:不能用A与B的一个真子集对等描述
如:(1,1) ~ (1,1) (, )
4 Bernstein定理
设A, B是两个集,若有A的子集A*,使B ~ A*, 及B的子集B*,使A ~ B*,则A ~ B.
]
1
2
]
3
4
limAn(limsup An)
n
n
{x : N, n N,使x An}
An
N 1n N
limAn(liminf An)
n
n
{x : N,n N,有x An}
An
N 1nN
(补充)例1
{x : lim n
fn (x)
f
(x)}
{x :|
fn (x)
4.上、下极限集
设A1, A2,, An ,是一个集合序列
上极限集
limAn (或lim supAn )
n
n
第一节 n维欧氏空间 实变函数课件
y,必有O(x,12 x )
O(
y,
1 2
y
)
否则, 若z O(x,12x ) O( y,12 y )
则d (x,( z, ,
y)
1 2
x
1 2
y
max{ x ,
y}
这与(*)式矛盾,
所以
{O(
x,
1 2
x
)
|
x
A}
是一簇两两不交的开区间,
从而A至多可数。
⒊聚点的等价描述
第二章 n 维空间中的点集
第一节 n维欧氏空间
⒈度量空间
定义:设X为一非空集合,d : X×X→R为一映射, 且满足
⑴ d(x,y)≥ 0,d(x,y)=0当且仅当x = y(正定性) ⑵ d(x,y)=d(y,x) (对称性) ⑶ d(x,y)≤ d(x,z)+d(z,y)(三角不等式)
则称(X,d)为度量空间.
⒉欧氏空间中各类点的定义
点P0的δ邻域: O( p0 , ) { p | d ( p0 , p) }
P0为 E的接触点: 0,有O( p0, ) E
记 E 为 E的闭包(接触点全体)
P0为 E的聚点: 0, 有O( p0 , ) (E { p0})
记 E' 为 E的导集(聚点全体) 接触点、聚点 不一定属于E
定义:称点列{pn}
收敛于p0
,
记为:lnim
pn
p 0
若
lim
n
d
(
pn
,
p0
)
0,
即 0, N 0, n N , 有pn O( p0 , )
Pn P0 δ
定理:下列条件等价:
实变函数论课件4 n维空间中的点集、聚点、内点、界点26页PPT
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本维空间中 的点集、聚点、内点、界点
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
Dn维Euclid空间中的点集的初步知识课件
定理
中点列 收敛于 中的点
是1.4中的Cauchy点列.
目录 上页 下页 返回 结束
1.3 Rn中的开集与闭集
定义1.2 设 是 中的一个点集,
中的点列
使得
若存在 则称 为
的聚点. 的所有聚点构成的集合称为 的导集. 记作
集合
称为 的闭包.
若
但
则称 为 的孤立点. 若
则称 为闭集.
注: (1) 集合 的聚点一定属于 吗? (2) 什么样的集合对极限运算封闭?
目录 上页 下页 返回 结束
定义1.3 设
称点集
为以 为中心、 为半径的开球或 邻域, 称
为点a 的去心邻域.
注:点列 收敛于a可以描述为:
使得
目录 上页 下页 返回 结束
定理1.5 设 是 中的一个点集,
则
即 为 的聚点
当且仅当 a 的任意去心邻域包含 中的点.
证:
存在 中的点列
且
即 于是由
使得
线段都属于 ,即若
则
则称 是 中的凸集. 凸集都是连通的.
目录 上页 下页 返回 结束
第一节 n维Euclid空间中
点集的初步知识
1.1 n维Euclid空间 Rn
1.2 Rn中的点列的极限 1.3 Rn中的开集与闭集 1.4 Rn中的紧集与区域
第五章
目录 上页 下页 返回 结束
1.1 n维Euclid空间 Rn
规定: 加法
1
数乘
.
成为一个n维实向量空间。若定义内积
1 、
n
成为一个n维Euclid空间。
都有
定理 设 是 中的收敛点列,则 (11).2点列 的极限唯一; (2) 是有界点列,
(完整版)实变函数论主要知识点
(完整版)实变函数论主要知识点实变函数论主要知识点第一章集合1、集合的并、交、差运算;余集和De Morgan 公式;上极限和下极限;练习:①证明()()A B C A B C --=-U ;②证明11[][]n E f a E f a n∞=>=≥+U ;2、对等与基数的定义及性质;练习:①证明(0,1):?;②证明(0,1)[0,1]:;3、可数集的定义与常见的例;性质“有限个可数集合的直积是可数集合”与应用;可数集合的基数;练习:①证明直线上增函数的不连续点最多只有可数多个;②证明平面上坐标为有理数的点的全体所成的集合为一可数集;③Q = ;④[0,1]中有理数集E 的相关结论;4、不可数集合、连续基数的定义及性质;练习:①(0,1)= ;②P = (P 为Cantor 集);第二章点集1、度量空间,n维欧氏空间中有关概念度量空间(Metric Space),在数学中是指一个集合,并且该集合中的任意元素之间的距离是可定义的。
n维欧氏空间: 设V是实数域R上的线性空间(或称为向量空间),若V上定义着正定对称双线性型g(g称为内积),则V称为(对于g 的)内积空间或欧几里德空间(有时仅当V是有限维时,才称为欧几里德空间)。
具体来说,g是V上的二元实值函数,满足如下关系:(1)g(x,y)=g(y,x);(2)g(x+y,z)=g(x,z)+g(y,z);(3)g(kx,y)=kg(x,y);(4)g(x,x)>=0,而且g(x,x)=0当且仅当x=0时成立。
这里x,y,z是V中任意向量,k是任意实数。
2、,聚点、界点、内点的概念、性质及判定(求法);开核,导集,闭包的概念、性质及判定(求法);聚点:有点集E,若在复平面上的一点z的任意邻域都有E的无穷多个点,则称z为E的聚点。
内点:如果存在点P的某个邻域U(P)∈E,则称P为E的内点。
3、开集、闭集、完备集的概念、性质;直线上开集的构造;4、Cantor 集的构造和性质;5、练习:①P =o,P '= ,P = ;②111,,,,2n 'L L = ;第三章测度论1、外测度的定义和基本性质(非负性,单调性,次可数可加性);2、可测集的定义与性质(可测集类关于可数并,可数交,差,余集,单调集列的极限运算封闭);可数可加性(注意条件);3、零测度集的例子和性质;4、可测集的例子和性质;练习:①mQ = ,mP = ;②零测度集的任何子集仍为零测度集;③有限或可数个零测度集之和仍为零测度集;④[0,1]中有理数集E 的相关结论;5、存在不可测集合;第四章可测函数1、可测函数的定义,不可测函数的例子;练习:①第四章习题3;2、可测函数与简单函数的关系;可测函数与连续函数的关系(鲁津定理);3、叶果洛夫定理及其逆定理;练习:①第四章习题7;4、依测度收敛的定义、简单的证明;5、具体函数列依测度收敛的验证;6、依测度收敛与几乎处处收敛的关系,两者互不包含的例子;第五章积分论1、非负简单函数L 积分的定义;练习:①Direchlet 函数在1?上的L 积分2、可测函数L 积分的定义(积分确定;可积);基本性质(§5.4 定理1和定理2诸条);3、Lebesgue 控制收敛定理的内容和简单应用;4、L 积分的绝对连续性和可数可加性(了解);5、Riemann 可积的充要条件;练习:①[0,1]上的Direchlet 函数不是R-可积的;6、Lebesgue 可积的充要条件:若f 是可测集合E 上的有界函数,则f 在E 上L-可积?f 在E 上可测;练习:①[0,1]上的Direchlet 函数是L-可积的;②设3,()10,x x f x x ??=为无理数为有理数,则()f x 在[]0,1上是否R -可积,是否L -可积,若可积,求出积分值。
实变函数论PPT课件
VS
牛顿-莱布尼兹公式
对于任何给定的连续函数,在区间上的定 积分都可以通过求和的方式计算,该求和 公式称为牛顿-莱布尼兹公式。
微分与积分的应用举例
微分的应用
积分的应用
在物理学中,微分被广泛应用于计算速度、 加速度、位移等物理量;在经济学中,微分 被用于计算边际成本、边际收益等经济指标。
在物理学中,积分被广泛应用于计算面积、 体积、能量等物理量;在经济学中,积分被 用于计算总成本、总收入等经济指标。
实数集合R在通常的度量下是连 续的,即任意两个不同的实数之 间都存在其他实数。
在实数集合R中,任意两个不同 的实数之间都存在无限多的其他 实数。
实数的运算性质
加法性质
实数的加法满足交换律和结合律,即对任意实数x、y和z, 有x+y=y+x、(x+y)+z=x+(y+z)。
01
乘法性质
实数的乘法满足结合律,即对任意实数 x、y和z,有(x*y)*z=x*(y*z)。
有限覆盖定理
如果E是一个闭区间,{[a(n),b(n)}是一个开区间族,且E被 {[a(n),b(n)}覆盖,那么存在一个有限的子集族 {[a(n_i),b(n_i)}使得E被它覆盖。
03
集合论基础
集合的定义与性质
总结词
集合的基本概念和性质
详细描述
集合是由某些确定的元素所组成的,具有明确的概念和性质。集合可以通过列举法或描述法进行定义,并具有确 定性、互异性和无序性等基本性质。
实变函数论ppt课件
目录
• 引言 • 实数理论 • 集合论基础 • 测度论基础 • 可测函数与积分理论 • 微分与积分定理 • 实变函数论的应用
实变函数论ppt课件
21
第27讲 Lp-空间简介
| f (x) g(x) || f (x) | | g(x) | a.e.[E]
这意味着 f (x) 与 g (x) 的符号在E上几乎处处
1
相 同, 从而由 | f (x) | c p | g(x) | a.e.[E] 得
1
1
f (x) c p g (x) a.e.[E] 所以 f (x) c p g(x) a.e.[E] ,
由上面的讨论,显见对任意 f , g Lp (E,) 有
0 ( f , g)
7
第27讲 Lp-空间简介
即 是Lp (E) Lp (E) 上非负的有限函数。它是不是Lp (E) 上的距离呢?为此,设 ( f , g) 0 ,则得
1
[ | f (x) g(x) |p dx] p 0 , E
则显然有 [ f ] [g] 。这样, 作为 Lp (E) Lp (E)
上的函数的确满足距离定义中的(i),至于(ii)则是
显而易见的,所以只需验证它是否满足(iii)。
10
第27讲 Lp-空间简介
为方便起见,以后也用 f 记 [ f ],只要说f Lp (E)
则指的就是与 f 几乎处处相等的函数类[ f ] ,若
证毕。
由定理2不难看到 Lp (E) Lp (E上) 的函数
满足三角不等式,即对任意 f , g, h Lp (E) ,
22
第27讲 Lp-空间简介
有 ( f , g) ( f , h) (h, g) 。 1
事实上, ( f , g) [ |f (x) g(x) |p dx] p 1
|f g |p dx 0 ,且
p 1
,注意到
p
5聚点内点边界点
问:任意有限集有聚点吗?--无
三.点集诸点构成的点集
1.定 义 : 设ERn
1)称E的所有内点组成之集为E的内部或开核,
记 作 : intE或 E0 2)称E的所有聚点组成之集为E的导集,记作:E
成立,则称d(x, y)是x与y间的距离. (2 )距 离 空 间 :
定 义 了 距 离 的 集 合 X 称 为 距 离 空 间 或 度 量 空 间 ,记 作 (X ,d), 度 量 空 间 中 的 元 素 ,可 以 称 其 为 点 .
(3) 例1: 1 ) R n ----n维欧氏空间,
其中集合 X { (x 1 ,x 2 ,...,x n )|x k R ,k 1 ,2 ,...,n }
c)E中互异的收敛于P0的点列Pn
证明:a)b),c)a)是显然的,下面证明b)c)
令=1,则由条件在N(P0,1)中至少有一点P1E,P1P0,
令 1m in{d(P 1,P0),1 2},则 在 N(P0,1)中 至 少 有 一 点 P2E,P2P0P 1, 令 2m in { d(P 2,P 0),1 3 },则 在 N (P 0, 2)中 至 少 有 一 点 P 3 E ,P 3P 0, 得 到 {P n},使 ln i m P nP 0
闭 区 间 , 半 开 半 闭 区 间 其体积均为|I|n (biai)
( 7) 点 列 {Pn}收 敛 于 P0,
i1
记 做 lni m PnP0lni m d(Pn,P0)0
二 .点集的诸点
1.定义: 设ERn,P0Rn
( 1 ) 若 存 在 0 , 使 得 N ( P 0 ,) E , 则 称 P 0 为 E 的 内 点
实变函数论课件4n维空间中的点集、聚点、内点、界点
同处
两者都是用来研究原拓扑 空间的子集。
关系
限制拓扑可以导出子空间 的拓扑结构。
4n维空间中的子空间的性质
1 性质一
2 性质二
一个子空间可以具有独特的拓扑结构。
子空间的性质可以由原拓扑空间推导得 出。
紧致性的定义及性质
定义
一个点集是紧致的,如果它的每个开覆盖都 有有限子覆盖。
性质
紧致性是一种重要的拓扑性质,可以应用于 各种数学问题的研究中。
闭区间
平面
区间的两个端点都属于闭集。 平面可以同时是开集和闭集。
限制拓扑与子空间的概念
1 限制拓扑
2 子空间
顾名思义,限制拓扑是将拓扑空间限制 在某个子集上的方法。
子空间是原拓扑空间的一个子集,其中 的拓扑结构是通过限制拓扑而得到的。
限制拓扑与子空间的异同
异处
限制拓扑是一种方法,而 子空间是一个具体的拓扑 结构。
4n维空间中的紧致点集的例子
闭球
闭球是紧致的点集。
紧致集合
一些特定的集合,如有界闭 集,也是紧致的。
拓扑正弦曲线
用于展示紧致性概念的一个 经典曲线。
连通性的概念及性质
1 概念
一个点集是连通的,如果它不能被分割成两个非空的、开不交的集合。
2 性质
连通性在对点集进行分类和描述时非常有用。
4n维空间中的连通点集的例子
4n维空间中的点集表示方法
坐标表示法
通过坐标系中的坐标来表示 点集。
图形表示法
通过绘制图形来表示点集。
集合表示法
通过集合符号来表示点集。
开集与闭集的定义及关系
开集
一个集合中的每个点都是 该集合的内点。
闭集
1_1n维空间、点集、实数系
第一章函数与极限1.1 n维空间点集实数系1.2 映射与函数1.3 极限1.4 极限的运算1.5 极限存在准则1.6 无穷小阶的比较1.7 函数的连续性1.8 闭区间上连续函数的性质1初等数学–研究对象为常量,以静止观点研究问题。
高等数学–研究对象为变量,运动和辩证法进入了数学。
分析基础:函数–研究对象极限–研究方法连续–研究桥梁231.1n 维空间点集实数系1.1.1n 维空间序偶:具有固定次序的两个元素组成的集合。
例如A与B的Descartes (笛卡尔)乘积:当B = A时,记为。
(,),,a b a A b B∈∈(,)(,),a b c d a c b d=⇔=={(,)|,}A B a b a A b B ×=∈∈A B ×2A4类似地,可以定义有限个非空集合的Descartes (笛卡尔)乘积:当时,称为中的一个点,为x 的第i 个坐标。
1,,n A A …1111(){(,,)|,1,,}n n nn i i A A A A A a a a A i n −××=×××=∈= ……,1,...,i A R i n ==11{(,,)|,1,,}nn n i A A R x x x R i n ××==∈= ……1(,,)n x x =x …nR i x5在中定义线性运算n 维线性空间线性运算:距离:nR ⇒11(,,)n n x y x y x y +=++…1(,,)n kx kx kx =…,,nx y R k R ∀∈∈2211(,)()()n n d x y x y x y =−++−61.1.2n 维空间中的点集1.邻域设为点a 的邻域。
称a 为邻域的中心,为邻域的半径。
为点a 的去心邻域。
如不需要强调邻域的半径,可以用表示,用表示。
,,0n a R R δδ∈∈>且(,){|||}U a x x a δδ=−<δ(,){|0||}o U a x x a δδ=<−<δδoaδy x o a δy x(,)U a δ()U a ()o U a (,)o U a δ数轴上的左δ邻域右δ邻域,),(a a δ−.),(δ+a a72.区域设E 为一点集,P 为E 中的一个点,如果存在点P 的某一邻域,则称P 为E 的内点。
实变函数论4 n维空间中的点集、聚点、内点、界点
收敛于 x0 的点列, 记作
lim
n
xn
x0
或
xn
x0 .
定 义 2' 设xnn 1是 RN中 的 一 点 列 , x0RN. 若
lni m d(xn,x0)0,
称 x0为 点 列 xn的 极 限 , 记 作lni m xnx0或 xn x0.
精品课件
定 义 3 两 个 非 空 的 点 集A,B的 距 离 定 义 为 d(A,B)infd(x,y).
i 1
⑵离散空间(X , d),其 中
d(x,y){10
xy xy
⑶ C[a,b]空间(C[a,b]表示闭区间[a,b]上实值连续 函数
全体), 其中 d(x,y)m|a x(tx )y(t)| a t b
精品课件
定义 1 设 x0 RN , 0. RN 中到 p0 的距离小于 的所有点组成之集
xA yB
定 义 3 ' 两 个 非 空 的 点 集 A ,B 的 , 若 A = { x } ,则 点 到 集 合 的 距 离 定 义 为 d (x ,B ) in fd (x ,y ) .
y B
注 : a . 若 x B , 则 d x , B 0 ; 反 之 则 不 一 定 成 立 , 如 x 0 , B 0 , 1 .
定 义 5' 设 M 为 R N中 一 点 集 , 若 (M ) ,
则 称 M 是 有 界 集 .
精品课件
定义
分量都是实数的有序 N 数组(x1, x2 ,
,
x
)
N
之
全体称为 R N 空间, 简称 R N . N 称为 R N 的维数.
R N 的 元 素 x (x1, x2 ,
第二节 聚点,内点,界点演示版.ppt
设 E 是 n 维空间Rn 中的一个点集,P0 是 Rn 中的一个定点,我们来研究 P0 与 E 的关
系,存在三种互斥情况:
.精品课件.
1
第一:在 p0 点的附近根本没有E的点。
第二:在 p0附近全是E的点。
第三:在 p0附近既有属于E的点也有不
E
故P0是E的孤立点. .精品课件.
12
(2) E的界点不是聚点便是孤立点。
内点
{ 点的类型 界点 外点
聚点
{或
孤立点
外点
.精品课件.
13
注 (2) E的界点不是聚点便是孤立点。
证明: 设P0是E的边界点, 若P0不是E 的聚点,
则存在U(P0)不含有异于P0的E中点, 又P0是E 的边界点, 知P0的任意邻域
由2) A A a. 则 (A A) A a.
A a. .精品课件.
24
定理 4 (Bolzano--weierstrass) 设E是一个有界的无限集合,则E至
则称P0是E的边界点.(界点)
.精品课件.
4
1) 对点p0的任意邻域 U (P0)中至少含有异于p0 的E中的一点. p
定义2 E Rn,P0Rn. 若p0的任意邻域 U (P0)内部都含有E中的无
限多个点,则称p0是.E精品的课件聚. 点.
5
2 聚点的类型 1) E中无聚点
E={1,2,3,……,n,……}、有限集、
.精品课件.
9
3
min{ ( p2,
p0
),
1} 3
在
U ( p0 ,3) 取出一点
p3 pi (i 0,1, 2), p3 E
实变函数论课件24讲
04
实变函数的微分
实变函数的微分定义
实变函数的微分概念 微分的基本性质 微分与导数的关系 微分的应用
实变函数的微分性质
实变函数的微分定义 微分性质:可加性、可数性、可交换性 微分与导数的关系 微分在函数逼近中的应用
物理学:实变函数论在物理学中也有着重要的应用,例如在量子力学、热力学等领域 中,实变函数论可以用来描述一些物理现象。
工程学:实变函数论在工程学中也有着广泛的应用,例如在电气工程、机械工程等领 域中,实变函数论可以用来解决一些实际问题。
经济学:实变函数论在经济学中也有着重要的应用,例如在金融工程、计量经济 学等领域中,实变函数论可以用来描述一些经济现象和解决一些实际问题。
投资组合优化:实变函数论可以用于优化投资组合,提高投资收益并降低风险。
信用评级:实变函数论可以用于评估借款人的信用等级,帮助金融机构做出更明智的贷款 决策。
金融衍生品定价:实变函数论可以用于定价金融衍生品,如期权、期货等,为金融机构提 供更准确的定价模型。
在其他领域的应用
数学分析:实变函数论是数学分析的重要分支,在数学分析中有着广泛的应用。
实变函数在复分析中的应用
添加标题
添加标题
实变函数在概率论中的应用
添加标题
添加标题
实变函数在微分方程中的应用
在工程中的应用
实变函数在工程力学中的应用
实变函数在流体力学中的应用
实变函数在电气工程中的应用
实变函数在计算机科学中的应 用
在金融中的应用
风险度量和管理:实变函数论提供了一种量化风险的方法,帮助金融机构更好地管理风险。
实变函数论课件4
第4讲 连续势的集合、P进位表数法
定理9(i)假设M是由两个元素 p, q ( p q ) 作成 的元素序列全体,则 的元素序列 体,则 M C 。 (ii)若 Q 是可数集,则 Q 的子集全体所 构成的集合F有连续势 构成的集合F有连续势。
第4讲 连续势的集合、P进位表数法
目的:掌握连续势及其基本性质,了解连 续连续势的性质。
第4讲 连续势的集合、P进位表数法
一. 连续势的例 问题1:有限集或可数集的一切子集构 成的集具有大于该集的势,由 此我们可以作出何种猜测?
第4讲 连续势的集合、P进位表数法
第4讲 连续势的集合、P进位表数法
证明:略
第4讲 连续势的集合、P进位表数法
二.不存在最大势
M 的一切子集 定理10 定理 10 设 M 是一集合,
所构成的集合记作
,则
M 。
定理10 说明不存在最大势。 说明不存在最大势
第4讲 连续势的集合、P进位表数法
三. 进位表数法 三.P进位表数法 略
实变函数讲义(中文版)
n
(Hale Waihona Puke i =1))为积分值,定义并讨论新积分的性质(即第
五章内容)。 以上所述, 既是 Lebesgue 创立新积分的原始思路, 也是传统教材介绍 Lebesgue 积分定义的普遍方法。 鉴于人们在研究可测函数时发现:可测函数的本质特征是正、负部函数的下方 图形均为可测集。结合 Riemann 积分的几何意义,使我们自然想到:与其说测度推 广了定义域的长度(面积、体积)概念后使得我门作大、小和更加灵活多样,以达 推广积分的目的,不如说由于定义域与实数域的乘积空间的面积(体积)概念的推 广,使得大量的象 Dinichni 函数那样图形极其不规则的下方图形可以求面积 (体积) 了,从而拓宽了可积范围。于是我们在本教材中采取直接规定其测度之差为积分值 (如果差存在的话)的办法,该定义简单、明了、直观。既有效地避免了分划、大 (小)和、确界概念的繁琐,又成功地回避了先在测度有限,函数有界条件下讨论 积分性质,然后推广到测度无限,函数无界的一般情形的重复、哆嗦。
n 2 n +1 k =1 n → +∞ → n 处处
UE
k
下的小
和 s(f, Tn ), 即 ∫ fdx = lim mG (Φ n , E ) = lim s( f , Tn ) 。 这与定义(R)积分的分割、 求和、
E n→∞ n→∞
取极限三大步骤基本相似;区别仅在于(R)积分直接将定义域分成区间,(L)积分可 能是通过将值域分成区间后反过来将定义域分成有限个不一定是区间的集合。”不 仅是达前后呼应的目的,更重要的是展示了数学新体系形成过程中的“提出问题、 分析问题、克服障碍解决问题、最后完善方法、简化思路”数学创新过程。
1≤i ≤ n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义 对于 R N 中的任意两点 x ( x1 , x2 ,..., x N ) 及 y ( y1 , y2 ,..., y N ), 我们把非负实数 ( xi yi ) i 1
N 2 1 2
称为 x 与 y 的欧几里德距离, 简称 x 与 y 的距离, 记作 ( x, y ) 或者 d ( x, y ).
i 1 i i N 1 2
显然区间 I 中任何两点的 数学分析中所说的无限 区间, 例如( 0,) , 按照定义 2 的意义不是区间 . 今后凡说区间 , 若无 特别声明 , 均指在定义2 的意义下 .
注 2 定义 2 允许 ai bi , 因此空集 可以是除闭区间外 的任何一种区间 .
第4讲 n维空间中的点集
目的:掌握n维空间中集合的内点、边界点、 聚点、开集、闭集等概念,熟练理解 Bolzano-Weirstrass 定理、 Borel 有限 覆盖定理,能运用这些定理解决一些 问题。 重点与难点:Bolzano-Weirstrass定理、 Borel有限覆盖定理。
⒈度量空间
定义 3 两个非空的点集 A, B的距离定义为 d ( A, B) inf d ( x, y ).
xA yB
定义 3' 两个非空的点集 A, B的,若A={x},则点到集合的距离定义为 d ( x, B) inf d ( x, y ).
yB
注:a.若x B, 则d x, B 0; 反之则不一定成立,如x 0, B 0,1 .
n
总存在自然数 K , 使当 n K 时xn U ,
定义 2 ' 设 xn n 1 是 R N 中的一点列, x0 R N . 若
lim d ( xn , x0 ) 0, 称 x0 为点列 xn 的极限, 记作 lim xn x0 或 xn x0 .
n n
定义6 设 ai、bi 是实数, ai bi (i 1, 2,, N ). R N 中的 点集 ( | a1 x1 b1 , x1 , x2 ,, xN) I a2 x2 b2 ,, a N xN bN ,
称为开区间, 记作(a1 , b1 ; a2 , b2 ;; aN , bN) . 若把()中的诸不等式换成 1 ai xi bi , i 1, 2, , N , 则 称 I 为闭区间, 记作 [a1 , b1; a2 , b2 ;; aN , bN ]. 若把()中的诸不 1 等式换成 ai xi bi , i 1, 2, , N,则 称 I 为半开区 间, 记作 (a1 , b1 ; a2 , b2 ;; aN , bN ].
(ii)y U ( x, ), 0 使 U ( y, ) U ( x, );
证明 仅证(ii)令 ( y, x ), 则 0. 若 z U ( y, ), 则 ( z , y ) , 从而 ( z , x ) ( z , y ) ( y, x ) ( ) , 故 z U ( x , ), 于是 U ( y, ) U ( x, ).
b.若A B ,则d ( A,B) 0;反之则不一定成立, 如A n 1 / n, B n 1 / n(都是闭集)
定义 4 一个非空的点集 A 的直径定义为 ( A) sup d ( x, y ).
xA yA
定义 5 设 M 为 R N 中一点集, 若存在开区间I 使 I M , 则称 M 是有界集 .
命题
距离有如下三条基本性质:
(i) ( x, y ) 0; ( x, y ) 0 当且仅当 x y; (ii) ( x, y ) ( y, x ); (iii) ( x, y ) ( x, z ) ( z, y ). (三角不等式)
例: ⑴欧氏空间(R n , d),其中 d ( x, y )
定义 5' 设 M 为 R N 中一点集, 若 ( M ) , 则称 M 是有界集.
定义 分量都是实数的有序 N 数组(x1 , x2 ,, xN)之 全体称为 R N 空间, 简称 R N . N 称为 R N 的维数. R N 的元素 x (x1 , x2 ,, xN)又称为 R N 的点, 点 x 的第 i 个分量又称为它的第 i 个坐标 (当点记为 x 时,它的第 i 个坐标通常记为 xi) . 点(0, 0, , 0)称为 R N 的原点, 记作 .
不难看到,如果对任意 o, U P0 , P0 E , 则U P0 , 中一定含 E 中无穷多个点。
定义 4 (1)点集 E 的所有内点组成的集称为 E 的内部(开核), 记作 E .
E 0 {x : 存在U ( x) E};
(2)点集 E 的所有聚点组成的集称为 E 的导集, 记作 E '. E ' {x : 任意U ( x),U ( x) E \ {x} }; (3)点集 E 的所有边界点组成的集称为 E 的边界, 记作E. E {x : 任意U ( x),U ( x) E ,U ( x) E c };
第4讲 n维空间中的点集
二.聚点、内点、边界点与Bolzano-
Weirstrass定理
问题1:给定Rn中一个集合E及点P,P与 E有几种可能的关系?
定义1 设 E R n , P R n , 0 (i)若存在 0 ,使 U ( P0 , ) E ,则称 P0 为 E 的内点。 (ii)若存在 0 ,使 U ( P0 , ) E c ,则称 P0 为 E 的外点。 (iii)若对任意 0 , U ( P0 , ) E ,U ( P, ) ( E c ) , 则称 P0 为 E 的边界点。 定义2 若对任意 0 ,U ( P0 , ) 中总有 E 中除 P0 外 的点,即 (U ( P0 , ) {P0}) E ,则称 P0 为 E 聚 点。 注:有限点集没有聚点。
(2)点p0的任意邻域内,含有无穷多个属于E而异于p0的点
pn p (3)存在E中互异的点所成点列{pn}, 使得 lim n
0
证明:(3) (2) (1) 显然,下证 (1) (3)
命题 1 x0 是 E 的聚点 E中存在着 一列异于 x0 的点 x1 , x2 , x3 , 收敛于x0 .
(4){E的孤立点} {x : 存在U ( x),U ( x) E {x}};
(5) E ' E称为E的闭包,记为E
E {x : 任意U ( x ),U ( x ) E };
E E E E o E E ' {E的孤立点全体}
命题 球形邻域有如下四条基本性质: (i)x U ( x, ); (ii)y U ( x, ), 则存在 0 使 U ( y, ) U ( x, ); (iii)若 x U ( x1 , 1 ), x U ( x2 , 2 ), 则 0 使 U ( x, ) U ( xi , i ), i 1,2. (iv)若x y, 存在U ( x, )和U ( y, ), 使U ( x, ) U ( y, )
定义:设X为一非空集合,d : X×X→R为一映射, 且满足
⑴ d(x,y)≥ 0,d(x,y)=0当且仅当x = y(正定性) ⑵ d(x,y)=d(y,x) (对称性) ⑶ d(x,y)≤ d(x,z)+d(z,y)(三角不等式) 则称(X,d)为度量空间. (X,d)为度量空间,Y是X的一个非空子集,若(Y,d)也是 一个度量空间,称(Y,d)为 (X,d) 的子空间。
( 1)
( | a1 x1 b1 , x1 , x2 ,, x N) I a2 x2 b2 ,, a N x N bN ,
当无必要区别是何种区间时就统记作 a1 , b1; a2 , b2 ;; a N , bN
(1)
把(1)中任意多个“ ”号换成“ ” , 相应的点集 I 统称为区间 ,
定义 2 设 x1 , x2 , x3 , 是 R N 中的一列点 (点列 x1 , x2 , x3 , 可记作 xn n 1 或 xn 1 ,
有时简记作 xn ),
x0 R N . 若对于含 x0 的任一邻域U , 就称 x0 为点列 xn 的极限, 称 xn 是一个 收敛于 x0 的点列, 记作 lim xn x0 或 xn x0 .
(此记号有时还写成 ai , bi ; i 1,2,, N ) .
对于区间 ai , bi ; i 1, 2,, N , 我们 把 bi ai (i 1, 2,, N )称为它的第 i 个边长, N 2 把 (bi ai ) 称为它的对角线长. i 1 把 记为 I . (b a ) 称为它的体积,
⒊聚点的等价描述
lim pn p 0 定义:称点列{pn} 收敛于p0 , 记为: n
若 lim d ( pn , p0 ) 0,
n
即 0, N 0, n N , 有pn O( p0 , )
定理1:下列条件等价:
Pn
P0 δ
(1) p0为E的聚点 (即: 0, 有O( p0 , ) ( E { p0}) )
1 ( x, y ) max xi yi ;
i n
2 ( x y ) i i i 1
n
2 ( x, y ) xi yi ;
i 1
⑵离散空间(X , d),其中
d ( x, y) {
1 x y 0 x y
⑶ C[a,b]空间(C[a,b]表示闭区间[a,b]上实值连续函数 全体), 其中