数列的概念单元测试题(一)百度文库(1)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.已知数列{}n a 中,11a =,122

n

n n a a a +=+,则5a 等于( ) A .

25

B .

13 C .

23

D .

12

2.已知数列{}n a 满足12a =,11

1n n

a a +=-,则2018a =( ). A .2

B .

12 C .1-

D .12

-

3.已知数列{}n a 前n 项和为n S ,且满足*

112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )

A .63243a a a ≤-

B .2736+a a a a ≤+

C .7662)4(a a a a ≥--

D .2367a a a a +≥+

4.在数列{}n a 中,11a =,对于任意自然数n ,都有12n

n n a a n +=+⋅,则15a =( )

A .151422⋅+

B .141322⋅+

C .151423⋅+

D .151323⋅+

5.已知数列{}n a 的通项公式为23n

n a n ⎛⎫= ⎪⎝⎭

,则数列{}n a 中的最大项为( ) A .

89

B .

23

C .

6481

D .

125

243

6.数列{}n a 满足 112a =,111n n

a a +=-,则2018a 等于( )

A .

1

2

B .-1

C .2

D .3

7.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是

A .21n n n a a a ++=+

B .13599100a a a a a ++++=

C .2499a a a a ++

+=

D .12398100100S S S S S +++

+=-

8.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数

D .

123111121

n n a a a a n +++⋯+=+ 9.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( )

10.数列1,3,5,7,9,--的一个通项公式为( )

A .21n a n =-

B .()1(21)n

n a n =--

C .()

1

1(21)n n a n +=--

D .()

1

1(21)n n a n +=-+

11.已知数列{}n a 的前5项为:12a =,232a =,343

a =,454a =,56

5a =,可归纳得

数列{}n a 的通项公式可能为( ) A .1

+=

n n a n

B .2

1

n n a n +=

+ C .3132

n n a n -=-

D .221

n n

a n =

- 12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174

B .184

C .188

D .160

13.设数列{},{}n n a b 满足*172

700,,105

n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >

B .43

C .33>a b

D .44

14.已知数列2

65n a n n =-+则该数列中最小项的序号是( )

A .3

B .4

C .5

D .6

15.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4

B .6

C .8

D .10

16.数列1111

,,,

57911

--,…的通项公式可能是n a =( ) A .1(1)32

n n --+

B .(1)32

n n -+

C .1(1)23

n n --+

D .(1)23

n

n -+

17.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )

A .201920212S F =+

B .201920211S F =-

C .201920202S F =+

D .201920201S F =-

18.已知数列{}n a 的前n 项和为n S ,已知1

3n n S +=,则34a a +=( )

A .81

B .243

C .324

D .216

19.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( )