曲率及其计算公式
曲率及其计算公式
抛物线顶点处的曲率半径为
r 1 1.25.
K 所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单位长.
y
4
2O
y=0.4 x2
2
x
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径. y0.8x ,y0.8, y|x00,y|x00.8.
把它们代入曲率公式,得
K | y | 0.8.2
1 2.
(1 y2 )3 2 (1 (1)2 )3 2 2 2
设x , x+ Dx 为(a,b)内两个邻近的点,它们在曲线 yf(x)上的对应点为M,M,并设对应于x的增量Dx ,弧 s 的增 量为Ds,于是
(
(
(
Ds Dx
2
MM Dx
2
|
MM MM
|
2
|
MM |2 (Dx)2
|
MM MM
|
2
(Dx)2 (Dy (Dx)2
)2
(
|
MM MM
2a
抛物线的顶点.因此,抛物线在顶点处的曲率最大,最大曲率为
K|2a| .
讨论:
1.直线上任一点的曲率等于什么?
提示:设直线方程为y=ax+b,则y =a, y = 0.于是
K
| (1
y | y2 )3
2
0.
2.若曲线由参数方程
x j (t)
y
(t
)
给出,那么曲率如何计算?
提示:
K
| j(t) (t) j(t) (t) [j2 (t) 2 (t)]3 2
曲线的曲率曲率半径
.
O点处抛物线轨道的曲率半径
y
x0
x 2000
x0
0,
y
x0
1. 2000
得曲率为
k
x x0
1. 2000
曲率半径为 2000 米.
F 70 4002 5600(牛) 571.4(千克), 2000
Q 70(千克力) 571.4(千克力),
641.5(千克力).
即:飞行员对座椅的压力为641.5千克力.
§2-8
曲线的曲率.曲率半径
一、平面曲线的曲率及其计算公式
曲率是描述曲线局部性质(弯曲程度)的量.
1
2
M2 S2 M3
S1
M1
弧段弯曲程度 越大转角越大
S1
M
M
N
S2 N
转角相同弧段越 短弯曲程度越大
y
M0 是基点. MM s ,
C
M.
M M 切线转角为 .
S
. M0 S M
)
定义
o
x
弧段MM的平均曲率为K .
s
曲线C在点M处的曲率 K lim s0 s
在 lim d 存在的条件下,
s0 s ds
K
d .
ds
注意: (1) 直线的曲率处处为零; (2) 圆上各点处的曲率等于半径的倒数, 对于半径为R的圆周 Δ S = RΔθ
1
s R
(3)曲率的倒数称为 曲率半径 = 1/K
1 cos t
sin3 t
2
y
1 4a
1 sin4
t
,
代入公式K
(1
y y2 )3/ 2
1 4a sin
t
曲率及其计算公式
ρ=
1 1 , K= . ρ K
例3 设工件表面的截线为抛物线y=0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4
2
O
2
x
例3 设工件表面的截线为抛物线y=0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适? 解 砂轮的半径不应大于抛物线顶点处的曲率半径. y′=0.8x ,y′′=0.8, y′|x=0=0,y′′|x=0=0.8. 把它们代入曲率公式,得
C M′ ∆s ∆α α+∆α x
s
我们称 K =
曲率:
∆α 为弧段 MM ′ 的平均曲率. ∆s
我们称 K = lim
∆α 为曲Байду номын сангаасC在点M处的曲率. ∆s →0 ∆s ∆α dα dα lim = K= 在 存在的条件下 . ∆s → 0 ∆ s ds ds
)
∩
平均曲率:
曲率的计算公式:
K= dα . ds
∆y
∆s MM ′ =± ∆x | MM ′ |
( (
∆y | MM ′ | | MM ′ | = lim =y′, 因为 lim =1, 又 lim ∆x →0 ∆x ∆x →0 | MM ′ | M ′→ M | MM ′ | ds 2 因此 =± 1 + y′ . dx ds ds = 1 + y′2 . 由于s=s(x)是单调增加函数,从而 >0, dx dx 于是 ds = 1 + y′2 dx.这就是弧微分公式.
| ϕ ′(t )ψ ′′(t ) − ϕ ′′(t )ψ ′(t ) | K= . 2 2 32 [ϕ ′ (t ) + ψ ′ (t )]
曲率及其计算公式
应用
通过空间曲率计算公式,可以了 解空间曲线在某一点的弯曲程度 ,对于分析三维几何图形、优化 航天器轨道等方面具有重要意义
。
曲率计算公式的应用
工程设计
在工程设计中,曲率计算公式常 用于分析曲线形状的合理性,如 道路设计、桥梁工程等。
物理研究
在物理研究中,曲率计算公式可 用于描述粒子运动的轨迹、电磁 场的分布等。
解释
该公式表示平面曲线在某一点的曲率,其中y''表示该点处曲线的二阶导数,y'表示该点 处曲线的导数。
应用
通过曲率计算公式,可以了解平面曲线在某一点的弯曲程度,对于分析几何图形、优化 道路设计等方面具有重要意义。
空间曲线的曲率计算公式
曲率计算公式
对于空间曲线,曲率K由下式给 出:K = |(3*[(x''*y''*z'' +
相对曲率
相对曲率是描述曲线或曲面在某一点的方向性弯曲程度的量,它等于该点的主曲率与次曲率的比值。相对曲率在 几何学和物理学中有重要的应用,例如在分析力学和电磁学等领域中,相对曲率可以帮助我们更好地理解和描述 物体的行为。
曲率在物理学中的应用
光学
在光学中,曲率是描述光学元件(如 透镜和反射镜)的弯曲程度的量。透 镜的曲率决定了光线通过透镜的折射 方向和聚焦点,反射镜的曲率决定了 反射光的方向。
曲率等于曲线在该点的切线的 斜率的倒数,即曲率 = 1/斜率 。
当曲率为正时,表示曲线在该 点向外凸出;当曲率为负时, 表示曲线在该点向内凹进。
曲率在几何学中的重要性
曲率是几何学中重要的概念之一,它在曲线和曲面理论中扮演着重要的角 色。
曲率在曲线和曲面分析、微分几何等领域中有着广泛的应用,如曲线拟合 、曲面重建等。
曲率公式是什么
曲率公式是什么
在数学上,曲率是表明曲线在某一点的弯曲程度的数值,曲率的公式可以表示为:K=|dα/ds|。
曲率
曲线的曲率是曲线上一点的切线方向角对弧长的旋转率,由微分定义,表示曲线偏离直线的程度。
数学上表示曲线在某一点的弯曲程度的数值。
曲率越大,曲线的曲率越大。
曲率的倒数就是曲率半径。
曲率的定义
曲率的计算公式
什么是曲率半径
曲率的倒数就是曲率半径,即R=1/K。
平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。
对于曲线,它等于最接近该点处曲线的圆弧的半径。
对于表面,曲率半径是最适合正常截面或其组合的圆的半径。
圆形半径越大,弯曲程度就越小,也就越近似于一条直线。
所以说,曲率半径越大曲率越小,反之亦然。
曲率及其计算公式
2
2 2 MM | MM | MM ( Dx ) ( Dy ) 2 | MM | ( Dx ) 2 | MM | (Dx)
(
2
2
2
2 MM Dy 1 | MM | Dx
| y | 2 1 2 K . 2 32 2 32 2 (1 y ) (1 (1) ) 2
| y | K 2bxc 上哪一点处的曲率最大? 例2 抛物线yax (1 y 2 ) 3 2
解 由yax2bxc,得 y2axb ,y2a , 代入曲率公式,得
| y | 2 1 2 K . 0.8. 2 3 2 2 32 2 (1 y ) (1 (1) ) 2
抛物线顶点处的曲率半径为
1 r 1.25. K
所以选用砂轮的半径不得超过1.25单位长,即直径不得超过 2.50单位长.
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
C M Ds Da a+Da x
s
)
平均曲率:
曲率的计算公式:
K da . ds
2
从而,有
| y | K . 2 32 (1 y )
| y | K 例1 计算等双曲线x y 1在点(1,1)处的曲率. (1 y 2 ) 3 2
解
1 由y ,得 x
x 因此,y|x11,y|x12.
y
1
2
,y
2 x
曲率及其曲率半径的计算讲解
于是
da
y
1 y2
dx.又知 ds
1 y2 dx.
从而,有
| y | K (1 y2 )3 2
.
例1
计算等双曲线x y 1在点(1,1)处的曲率.
K
| y | (1 y2 )3 2
解 由y 1 ,得
x
1 y x 2
,y
2 x3
.
因此,y|x11,y|x12.
1 2.
(1 y2 )3 2 (1 (1)2 )3 2 2 2
抛物线顶点处的曲率半径为
r 1 1.25.
K 所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单位长.
提示:设直线方程为y=ax+b,则y =a, y = 0.于是
K
| (1
y | y2 )3
2
0.
2.若曲线由参数方程
x j (t)
y
(t
)
给出,那么曲率如何计算?
提示:
K
|
j(t) (t) j(t) [j2 (t) 2 (t)]3
(t)
Ds0 Ds
在 lim Da da 存在的条件下K da .
Ds0a .
ds 设曲线的直角坐标方程是yf(x),且f(x)具有二阶导数.
因为tan a y ,所以
sec 2a da y, da y y ,
dx
dx 1 tan2 a 1 y2
M1
M2
N1
N2 )j
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
设曲线C是光滑的,曲线 线C上从点M 到点M 的弧
新编文档-曲率及其曲率半径的计算-精品文档
所以选用砂轮的半径不得超过1.25单位长,即直径不得超过
2.50单位长.
因此
ds
dx
1y2
.
由于ss(x)是单调增加函数,从而
ds dx
>0,
ds 1y2 . dx
于是 ds 1y2 dx.这就是弧微分公式.
二、曲率及其计算公式
观察曲线的弯曲线程度与切线的关系:
M1
M2
N1
N2 )j
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
例2 抛物线yax2bxc 上哪一点处的曲率最大?K ( 1 | y y 2 | ) 3 2
解 由yax2bxc,得 y2axb ,y2a ,
代入曲率公式,得 K ( 1 | y y 2 | ) 3 2 [1(2a|2xa|b)2]32
解 由y 1 ,得
x
y 1 , y 2 .
x 2 x 3
因此,y|x11,y|x12.
曲线x y 1在点(1,1)处的曲率为
K |y | 2 1 2 . ( 1 y 2 ) 3 2( 1 ( 1 ) 2 ) 3 2 2 2
设曲线C是光滑的,曲线 线C上从点M 到点M 的弧
为Ds ,切线的转角为Da .
C y
M
M0
s
Ds M
Da
a
a+Da
平均曲率:
O
x
)
我 们 称 K D a为 弧 段 M M 的 平 均 曲 率 . D s 曲率:
a 我 们 称 K liD m 为 曲 线 C 在 点 M 处 的 曲 率 . D s 0 D s
曲率半径和曲率的公式
曲率半径和曲率的公式
曲率半径和曲率是描述曲线或曲面形状的两个重要参数。
它们的公式如下:
曲率半径(curvature radius):
R =1
k
其中,R为曲率半径,k为曲率。
当k为正时,R为正数;当k为负时,R为负数;当k为零时,R为无穷大或无穷小。
曲率半径越小,曲线或曲面越弯曲;当曲率半径为零时,曲线或曲面为纯曲线或纯曲面。
曲率(curvature):
其中,k为曲率,κ为弧长曲率,γ为测地线斜率,∇γ为测地线方向导数。
当k为正时,曲线或曲面向右弯曲;当k为负时,曲线或曲面向左弯曲;当k为零时,曲线或曲面为直线或圆弧。
需要注意的是,曲率半径和曲率是曲线或曲面的局部性质,即只对曲线或曲面的某一点或某一段有意义。
在实际应用中,通常需要通过测量或计算来确定它们的数值。
曲率和曲率半径的计算公式
曲率和曲率半径的计算公式在我们的数学世界里,曲率和曲率半径可是相当有趣又重要的概念。
你要是能把它们搞清楚,那在解决好多数学问题的时候,就能轻松应对啦!先来说说曲率。
曲率啊,简单理解就是描述曲线弯曲程度的一个量。
那怎么来计算它呢?对于函数 y = f(x),其曲率的计算公式是 k = |y''| / (1 + y'²)^(3/2) 。
这里的 y' 表示函数的一阶导数,y'' 表示二阶导数。
咱们来举个例子感受一下。
比如说有一条抛物线 y = x²。
首先,对它求一阶导数,y' = 2x ,再求二阶导数,y'' = 2 。
然后把它们代入曲率的公式里,就能算出在某个点的曲率啦。
接下来再讲讲曲率半径。
曲率半径呢,就是曲率的倒数。
它的计算公式就是 R = 1 / k 。
给大家分享一个我在教学中的小趣事。
有一次上课,我刚讲到曲率和曲率半径的计算公式,下面的同学一个个都皱着眉头,满脸疑惑。
其中有个特别积极的同学举手说:“老师,这也太复杂了,感觉脑袋都要炸啦!”我笑着回答他:“别着急,咱们一步一步来,就像爬楼梯,只要一个台阶一个台阶地走,总能到顶的。
”然后我就带着他们从最简单的函数开始,一点点推导计算,让他们自己动手去感受这个过程。
慢慢地,同学们紧锁的眉头开始舒展开了,眼睛里也有了亮光。
等到下课的时候,那个一开始抱怨的同学跑过来跟我说:“老师,我好像有点懂啦!”看着他们逐渐掌握这些知识,我心里那叫一个欣慰。
在实际应用中,曲率和曲率半径的计算可有着大用处呢。
比如在工程设计里,要设计一条弯曲的道路或者桥梁,就得先算出曲率和曲率半径,来保证行驶的安全和舒适。
在物理学中,研究曲线运动的时候,这两个概念也能帮助我们更好地理解物体的运动状态。
总之,曲率和曲率半径的计算公式虽然看起来有点复杂,但只要咱们多练习、多思考,就能把它们拿下。
相信大家在以后的学习和生活中,遇到需要用到它们的时候,都能轻松应对,游刃有余!。
曲率及其计算公式(精)
于是
da
y 1 y2
dx.又知 ds
1 y2
dx.
从而,有
| y | K (1 y2 )3 2
.
例1
计算等双曲线x y 1在点(1,1)处的曲率.
K
| y | (1 y2 )3 2
解 由y 1 ,得
x
1 y x 2
,y
2 x3
.
因此,y|x11,y|x12.
代入曲率公式,得
K
| (1
y | y2 )3
2
. [1
| 2a | (2ax b)2 ]3
2
要使K 最大,只须2axb0, 即 x b .而 x b 对应的点为
2a
2a
抛物线的顶点.因此,抛物线在顶点处的曲率最大,最大曲率为
K|2a| .
讨论:
1.直线上任一点的曲率等于什么?
2
|
MM MM
|
2
|
MM |2 (Dx)2
|
MM MM
|
2
(Dx)2 (Dy (Dx)2
)2
(
|
MM MM
|
Байду номын сангаас
2
1
Dy Dx
2
(
Ds Dx
|
MM MM
|
2
y
4
2O
y=0.4 x2
2
x
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
平面曲线的曲率
平面曲线的曲率一、曲率及其计算公式曲线弯曲程度的直观描述:设曲线C 是光滑的, 在曲线C 上选定一点M 0作为度量弧s 的基点. 设曲线上点M 对应于弧s , 在点M 处切线的倾角为α , 曲线上另外一点N 对应于弧s +∆s , 在点N 处切线的倾角为α+∆α .我们用比值||||s ∆∆α, 即单位弧段上切线转过的角度的大小来表达弧段⋂MN 的平均弯曲程度.记s K ∆∆=α, 称K 为弧段MN 的平均曲率. 记sK s ∆∆=→∆α0lim , 称K 为曲线C 在点M 处的曲率. 在0lim →∆s s ∆∆α=ds d α存在的条件下, dsd K α=. 曲率的计算公式:设曲线的直角坐标方程是y =f (x ), 且f (x )具有二阶导数(这时f '(x )连续, 从而曲线是光滑的). 因为tan α=y ' , 所以sec 2α d α=y ''dx , dx y y dx y dx y d 2221tan 1sec '+''=+''=''=ααα.又知ds =21y '+dx , 从而得曲率的计算公式 232)1(||y y ds d K '+''==α.例1. 计算直线y =a x +b 上任一点的曲率.例2. 计算半径为R 的圆上任一点的曲率.讨论:1. 计算直线y =a x +b 上任一点的曲率.提示: 设直线方程为y =ax +b , 则y '=a , y ''= 0. 于是K =0.2. 若曲线的参数方程为x =ϕ(t ), y =ψ(t )给, 那么曲率如何计算? 提示: 2/322)]()([|)()()()(|t t t t t t K ψϕψϕψϕ'+''''-'''=.3. 计算半径为R 的圆上任一点的曲率.提示: 圆的参数方程为x =R cos t , y =R sin t .例1. 计算等双曲线x y =1在点(1, 1)处的曲率.解: 由x y 1=, 得 21x y -=', 32x y =''. 因此 y '|x =1=-1, y ''|x =1=2.曲线xy =1在点(1, 1)处的曲率为 232)1(||y y K '+''=232))1(1(2-+=2221==. 例4 抛物线y =a x 2+b x +c 上哪一点处的曲率最大?解: 由y =a x 2+b x +c , 得y '=2a x +b , y ''=2a ,代入曲率公式, 得 232])2(1[|2|b ax a K ++=.显然, 当2ax +b =0时曲率最大.曲率最大时, x =-ab 2, 对应的点为抛物线的顶点. 因此, 抛物线在顶点处的曲率最大, 最大曲率为K =|2a | .二、曲率圆与曲率半径设曲线在点M (x , y )处的曲率为K (K ≠0) . 在点M 处的曲线的法线上, 在凹的一侧取一点D , 使|DM | =K -1=ρ. 以D 为圆心, ρ为半径作圆, 这个圆叫做曲线在点M 处的曲率圆, 曲率圆的圆心D 叫做曲线在点M 处的曲率中心, 曲率圆的半径 ρ 叫做曲线在点M 处的曲率半径. 设曲线在点M 处的曲率为K (K ≠0), 在曲线凹的一侧作一个与曲线相切于M 且半径为ρ=K -1的圆, 则这个圆叫做曲线在点M 处的曲率圆, 其圆心叫做曲率中心, 其半径ρ 叫做曲率半径.曲线在点M 处的曲率K (K ≠0)与曲线在点M 处的曲率半径 ρ 有如下关系:ρ =K 1, K =ρ1. 例3 设工件表面的截线为抛物线y =0.4x2. 现在要用砂轮磨削其内表面. 问用直径多大的砂轮才比较合适?解 砂轮的半径不应大于抛物线顶点处的曲率半径.y '=0.8x , y ''=0.8,y '|x =0=0, y ''|x =0=0.8.把它们代入曲率公式, 得232)1(||y y K '+''==0.8.抛物线顶点处的曲率半径为K -1= 1.25.所以选用砂轮的半径不得超过1.25单位长, 即直径不得超过2.50单位长.。
曲率及其曲率半径的计算.ppt
M2
N1
N2 )j
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
设曲线C是光滑的,曲线 线C上从点 M 到点 M ?的弧
为Ds ,切线的转角为 Da .
C y
M?
M0 s
Ds M
Da
a
a+Da
O
x
平均曲率:
我们称 K ? Da
)?
为弧段 MM ? 的平均曲率.
Ds
曲率:
我们称 K ? lim Da 为曲线C在点M处的曲率.
Dx? 0 | MM?| M ?? M | MM?|
Dx? 0 Dx
因此
ds dx
??
1 ? y?2 .
由于s? s(x)是单调增加函数,从而
ds dx
>0,
ds ?
dx
1? y?2 .
于是 ds ? 1? y?2 dx.这就是弧微分公式.
二、曲率及其计算公式
观察曲线的弯曲线程度与切线的关系:
M1
2
? ? ?
? ??1 ?
?
?? ?
Dy Dx
2
? ? ?
?
? ?
y M0
M?
Ds M
Dy
Dx
O x0
x x+Dx x
因为
Ds ??
Dx
?? ?|
M(M MM
? ?|
2
? ? ?
? ??1 ?
?
?? ?
Dy Dx
2
? ? ?
?
? ?
lim | M(M?| ? lim | M(M?| ?1,又 lim Dy ?y?,
,y??? 2 x3
曲率的三种计算公式
曲率的三种计算公式
曲率是描述曲面特性的数学概念,是衡量曲面上任意一点与曲面正常方向之间
的夹角变化的一种度量。
曲率一般是指二次曲面(如椭圆曲面、抛物线曲面)的曲率,这种曲率的度量方法是利用椭圆函数或者抛物线方程来计算,三维曲面的曲率是指曲面空间在自身曲面空间上变换而得到的曲面,而计算三维曲面曲率需要用到几何计算学的技术,包括局部曲率和平均曲率。
曲率具有重要的应用价值,主要用于分析平面的非线性变换、衡量物体表面曲
率和光滑程度、识别空间几何特征等等。
曲率的三种计算公式也是求解曲面曲率的关键手段,它们分别是:极短线法、泰勒公式和变坐标系公式。
极短线法是一种用于测量曲面曲率的定性方法,它允许曲面上任意两点之间的
连线为“极短线段”,经过定义曲面上任意点的曲率和计算曲面曲率的方法,可以得出曲面曲率的值。
泰勒公式是一种求解曲面上两点曲率的方法,它是在泰勒级数展开式中求解曲
率的关键公式,该公式可以用于求解曲面在特定点处的曲率。
变坐标系公式是一种用于计算曲面曲率的数学公式,它使用特定变形应用量来
代替基本变量。
所以,这种方法可以精确地计算曲面曲率,尤其适用于计算简单曲面以及复杂曲面的变形应用。
总之,曲率的三种计算公式是求解曲面曲率的重要手段,它们可以应用于分析
平面的非线性变换、衡量物体表面曲率和光滑程度等等,为曲面检测和物体检测提供了理论基础。
曲率及其曲率半径的计算
ρ=
1 1 , K= . ρ K
例3 设工件表面的截线为抛物线y=0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4
2
O
2
x
例3 设工件表面的截线为抛物线y=0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适? 解 砂轮的半径不应大于抛物线顶点处的曲率半径. y′=0.8x ,y′′=0.8, y′|x=0=0,y′′|x=0=0.8. 把它们代入曲率公式,得
曲率及其曲率半径的计算
一、弧微分 弧微分
有向弧段的值、弧微分公式
二、曲率及其计算公式 曲率及其计算公式
曲率、曲率的计算公式
三、曲率圆与曲率半径 曲率圆与曲率半径
曲率圆曲率半径
一、弧微分
有向弧段 M0 M 的值 s(简称为弧s) : s 的绝对值等于这弧段的长度,当有向弧段的方向与曲线的 正向一致时s>0,相反时s<0. 显然,弧 s 是 x 的函数:s=s(x),而且s(x)是x的单调增加函 数. y y ( M0 s>0 M M s<0 M0 x x x0 x
设曲线的直角坐标方程是y=f(x),且f(x)具有二阶导数. 因为tan α =y ′ ,所以
dα y ′′ y ′′ dα sec α =y′′, = = , 2 2 dx dx 1 + tan α 1 + y ′ y ′′ 于是 dα = dx.又知 ds= 1 + y ′ 2 dx. 1 + y′2
O
x0
x
O
下面来求s(x)的导数及微分. 设x , x+ ∆x 为(a,b)内两个邻近的点,它们在曲线 y=f(x)上的对应点为M,M′,并设对应于x的增量∆x ,弧 s 的增 量为∆s,于是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有如下关系:
1 1 r , K . r K
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
y
y=0.4 x2
4
2
O
2
x
例3 设工件表面的截线为抛物线y0.4x 2.现在要用砂轮 磨削其内表面.问用直径多大的砂轮才比较合适?
解 砂轮的半径不应大于抛物线顶点处的曲率半径. y0.8x ,y0.8, y|x00,y|x00.8. 把它们代入曲率公式,得
设曲线的直角坐标方程是yf(x),且f(x)具有二阶导数. 因为tan a y ,所以
da y y da sec a y, , 2 2 dx dx 1 tan a 1 y y 于是 da dx.又知 ds 1 y 2 dx. 1 y2
2
Ds MM Dx | MM |
(
(
y M Ds
2
Dy 2 1 Dx
(
M0
O x0
M
Dy
Dx
x x+Dx x
Ds MM | Dx | MM
2
Dy 2 1 Dx
2
从而,有
| y | K . 2 32 (1 y )
| y | K 例1 计算等双曲线x y 1在点(1,1)处的曲率. (1 y 2 ) 3 2
解
1 由y ,得 x
x 因此,y|x11,y|x12.
y
1
2
,y
2 x
3
.
曲线x y 1在点(1,1)处的曲率为
M0
s>0
M
M
s<0
M0
O
x0
x
x
O
x
x0
x
下面来求s(x)的导数及微分. 设x , x+ Dx 为(a,b)内两个邻近的点 ,它们在曲线 yf(x)上的对应点为M,M,并设对应于x的增量Dx ,弧 s 的增 量为Ds,于是
(
Ds MM Dx Dx
(
Dy | MM | | MM | y, lim 因为 lim 1, 又 lim Dx0 Dx Dx 0 | MM | M M | MM | ds 2 因此 1 y . dx ds ds 1 y2 . 由于ss(x)是单调增加函数,从而 &g | MM ( Dx ) ( Dy ) 2 | MM | ( Dx ) 2 | MM | (Dx)
(
2
2
2
2 MM Dy 1 | MM | Dx
于是 ds 1 y2 dx.这就是弧微分公式.
(
(
二、曲率及其计算公式
观察曲线的弯曲线程度与切线的关系:
M1
M2 N2 )j
N1
可以用单位弧段上切线转过的角度的大小来表达弧段的平均 弯曲程度,
设曲线C是光滑的,曲线 线C上从点M 到点M 的弧 为Ds ,切线的转角为D a . y M0 O M a
| 2a | | y | K . 2 32 [1 (2ax b) 2 ]3 2 (1 y ) b b 要使K 最大,只须2axb0, 即 x 对应的点为 .而 x 2a 2a 抛物线的顶点.因此,抛物线在顶点处的曲率最大,最大曲率为
K|2a| .
讨论: 1.直线上任一点的曲率等于什么? 提示:设直线方程为y=ax+b,则y =a, y = 0.于是 | y | K 0. 2 3 2 (1 y ) x j (t ) 2.若曲线由参数方程 给出,那么曲率如何计算? y (t ) 提示:
| y | 2 1 2 K . 0.8. 2 3 2 2 32 2 (1 y ) (1 (1) ) 2
抛物线顶点处的曲率半径为
1 r 1.25. K
所以选用砂轮的半径不得超过1.25单位长,即直径不得超过 2.50单位长.
§3.9 曲 率
一、弧微分
有向弧段的值、弧微分公式
二、曲率及其计算公式
曲率、曲率的计算公式
三、曲率圆与曲率半径
曲率圆曲率半径
一、弧微分
有向弧段 M0 M 的值 s(简称为弧s) : s 的绝对值等于这弧段的长度,当有向弧段的方向与曲线的
正向一致时s>0,相反时s<0. 显然,弧 s 是 x 的函数:ss(x),而且s(x)是x的单调增加函 数. y y (
| y | 2 1 2 K . 2 32 2 32 2 (1 y ) (1 (1) ) 2
| y | K 2bxc 上哪一点处的曲率最大? 例2 抛物线yax (1 y 2 ) 3 2
解 由yax2bxc,得 y2axb ,y2a , 代入曲率公式,得
Da 为弧段 MM 的平均曲率. 我们称 K Ds 曲率: Da 为曲线C在点M处的曲率. 我们称 K lim Ds 0 Ds da Da da K lim 在 存在的条件下 . Ds 0 Ds ds ds
C M Ds Da a+Da x
s
)
平均曲率:
曲率的计算公式:
K da . ds
| j (t ) (t ) j (t ) (t ) | K . 2 2 32 [j (t ) (t )]
三、曲率圆与曲率半径
y D y=f(x) r M
曲线在M点的曲率半径
1 |DM| r K
O 曲线在M点的曲率圆
x 曲线在M点的曲率中心
曲线在点M处的曲率K(K 0)与曲线在点M处的曲率半径 r