简单的线性规划应用题解析

合集下载

线性规划题及答案

线性规划题及答案

线性规划题及答案线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。

在实际应用中,线性规划可以用于解决各种决策问题,如生产计划、资源分配、投资组合等。

以下是一个线性规划问题的示例:问题描述:某工厂生产两种产品A和B,每天的生产时间为8小时。

产品A每件需要2小时的加工时间,产品B每件需要3小时的加工时间。

每天的加工时间总共有16个小时。

产品A的利润为100元/件,产品B的利润为150元/件。

工厂的目标是最大化每天的总利润。

解决步骤:1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。

2. 建立目标函数:目标函数是每天的总利润,即:Z = 100x + 150y。

3. 建立约束条件:a) 加工时间约束:2x + 3y ≤ 16,表示每天的加工时间不能超过16小时。

b) 非负约束:x ≥ 0,y ≥ 0,表示产品的生产数量不能为负数。

4. 求解最优解:将目标函数和约束条件带入线性规划模型,使用线性规划算法求解最优解。

最优解及分析:经过计算,得到最优解为x = 4,y = 4,此时总利润最大为100 * 4 + 150 * 4 = 1000元。

通过最优解的分析可知,工厂每天应生产4件产品A和4件产品B,才能达到每天最大利润1000元。

同时,由于加工时间约束,每天的加工时间不能超过16小时,这也是生产数量的限制条件。

此外,也可以通过灵敏度分析来了解生产数量的变化对最优解的影响。

例如,如果产品A的利润提高到120元/件,而产品B的利润保持不变,那么最优解会发生变化。

在这种情况下,最优解为x = 6,y = 2,总利润为120 * 6 + 150 * 2 = 960元。

这表明,产品A的利润提高会促使工厂增加产品A的生产数量,减少产品B 的生产数量,以获得更高的总利润。

总结:线性规划是一种重要的数学优化方法,可以用于解决各种实际问题。

通过建立目标函数和约束条件,可以将实际问题转化为数学模型,并通过线性规划算法求解最优解。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。

工厂有两个生产车间:车间1和车间2。

生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。

每一个车间的加工时间和加工费用都是不同的。

我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。

二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。

假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。

在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。

本文将介绍一些常见的线性规划题目,并给出详细的答案解析。

一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。

每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。

问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。

二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。

公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。

通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。

三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。

仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。

通过线性规划方法求解,得出最优的运输方案,使得总成本最小。

四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。

简单的线性规划应用题解析

简单的线性规划应用题解析

简单的线性规划应用题解析1.某人有楼房一幢,室内面积共180㎡,拟分隔两类房间作为旅游客房.大每间面积为18㎡,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15㎡,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?设应隔出大、小房间分别为x ,y 间,此时收益为z 元,则18151801000600800000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 200150z x y =+将上述不等式组化为6560534000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 作出可行域,如图⑴,作直线l:200x+150y=0,即l:4x+3y=0. 将直线l 向右平移,得到经过可行域的点B ,且距原点最远的直线l 1. 解方程组65605340x y x y +=⎧⎨+=⎩ 图⑴得最优解2076072.98.6 xy=≈⎧⎨=≈⎩但是房间的间数为整数,所以,应找到是整数的最优解.①当x=3时,代入5x+3y=40中,得401525338y-==>,得整点(3,8),此时z=200×3+150×8=1800(元);②当x=2时,代入6x+5y=60中,得601248559y-==>,得整点(2,9),此时z=200×2+150×9=1750(元);③当x=1时,代入6x+5y=60中,得606545510y-==>,得整点(1,10), 此时z=200×1+150×10=1700(元);④当x=0时,代入6x+5y=60中,得60512y==,得整点(0,12),此时z=150×12=1800(元).由上①~④知,最优整数解为(0,12)和(3,8).答:有两套分隔房间的方案:其一是将楼房室内全部隔出小房间12间;其二是隔出大房间3间,小房间8间,两套方案都能获得最大收益为1800元.2.某家具厂有方木料90m3,五合板60㎡,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3、五合板2㎡,生产每个书橱需要方木料0.2 m3、五合板1㎡,出售一张书桌可获得利润80元,出售一个书橱可获得利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使所得利润最大?【解析】将已知数据列成下表:⑴只生产书桌因为90÷0.1=900,600÷2=300.所以,可产生书桌300张,用完五合板,此时获利润为80×300=24000(元);⑵只生产书橱因为90÷0.2=450,600÷1=600,所以,可产生450个书橱,用完方木料.此时获利润为120×450=54000(元);⑶若既安排生产书桌,也安排生产书橱 设安排生产书桌x 张,安排生产书橱y 个,可获利润z 元,则 0.10.290260000x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩80120z x y =+,作出可行域如图⑵,并作直线l :80x+120y=0,即 2x+3y=0.将直线l 向右平移,得到经过可行域的定点B 且距原点最远的直线l 1.解方程组0.10.2902600x y x y +=⎧⎨+=⎩ 得最优解100400x y =⎧⎨=⎩此时,8010012040056000z =⨯+⨯=(元).答:由上面⑴⑵⑶知:只安排生产书桌,可获利润24000元;只生产书橱,可获利润为54000元;当生产书桌100张,书橱400个时,刚好用完方木料和五合板,且此时获得最大利润,为56000元.图⑵。

线性规划常见题型及解法例析

线性规划常见题型及解法例析

品有直接限 制 因 素 的 是 资 金 和 劳 动 力,通 过 调 查,得
到这两种产品的有关数据如表 2.
资金
成本
劳动力(工资)
单位利润
单位产品所需资金/百元
月资金供应
电子琴(架) 洗衣机(台)
量/百元
30
20



10
300
110
试问:怎 样 确 定 这 两 种 产 品 的 月 供 应 量,才 能 使
故选:
B.
思路与方法:本 题 运 用 数 形 结 合 思 想,采 用 了 图
组作 出 可 行 域,如 图 3 所 示 .

图 3 可 知,△ABC 的 面 积 即 为
所求 .
易得
S梯 形OMBC =

×(
2+3)×2=5,

图3

S梯 形OMAC = × (
1+3)×2=4.

所以 S△ABC =S梯 形OMBC -S梯 形OMAC =5-4=1.
思路与方法:本 题 中 的 可 行 域 是 三 角 形,而 这 个
不规则的三角形面积很 难 直 接 求 解,于 是 将 它 看 作 梯
解法求最值,先 在 平 面 直 角 坐 标 系 中 画 出 可 行 域,然
形 OMBC 的一部 分,利 用 梯 形 OMBC 与 梯 形 OMAC
后平行移动直线 z=3x+4y 即可求出最大值 .
ï
,
且当
b≥0
b为
íy≥0, 时,恒有ax+by≤1,求以a,
ï
îx+y≤1
坐标的点 P (
a,
b)所构成的平面区域的面积 .
解析:设 z=ax +by,根 据 题 意 可 知,想 要 ax +

简单的线性规划问题附答案

简单的线性规划问题附答案

简单的线性规划问题附答案 Did you work harder today, April 6th, 2023简单的线性规划问题学习目标 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法;并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念1.目标函数的最值线性目标函数z=ax+by b≠0对应的斜截式直线方程是y=-错误!x+错误!;在y轴上的截距是错误!;当z变化时;方程表示一组互相平行的直线.当b>0;截距最大时;z取得最大值;截距最小时;z取得最小值;当b<0;截距最大时;z取得最小值;截距最小时;z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下;解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步;即;1画:根据线性约束条件;在平面直角坐标系中;把可行域表示的平面图形准确地画出来;可行域可以是封闭的多边形;也可以是一侧开放的无限大的平面区域.2移:运用数形结合的思想;把目标函数表示的直线平行移动;最先通过或最后通过的顶点或边界便是最优解.3求:解方程组求最优解;进而求出目标函数的最大值或最小值.4答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型1给定一定数量的人力、物力资源;问怎样运用这些资源;使完成的任务量最大;收到的效益最大;2给定一项任务;问怎样统筹安排;使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如;已知两煤矿每年的产量;煤需经两个车站运往外地;两个车站的运输能力是有限的;且已知两煤矿运往两个车站的运输价格;煤矿应怎样编制调动方案;才能使总运费最小②产品安排问题例如;某工厂生产甲、乙两种产品;每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量;此厂每月所能提供的三种材料的限额都是已知的;这个工厂在每个月中应如何安排这两种产品的生产;才能使每月获得的总利润最大③下料问题例如;要把一批长钢管截成两种规格的钢管;应怎样下料能使损耗最小2.解答线性规划实际应用题的步骤1模型建立:正确理解题意;将一般文字语言转化为数学语言;进而建立数学模型;这需要在学习有关例题解答时;仔细体会范例给出的模型建立方法.2模型求解:画出可行域;并结合所建立的目标函数的特点;选定可行域中的特殊点作为最优解.3模型应用:将求解出来的结论反馈到具体的实例中;设计出最佳的方案.题型一求线性目标函数的最值例1 已知变量x;y满足约束条件错误!则z=3x+y的最大值为A.12 B.11C.3 D.-1答案B解析首先画出可行域;建立在可行域的基础上;分析最值点;然后通过解方程组得最值点的坐标;代入即可.如图中的阴影部分;即为约束条件对应的可行域;当直线y=-3x+z经过点A时;z取得最大值.由错误!错误!此时z=3x+y=11.跟踪训练1 1x;y满足约束条件错误!若z=y-ax取得最大值的最优解不.唯一..;则实数a的值为A.错误!或-1 B.2或错误!C.2或1 D.2或-12若变量x;y满足约束条件错误!则z=3x+y的最小值为________.答案1D 21解析1如图;由y=ax+z知z的几何意义是直线在y轴上的截距;故当a>0时;要使z=y-ax取得最大值的最优解不唯一;则a=2;当a<0时;要使z=y-ax取得最大值的最优解不唯一;则a=-1.2由题意;作出约束条件组成的可行域如图所示;当目标函数z=3x+y;即y =-3x+z过点0;1时z取最小值1.题型二非线性目标函数的最值问题例2 设实数x;y满足约束条件错误!求1x2+y2的最小值;2错误!的最大值.解如图;画出不等式组表示的平面区域ABC;1令u=x2+y2;其几何意义是可行域ABC内任一点x;y与原点的距离的平方.过原点向直线x+2y-4=0作垂线y=2x;则垂足为错误!的解;即错误!;又由错误!得C错误!;所以垂足在线段AC的延长线上;故可行域内的点到原点的距离的最小值为|OC|=错误!=错误!;所以;x2+y2的最小值为错误!.2令v=错误!;其几何意义是可行域ABC内任一点x;y与原点相连的直线l 的斜率为v;即v=错误!.由图形可知;当直线l经过可行域内点C时;v最大;由1知C错误!;所以v max=错误!;所以错误!的最大值为错误!.跟踪训练2已知x;y满足约束条件错误!则x+32+y2的最小值为________.答案10解析画出可行域如图所示.x+32+y2即点A-3;0与可行域内点x;y之间距离的平方.显然AC长度最小;∴AC2=0+32+1-02=10;即x+32+y2的最小值为10.题型三线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克、B原料1千克.每桶甲产品的利润是300元;每桶乙产品的利润是400元.公司在生产这两种产品的计划中;要求每天消耗A;B原料都不超过12千克.通过合理安排生产计划;从每天生产的甲、乙两种产品中;公司共可获得的最大利润是多少解设每天分别生产甲产品x桶;乙产品y桶;相应的利润为z元;于是有错误!z=300x+400y;在坐标平面内画出该不等式组表示的平面区域及直线300x+400y=0;平移该直线;当平移到经过该平面区域内的点4;4时;相应直线在y轴上的截距达到最大;此时z=300x+400y取得最大值;最大值是z=300×4+400×4=2 800;即该公司可获得的最大利润是2 800元.反思与感悟线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数直线求出最优解;⑥实际问题需要整数解时;应适当调整;以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子;希望使桌子和椅子的总数尽可能的多;但椅子数不少于桌子数;且不多于桌子数的1.5倍;问桌子、椅子各买多少才行解设桌子、椅子分别买x张、y把;目标函数z=x+y;把所给的条件表示成不等式组;即约束条件为由错误!解得错误!所以A点的坐标为错误!.由错误!解得错误!所以B点的坐标为错误!.所以满足条件的可行域是以A错误!;B错误!;O0;0为顶点的三角形区域如图.由图形可知;目标函数z=x+y在可行域内的最优解为B错误!;但注意到x∈N;y∈N;故取错误!故买桌子25张;椅子37把是最好的选择.1.若直线y=2x上存在点x;y满足约束条件错误!则实数m的最大值为A.-1 B.1 C.错误! D.22.某公司招收男职员x名;女职员y名;x和y需满足约束条件错误!则z=10x+10y的最大值是A.80 B.85C.90 D.953.已知实数x;y满足错误!则z=x2+y2的最小值为________.一、选择题1.若点x; y位于曲线y=|x|与y=2所围成的封闭区域; 则2x-y的最小值为A.-6 B.-2 C.0 D.22.设变量x;y满足约束条件错误!则目标函数z=3x-y的最大值为A.-4 B.0 C.错误! D.43.实数x;y满足错误!则z=错误!的取值范围是A.-1;0 B.-∞;0C.-1;+∞ D.-1;14.若满足条件错误!的整点x;y整点是指横、纵坐标都是整数的点恰有9个;则整数a的值为A.-3 B.-2 C.-1 D.05.已知x;y满足错误!目标函数z=2x+y的最大值为7;最小值为1;则b;c 的值分别为A.-1;4 B.-1;-3C.-2;-1 D.-1;-26.已知x;y满足约束条件错误!使z=x+aya>0取得最小值的最优解有无数个;则a的值为A.-3 B.3 C.-1 D.1二、填空题7.若x;y满足约束条件错误!则z=x+2y的取值范围是________.8.已知-1≤x+y≤4且2≤x-y≤3;则z=2x-3y的取值范围是________答案用区间表示.9.已知平面直角坐标系xOy上的区域D由不等式组错误!给定.若Mx;y为D上的动点;点A的坐标为错误!;1;则z=错误!·错误!的最大值为________.10.满足|x|+|y|≤2的点x;y中整点横纵坐标都是整数有________个.11.设实数x;y满足不等式组错误!则z=|x+2y-4|的最大值为________.三、解答题12.已知x;y满足约束条件错误!目标函数z=2x-y;求z的最大值和最小值.13.设不等式组错误!表示的平面区域为D.若指数函数y=a x的图象上存在区域D上的点;求a的取值范围.14.某家具厂有方木料90 m3;五合板600 m2;准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3;五合板2 m2;生产每个书橱需要方木料0.2 m3;五合板1 m2;出售一张方桌可获利润80元;出售一个书橱可获利润120元.1如果只安排生产书桌;可获利润多少2如果只安排生产书橱;可获利润多少3怎样安排生产可使所得利润最大当堂检测答案1.答案B解析如图;当y=2x经过且只经过x+y-3=0和x=m的交点时;m取到最大值;此时;即m;2m在直线x+y-3=0上;则m=1.2.答案C解析该不等式组表示的平面区域为如图所示的阴影部分.由于x;y∈N;计算区域内与错误!最近的点为5;4;故当x=5;y=4时;z取得最大值为90. 3.答案错误!解析实数x;y满足的可行域如图中阴影部分所示;则z的最小值为原点到直线AB的距离的平方;故z min=错误!2=错误!.课时精练答案一、选择题1.答案A解析画出可行域;如图所示;解得A-2;2;设z=2x-y;把z=2x-y变形为y=2x-z;则直线经过点A时z取得最小值;所以z min=2×-2-2=-6;故选A.2.答案D解析作出可行域;如图所示.联立错误!解得错误!当目标函数z=3x-y移到2;2时;z=3x-y有最大值4.3.答案D解析作出可行域;如图所示;错误!的几何意义是点x;y与点0;1连线l的斜率;当直线l过B1;0时k l最小;最小为-1.又直线l不能与直线x-y=0平行;∴k l<1.综上;k∈-1;1.4.答案C解析不等式组所表示的平面区域如图阴影部分所示;当a=0时;只有4个整点1;1;0;0;1;0;2;0.当a=-1时;正好增加-1;-1;0;-1;1;-1;2;-1;3;-15个整点.故选C.5.答案D解析由题意知;直线x+by+c=0经过直线2x+y=7与直线x+y=4的交点;且经过直线2x+y=1和直线x=1的交点;即经过点3;1和点1;-1;∴错误!解得错误!6.答案D解析如图;作出可行域;作直线l:x+ay=0;要使目标函数z=x+aya>0取得最小值的最优解有无数个;则将l向右上方平移后与直线x+y=5重合;故a=1;选D.二、填空题7.答案2;6解析如图;作出可行域;作直线l:x+2y=0;将l向右上方平移;过点A2;0时;有最小值2;过点B2;2时;有最大值6;故z的取值范围为2;6.8.答案3;8解析作出不等式组错误!表示的可行域;如图中阴影部分所示.在可行域内平移直线2x-3y=0;当直线经过x-y=2与x+y=4的交点A3;1时;目标函数有最小值z min=2×3-3×1=3;当直线经过x+y=-1与x-y=3的交点B1;-2时;目标函数有最大值z max=2×1+3×2=8.所以z∈3;8.9.答案4解析由线性约束条件错误!画出可行域如图中阴影部分所示;目标函数z=错误!·错误!=错误!x+y;将其化为y=-错误!x+z;结合图形可知;目标函数的图象过点错误!;2时;z最大;将点错误!;2代入z=错误!x+y;得z的最大值为4.10.答案13解析|x|+|y|≤2可化为作出可行域为如图正方形内部包括边界;容易得到整点个数为13个.11.答案21解析作出可行域如图;即△ABC所围区域包括边界;其顶点为A1;3;B7;9;C3;1方法一∵可行域内的点都在直线x+2y-4=0上方;∴x+2y-4>0;则目标函数等价于z=x+2y-4;易得当直线z=x+2y-4在点B7;9处;目标函数取得最大值z max=21.方法二z=|x+2y-4|=错误!·错误!;令Px;y为可行域内一动点;定直线x+2y-4=0;则z=错误!d;其中d为Px;y到直线x+2y-4=0的距离.由图可知;区域内的点B与直线的距离最大;故d的最大值为错误!=错误!.故目标函数z max=错误!·错误!=21.三、解答题12.解z=2x-y可化为y=2x-z;z的几何意义是直线在y轴上的截距的相反数;故当z取得最大值和最小值时;应是直线在y轴上分别取得最小和最大截距的时候.作一组与l0:2x-y=0平行的直线系l;经上下平移;可得:当l移动到l1;即经过点A5;2时;z max=2×5-2=8.当l移动到l2;即过点C1;4.4时;z min=2×1-4.4=-2.4.13.解先画出可行域;如图所示;y=a x必须过图中阴影部分或其边界.∵A2;9;∴9=a2;∴a=3.∵a>1;∴1<a≤3.14.解由题意可画表格如下:1则错误!错误!0≤x≤300.所以当x=300时;z max=80×300=24 000元;即如果只安排生产书桌;最多可生产300张书桌;获得利润24 000元.2设只生产书橱y个;可获得利润z元;则错误!错误!0≤y≤450.所以当y=450时;z max=120×450=54 000元;即如果只安排生产书橱;最多可生产450个书橱;获得利润54 000元.3设生产书桌x张;书橱y个;利润总额为z元;则错误!错误!z=80x+120y.在平面直角坐标系内作出上面不等式组所表示的平面区域;即可行域如图.作直线l:80x+120y=0;即直线l:2x+3y=0.把直线l向右上方平移至l1的位置时;直线经过可行域上的点M;此时z=80x+120y取得最大值.由错误!解得;点M的坐标为100;400.所以当x=100;y=400时;z max=80×100+120×400=56 000元.因此;生产书桌100张、书橱400个;可使所得利润最大.。

3.5.2简单的线性规划应用问题

3.5.2简单的线性规划应用问题

关于取整数解的问题
例 要将两种大小不同规格的钢板截成A、B、C三种规格,每 张钢板可同时截得三种规格的小钢板的块数如下表所示 :
规格类型 钢板类型
A规格 2 1
B规格 1 2
C规格 1 3
第一种钢板 第二种钢板
今需要A,B,C三种规格的成品分别为15,18,27块,问各截 这两种钢板多少张可得所需三种规格成品,且使所用钢板张 数最少。
课堂练习
x 0 不等式组 y 0 表示的平面区域内的整数点共有 y 4 x 3 y 12
4 3
( 3 )个
2
1
0
1
2
3
4 4x+3y=12
x
课堂练习
3 x 2 y 10 x 4 y 11 2. 设变量x, y满足条件 x 0, y 0 x, y Z 求S 5 x 4 y的 最 大 值 。
简单线性规划的应用问题
高二数学组
例题分析
某货运公司拟用集装箱托运甲、乙两种货物,甲种货 物每袋体积是5m3,质量是1百千克;乙种货物每袋体积 是4m3,质量是2.5百千克。甲种货物每袋可获得的利润 为20百元,乙种货物每袋可获得的利润是10百元,一个 大集装箱能够装所托运货物的总体积不能超过24m3,总 质量不能低于6.5百千克。问:在一个大集装箱内,这两 种货物各装多少袋(不一定都是整袋)时,可获得最大 利润?
所以z最大值为 240百元
例题分析 变式3、将例题中的问改为:在一个大集装箱内,这两 种货物各装多少整袋时,可获得最大利润? 此时,C点正 好为整点,即 为所求。
几个结论:
1. 可行域可以是封闭的多边形,也可以是一侧开放的 无限大的平面区域.

【教学随笔】线性规划典型题例解析

【教学随笔】线性规划典型题例解析

线性规划典型题例归类解析简单的线性规划”是在学习了直线方程的基础上, 介绍直线方程的一个简单应用,考中占有一席之地,既有考查线性规划自身理论系统知识的试题, 究实际应用问题的试题,同时也有与其它知识相结合的交汇性试题 题型进行分类解析.一、求约束条件下的平面区域的面积r x+y — 2>0例1在平面直角坐标系中,不等式组 \ x — y+2 >0,表示的平面区域的面积是I x < 2(A)4W(B)4(C)2 羽(D)2分析:先根据约束条件作出平面区域,然后根据区域的图形特征求面积 解:由条件作图可知可行域为△ABC ,求出各个交点坐标为 A(2 ,4)、0)、C(0, 2),贝y S^ABC = 1|AB | • |OB| = 14-2 = 4,故选择 B.面积;如果平行区域不是一个三角形,可将区域划分为几个易求面积三角 形.二、求解与约束条件下与平面区域相关的距离问题I X A 1例2已知1 x — y+1 w 0 ,则X 2+ y 2的最小值是 ___________ .[2x — y — 2 w 0分析:先根据约束条件作出平面区域, 然后根据X 2+ y 2(平面区域内的点到原点的距离的平方)的几何意义进行求解.〔X > 1解:由$ X — y+1w 0 ,画出可行域,求得交点A(1 , 2), B(3 , 4),则[2x- y — 2w 0 由图观察知,平面区域内的点到原点距离最小的点为 A 点,而|OA| = 0T P =^/5,所以X 2+ y 2的最小值是5.点评:解答本题的关键就是要明确的几何意义 面区域内的点到原点距离的平方.三、求解与约束条件下的平面区域相关的斜率问题「y A 0例3实数X, y 满足不等式组S X — yA0 ,、2x — y — 2 A 0 分析:因为表达式 巳与斜率的坐标公式类似,x+ 1 来解决.解:满足已知不等式的可行域如图所示, 视(x ,y)为坐标平面可行域内y — 1的点,贝y u= --表示动点(x , y)与定点(一1, 1)连线的斜率,A. I I由条件求得各交点的坐标 0(0, 0) , A(2 , 2)、B(1 , 0),11在咼也有考查利用线性规划研 .下面就线性规划的常x 2+y 2,即X 2+ y 2表示平因此可转化为斜率问题u = 2的取值范围.x+ 1由斜率公式得 k pA= R k op=— 1,所以一1W uw T.3 3点评:此类题型在确定斜率的取值范围时遵循: 如果垂直于x 轴的直线满足条件, 则所求的斜率在两条边界直线的斜率之外; 如果垂直于x 轴的直线不满足条件, 则所求的斜率在两条边界直线的斜率之间,注意“等号”是否可取 . 四、求解约束条件下的线性目标函数的最值问题 例4在约束条件 r y+x < s { y+2x w 4 下,当3W s< 5时,目标函数z= 3x + 2y 的最大值的变化I x> 0, y > 0 范围是( A.[6 , 分析: ) 15]由于约束条件中含有参数B.[7 , 15]C.[6 , 8]D.[7 , 8]s,因此可行域是一个动态的区域,因此 y+2x=4 杪 在确定最大值时要注意分类 . X E(0,4)x=4 — s -r ',所以各交点坐标分别为 A(0 , 2), B(0 , y=2s — 4s), E(0 , 4), x+y=sy+2x=4,得s), C(4 — s, 2s — 4), D(0 ,(1) 当3w SV 4时可行域是四边形 OACD ,此时,目标函数在 C 点取得 ^G(4 -S ,23-4) 最大值 z = 3(4— s) + 2(2s — 4) = s + 4,所以 7w zv 8; (2) 当4w sw 5时可行域是△ OAE,此时,目标函数在 E 点取得最大值 4= 8,所以 Z max = 8,故选 D. 点评:对参数的处理是解答本题的一个关键, 进行分类讨论的标准是根据由约束条件所 形成的可行域的不同形状.在解答过程中要注意将目标函数 z 转化为关于s 的函数进行求解. 五、 求解在约束条件下目标函数中参数的问题 例5已知变量x, y 满足约束条件1 w x + yw 4,— 2w x — yw 2.若目标函数 中a> 0)仅在点(3 , 1)处取得最大值,贝y a 的取值范围为 ____________ . 解析:变量x, y 满足约束条件1 w x+ yw 4, — 2w x — yw 2在坐标系中 画出可行域,如图为四边形 ABCD ,其中A(3 , 1), k AD = 1, k AB =— 1, 由目标函数z= ax+y (其中a> 0)得y=— ax+z,则z 表示斜率为一a 的直线系中的截距的大小,若仅在点 A(3 , 1)处取得最大值,则直线 y=—ax+ z 应在直线x + y= 4与直线x = 3之间,直线斜率应小于 k AB =— 1, 即卩' —av — 1,所以a 的取值范围为(1 ,+s ).点评:本题的目标函数对应的直线的斜率是变化的, 一般求解目标函数 的最值时要将目标函数对应的直线的斜率与线性约束条件下的对应的直线的斜率进行比较, 若目标函数对应的直线过两条直线的交点, 且位于两直线之间,则其对应的斜率也就在两个 相交直线的斜率之间.另外解答本题的一个关健是挖掘出— a 与z 的几何意义. 六、 求平面区域的约束条件 例6双曲线x 2— y 2= 4的两条渐近线与直线 不等式组是( ) j x — y>0 (A) S x + y 》0 \ 0w xw 3 x — y > 0 (B) S x + y w 00< x w 3 z= 3X0+2X z= ax+ y(其 z^ax+y * \ 盘 y= (3-1)x=3围成一个三角形区域,表示该区域的 K+y=l \ Xx+yMx — yw 0 j x — y w 0 (C) x + yw 0 (D 门 x + y >0 _ 0w xw 3 I 0w xw 3 然后确定各边界所在的直线方程, 再 分析:本题要从根据题设条件作出平面区域入手, 确定其所对应的代数式的符号 . 解:双曲线x 2— y 2= 4的两条渐近线方程为 y =± x,与直线x = 3围成 一个三角形区域,如图所示, 在区域内取点 A(1 , 0),代入代数式:x — y 、x + y 、x 得x — y = 1, xr X — y > 0+ y = 1, x= 1,则该区域的约束条件为 \ X + y > 0,故选A.I 0w Xw 3点评:本题是一道逆向思维性题, 其难点主要是确定各边界所在的直线方程 Ax +By+ C =0对应的代数式 Ax + By+ C 的符号,一般根据平面区域的一个特殊点的坐标代入 Ax+ By+ C 即可确定.另外要注意边界所在直线的虚实 .七、求解可行域内的最优整数解问题直线90x + 100y = t 中的截距最大,但不是整数解.整数解X = 1与X = 2两条直线上,而离点 M 较近的两个点为(1 ,「X = 1代入z= 90x + 100y 比较可知当{ C 时,z = 90x + 100取得最大值390.,=3点评:在求使目标函数的最优整数解时,如果使目标函数取得最值的点 M (X 0, y 。

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。

以下是一些线性规划的练习题,以及对这些题目的简要讲解。

### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。

工厂每天有机器时间100小时和人工时间80小时。

如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。

设生产产品A的数量为x,产品B的数量为y。

2. 目标函数为:\( P = 50x + 80y \)。

3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。

5. 计算每个顶点的目标函数值,选择最大的一个。

### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。

产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。

公司每月有原材料预算3000元。

如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。

2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。

3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。

6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。

### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。

线性规划练习题及解答

线性规划练习题及解答

线性规划练习题及解答线性规划是数学中一种常见的优化方法,它广泛应用于实际问题的解决中。

本文将提供一些线性规划的练习题及解答,以帮助读者更好地理解和运用线性规划。

练习题1:某公司生产两种产品:甲品和乙品。

每天可用于生产的原料数量分别为A和B。

已知每单位甲品所需的原料A和B的消耗量分别为a1和b1,每单位乙品所需的原料A和B的消耗量分别为a2和b2。

假设甲品和乙品的利润分别为p1和p2,求解出该公司在给定原料限制下能获得的最大利润。

解答:设甲品的生产量为x,乙品的生产量为y,则目标函数为最大化利润,即maximize p1 * x + p2 * y。

受限条件为原料A的消耗量限制 a1 * x + a2 * y <= A,原料B的消耗量限制 b1 * x + b2 * y <= B。

另外,x和y的取值范围为非负数(x >= 0,y >= 0)。

这样,我们可以得出完整的线性规划模型如下:maximize p1 * x + p2 * ysubject to:a1 * x + a2 * y <= Ab1 * x + b2 * y <= Bx >= 0y >= 0练习题2:某工厂生产三种产品:甲、乙、丙。

已知每单位甲、乙、丙产品的利润分别为p1、p2、p3,每天需要的原材料A、B的数量为a和b,每单位甲、乙、丙产品消耗的原材料A、B的数量分别为a1、b1和a2、b2以及a3、b3。

现在要求在给定的原材料数量限制下,求解出最大化利润的生产方案。

解答:设甲、乙、丙产品的生产量分别为x、y、z,则目标函数为最大化利润,即maximize p1 * x + p2 * y + p3 * z。

受限条件为原材料A和B的数量限制,分别为 a1 * x + a2 * y + a3 * z <= a 和 b1 * x + b2 * y + b3 * z <= b。

另外,x、y、z的取值范围为非负数(x >= 0,y >= 0,z >= 0)。

专题25 简单的线性规划(解析版)

专题25 简单的线性规划(解析版)

第七章 不等式、推理与证明专题25 简单的线性规划考点1 线性规划1.【2020年高考浙江卷3】若实数,x y 满足约束条件310,30x y x y -+≤⎧⎨+-≥⎩,则2z x y =+的取值范围是( )A .(],4-∞B .[)4,+∞C .[)5,+∞D .(),-∞+∞ 【答案】D【解析】首先作出不等式表示的平面区域,令0z =,画出初始目标函数表示的直线2y x =-,由图象可知不等式表示的平面区域是两条直线相交形成的开放区域,∴2z x y =+的取值范围是(),-∞+∞,故选D .2. 【2019年高考北京卷理数】若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为A .−7B .1C .5D .7【答案】C【解析】由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C .3. 【2019年高考天津卷理数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩,则目标函数4z x y =-+的最大值为 A .2B .3C .5D .6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.4. 【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示。

因为32z x y =+,所以3122y x z =-+. 平移直线3122y x z =-+可知,当该直线经过点A 时,z 取得最大值. 联立两直线方程可得340340x y x y -+=⎧⎨--=⎩,解得22x y =⎧⎨=⎩. 即点A 坐标为(2,2)A ,所以max 322210z =⨯+⨯=.故选C.5. 【2018年高考天津卷理数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .45【答案】C【解析】绘制不等式组52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程得51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.6. 【2017年高考全国II 卷理数】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A .15-B .9-C .1D .9【答案】A【解析】画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2()3)56(1z --=⨯+=-,故选A .7. 【2017年高考北京卷理数】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为A .1B .3C .5D .9【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.8. 【2017年高考天津卷理数】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为A.23 B .1 C .32D .3【答案】D【解析】作出约束条件表示的可行域如图中阴影部分所示,由z x y =+得y x z =-+,作出直线y x =-,平移使之经过可行域,观察可知,最优解在(0,3)B 处取得,故max 033z =+=,选D.9. 【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .10. 【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C【解析】作出如图可行域,则当y x z +=2经过点P 时,取最大值,而)2,1(P ,∴所求最大值为4,故选C.11. .【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.12. 【2020年高考上海卷5】已知,x y 满足202300x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为 .【答案】-1【解析】首先画出可行域,和初始目标函数2y x =,当直线2y x =平移至点()1,1A 时,取得最大值,max 1211z =-⨯=-故答案为:-1。

简单的线性规划问题练习题及答案解析

简单的线性规划问题练习题及答案解析

1.目标函数z =4x +y ,将其看成直线方程时,z 的几何意义是( ) A .该直线的截距 B .该直线的纵截距 C .该直线的横截距D .该直线的纵截距的相反数解析:选B.把z =4x +y 变形为y =-4x +z ,则此方程为直线方程的斜截式,所以z 为该直线的纵截距.2.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值为( ) A .-1 B .1 C .2 D .-2 答案:B3.若实数x 、y 满足⎩⎨⎧x +y -2≥0,x ≤4,y ≤5,则s =x +y 的最大值为________.解析:可行域如图所示,作直线y =-x ,当平移直线y =-x至点A 处时,s =x +y 取得最大值,即s max =4+5=9. 答案:94.已知实数x 、y 满足⎩⎨⎧y ≤2xy ≥-2x .x ≤3(1)求不等式组表示的平面区域的面积; (2)若目标函数为z =x -2y ,求z 的最小值. 解:画出满足不等式组的可行域如图所示: (1)易求点A 、B 的坐标为:A (3,6),B (3,-6),所以三角形OAB 的面积为:S △OAB =12×12×3=18.(2)目标函数化为:y =12x -z 2,画直线y =12x 及其平行线,当此直线经过A 时,-z2的值最大,z 的值最小,易求A 点坐标为(3,6),所以,z 的最小值为3-2×6=-9.一、选择题1.z =x -y 在⎩⎨⎧2x -y +1≥0x -2y -1≤0x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .(12,12)解析:选C.可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y=-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除A ,B ,D.2.(2010年高考浙江卷)若实数x ,y 满足不等式组⎩⎨⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1D.715解析:选A.画出可行域如图: 令z =x +y ,可变为y =-x +z ,作出目标函数线,平移目标函数线,显然过点A 时z 最大. 由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9. 3.在△ABC 中,三顶点分别为A (2,4),B (-1,2),C (1,0),点P (x ,y )在△ABC 内部及其边界上运动,则m =y -x 的取值范围为( )A .[1,3]B .[-3,1]C .[-1,3]D .[-3,-1]解析:选C.直线m =y -x 的斜率k 1=1≥k AB =23,且k 1=1<k AC =4,∴直线经过C 时m 最小,为-1, 经过B 时m 最大,为3.4.已知点P (x ,y )在不等式组⎩⎨⎧x -2≤0y -1≤0x +2y -2≥0表示的平面区域内运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]解析:选C.先画出满足约束条件的可行域,如图阴影部分, ∵z =x -y ,∴y =x -z .由图知截距-z 的范围为[-2,1],∴z 的范围为[-1,2].5.设动点坐标(x ,y )满足⎩⎨⎧?x -y +1??x +y -4?≥0,x ≥3,y ≥1.则x 2+y 2的最小值为( )A. 5B.10C.172 D .10解析:选D.画出不等式组所对应的平面区域,由图可知当x =3,y =1时,x 2+y 2的最小值为10.6.(2009年高考四川卷)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是( )A .12万元B .20万元C .25万元D .27万元解析:选D.设生产甲产品x 吨、乙产品y 吨,则获得的利润为z =5x +3y . 由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).二、填空题7.点P (x ,y )满足条件⎩⎪⎨⎪⎧0≤x ≤10≤y ≤1,y -x ≥12则P 点坐标为________时,z =4-2x +y 取最大值________.解析:可行域如图所示,当y -2x 最大时,z 最大,此时直线y -2x =z 1,过点A (0,1),(z 1)max =1,故当点P 的坐标为(0,1)时z =4-2x +y 取得最大值5.答案:(0,1) 58.已知点P (x ,y )满足条件⎩⎨⎧x ≥0y ≤x2x +y +k ≤0(k 为常数),若x +3y 的最大值为8,则k =________.解析:作出可行域如图所示:作直线l 0∶x +3y =0,平移l 0知当l 0过点A 时,x +3y 最大,由于A 点坐标为(-k 3,-k3).∴-k3-k =8,从而k =-6.答案:-69.(2010年高考陕西卷)铁矿石A 和B 的含铁率a ,,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c某冶炼厂至少要生产22(万吨),则购买铁矿石的最少费用为________(百万元).解析:设购买A 、B 两种铁矿石分别为x 万吨、y 万吨,购买铁矿石的费用为z 百万元,则z =3x +6y .由题意可得约束条件为⎩⎪⎨⎪⎧12x +710y ≥1.9,x +12y ≤2,x ≥0,y ≥0.作出可行域如图所示:由图可知,目标函数z =3x +6y 在点A (1,2)处取得最小值,z min =3×1+6×2=15 答案:15 三、解答题10.设z =2y -2x +4,式中x ,y 满足条件⎩⎨⎧0≤x ≤10≤y ≤22y -x ≥1,求z 的最大值和最小值.解:作出不等式组⎩⎪⎨⎪⎧0≤x ≤10≤y ≤22y -x ≥1的可行域(如图所示).令t =2y -2x 则z =t +4.将t =2y -2x 变形得直线l ∶y =x +t2.则其与y =x 平行,平移直线l 时t 的值随直线l 的上移而增大,故当直线l 经过可行域上的点A 时,t 最大,z 最大;当直线l 经过可行域上的点B 时,t 最小,z 最小.∴z max =2×2-2×0+4=8, z min =2×1-2×1+4=4. 11.已知实数x 、y满足约束条件⎩⎨⎧x -ay -1≥02x +y ≥0x ≤1(a ∈R ),目标函数z =x +3y 只有当⎩⎨⎧x =1y =0时取得最大值,求a 的取值范围. 解:直线x -ay -1=0过定点(1,0),画出区域⎩⎪⎨⎪⎧2x +y ≥0,x ≤1,让直线x -ay -1=0绕着(1,0)旋转得到不等式所表示的平面区域.平移直线x +3y =0,观察图象知必须使直线x -ay -1=0的斜率1a >0才满足要求,故a >0.12.某家具厂有方木料90 m 3 ,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2;生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元;出售一个书橱可获利润120元.(1)如果只安排生产方桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所获利润最大?解:由题意可画表格如下:(1)设只生产书桌x 张,可获利润z 元, 则⎩⎪⎨⎪⎧ 0.1x ≤902x ≤600x ∈N *⎩⎪⎨⎪⎧x ≤900x ≤300x ∈N *?x ≤300,x ∈N *.目标函数为z =80x .所以当x =300时,z max =80×300=24000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元. (2)设只生产书橱y 个,可获利润z 元,则 ⎩⎪⎨⎪⎧ 0.2y ≤901·y ≤600y ∈N *⎩⎪⎨⎪⎧y ≤450y ≤600y ∈N *?y ≤450,y ∈N *.目标函数为z =120y .所以当y =450时,z max =120×450=54000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0,x ∈N y ≥0,x ∈N⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,且x ∈N ,y ∈N .目标函数为z = 80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域 ,即可行域(图略). 作直线l ∶80x +120y =0,即直线l ∶2x +3y =0(图略).把直线l 向右上方平移,当直线经过可行域上的直线x +2y =900,2x +y =600的交点时,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =9002x +y =600解得交点的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56000(元).因此,生产书桌100张,书橱400个,可使所获利润最大.。

简单的线性规划典型例题精析(一)

简单的线性规划典型例题精析(一)

典例剖析[例1]画出不等式-x+2y-4<0表示的平面区域.【解】先画直线-x+2y-4=0(画成虚线),取原点(0,0),代入-x+2y-4,因为0+2×0-4<0,所以,原点在-x+2y-4<0表示的平面区域内.不等式-x+2y-4<0表示的区域如图7—21所示.图7—21【点评】由于对在直线Ax+By+C=0的同一侧的所有点(x,y),实数Ax+By+C的符号相同,所以只须在此直线的某侧任取一点(x0,y0),把它的坐标代入Ax+By+C,由其值的符号即可判断Ax+By+C>0(或<0)表示直线的哪一侧,当C≠0时,常把原点作为此特殊点.此题也可先把不等式-x+2y-4<0化为x-2y+4>0,因为A>0,B<0,所以x-2y+4>0表示直线x-2y+4=0右下方的平面区域.[例2]画出不等式组表示的平面区域.【解】不等式x<3表示直线x=3左侧点的集合.不等式2y≥x,即x-2y≤0表示直线x-2y=0上及左上方点的集合.图7—22不等式3x+2y≥6,即3x+2y-6≥0表示直线3x+2y-6=0上及右上方点的集合.不等式3y<x+9,即x-3y+9>0表示直线x-3y+9=0右下方点的集合.综上可得,不等式组表示的平面区域为如图7-22所示的阴影部分.【点评】不等式组表示的平面区域是各个不等式表示的平面区域的公共部分,在画这一部分区域时应注意其边界的虚实.[例3]已知直线l的方程为Ax+By+C=0,M1(x1,y1)、M2(x2,y2)为直线l 异侧的任意两点,M1、M3(x3,y3)为直线l同侧的任意两点,求证:(1)Ax1+By1+C与Ax2+By2+C同号;(2)Ax1+By1+C与Ax3+By3+C同号.图7—23【证明】(1)因M1、M2在l异侧,故l必交线段M1M2于点M0.设M0分M1M2所成的比为λ,则分点M0的坐标为x0=,y0=代入l的方程得,从而得Ax1+By1+C+λ(Ax2+By2+C)=0.解出λ,得λ=-∵M0为M1M2的内分点,故λ>0.∴Ax1+By1+C与Ax2+By2+C异号.(2)∵M3、M1在l同侧,而M1、M2在l异侧,故M3、M2在l异侧,利用(1)得Ax3+By3+C与Ax2+By2+C异号,又∵Ax1+By1+C与Ax2+By2+C异号,∴Ax1+By1+C与Ax3+By3+C同号.【点评】此例从理论上证明了二元一次不等式Ax+By+C>0,在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.。

线性规划题及答案

线性规划题及答案

线性规划题及答案引言概述:线性规划是一种数学优化方法,用于在一组线性约束条件下寻觅使目标函数取得最大(最小)值的变量值。

在实际生活和工作中,线性规划往往被用于资源分配、生产计划、运输问题等方面。

本文将介绍一些常见的线性规划题目,并给出相应的答案。

一、资源分配问题1.1 问题描述:某公司有两个生产部门A和B,每天生产产品X和Y。

部门A 每天生产产品X需要消耗3个单位的资源,生产产品Y需要消耗2个单位的资源;部门B每天生产产品X需要消耗2个单位的资源,生产产品Y需要消耗4个单位的资源。

公司每天有20个单位的资源可供分配,如何分配资源才干使得产出最大化?1.2 解答:设部门A每天生产产品X的数量为x,生产产品Y的数量为y;部门B每天生产产品X的数量为u,生产产品Y的数量为v。

根据题目描述,可以建立如下线性规划模型:Maximize Z = 3x + 2y + 2u + 4vSubject to:3x + 2y + 2u + 4v <= 20x, y, u, v >= 0通过线性规划求解器可以得到最优解。

二、生产计划问题2.1 问题描述:某工厂有两个生产车间,每天生产产品P和Q。

车间1每天生产产品P需要花费5个单位的时间,生产产品Q需要花费3个单位的时间;车间2每天生产产品P需要花费4个单位的时间,生产产品Q需要花费6个单位的时间。

工厂每天有40个单位的时间可供分配,如何安排生产计划才干使得产量最大化?2.2 解答:设车间1每天生产产品P的数量为x,生产产品Q的数量为y;车间2每天生产产品P的数量为u,生产产品Q的数量为v。

根据题目描述,可以建立如下线性规划模型:Maximize Z = 5x + 3y + 4u + 6vSubject to:5x + 3y + 4u + 6v <= 40x, y, u, v >= 0通过线性规划求解器可以得到最优解。

三、运输问题3.1 问题描述:某公司有两个仓库和三个销售点,每一个仓库有一定数量的产品可供销售点购买。

2020年高中数学 人教A版 必修5 同步作业本《简单线性规划的应用》(含答案解析)

2020年高中数学 人教A版 必修5 同步作业本《简单线性规划的应用》(含答案解析)

2020年高中数学 人教A 版 必修5 同步作业本《简单线性规划的应用》一、选择题1.有5辆6吨的汽车,4辆4吨的汽车,要运送最多的货物,完成这项运输任务的线性目标函数为( )A .z=6x +4yB .z=5x +4yC .z=x +yD .z=4x +5y2.某服装制造商有10 m 2的棉布料,10 m 2的羊毛料和6 m 2的丝绸料,做一条裤子需要1 m 2的棉布料,2 m 2的羊毛料和1 m 2的丝绸料,做一条裙子需要1 m 2的棉布料,1 m 2的羊毛料和1 m 2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x 条,裙子y 条,利润为z ,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,x ,y ∈N z=20x +40yB.⎩⎪⎨⎪⎧x +y≥10,2x +y≥10,x +y≤6,x ,y ∈Nz=20x +40yC.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,z=20x +40y D.⎩⎪⎨⎪⎧x +y≤10,2x +y≤10,x +y≤6,x ,y ∈Nz=40x +20y3.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y≥0,则z=y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,505.某学校用800元购买A 、B 两种教学用品,A 种用品每件100元,B 种用品每件160元,两种用品至少各买一件,要使剩下的钱最少, A 、B 两种用品应各买的件数为( ) A .2,4 B .3,3 C .4,2 D .不确定6.某厂生产甲、乙两种产品每吨所需的煤、电和产值如表所示:但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,则该厂最大日产值为( )A .120万元B .124万元C .130万元D .135万元二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z=x +y 的最大值为________.8.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.9.满足|x|+|y|≤2的点(x ,y)中整点(横纵坐标都是整数)有________个.三、解答题10.某研究所计划利用“神十一”宇宙飞船进行新产品搭载实验,计划搭载新产品A ,B ,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?11.某商场为使销售空调和冰箱获得的总利润达到最大,对即将出售的空调和冰箱相关数据进行调查,得出下表:问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?最大利润是多少?12.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5 min,生产一个骑兵需7 min,生产一个伞兵需4 min,已知总生产时间不超过10 h.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?答案解析1.答案为:A ;解析:设需x 辆6吨汽车,y 辆4吨汽车.则运输货物的吨数为z=6x +4y ,即目标函数z=6x +4y.2.答案为:A ;解析:由题意可知选A.3.答案为:D ;解析:作出可行域,如图所示,y -1x的几何意义是点(x ,y)与点(0,1)连线l 的斜率,当直线l 过B(1,0)时k 1最小,最小为-1.又直线l 不能与直线x -y=0平行,所以k l <1. 综上,k ∈[-1,1).4.答案为:B ;解析:设黄瓜、韭菜的种植面积分别为x ,y 亩,则总利润z=4×0.55x +6×0.3y-1.2x -0.9y=x +0.9y. 此时x ,y 满足条件 ⎩⎪⎨⎪⎧x +y≤50,1.2x +0.9y≤54,画出可行域如图,得最优解为A(30,20),故选B.5.答案为:B ;解析:设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则⎩⎪⎨⎪⎧100x +160y≤800,x ≥1,y ≥1,x ,y ∈N *.求z=800-100x -160y 取得最小值时的整数解(x ,y),用图解法求得整数解为(3,3).6.答案为:B ;解析:设该厂每天安排生产甲产品x 吨,乙产品y 吨,则日产值z=8x +12y ,线性约束条件为⎩⎪⎨⎪⎧7x +3y≤56,20x +50y≤450,x ≥0,y ≥0,作出可行域如图所示,把z=8x +12y 变形为一簇平行直线系l :y=-812x +z12,由图可知,当直线l 经过可行域上的点M 时,截距z12最大,即z 取最大值,解方程组⎩⎪⎨⎪⎧7x +3y =56,20x +50y =450,得M(5,7),z max =8×5+12×7=124,所以,该厂每天安排生产甲产品5吨,乙产品7吨时该厂日产值最大,最大日产值为124万元.7.答案为:32;解析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z=x +y 经过点A ⎝ ⎛⎭⎪⎫1,12时取得最大值,即z max =1+12=32.8.答案为:216 000;解析:设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么 ⎩⎪⎨⎪⎧1.5x +0.5y≤150,x +0.3y≤90,5x+3y≤600,x ≥0,y ≥0① 目标函数z=2 100x +900y.二元一次不等式组①等价于⎩⎪⎨⎪⎧3x +y≤30010x+3y≤900,5x +3y≤600,x ≥0,y ≥0.②作出二元一次不等式组②表示的平面区域(如图),即可行域.将z=2 100x +900y 变形,得y=-73x +z 900,平行直线y=-73x ,当直线y=-73x +z900经过点M 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600得M 的坐标(60,100).所以当x=60,y=100时,z max =2 100×60+900×100=216 000. 故生产产品A 、产品B 的利润之和的最大值为216 000元.9.答案为:13;解析:|x|+|y|≤2可化为⎩⎪⎨⎪⎧x +y≤2(x≥0,y ≥0),x -y≤2(x≥,y<0),-x +y≤2(x<0,y ≥0),-x -y≤2(x<0,y<0),作出可行域,为如图所示的正方形内部(包括边界),容易得到整点个数为13个.10.解:设“神十一”宇宙飞船搭载产品A ,B 的件数分别为x ,y ,最大收益为z ,则目标函数为z=80x +60y ,根据题意可知,约束条件为⎩⎪⎨⎪⎧20x +30y≤300,10x +5y≤110,x ≥0,y ≥0,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧2x +3y≤30,2x +y≤22,x ≥0,y ≥0,x ∈N ,y ∈N ,作出可行域如图阴影部分所示,作出直线l :80x +60y=0,并平移直线l ,由图可知,当直线过点M 时,z 取得最大值,解⎩⎪⎨⎪⎧2x +3y =30,2x +y =22,得M(9,4),所以z max =80×9+60×4=960,即搭载A 产品9件,B 产品4件,可使得总预计收益最大,为960万元.11.解:设空调和冰箱的月供应量分别为x ,y 台,月总利润为z 元,则⎩⎪⎨⎪⎧3 000x +2 000y≤30 000,500x +1 000y≤11 000,x ,y ∈N *,z=600x +800y ,作出可行域(如图所示).因为y=-34x +z 800,表示纵截距为z 800,斜率为k=- 34的直线,当z 最大时z 800最大,此时,直线y=-34x +z800必过四边形区域的顶点.由⎩⎪⎨⎪⎧3 000x +2 000y =30 000,500x +1 000y =11 000,得交点(4,9), 所以x ,y 分别为4,9时,z=600x +800y=9 600(元).所以空调和冰箱的月供应量分别为 4台、9台时,月总利润最大,最大值为9 600元.12.解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润W=5x +6y +3(100-x -y)=2x +3y +300. (2)约束条件为:⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y≥0,x ∈N ,y ∈N ,整理得⎩⎪⎨⎪⎧x +3y≤200,x +y≤100,x ∈N ,y ∈N.目标函数为W=2x +3y +300,如图所示,作出可行域,初始直线l 0:2x +3y=0,平移初始直线经过点A 时,W 有最大值, 由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50. 最优解为A(50,50),所以W max =550(元).故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.。

简单的线性规划(含答案、详解)

简单的线性规划(含答案、详解)

简单的线性规划一、点与直线的位置关系1、若点)1,2(a 在直线01=--y x 的左上方,则实数a 的取值范围是2、已知点(-2,1)和点(1,1)在直线023=--a y x 的两侧,则a 的取值范围是3、在下列各点中,不在..不等式532<+y x 表示的平面区域内的点为 ①. )1,0( ②. )0,1( ③. )2,0( ④. )0,2(4、下列给出的四个点中,位于1010x y x y +-<⎧⎨-+>⎩表示的平面区域内的点是①、(0,2) ②、(2,0)- ③、(0,2)- ④、(2,0)5、原点和点()1,1在直线0=-+a y x 的同侧,则a 的取值范围是6、点(1,1)在下面各不等式表示的哪个区域中①、2≤-y x ②.022>--y x ③.0≤y ④.2≥x7、已知点()3,1和点()4,6-在直线320x y m -+=的两侧,则m 的取值范围是__________.二、简单的线性规划之不等式表示的平面区域8、在平面直角坐标系中,不等式组表示的平面区域的面积是9、不等式组201022x y x y -≤⎧⎪-≤⎨⎪+≥⎩所表示的平面区域的面积是10、1x y +≤表示的平面区域的面积是________________.11、已知不等式组02,20,20x x y kx y ≤≤⎧⎪+-≥⎨⎪-+≥⎩所表示的平面区域的面积为4,则k 的值为__________. 三、简单的线性规划之最值12、已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =+的最小值为13、设变量y x ,满足约束条件⎪⎩⎪⎨⎧->-<+>+144222y x y x y x 则目标函数y x z -=3的取值范围是________.⎪⎩⎪⎨⎧≤≥+-≥-+2,02,02x y x y x14、已知实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤+≤,0,2,y y x x y 那么目标函数y x z 3+=的最大值是 .15、已知实数满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x b =的取值范围是16、若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .17、已知,则的最大值为18、若变量,x y 满足约束条件,则3log (2)w x y =+的最大值是19、已知实数,x y 满足约束条件20,350,1,x y x y y -≤⎧⎪-+≥⎨⎪≥⎩则212x y z +-⎛⎫= ⎪⎝⎭的最大值等于 20、某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少,能使利润总额最大?简单线性规划(参考答案)1、试题分析:因为直线01=--y x 的左上方的点满足不等式10x y --<,所以1210a--<,即01a <<. 2、试题分析:因为点(-2,1)和点(1,1)在直线023=--a y x 的两侧,所以(3(2)21)(31a a ⨯--⨯-⨯-⨯-<,解得8 1.a -<<3、③解决该试题的关键是理解,不满足平面区域内的点不满足不等式。

线性规划的实际应用举例

线性规划的实际应用举例

线性规划的实际应用举例为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(即两个变量的线性规划)的实际应用举例加以说明。

1 物资调运中的线性规划问题例1 A,B两仓库各有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地。

已知从A仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从B仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个。

问如何调运,能使总运费最小?总运费的最小值是多少?解:设从A仓库调运x万个到甲地,y万个到乙地,总运费记为z元。

那么需从B仓库调运40-x万个到甲地,调运20-y万个到乙地。

从而有z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000。

作出以上不等式组所表示的平面区域(图1),即可行域。

令z'=z-7000=20x+30y.作直线l:20x+30y=0,把直线l向右上方平移至l l的位置时,直线经过可行域上的点M(30,0),且与原点距离最小,即x=30,y=0时,z'=20x+30y取得最小值,从而z=z'+7000=20x+30y+7000亦取得最小值,z min=20×30+30×0+7000=7600(元)。

答:从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,20万个到乙地,可使总运费最小,且总运费的最小值为7600元。

2 产品安排中的线性规划问题例2某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料1吨需耗玉米0.4吨,麦麸0.2吨,其余添加剂O.4吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3吨,其余添加剂0.2吨。

每1吨甲种饲料的利润是400元,每1吨乙种饲料的利润是500元。

可供饲料厂生产的玉米供应量不超过600吨,麦麸供应量不超过500吨,添加剂供应量不超过300吨。

问甲、乙两种饲料应各生产多少吨(取整数),能使利润总额达到最大?最大利润是多少?分析:将已知数据列成下表1。

高中数学解线性规划问题的应用题解析与实例分析

高中数学解线性规划问题的应用题解析与实例分析

高中数学解线性规划问题的应用题解析与实例分析一、引言线性规划是数学中的一种重要方法,广泛应用于各个领域,如经济、管理、工程等。

在高中数学中,线性规划也是一个重要的考点,往往需要学生掌握解题的方法和技巧。

本文将通过具体的应用题例子,详细解析线性规划问题的解题过程和思路,帮助高中学生和他们的父母更好地理解和掌握这一知识点。

二、线性规划问题的基本概念线性规划问题是指在一定的约束条件下,求解线性目标函数的最大值或最小值的问题。

一般形式可以表示为:Max(或Min)Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,c₁, c₂, ..., cₙ为目标函数的系数;a₁₁, a₁₂, ..., aₙₙ为约束条件的系数;b₁, b₂, ..., bₙ为约束条件的常数;x₁, x₂, ..., xₙ为决策变量。

三、线性规划问题的解题步骤1. 确定决策变量:根据题目中的要求,确定需要求解的决策变量,例如某种产品的生产数量、某种资源的分配比例等。

2. 建立目标函数:根据题目中的要求,建立目标函数,即需要最大化或最小化的函数。

目标函数的系数由题目中的条件确定。

3. 建立约束条件:根据题目中的要求,建立约束条件,即限制决策变量的取值范围。

约束条件的系数由题目中的条件确定。

4. 求解最优解:根据线性规划的特点,最优解一定在可行域的顶点上取得。

因此,通过解方程组或图像法找到可行域的顶点,并计算目标函数在每个顶点处的取值,最终确定最优解。

四、应用题解析与实例分析下面通过一个具体的应用题来进行解析和分析,以帮助读者更好地理解线性规划问题的解题过程。

例题:某工厂生产两种产品A和B,每单位产品A需耗费2小时的人工和3小时的机器时间,每单位产品B需耗费1小时的人工和4小时的机器时间。

高二数学 上学期简单的线性规划直线划分平面区域的应用例题解析

高二数学 上学期简单的线性规划直线划分平面区域的应用例题解析

1 / 1直线划分平面区域的应用定理 在平面直角坐标系中,直线Ax +By +C =0(不防设A >0,B >0为直线l ;A >0,B <0为直线l ’)上的点P (x 0,y 0)使得Ax 0+By 0+C =0(A >0,B >0),或Ax 0+By 0+C <0(A >0,B <0);直线下方的点P (x 0,y 0)使得Ax 0+By 0+C <0(A >0,B >0),或Ax 0+By 0+C>0(A >0,B <0).下面就其在解题中的应用给出几个范例.例1 已知两点P 1(x 1,y 1)、P 2(x 2,y 2)的连线交另一已知直线l :Ax +By +C =0于点P ,P 2不在直线l 上,求证:CBy Ax CBy Ax PP P P ++++-=221121 证明:设点P 分线段P 1P 2,所成的比为21PP PP =λ,则点P 的坐标为(λλλλ++++1,12121y y x x )又点P 在直线Ax +By +C =0上,011A 2121=+++⋅+++⋅∴C y y B x x λλλλ整理,得(Ax 1+By 1+C )+λ(Ax 2+By 2+C )=0.∵点P 2不在直线Ax +By +C =0上. ∴Ax 2+By 2+C ≠0 ∴CBy Ax CBy Ax PP P P ++++-==221121λ. 例2 用解析法证明:等边三角形内任意一点到三边的距离之和等于定值. 证明:建立直角坐标系,如图,设边长为2a ,则A (0,3a ),B (-a ,0),C (a ,0),直线AB 的方程为,033=+-a y x 直线AC 的方程为,033=-+a y x 直线BC 的方程为y =0.设P (x 0,y 0)是△ABC 内任意一点,则1333133300000+-+++++-=++ay x y ay x PF PE PD .∵点P 在直线AB ,AC 的下方, ∴a a y x y a y x PF PE PD 32)33(23300000=-++++-=++(定值).例3 已知三角形的三边AB 、AC 、BC 所在的直线方程分别为3x +4y +2=0、3x -4y +12=0、4x -3y =0,求其内切圆的圆心坐标和半径.解:设P (x 0,y 0)为△ABC 的内心,则P 在AC 的下方,在BC 、AB 的上方,于是有⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧+--=+++++-=+++.45,2813,,43)34(43243,43124343243002200220022002200y x y x y x y x y x 解得∴内切圆圆心的坐标为(45,2813-),半径.1401575|453)2813(4|=⨯--⨯=r 例1 设P (x ,y )为圆x 2+(y -1)2=1上的任一点,欲使不等式x +y +c ≥0恒成立,则c的取值范围是( ).A .[12,21---] B.[+∞-,12)C.(12,12---) D.(12,--∞-)解:根据直线对于平面区域划分的定理,要使x +y +c ≥0 恒成立,圆x 2+(y -1)2=1必须在直线x +y +c =0的上方,即c >0,且圆心(0,1)到直线x +y +c =0的距离大于或等于1,于是.12c .0,12|10|-≥⎪⎩⎪⎨⎧>≥++解得c c ∴应选B例5 已知集合A =,则A 、B 、C 的关系是( ).A.B A C ⊂⊂B. A B C ⊂⊂C.C B A ⊂⊂D. C A B ⊂⊂解:依直线划分平面区域的定理,A 就是图中的小正方形,B 是圆面积,C 就是大正方形,于是C B A ⊂⊂.应选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单的线性规划应用题解析
1.某人有楼房一幢,室内面积共180㎡,拟分隔两类房间作为旅游客房.大每间面积为18㎡,可住游客5名,每名游客每天住宿费为40元;小房间每间面积为15㎡,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需1000元,装修小房间每间需600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,能获得最大收益?
设应隔出大、小房间分别为x ,y 间,此时收益为z 元,则
1815180
1000600800000
x y x y x y +
≤⎧⎪+≤⎪

≥⎪⎪≥⎩ 200150z x y =+
将上述不等式组化为
6560534000
x y x y x y +≤⎧⎪+≤⎪

≥⎪⎪≥⎩ 作出可行域,如图⑴,作直线l:200x+150y=0,即l:4x+3y=0. 将直线l 向右平移,得到经过可行域的点B ,且距原点最远的直线l 1. 解方程组
6560
5340
x y x y +=⎧⎨
+=⎩ 图⑴
得最优解
20
7
60
7
2.9
8.6 x
y
=≈


=≈

但是房间的间数为整数,所以,应找到是整数的最优解.
①当x=3时,代入5x+3y=40中,得401525
338
y-
==>,得整点(3,8),此时z=200×3+150×8=1800(元);
②当x=2时,代入6x+5y=60中,得601248
559
y-
==>,得整点(2,9),此时z=200×2+150×9=1750(元);
③当x=1时,代入6x+5y=60中,得60654
5510
y-
==>,得整点(1,10), 此时z=200×1+150×10=1700(元);
④当x=0时,代入6x+5y=60中,得60
512
y==,得整点(0,12),此时z=150×12=1800(元).
由上①~④知,最优整数解为(0,12)和(3,8).
答:有两套分隔房间的方案:其一是将楼房室内全部隔出小房间12间;其二是隔出大房间3间,小房间8间,两套方案都能获得最大收益为1800元.
2.某家具厂有方木料90m3,五合板60㎡,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1m3、五合板2㎡,生产每个书橱需要方木料0.2 m3、五合板1㎡,出售一张书桌可获得利润80元,出售一个书橱可获得利润120元.如果只安排生产书桌,可获利润多少?如果只安排生产书橱,可获利润多少?怎样安排生产可使所得利润最大?
【解析】将已知数据列成下表:
⑴只生产书桌因为90÷0.1=900,600÷2=300.所以,可产生书桌300张,用完五合板,此时获利润为80×300=24000(元);
⑵只生产书橱因为90÷0.2=450,600÷1=600,所以,可产生450个书橱,用完方木料.此时获利润为120×450=54000(元);
⑶若既安排生产书桌,也安排生产书橱 设安排生产书桌x 张,安排生产书橱y 个,可获利润z 元,则 0.10.290
260000
x y x y x y +≤⎧
⎪+≤⎪⎨≥⎪⎪≥⎩
80120z x y =+,作出
可行域如图⑵,并作直
线l :80x+120y=0,即 2x+3y=0.将直线l 向右平移,得到经过可行域
的定点B 且距原点最远的直线l 1.
解方程组
0.10.290
2600
x y x y +=⎧⎨
+=⎩ 得最优解
100
400x y =⎧⎨
=⎩
此时,8010012040056000z =⨯+⨯=(元).
答:由上面⑴⑵⑶知:只安排生产书桌,可获利润24000元;只生产书
橱,可获利润为54000元;当生产书桌100张,书橱400个时,刚好用完方木料和五合板,且此时获得最大利润,为56000元.
图⑵。

相关文档
最新文档