《反比例函数的图象和性质》--说课PPT课件
合集下载
反比例函数的图象与性质(说课课件)
在数学建模和实际问题解决中,有时需要将幂函数和反比例函数结合起来,以更好地描述实 际问题。
THANKS
谢谢
在实际生活中的应用
价格与销售量的关系
在市场经济中,价格与销售量通常成反比关系,价格上涨时,销售量通常会减少;反之,价格下降时,销售量通 常会增加。
人口密度与城市规模的关系
一般来说,大城市的人口密度较低,而小城市的人口密度较高。这是因为城市规模越大,人均占有的空间资源越 多,人口密度就越低。
05
CHAPTER
解析法
通过解析函数表达式,确定函数 图像在坐标系中的位置和形状。
描点法
选取一系列x值,计算对应的y值 ,然后在坐标系上描出对应的点 ,通过连接各点形成图像。
图像的特性分析
无限接近x轴与y轴
随着x的增大或减小,y值逐渐趋近于0,但永远不会等于0。
单调性
在各自象限内,随着x的增大或减小,y值分别单调递减或递增。
反比例函数的图象与性质(说 课课件)
目录
CONTENTS
• 反比例函数的概念 • 反比例函数的图像分析 • 反比例函数的性质研究 • 反比例函数的应用 • 反比例函数与其他知识点的联系
01
CHAPTER
反比例函数的概念
反比例函数的定义
01
反比例函数是指形如$f(x)
=
frac{k}{x}$(其中$k neq 0$)的
对称性
图像关于原点对称。
图像的变化规律
k值影响
随着k值的增大或减小,图像分别向右 上或左下方向移动。
渐近线
增减性
在第一象限和第三象限内,随着x的增 大,y值分别减小和增大;在第二象限 和第四象限内,随着x的增大,y值分 别增大和减小。
THANKS
谢谢
在实际生活中的应用
价格与销售量的关系
在市场经济中,价格与销售量通常成反比关系,价格上涨时,销售量通常会减少;反之,价格下降时,销售量通 常会增加。
人口密度与城市规模的关系
一般来说,大城市的人口密度较低,而小城市的人口密度较高。这是因为城市规模越大,人均占有的空间资源越 多,人口密度就越低。
05
CHAPTER
解析法
通过解析函数表达式,确定函数 图像在坐标系中的位置和形状。
描点法
选取一系列x值,计算对应的y值 ,然后在坐标系上描出对应的点 ,通过连接各点形成图像。
图像的特性分析
无限接近x轴与y轴
随着x的增大或减小,y值逐渐趋近于0,但永远不会等于0。
单调性
在各自象限内,随着x的增大或减小,y值分别单调递减或递增。
反比例函数的图象与性质(说 课课件)
目录
CONTENTS
• 反比例函数的概念 • 反比例函数的图像分析 • 反比例函数的性质研究 • 反比例函数的应用 • 反比例函数与其他知识点的联系
01
CHAPTER
反比例函数的概念
反比例函数的定义
01
反比例函数是指形如$f(x)
=
frac{k}{x}$(其中$k neq 0$)的
对称性
图像关于原点对称。
图像的变化规律
k值影响
随着k值的增大或减小,图像分别向右 上或左下方向移动。
渐近线
增减性
在第一象限和第三象限内,随着x的增 大,y值分别减小和增大;在第二象限 和第四象限内,随着x的增大,y值分 别增大和减小。
反比例函数的图像与性质优质课ppt课件
二、讲解新知: 问题1:对于一次函数 y = kx + b ( k ≠ 0 ),我们是如何研究的? ( 我们先研究一次函数的定义,再研究一次函数图 象的画法,最后研究一次函数的性质。) 问否题象一2:次对函于数反那比样例进函行数研y究=呢—kx? ( k是常数,k ≠ 0 ),我们能
(可以。)
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
2 2
3
4 3
4 1
8
1 2
2.描点: 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物
x
… -8 -4 -3 -2 -1 1 2
…
1 2
1
2
3
4
8
. y 4 x
… 1 2
-1 4 3
-2 -4 -8 … 8
(4)反比例函数y= —kx (k≠0) 的图象关于直角坐 标系的原点成中心对称.
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
3.简单的归纳与概括: 反比例函数 y = —xk 有下列性质:
4
8
y4 …
x
1 2
1
4 3
2
4
8
…
-8 -4
-2
4 3
-1
1 2
2.描点:
3.连线:
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
(可以。)
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
2 2
3
4 3
4 1
8
1 2
2.描点: 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物
x
… -8 -4 -3 -2 -1 1 2
…
1 2
1
2
3
4
8
. y 4 x
… 1 2
-1 4 3
-2 -4 -8 … 8
(4)反比例函数y= —kx (k≠0) 的图象关于直角坐 标系的原点成中心对称.
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
3.简单的归纳与概括: 反比例函数 y = —xk 有下列性质:
4
8
y4 …
x
1 2
1
4 3
2
4
8
…
-8 -4
-2
4 3
-1
1 2
2.描点:
3.连线:
采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
反比例函数的图像和性质ppt课件
7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B
)
A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎
反比例函数的图象与性质说课稿(共22张PPT)
在这一环节中设计是: ⑴回顾刚才所画反比例函数的图象,通过实际观察; ⑵根据解析式对x进行取值,比较x取不同值时函数值
的变化情况; ⑶电脑演示和学生小组讨论,由学生得出结论: 当k>0时,y随x的增大而减小; 当k<0时, y随x的增大而增大。
老师补充小结:必须限定在每一象限内,才有 以上性质成立。
问题6:探索思考反比例函数的对称性
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y=-x
y
y=x
0
12
x
y = —kx
10
本环节的设计意图是引导学生发现反比例函
数 y 4 和 y - 4 的8图象关于x轴和y轴对称。
x
x
y4 x
1.知识技能:学会用描点法作反比例函数的图象,能 结合函数图象进行探索.理解并掌握反比例函数的性质。
2.过程与方法:在动手实践.合作交流中,培养学生的 团结协作精神,通过函数图象探索反比例函数的性质, 让学生体验到数学活动中充满了探索与创造,培养了 学生的创新意识。
3.情感态度与价值观:培养学生的作图能力,以及观 察、分析、归纳能力,渗透数形结合的数学思想方法, 逐步形成解决问题的一些基本策略。
4
y
=
6 x
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
-1 1 2 3 4 5 6 …
-6 6 3 2 1.5 1.2 1 …
6 -6 -3 -2 -1.5 -1.2 -1 …
y
6
y=
6 x
的变化情况; ⑶电脑演示和学生小组讨论,由学生得出结论: 当k>0时,y随x的增大而减小; 当k<0时, y随x的增大而增大。
老师补充小结:必须限定在每一象限内,才有 以上性质成立。
问题6:探索思考反比例函数的对称性
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和 y=-x。对称中心是:原点
y=-x
y
y=x
0
12
x
y = —kx
10
本环节的设计意图是引导学生发现反比例函
数 y 4 和 y - 4 的8图象关于x轴和y轴对称。
x
x
y4 x
1.知识技能:学会用描点法作反比例函数的图象,能 结合函数图象进行探索.理解并掌握反比例函数的性质。
2.过程与方法:在动手实践.合作交流中,培养学生的 团结协作精神,通过函数图象探索反比例函数的性质, 让学生体验到数学活动中充满了探索与创造,培养了 学生的创新意识。
3.情感态度与价值观:培养学生的作图能力,以及观 察、分析、归纳能力,渗透数形结合的数学思想方法, 逐步形成解决问题的一些基本策略。
4
y
=
6 x
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
-1 1 2 3 4 5 6 …
-6 6 3 2 1.5 1.2 1 …
6 -6 -3 -2 -1.5 -1.2 -1 …
y
6
y=
6 x
《反比例函数的图像和性质》PPT教学课件(第1课时)
称是的反比例函数.
你还记得作函数图象的一般步骤吗?
用图象法表示函数关系时,首先在自变量的
取值范围内取一些值,列表,描点,连线(按自
变量从小到大的顺序,用一条平滑的曲线连
接起来).
思考并回答下列问题:
1.正比例函数的图像是怎样的?
一条过原点的直线.
2.点(2,3)在正比例函数y=kx的图像上,你能求出这个
解析式,所以点在函数的图像上.
知识讲解
反比例函数的图像
尝试画出反比例函数 =
6
和
=
6
−
的图像.
描点法画反比例函数图象
列表
描点
连线
注意:①列表时自变量取值
要均匀和对称;② ≠ ;
③自变量取整数较好计
算和描点.
思考:
(1)该函数中自变量x的取值范围是什么?函数值y的取
值范围是什么?
(2)画函数图像列表时,取哪些x的值使函数图像完整、
(2)描点:以表中各组对应值作为点的坐标,在如图所示的
直角坐标系中描出相应的点.
…
(3)连线:用平滑的曲线顺次连接各点,就得到反比例函
6
6
数的 = 和 = − 图像.
6
6
=−
5
=
4
3
5
4
3
2
2
1
1
-6
-5
-4
-3
-2
-1
-1
-2
-3
-4
-5
-6
O
1
2
3
4
5
6
反比例函数的图象与性质-ppt课件
方 ■ 方法:利用数形结合思想解决反比例函数与几何的综
法
技 合问题
巧
解决这类问题,一般先设出几何图形中未知边的长,然
点
拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质
例
如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质
考
点
清
单
解
读
■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质
考
点
清
单
解
读
2. 反比例函数图象的特点
反比例函数 y=
(k
为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限
解
读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质
法
技 合问题
巧
解决这类问题,一般先设出几何图形中未知边的长,然
点
拨 后结合函数图象,用含未知数的代数式表示出几何图形与
图象的交点坐标,再由函数表达式及几何图形的性质列方
程(组)求几何图形中的未知量或函数表达式.
6.2 反比例函数的图象与性质
例
如图,在平面直角坐标系中,菱形 ABCD 的边
B. y2<y3<y1
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
6.2 反比例函数的图象与性质
考
点
清
单
解
读
■考点一
反比例函数图象的画法
1. 反比例函数图象的画法(描点法)
6.2 反比例函数的图象与性质
考
点
清
单
解
读
2. 反比例函数图象的特点
反比例函数 y=
(k
为常数,且 k≠0)的图象由
双曲线 分别位于两个象限内的两条曲线组成,这样的曲线
叫做双曲线
(1)轴对称图形,对称轴分别是①第二、四象限
解
读 算;
(2)需要注意的是,画反比例函数图象时应尽量多取一
些点,描点越多,图象越准确.
6.2 反比例函数的图象与性质
反比例函数的图象及性质PPT授课课件
黄河
讨论
请完成课本P30活动
分析黄河为什么多泥沙?
发源地:巴颜喀拉山脉 注入海:渤海 长 度:5464千米,是我国第二长河
黄 河“ 地 上 河”
地上河
课前小测
1.我国湖泊分布特点是:西部以_青__藏__高_原__较
为 地
集区中最为,多集为中咸__,水_都__是_淡__湖_水_;_东_青_部湖海以。长_江__中_下__游____
C C. 喜马拉雅山
D. 冈底斯山
3、黄河中游流经的地形区是(
)
A. 内蒙古高原
B. 华北平原
C. 黄土高原
D. 河套平原
A 4、黄河的哪一河段水能资源丰富(
)
A. 上游
B. 中游
C. 下游
D 5、黄河下游流域狭窄,没有支流的原因是(
)
A. 降水量少
B. 水流缓慢
C. 地势低平
D. 形成地上河
B
中游: 保持水土,种草植树 固堤分流
下治游理:黄河的根本措施: 在中游黄土高原地区植树种草
①
②
⑤ ④ ⑦⑥
⑨
③
⑧
知识反馈 一、单项选择题
C 1、黄河是我国(
)
A. 流程最长的河流
B. 我国第二大河
C. 我国第二长河 2、黄河的发源地( A. 唐古拉山
D. 水能资源和含沙量最大的河流
B)
B. 巴颜喀拉山
6 x
的图象,如图所示.
感悟新知
归纳
知1-讲
图象的画法(描点法): (1) 列表:先取一些自变量的值,在原点的两边取三对
或三对以上互为相反数的值,如1和 -1,2 和 -2,3 和 -3 等.求 y 值时, 只需计算原点一侧的函数值, 另一侧的函数值可以随之得出.
反比例函数的图象和性质说课优秀课件ppt
情感目标:在动手实践、合作交流中,培养学生的团 结协作精神,通过利用函数图象探索反比 例函数的性质,让学生体验到数学活动中 充满了探索与创造,培养了学生的创新意 识。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
比较y=
6 x
和y=- 6
x
的图象有什么共同特征?它们之间有什么关系?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
错误一:用线段连接图象
.
.
.
.
错误三:没有将图象进行延伸
y
反比例函数的图象和性质
k>0
1、反比例函数
k
y= x
(k为常数,k≠0)
的图象是双曲线
O
X
K<0
2、当k>0时,双曲线的两支分别位于第一、第三象
限, 在每个象限内y值随x值的增大而减小。
3、当k<0时,双曲线的两支分别位于第二、第四象限,
在每个象限内y值随x值的增大而增大。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
和y =
6 x
的函数图象。
y=
6 x
描点法画反比例
列
描
连
函数图象
表
点
线
y
=
6 x
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
-1
-2
-2
-3
-3
-4
-4
-5
-5
-6
-6
比较y=
6 x
和y=- 6
x
的图象有什么共同特征?它们之间有什么关系?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
错误一:用线段连接图象
.
.
.
.
错误三:没有将图象进行延伸
y
反比例函数的图象和性质
k>0
1、反比例函数
k
y= x
(k为常数,k≠0)
的图象是双曲线
O
X
K<0
2、当k>0时,双曲线的两支分别位于第一、第三象
限, 在每个象限内y值随x值的增大而减小。
3、当k<0时,双曲线的两支分别位于第二、第四象限,
在每个象限内y值随x值的增大而增大。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
和y =
6 x
的函数图象。
y=
6 x
描点法画反比例
列
描
连
函数图象
表
点
线
y
=
6 x
反比例函数的图象和性质-完整版PPT课件
和y=-x对称。 • 思考:反比例函数、正比例、一次函数的性质有何
异同?(课后填充表格)来自填表分 析正比 例函数 和反比 例函数 的区别
反比例函数的图象和性质
函数
正比例函数
反比例函数
解析式
y=kx ( k≠0 )
y
=
k x
( k是常数,k≠0 )
图象形状
直线
双曲线
K>0
用对比K的<0 方法去记 忆效果如
何?
位 一三 置 象限
增 减 y随x的增大而增大 性
位 二四 置 象限
增 减 y随x的增大而减小 性
一三象限
在每个象限, y随x的增 大而减小 二四象限
在每个象限, y随x的增 大而增大
反比例函数的图象和性质
反比例函数的图象和性质
• 1、反比例函数Y=K/X(K≠0)的图象是双曲线。 • 2、当K 〉0时,图象的两个分支分布在第一、三象
限内;在每个象限内Y随X的增大而减小。 • 3、当K〈 0时,图象的两个分支分布在第二、四象
限内;在每个象限内Y随X的增大而增大。 • (囗诀:K大一三减,K小二四增) • 4、反比例函数图像关于原点对称,且关于直线y=x
异同?(课后填充表格)来自填表分 析正比 例函数 和反比 例函数 的区别
反比例函数的图象和性质
函数
正比例函数
反比例函数
解析式
y=kx ( k≠0 )
y
=
k x
( k是常数,k≠0 )
图象形状
直线
双曲线
K>0
用对比K的<0 方法去记 忆效果如
何?
位 一三 置 象限
增 减 y随x的增大而增大 性
位 二四 置 象限
增 减 y随x的增大而减小 性
一三象限
在每个象限, y随x的增 大而减小 二四象限
在每个象限, y随x的增 大而增大
反比例函数的图象和性质
反比例函数的图象和性质
• 1、反比例函数Y=K/X(K≠0)的图象是双曲线。 • 2、当K 〉0时,图象的两个分支分布在第一、三象
限内;在每个象限内Y随X的增大而减小。 • 3、当K〈 0时,图象的两个分支分布在第二、四象
限内;在每个象限内Y随X的增大而增大。 • (囗诀:K大一三减,K小二四增) • 4、反比例函数图像关于原点对称,且关于直线y=x
《反比例函数的图象和性质》说课.优秀精选PPT
一、画反比例函数图象:
描点法:列表、描点、连线。
二、反比例函数图象的性质:
1、反比例函数的图象是双曲线; 2、k大一三减,k小二四增。
过程方法:经历画图、观察、猜想、思考等数学活 难点:如何抓住特征准确画出反比例函数的图象。
学生在学习一次函数时,对研究函数图象和性质的方法已有所了解,在此基础上通过类比的形式探索反比例函数的图象和性质。
动,渗透函数思想。 1、采用问题情境引入新课。
难点:如何抓住特征准确画出反比例函数的图象。 3、尊重学生的个体差异,因材施教。
《反比例函数的图象和性质》
--说课
加区三中 赵波
第一部分:说教材
人教版八年级下册第十七章第一节反比例函数, 本节分为三课时,这是第二课时《反比例函数的图象 和性质》的新授课。
第二部分:说目标
3、以练促思 强化新知 学生通过列表、描点、连线画出有别于一次函数图象的双曲线,以及归纳反比例函数的性质有一定的挑战性,让学生在多动手、多观 察、合作交流中加深理解,增强学生学好数学的信心。
过重程点方 :法正:确经地历运画用图描、点观法察画难、反猜比点想例、函:思数考的如等图数象何学,活抓住特征准确画出反比例函数的图象。
理解反比例函数图象的性质。
第四部分:说学情学法
学生在学习一次函数时,对研究函数图象 和性质的方法已有所了解,在此基础上通过类 比的形式探索反比例函数的图象和性质。学生 通过列表、描点、连线画出有别于一次函数图 象的双曲线,以及归纳反比例函数的性质有一 定的挑战性,让学生在多动手、多观察、合作 交流中加深理解,增强学生学好数学的信心。
知识目标:会用描点法画出反比例函数的图象; 过程方法:经历画图、观察、猜想、思考等数学活
2、引导学生经历“探究—讨论—交流—总的图象是双曲线;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021
7
第七部分:说板书设计
17.1.2 反比例函数的图象和性质(1)
一、画反比例函数图象:
描点法:列表、描点、连线。
二、反比例函数图象的性质:
1、反比例函数的图象是双曲线; 2、k大一三减,k小二四增。
2021
8
情感态度:领会数形结合的思想,培养学生勤于动 手,乐于探索的精神。
2021
3
第三部分:说重难点
重点:正确地运用描点法画反比例函数的图象, 理解反比例函数图象的性质。
难点:如何抓住特征确画出反比例函数的图象。
2021
4
第四部分:说学情学法
学生在学习一次函数时,对研究函数图象 和性质的方法已有所了解,在此基础上通过类 比的形式探索反比例函数的图象和性质。学生 通过列表、描点、连线画出有别于一次函数图 象的双曲线,以及归纳反比例函数的性质有一 定的挑战性,让学生在多动手、多观察、合作 交流中加深理解,增强学生学好数学的信心。
2021
5
第五部分:说教法
1、采用问题情境引入新课。 2、引导学生经历“探究—讨论—交流—总结”的过程。 3、尊重学生的个体差异,因材施教。 4、充分运用现代信息技术辅助教学。
2021
6
第六部分:说教学过程
1、创设情境 以旧探新 2、尝试发现 探索新知 3、以练促思 强化新知 4、反思总结 布置作业
《反比例函数的图象和性质》
--说课
加区三中 赵波
2021
1
第一部分:说教材
人教版八年级下册第十七章第一节反比例函数, 本节分为三课时,这是第二课时《反比例函数的图象 和性质》的新授课。
2021
2
第二部分:说目标
知识目标:会用描点法画出反比例函数的图象; 结合图象分析反比例函数的性质。
过程方法:经历画图、观察、猜想、思考等数学活 动,渗透函数思想。