普特南数学竞赛试题 美国大学生数学竞赛试题 国际大学生数学竞赛试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION Saturday,December4,2010Examination A
n
for all real numbers x and all positive integers n.
A3.Suppose that the function h:R2→R has continuous partial derivatives and satisfies
the equation
h(x,y)=a ∂h
∂y
(x,y)
for some constants a,b.Prove that if there is a constant M such that|h(x,y)|≤M for all (x,y)∈R2,then h is identically zero.
A4.Prove that for each positive integer n,the number101010n+1010n+10n−1is not prime.
A5.Let G be a group,with operation∗.Suppose that
(i)G is a subset of R3(but∗need not be related to addition of vectors);
(ii)For each a,b∈G,either a×b=a∗b or a×b=0(or both),where×is the usual cross product in R3.
Prove that a×b=0for all a,b∈G.
A6.Let f:[0,∞)→R be a strictly decreasing continuous function such that lim x→∞f(x)= 0.Prove that ∞0f(x)−f(x+1)
WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION Saturday,December4,2010Examination B