第六章 第2讲动量守恒定律及“三类模型”问题

合集下载

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

高三物理一轮复习精品学案:动量守恒定律及“三类模型”问题

高三物理一轮复习精品学案:动量守恒定律及“三类模型”问题

第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.自测1关于系统动量守恒的条件,下列说法正确的是()A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒答案 C二、碰撞、反冲、爆炸1.碰撞(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.(3)碰撞分类①弹性碰撞:碰撞后系统的总动能没有损失.②非弹性碰撞:碰撞后系统的总动能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.2.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、爆竹爆炸、发射火箭等.(3)规律:遵从动量守恒定律.3.爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()图1A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案 D解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.命题点一动量守恒定律的理解和基本应用例1(多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()图2A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统的动量守恒答案BCD解析如果A、B与平板车上表面的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F f A向右、F f B向左,由于m A∶m B=3∶2,所以F f A∶F f B =3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错误;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒,与平板车间的动摩擦因数或摩擦力是否相等无关,故B、D选项正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.例2(2017·全国卷Ⅰ·14)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30kg·m/sB.5.7×102 kg·m/sC.6.0×102kg·m/sD.6.3×102 kg·m/s答案 A解析设火箭的质量为m1,燃气的质量为m2.由题意可知,燃气的动量p2=m2v2=50×10-3×600kg·m/s=30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m1v1-m2v2,则火箭的动量大小为p1=m1v1=m2v2=30kg·m/s,所以A正确,B、C、D错误.变式1 两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5kg ,乙车和磁铁的总质量为1kg ,两磁铁的N 极相对.推动一下,使两车相向运动,某时刻甲的速率为2m /s ,乙的速率为3 m/s ,方向与甲相反,两车运动过程中始终未相碰.则: (1)两车最近时,乙的速度为多大? (2)甲车开始反向时,乙的速度为多大? 答案 (1)43m /s (2)2 m/s解析 (1)两车相距最近时,两车的速度相同,设该速度为v ,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得m 乙v 乙-m 甲v 甲=(m 甲+m 乙)v 所以两车最近时,乙车的速度为v =m 乙v 乙-m 甲v 甲m 甲+m 乙=1×3-0.5×20.5+1m/s =43m/s.(2)甲车开始反向时,其速度为0,设此时乙车的速度为v 乙′,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得 m 乙v 乙-m 甲v 甲=m 乙v 乙′ 解得v 乙′=2m/s命题点二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或相等). ②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2② 解得v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则: v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.例3 (多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4kg ,m 2=2kg ,A 的速度v 1=3m /s(设为正),B 的速度v 2=-3 m /s ,则它们发生正碰后,其速度可能分别是( ) A.均为1m /s B.+4 m/s 和-5m/s C.+2m /s 和-1 m/sD.-1m /s 和5 m/s答案 AD解析 由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 12+12m 2v 22=12×4×9J +12×2×9J =27JE k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A 、B 沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A ′>0,v B ′<0),这显然是不符合实际的,因此C 错误.验证选项A 、D 均满足E k ≥E k ′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).例4 (2016·全国卷Ⅲ·35(2))如图3所示,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.图3答案 32v 02113gl ≤μ<v 022gl解析 设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12m v 02>μmgl ① 即μ<v 022gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒定律得 12m v 02=12m v 12+μmgl③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v 1′、v 2′,以向右为正方向,由动量守恒和能量守恒有 m v 1=m v 1′+34m v 2′④ 12m v 12=12m v 1′2+12×34m v 2′2⑤联立④⑤式解得 v 2′=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知 12×34m v 2′2≤μ·3m 4gl ⑦联立③⑥⑦式,可得μ≥32v02113gl⑧联立②⑧式得,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件为32v02 113gl≤μ<v022gl.变式2(2015·全国卷Ⅰ·35(2))如图4所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.图4答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,以向右为正方向,由动量守恒定律得m v 0=m v 1+M v 2由机械能守恒定律得12m v 02=12m v 12+12M v 22可得v 1=m -M m +M v 0,v 2=2mm +Mv 0要使得A 与B 能发生碰撞,需要满足v 1<0,即m <M A 反向向左运动与B 发生碰撞过程,有 m v 1=m v 3+M v 4 12m v 12=12m v 32+12M v 42 整理可得v 3=m -M m +M v 1,v 4=2m m +Mv 1由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2mm +M v 0≥M -m m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m≥(5-2)M另一解m≤-(5+2)M舍去所以使A只与B、C各发生一次碰撞,须满足(5-2)M≤m<M拓展点1“滑块—弹簧”碰撞模型例5如图5所示,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根水平轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.木块A以速度v0=10m/s由滑板B左端开始沿滑板B上表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:图5(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.答案(1)2m/s(2)39J解析(1)弹簧被压缩到最短时,木块A与滑板B具有相同的速度,设为v,从木块A开始沿滑板B上表面向右运动至弹簧被压缩到最短的过程中,整体动量守恒,以向右为正方向,则m v0=(M+m)v解得v=mM+mv0代入数据得木块A的速度v=2m/s(2)在木块A压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大,由能量关系知,最大弹性势能为E pm=12m v02-12(m+M)v2-μmgL代入数据得E pm=39J.拓展点2“滑块—平板”碰撞模型例6如图6所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求:图6(1)物块与小车共同速度大小; (2)物块在车面上滑行的时间t ; (3)小车运动的位移大小x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少?答案 (1)0.8m /s (2)0.24 s (3)0.096 m (4)5 m/s解析 (1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律:m 2v 0=(m 1+m 2)v 解得v =0.8m/s(2)设物块与车面间的滑动摩擦力为F f ,对物块应用动量定理: -F f t =m 2v -m 2v 0 又F f =μm 2g 解得:t =v 0-vμg代入数据得t =0.24s(3)对小车应用动能定理:μm 2gx =12m 1v 2解得x =0.096m(4)要使物块恰好不从小车右端滑出,须使物块运动到小车右端时与小车有共同的速度,设其为v ′,以水平向右为正方向,则:m2v0′=(m1+m2)v′由系统能量守恒有:12=12(m1+m2)v′2+μm2gL2m2v0′代入数据解得v0′=5m/s故要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过5m/s.拓展点3“滑块—斜面”碰撞模型例7(2016·全国卷Ⅱ·35(2))如图7所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.图7(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为速度正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v ①12=12(m2+m3)v2+m2gh ②2m2v0式中v0=3m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20kg ③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v0=0 ④代入数据得v1=-1m/s ⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v0=m2v2+m3v3 ⑥12=12m2v22+12m3v32⑦2m2v0联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.命题点三 “人船模型”问题1.特点⎩⎪⎨⎪⎧(1)两个物体(2)动量守恒(3)总动量为零2.方程m 1v 1-m 2v 2=0(v 1、v 2为速度大小) 3.结论m 1x 1=m 2x 2(x 1、x 2为位移大小)例8长为L、质量为M的小船停在静水中,一个质量为m的人立在船头,若不计水的阻力和空气阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?答案见解析解析选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,以人运动的方向为正方向,根据动量守恒定律得 m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得 mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系.由图还可看出: x 1+x 2=L③联立②③两式得x 1=M M +m L ,x 2=mM +mL变式3如图8所示,质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离分别是多少?(不计空气阻力)图8答案见解析解析由于人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零即系统竖直方向总动量守恒.设某时刻人对地的速率为v1,气球对地的速率为v2,以人运动的方向为正方向,根据动量守恒定律得m v1-M v2=0 ①因为在人从绳梯的下端爬到顶端的整个过程中时刻满足动量守恒定律,对①式两边同乘以Δt,可得mx=My ②由题意知x+y=L ③联立②③得x=Mm+MLy=mm+ML即人相对于地面移动的距离是MM+mL.气球相对于地面移动的距离是mM+mL.命题点四“子弹打木块”模型问题1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.2.两者发生的相对位移为子弹射入的深度x相.3.根据能量守恒定律,系统损失的动能等于系统增加的内能.4.系统产生的内能Q=F f·x相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k=F f·L(L为木块的长度).例9 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少? (4)系统损失的机械能、系统增加的内能分别是多少? (5)要使子弹不射出木块,木块至少多长? 答案 (1)m M +m v 0 (2)Mm v 0F f (M +m )(3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m )(4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 m v 0=(M +m )v 解得v =mM +mv 0(2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:F f t =M v -0 解得t =Mm v 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得 对子弹:-F f x 1=12m v 2-12m v 02解得:x 1=Mm (M +2m )v 022F f (M +m )2对木块:F f x 2=12M v 2解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mm v 022F f (M +m )(4)系统损失的机械能为E 损=12m v 02-12(M +m )v 2=Mm v 022(M +m )系统增加的内能为Q =F f ·x 相=Mm v 022(M +m )系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有 F f L =12m v 02-12(M +m )v 2解得L =Mm v 022F f (M +m )因此木块的长度至少为Mm v 022F f (M +m ).变式4(2018·青海平安模拟)如图9所示,质量为高三物理一轮复习31 2m 、长为L 的木块置于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射向木块,穿过木块的过程中受到木块的恒定阻力为F f =5m v 0216L,试问子弹能否穿过木块?若能穿过,求出子弹穿过木块后两者的速度;若不能穿过,求出子弹打入木块后两者的速度.图9答案 见解析解析 设子弹能穿过木块,穿过木块后子弹的速度为v 1,木块的速度为v 2,以子弹初速度的方向为正方向,根据动量守恒定律得m v 0=m v 1+2m v 2① 根据能量守恒定律得5m v 0216L L =12m v 02-12m v 12-12×2m v 22 ②由①②式解得v 1=v 02或v 1=v 06将v 1=v 06代入①式,得v 2=512v 0>v 1(舍去) 将v 1=v 02代入①式,得v 2=14v 0<v 1 所以假设成立,即子弹能穿过木块,穿过木块后的速度为12v 0,木块的速度为14v 0.。

动量守恒定律的典型模型

动量守恒定律的典型模型
v0
M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2

2
解①、②两式得 x
Mv02

(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?

2022届高考物理一轮复习第6章动量第2节动量守恒定律及其应用教案新人教版20210318145

2022届高考物理一轮复习第6章动量第2节动量守恒定律及其应用教案新人教版20210318145

第2节动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。

2.动量守恒的数学表达式(1)p=p′(系统相互作用前总动量p等于相互作用后总动量p′)。

(2)Δp=0(系统总动量变化为零)。

(3)Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量增量大小相等,方向相反)。

3.动量守恒的条件(1)系统不受外力或所受外力之和为零时,系统的动量守恒。

(2)系统所受外力之和不为零,但当内力远大于外力时系统动量近似守恒。

(3)系统所受外力之和不为零,但在某个方向上所受合外力为零或不受外力,或外力可以忽略,则在这个方向上,系统动量守恒。

二、碰撞、反冲和爆炸1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。

(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的物体组成的系统动量守恒。

(3)分类:动量是否守恒机械能是否守恒弹性碰撞守恒守恒非完全弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大(1)物体在内力作用下分裂为两个不同部分,并且这两部分向相反方向运动的现象。

(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理。

3.爆炸问题(1)爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒。

(2)爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。

一、思考辨析(正确的画“√”,错误的画“×”)1.系统所受合外力的冲量为零,则系统动量一定守恒。

(√)2.动量守恒是指系统在初、末状态时的动量相等。

(×)3.物体相互作用时动量守恒,但机械能不一定守恒。

(√)4.在爆炸现象中,动量严格守恒。

(×)5.在碰撞问题中,机械能也一定守恒。

(×)6.反冲现象中动量守恒、动能增加。

(√)二、走进教材1.(人教版选修3-5P16T1改编)(多选)如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。

6.2动量守恒定律及“三类模型”问题

6.2动量守恒定律及“三类模型”问题

动量动量守恒定律第2讲动量守恒定律及“三类模型”问题命题点一动量守恒定律的理解和基本应用例1 (多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则( )图2A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统的动量守恒例2(2017·全国卷Ⅰ·14)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A.30 kg·m/sB.5.7×102 kg·m/sC.6.0×102 kg·m/sD.6.3×102 kg·m/s变式1两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5 kg,乙车和磁铁的总质量为1 kg,两磁铁的N极相对.推动一下,使两车相向运动,某时刻甲的速率为2 m/s,乙的速率为3 m/s,方向与甲相反,两车运动过程中始终未相碰.则:(1)两车最近时,乙的速度为多大?(2)甲车开始反向时,乙的速度为多大?命题点二碰撞模型问题例3(多选)两个小球A、B在光滑水平面上相向运动,已知它们的质量分别是m1=4 kg,m2=2 kg,A的速度v1=3 m/s(设为正),B的速度v2=-3 m/s,则它们发生正碰后,其速度可能分别是( )A.均为1 m/sB.+4 m/s和-5 m/sC.+2 m/s和-1 m/sD.-1 m/s和5 m/s变式2(2015·全国卷Ⅰ·35(2))如图4所示,在足够长的光滑水平面上,物体A、B、C 位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.图4拓展点1 “滑块—弹簧”碰撞模型例5如图5所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根水平轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.木块A以速度v0=10 m/s由滑板B左端开始沿滑板B上表面向右运动.已知木块A的质量m=1 kg,g 取10 m/s2.求:图5(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.拓展点2 “滑块—平板”碰撞模型例6如图6所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求:图6(1)物块与小车共同速度大小;(2)物块在车面上滑行的时间t;(3)小车运动的位移大小x;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过多少?拓展点3 “滑块—斜面”碰撞模型例7(2016·全国卷Ⅱ·35(2))如图7所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.图7(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?命题点三“人船模型”问题例8长为L、质量为M的小船停在静水中,一个质量为m的人立在船头,若不计水的阻力和空气阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?变式3如图8所示,质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离分别是多少?(不计空气阻力)图8命题点四“子弹打木块”模型问题例9一质量为M的木块放在光滑的水平面上,一质量为m的子弹以初速度v0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f.则:(1)子弹、木块相对静止时的速度是多少?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?(4)系统损失的机械能、系统增加的内能分别是多少?(5)要使子弹不射出木块,木块至少多长?变式4(2018·青海平安模拟)如图9所示,质量为2m、长为L的木块置于光滑水平面上,质量为m的子弹以初速度v0水平向右射向木块,穿过木块的过程中受到木块的恒定阻力为F f=5mv0216L,试问子弹能否穿过木块?若能穿过,求出子弹穿过木块后两者的速度;若不能穿过,求出子弹打入木块后两者的速度.图9。

动量守恒定律及“三类模型”问题

动量守恒定律及“三类模型”问题
mv1-Mv2=0 ①
变式
如图8所示,质量为M的气球下挂着长为 L的绳梯,一质量为 m的
人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶 端时,人和气球相对于地面移动的距离分别是多少?(不计空气阻力)
答案 见解析
图8
解析
由于人和气球组成的系统静止在空中,竖直方向系统所受外力之和
为零即系统竖直方向总动量守恒. 设某时刻人对地的速率为v1,气球对地的速率为v2,以人运动的方向为正方 向,根据动量守恒定律得
解析
选人和船组成的系统为研究对象,因系统在水平方向不受力,
所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船 同时加速后退;
当人匀速前进时,船匀速后退;当人减速前进时,船减 速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v1,
船对地的速率为v2,以人运动的方向为正方向,根据动量守恒定律得
爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于 ______系
统所受的外力,所以系统动量 守恒 .
自测2
如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,
滑块A的质量为 m,速度大小为2v0,方向向右,滑块B的质量为2m,速
度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是 A.A和B都向左运动 B.A和B都向右运动 C.A静止,B向右运动 D.A向左运动,B向右运动 √ 图1
研透命题点
命题点一 动量守恒定律的理解和基本应用
例1 (多选)如图2所示,A、B两物体质量之比mA∶mB =3∶2,原来静止在平板小车C上,A、B间有一根 被压缩的弹簧,地面光滑,当弹簧突然释放后,则 守恒
图2 A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量

知识点48动量守恒定律在三类模型问题中的应用(拔尖)

知识点48动量守恒定律在三类模型问题中的应用(拔尖)

学问点48:动量守恒定律在三类模型问题中的应用考点一:系统动量守恒的推断【学问思维方法技巧】〔1〕系统动量守恒适用条件①抱负守恒:不受外力或所受外力的合力为零.②近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.如碰撞、爆炸、反冲。

③某一方向守恒:假如系统在某一方向上所受外力的合力为零,那么系统在这一方向上动量守恒.如滑块-斜面(曲面)模型。

〔2〕推断系统动量是否守恒的“三留意〞:①留意所选取的系统——所选的系统组成不同,结论往往不同。

②留意所讨论的运动过程——系统的运动分为多个过程时,有的过程动量守恒,另一过程那么可能不守恒。

③留意守恒条件——整体不满意系统动量守恒条件时,在某一方向可能满意动量守恒条件。

题型一:系统动量抱负守恒【典例1拔尖题】(多项选择)如下图,一男孩站在小车上,并和木箱一起在光滑的水平冰面上向右匀速运动,木箱与小车挨得很近.现男孩用力向右快速推开木箱.在男孩推开木箱的过程中,以下说法正确的选项是( )A. 木箱的动量的增加量等于男孩动量的削减量B. 男孩对木箱推力的冲量大小等于木箱对男孩推力的冲量大小C. 男孩推开木箱后,男孩和小车的速度可能变为零D. 对于小车、男孩和木箱组成的系统,推开木箱前后的总动能不变【典例1拔尖题】【答案】BC【解析】由于水平冰面光滑,男孩、小车和木箱组成的系统所受合外力为零,系统动量守恒,站在小车上的男孩用力向右快速推出木箱的过程中,木箱的动量增加量等于男孩和小车动量的削减量,故A错误;男孩对木箱的推力和木箱对男孩的推力是作用力与反作用力,冲量等大反向,男孩对木箱推力的冲量大小等于木箱对男孩推力的冲量大小,故B正确;男孩、小车受到与初动量反向的冲量,推开木箱后,男孩和小车的速度可能变为零,故C 正确;男孩、小车与木箱三者组成的系统所受合力为零,系统动量守恒,推开木箱的过程不行能是弹性碰撞,推开前后的总动能变化,故D错误.题型二:系统动量近似守恒【典例2拔尖题】如下图,水平面上有一平板车,某人站在车上抡起锤子从与肩等高处挥下,打在车的左端,打后车与锤相对静止。

动量守恒定律课件

动量守恒定律课件

V≥5.2m/s
甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车总质量为M=30kg,乙和他的冰车总质量也为30kg,游戏时,甲推着一个质量为m=15kg的箱子,和他一起以大小为V0=2m/s的速度滑行,乙以同样大小的速度迎面而来,为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时,乙迅速将它抓住,若不计冰面的摩擦,问甲至少要以多大的速度(相对地面)将箱子推出,才能避免与乙相撞?
若沿炸裂前速度v的方向建立坐标轴,v为正值,v1与v的方向相反,v1为负值。此外,一定有m-m1>0。于是,由上式可知,v2应为正值。这表示质量为(m-m1)的那部分沿着与坐标轴相同的方向飞去。这个结论容易理解。炸裂的一部分沿着相反的方向飞去,另一部分不会也沿着相反的方向飞去,假如这样,炸裂后的总动量将与炸裂前的总动量方向相反,动量就不守恒了。
mv1=mv2+MV
V=m(v1-v2)/M=60/50m/s=1.2 m/s
正号表示小车的速度跟小孩的运动速度方向相同
质量均为M的两船A、B静止在水面上,A船上有一质量为m的人以速度v1跳向B船,又以速度v2跳离B船,再以v3速度跳离A船……,如此往返10次,最后回到A船上,此时A、B两船的速度之比为多少?
解:动量守恒定律跟过程的细节无关
对整个过程 ,以两船和人为系统,由动量守恒定律
(M+ m)vA + MvB= 0
vA/ vB = - M /(M+ m)
负号表示两船速度方向相反
心怀梦想路致远方
HAVE A DREAM AND TRAVEL FAR
总质量为 M 的火车在平直轨道上以速度 V匀速行驶,尾部有一节质量为m的车厢突然脱钩,设机车的牵引力恒定不变,阻力与质量成正比,则脱钩车厢停下来时,列车前段的速度多大?

第2讲动量守恒定律及“三类模型”问题课件

第2讲动量守恒定律及“三类模型”问题课件
第六章 动量 动量守恒定律
第2讲 动量守恒定律及“三类模型”问题
过好双基关
一、动量守恒定律 1.内容 如果一个系统不受外力,或者所受外力的 矢为量零和,这个系统的总动量保持 不变. 2.表达式 (1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.
(2)m1v1+m2v2=m1v1′+m,2v相2′互作用的两个物体组成的系统,作用前的动
命题点一 动量守恒定律的理解和基本应用
基础考点 自主悟透
例1 (多选)如图2所示,A、B两物体质量之比mA∶mB
=3∶2,原来静止在平板小车C上,A、B间有一根
被压缩的弹簧,地面光滑,当弹簧突然释放后,则
图2
A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量
守恒
√B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的 动量守恒
答案
4 3 m/s
解析 答案
(2)甲车开始反向时,乙的速度为多大? 答案 2 m/s 解析 甲车开始反向时,其速度为0,设此时乙车的速度为v乙′,取刚开始 运动时乙车的速度方向为正方向,由动量守恒定律得 m乙v乙-m甲v甲=m乙v乙′ 解得v乙′=2 m/s
解析 答案
模型 构建
命题点二 碰撞模型问题
1.碰撞遵循的三条原则(源自)动量守恒定律(2)机械能不增加
能力考点 师生共研
Ek1+Ek2≥Ek1′+Ek2′或2pm121+2pm222≥p21m′12+p22m′22
(3)速度要合理 ①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或 相等). ②相向碰撞:碰撞后两物体的运动方向不可能都不改变.
自测1 关于系统动量守恒的条件,下列说法正确的是 A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒

动量守恒定律子弹打木块弹簧板块三模型

动量守恒定律子弹打木块弹簧板块三模型

一、 子弹大木块【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件?【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即mv 0=(m +M )v对系统应用动能定理得fd =12mv 20-12(M +m )v 2由上面两式消去v 可得 fd =12mv 20-12(m +M )(mv 0m +M )2整理得12mv 20=m +M M fd即12mv 20=(1+m M)fd 据上式可知,E 0=12mv 20就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0必须大于(1+mM)f ·d .72、如图所示,静止在光滑水平面上的木块,质量为、长度为。

—颗质量为的子弹从木块的左端打进。

设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。

由动量守恒定律得:①要使子弹刚好从木块右端打出,则必须满足如下的临界条件:②根据功能关系得:③解以上三式得:二、 板块1、 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度0v 从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。

物理-用动量守恒定律解决“三类模型”问题

物理-用动量守恒定律解决“三类模型”问题

用动量守恒定律解决“三类模型”问题物理题型 1.会用动量守恒观点分析反冲运动和人船模型.2.会用动量观点和能量观点分析计算“子弹打木块”“滑块—木板”模型的有关问题.题型一 反冲运动和人船模型1.反冲运动的三点说明作用原理反冲运动是系统内两物体之间的作用力和反作用力产生的效果动量守恒反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循动量守恒定律机械能增加反冲运动中,由于有其他形式的能转化为机械能,所以系统的总机械能增加2.人船模型(1)模型图示(2)模型特点①两物体满足动量守恒定律:m v 人-M v 船=0②两物体的位移满足:m -M =0,x 人t x 船t x 人+x 船=L ,得x 人=L ,x 船=LM M +m mM +m (3)运动特点①人动则船动,人静则船静,人快船快,人慢船慢,人左船右;②人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即==.x 人x 船v 人v 船Mm 反冲运动例1 一火箭喷气发动机每次喷出m =200 g 的气体,气体离开发动机喷出时的速度v =1 000 m/s.设火箭(包括燃料)质量M =300 kg ,发动机每秒喷气20次.(1)当发动机第三次喷出气体后,火箭的速度为多大?(2)运动第1 s 末,火箭的速度为多大?答案 (1)2 m/s (2)13.5 m/s解析 (1)设喷出三次气体后火箭的速度为v 3,以火箭和三次喷出的气体为研究对象,据动量守恒定律得:(M -3m )v 3-3m v =0,故v 3=≈2 m/s3m vM -3m (2)发动机每秒钟喷气20次,以火箭和20次喷出的气体为研究对象,根据动量守恒定律得:(M -20m )v 20-20m v =0,故v 20=≈13.5 m/s.20m vM -20m 人船模型例2 有一只小船停靠在湖边码头,小船又窄又长(重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,则船的质量为( )A.B.m (L +d )d m (L -d )dC.D.mL d m (L +d )L答案 B解析 设船的质量为M ,人走动的时候船的速度为v ,人的速度为v ′,人从船头走到船尾用时为t ,人的位移为L -d ,船的位移为d ,所以v =,v ′=.以船后退的方向为正方d t L -d t 向,根据动量守恒有:M v -m v ′=0,可得:M =,小船的质量为:d t m (L -d )t M =,故B 正确.m (L -d )d1.(滑块—斜面中的人船模型)如图1所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h .现有一质量为m 的小物块,沿光滑斜面下滑,当小物块从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )图1A.B.mhM +m Mh M +m C.D.mh(M +m )tan αMh (M +m )tan α答案 C解析 m 与M 组成的系统在水平方向上动量守恒,设m 在水平方向上对地位移大小为x 1,M 在水平方向上对地位移大小为x 2,以水平向左为正方向,则有0=mx 1-Mx 2,且x 1+x 2=,解得x 2=,C 项正确.h tan αmh(M +m )tan α2.(竖直方向上的人船模型)如图2所示,气球下面有一根长绳,一个质量为m 1=50 kg 的人抓在气球下方,气球和长绳的总质量为m 2=20 kg ,长绳的下端刚好和水平面接触,当静止时人离地面的高度为h =5 m .如果这个人开始沿绳向下滑,当滑到绳下端时,他离地面的高度是(可以把人看成质点)( )图2A .5 mB .3.6 mC .2.6 mD .8 m答案 B解析 当人滑到下端时,设人相对地面下滑的位移大小为h 1,气球相对地面上升的位移大小为h 2,由动量守恒定律,得m 1=m 2,且h 1+h 2=h ,解得h 2≈3.6 m ,所以他离地高度h 1t h 2t是3.6 m ,故选项B 正确.题型二 子弹打木块模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞).动量守恒:m v 0=(m +M )v能量守恒:Q =F f ·s =m v 02-(M +m )v 21212(2)子弹穿透木块.动量守恒:m v 0=m v 1+M v 2能量守恒:Q =F f ·d =m v 02-(M v 22+m v 12)121212例3 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少?(2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?(4)系统损失的机械能、系统增加的内能分别是多少?(5)要使子弹不射出木块,木块至少多长?答案 见解析解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得m v 0=(M +m )v解得v =v 0mM +m (2)设子弹在木块内运动的时间为t ,由动量定理得对木块:F f t =M v -0解得t =Mm v 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得对子弹:-F f x 1=m v 2-m v 021212解得:x 1=Mm (M +2m )v 022F f (M +m )2对木块:F f x 2=M v 212解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mm v 022F f (M +m )(4)系统损失的机械能为:E 损=m v 02-(M +m )v 2=1212Mm v 022(M +m )系统增加的内能为Q =F f ·x 相=Mm v 022(M +m )(5)假设子弹恰好不射出木块,此时有F f L =m v 02-(M +m )v 21212解得L =Mm v 022F f (M +m )因此木块的长度至少为Mm v 022F f (M +m)3.(子弹打木块模型)如图3所示,相距足够远且完全相同的两个木块,质量均为3m ,静止放置在光滑水平面上,质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出第一块木块时速度变为v 0,已知木块的长为L ,设子弹在木块中所受的阻力恒定,试求:25图3(1)子弹穿出第一块木块后,第一个木块的速度大小v 以及子弹在木块中所受阻力大小.(2)子弹在第二块木块中与该木块发生相对运动的时间t .答案 (1)v 0 (2)159m v 0225L 5L6v 0解析 (1)子弹打穿第一块木块过程,由动量守恒定律有m v 0=m (v 0)+3m v ,解得v =v 02515对子弹与第一块木块相互作用过程,由能量守恒定律有F f L =m v 02-m (v 0)2-×3m v 212122512解得子弹在木块中所受阻力F f =.9m v 0225L (2)对子弹与第二块木块相互作用过程,由于m (v 0)2=<,则子弹不能打穿第二12252m v 02259m v 0225块木块,设子弹与第二块木块共同速度为v 共,由动量守恒定律有m ·v 0=(m +3m )v 共,解得v 共=25v 010对第二块木块,由动量定理有F f t =3m ·v 010解得子弹在第二块木块中的运动时间为t =.5L6v 0题型三 滑块—木板模型1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(2)若木块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大(完全非弹性碰撞拓展模型)3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统;(2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.例4 (2019·河南九师联盟质检)如图4所示,在光滑水平面上有B 、C 两个木板,B 的上表面光滑,C 的上表面粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上表面等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L,不计空气阻力.求:图4(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力的大小F f ;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .答案 (1)v (2) (3)56m v 23L 3L2v解析 (1)设水平向右为正方向,B 、C 碰撞过程中动量守恒,则有:2m v -m v =(2m +m )v 1解得v 1=v 3A 滑到C 上,A 、C 组成的系统动量守恒,则有:3m v +m v 1=(3m +m )v 2解得v 2=v ;56(2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =(3m )v 2+m v 12-(3m +m )v 22121212Q =F f ·L 2联立解得F f =;m v 23L (3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =m v 2-m v 1解得t =.3L2v 4.(滑块—木板模型)如图5所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 且可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:图5(1)物块在车面上滑行的时间t ;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度不超过多少.答案 (1)0.24 s (2)5 m/s解析 (1)设物块与小车的共同速度为v ,以水平向右的方向为正方向,根据动量守恒定律有m 2v 0=(m 1+m 2)v设物块与车面间的滑动摩擦力为F f ,对物块应用动量定理有-F f t =m 2v -m 2v 0又F f =μm 2g代入数据解得t =0.24 s(2)要使物块恰好不从小车右端滑出,需满足物块到车面最右端时与小车有共同的速度,设其为v ′,则有m 2v 0′=(m 1+m 2)v ′由动能定理有-μm 2gL =(m 1+m 2)v ′2-m 2v 0′21212代入数据解得v 0′=5 m/s故要使物块不从小车右端滑出,物块滑上小车左端的速度不超过5 m/s.课时精练1.(多选)关于反作用力在日常生活和生产技术中的应用,下列说法中正确的是( )A .在平静的水面上,静止着一只小船,小船上有一人,人从静止开始从小船的一端走向另一端时,小船向相反方向运动B .普通汽车行驶时,通过排气筒向后排出燃气,从而获得向前的反作用力即动力C .农田灌溉用自动喷水器,当水从弯管的喷嘴里喷射出来时,弯管会自动转向D .软体动物乌贼在水中经过体侧的孔将水吸入鳃腔,然后用力把水挤出体外,乌贼就会向相反方向游去答案 ACD解析 人从小船的一端走向另一端时,要受到小船给人的摩擦力,方向与人行走的方向相同.根据反冲现象原理与动量守恒定律,人对小船也有摩擦力,其方向与人行走的方向相反,因此小船也受摩擦力,其方向与人行走的方向相反,因此小船将在这个摩擦力的作用下改变运动状态,向人行走的相反方向运动,故A 正确;普通汽车行驶时,通过排气筒向后排出燃气,虽然燃气对排气筒有反作用力,但毕竟反作用力很小,并不是汽车动力的来源,故B 错误;农田灌溉用的自动喷水器,当水从弯管的喷嘴里喷射出来时,根据反冲现象原理与动量守恒定律知,弯管在水的反作用力的推动下会自动旋转,大大增加了喷水的面积,故C 正确;乌贼经过身体侧面的孔把水吸入鳃腔,然后用力把水挤出体外,根据牛顿第三定律可知,乌贼就获得了方向相反的反作用力,从而向排水的相反方向游去,故D 正确.2.(2021·山东临沂市质检)我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射首颗X 射线调制望远镜卫星“慧眼”.假设将发射火箭看成如下模型:静止的实验火箭,总质量为M =2 100 g .当它以对地速度为v 0=840 m/s 喷出质量为Δm =100 g 的高温气体后,火箭的对地速度为(喷出气体过程中重力和空气阻力可忽略不计)( )A .42 m/sB .-42 m/sC .40 m/sD .-40 m/s答案 B解析 喷出气体过程中重力和空气阻力可忽略不计,可知在火箭发射的过程中二者组成的系统竖直方向的动量守恒,以喷出气体的速度方向为正方向,由动量守恒定律得:Δm v 0+(M -Δm )v =0,解得:v =-42 m/s ,故B 正确,A 、C 、D 错误.3.(2019·湖南娄底市下学期质量检测)质量为M 的气球上有一个质量为m 的人,气球和人在静止的空气中共同静止于离地h 高处,如果从气球上慢慢放下一个质量不计的软梯,让人沿软梯降到地面,则软梯长至少应为( )A.hB.h mm +M M m +M C.hD.hM +m M M +m m 答案 C解析 设人沿软梯滑至地面,软梯长度至少为L ,以人和气球组成的系统为研究对象,竖直方向动量守恒,规定竖直向下为正方向,由动量守恒定律得:0=-M v 2+m v 1人沿软梯降至地面,气球上升的高度为L -h ,平均速度大小为v 2=L -h t人相对于地面下降的高度为h ,平均速度大小为v 1=h t联立得:0=-M ·+m ·,L -h t h t 解得:L =h ,故C 正确,A 、B 、D 错误.M +m M 4.世界上第一个想利用火箭飞行的人是明朝的士大夫万户.如图1所示,他把47个自制的火箭绑在椅子上,自己坐在椅子上,双手举着大风筝,设想利用火箭的推力,飞上天空,然后利用风筝平稳着陆.假设万户及所携设备[火箭(含燃料)、椅子、风筝等]总质量为M ,点燃火箭后在极短的时间内,质量为m 的炽热燃气相对地面以v 0的速度竖直向下喷出.忽略此过程中空气阻力的影响,重力加速度为g ,下列说法中正确的是( )图1A .火箭的推力来源于空气对它的反作用力B .在燃气喷出后的瞬间,火箭的速度大小为m v 0M -mC .喷出燃气后,万户及所携带设备能上升的最大高度为m 2v 02g (M -m )2D .在火箭喷气过程中,万户所携设备机械能守恒答案 B解析 火箭的推力来源于燃料燃烧时产生的向后喷出的高温高压气体对火箭的作用力,A 项错误;在燃气喷出后的瞬间,将万户及所携设备[火箭(含燃料)、椅子、风筝等]视为系统,动量守恒,设火箭的速度大小为v ,规定火箭运动方向为正方向,则有(M -m )v -m v 0=0,解得火箭的速度大小v =,B 项正确;喷出燃气后万户及所携设备做竖直上抛运动,m v 0M -m 根据运动学公式可得上升的最大高度h ==,C 项错误;在火箭喷气过程中,v 22g m 2v 022(M -m )2g 燃料燃烧时产生的向后喷出的高温高压气体对万户及所携设备做正功,所以万户及所携设备机械能不守恒,D 项错误.5.(多选)长木板A 放在光滑的水平面上,质量为m =2 kg 的另一物体B 以水平速度v 0=2 m/s 滑上原来静止的长木板A 的上表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图2所示,g =10 m/s 2.则下列说法正确的是( )图2A .木板获得的动能为1 JB .系统损失的机械能为2 JC .木板A 的最小长度为2 mD .A 、B 间的动摩擦因数为0.1答案 ABD解析 由题图可知,最终木板获得的速度为v =1 m/s ,A 、B 组成的系统动量守恒,以B 的初速度方向为正方向,由动量守恒定律得m v 0=(M +m )v ,解得M =2 kg ,则木板获得的动能为E k =M v 2=×2×12 J =1 J ,故A 正确;系统损失的机械能ΔE =m v B 2-(m +M )v 2,12121212代入数据解得ΔE =2 J ,故B 正确;根据v -t 图象中图线与t 轴所围的面积表示位移,由题图得到0~1 s 内B 的位移为x B =×(2+1)×1 m =1.5 m ,A 的位移为x A =×1×1 m =0.51212m ,则木板A 的最小长度为L =x B -x A =1 m ,故C 错误;由题图可知,B 的加速度a ==ΔvΔtm/s 2=-1m/s 2,负号表示加速度的方向,由牛顿第二定律得-μm B g =m B a ,解得1-21μ=0.1,故D 正确.6.(多选)如图3所示,一个质量为M 的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m 的小木块.现使木箱瞬间获得一个水平向左的初速度v 0,下列说法中正确的是( )图3A .最终小木块和木箱都将静止B .最终小木块和木箱组成的系统损失的机械能为-M v 022(M v 0)22(M +m )C .木箱速度为时,小木块的速度为v 032M v 03mD .最终小木块速度为M v 0m答案 BC解析 木箱与木块组成的系统动量守恒,以木箱的初速度方向为正方向,设最终速度为v 1,由动量守恒定律得M v 0=(m +M )v 1,解得小木块和木箱最终速度v 1=,故A 、D M v 0m +M 错误;对整个过程,由能量守恒定律可得小木块和木箱组成的系统损失的机械能为ΔE =M v 02-(m +M )v 12=-,故B 正确;木箱与木块组成的系统动量守恒,1212M v 022M 2v 022(m +M )以木箱的初速度方向为正方向,由动量守恒定律得M v 0=m v 2+M v 3,木箱速度为v 3=时,v 03小木块的速度为v 2=,故C 正确.2M v 03m 7.(多选)(2019·四川石室中学诊断)如图4所示,长为L 、质量为3m 的长木板B 放在光滑水平面上,质量为m 的铁块A 放在长木板右端.一质量为m 的子弹以速度v 0射入木板并留在其中,铁块恰好不滑离木板.子弹射入木板中的时间极短,子弹、铁块均可视为质点,铁块与木板间的动摩擦因数恒定,重力加速度为g .下列说法正确的是( )图4A .木板获得的最大速度为v 05B .铁块获得的最大速度为v 05C .铁块与木板之间的动摩擦因数为v 0240gLD .子弹、木板、铁块组成的系统损失的机械能为2m v 025答案 BCD解析 子弹射入瞬间,子弹和木板B 组成的系统动量守恒,有m v 0=4m v 1,解得v 1=v 0,14故A 错误;对木板B 、子弹和铁块A 组成的系统,由动量守恒定律有m v 0=5m v 2,解得v 2=v 0,故B 正确;子弹射入木板后,对木板B (包括子弹)和铁块A 组成的系统,由能量守15恒定律得-μmgL =·5m v 22-·4m v 12,解得μ=,故C 正确;由能量守恒定律可知,子1212v 0240gL 弹、木板、铁块组成的系统损失的机械能为ΔE =m v 02-·5m v 22=m v 02,故D 正确.1212258.(2019·四川第二次诊断)如图5甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )图5A.(s +L )B.(s +2L )1v 01v 0C.(s +L )D.(L +2s )12v 01v 0答案 D解析 子弹穿过木块过程,子弹和木块组成的系统动量守恒,以v 0的方向为正方向,有:m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理得:-F f (s +L )=m v 12-m v 02,1212由动量定理得:-F f t =m v 1-m v 0,对木块由动能定理得:F f s =m v 22,12由动量定理得:F f t =m v 2,联立解得:t =(L +2s ),故选D.1v 09.如图6所示,质量为m 3=2m 的滑道静止在光滑的水平面上,滑道的AB 部分是半径为R 的四分之一圆弧,圆弧底部与长为0.5R 滑道水平部分相切,滑道末端距离地面高度为R ,整个滑道均光滑.质量为m 2=3m 的物体2(可视为质点)放在滑道的B 点,现让质量为m 1=m 的物体1(可视为质点)自A 点由静止释放,两物体在滑道上相碰后粘为一体,重力加速度为g .求:图6(1)物体1从释放到运动到圆弧底部时,滑道向左运动的距离;(2)物体1和2落地时,距滑道右侧底部的距离.答案 (1) (2)RR362解析 (1)物体1从释放到运动到圆弧底部过程中,物体1、滑道组成的系统水平方向动量守恒,设物体1水平位移大小为x 1,滑道水平位移大小为x 3,有:0=m 1x 1-m 3x 3,x 1+x 3=R解得x 3=.R3(2)设物体1运动到滑道上的B 点时物体1的速度大小为v 1,滑道的速度大小为v 3,轨道对物体1的支持力为F N ,对物体1和滑道组成的系统,由机械能守恒定律有mgR =m v 12+m 3v 321212由动量守恒定律有0=m 1v 1-m 3v 3物体1与物体2碰撞后立即飞离轨道做平抛运动,设物体1和物体2相碰后的共同速度大小为v 2,做平抛运动时物体1、2水平位移大小为s 1,轨道向左滑动的距离为s 2,由动量守恒定律有m 1v 1=(m 1+m 2)v 2R =gt 212s 1=v 2t s 2=v 3t联立并代入数据可以求得Δs =s 1+s 2=R .6210.如图7所示,光滑水平地面上有一足够长的木板,左端放置可视为质点的物体,其质量为m 1=1 kg ,木板与物体间的动摩擦因数μ=0.1.二者以相同的初速度v 0=0.8 m/s 一起向右运动,木板与竖直墙碰撞时间极短,且没有机械能损失.g =10 m/s 2.图7(1)如果木板质量m 2=3 kg ,求物体相对木板滑动的最大距离;(2)如果木板质量m 2=0.6 kg ,求物体相对木板滑动的最大距离.答案 (1)0.96 m (2)0.512 m解析 (1)木板与竖直墙碰撞后,以原速率反弹,以水平向左为正方向,对物体与木板系统,由动量守恒定律有:m 2v 0-m 1v 0=(m 1+m 2)v解得v =0.4 m/s ,方向向左,不会与竖直墙再次碰撞由能量守恒定律有(m 1+m 2)v 02=(m 1+m 2)v 2+μm 1gs 11212解得s 1=0.96 m(2)木板与竖直墙碰撞后,以原速率反弹,对物体及木板系统,由动量守恒定律得:m 2v 0-m 1v 0=(m 1+m 2)v ′解得v ′=-0.2 m/s ,负号表示方向向右,将与竖直墙再次碰撞,最后木板停在竖直墙处由能量守恒定律得:(m 1+m 2)v 02=μm 1gs 212解得s 2=0.512 m.11.一块足够长的木板C 质量为2m ,放在光滑的水平面上,如图8所示.在木板上自左向右放有A 、B 两个完全相同的物块,两物块质量均为m ,与木板间的动摩擦因数均为μ.开始时木板静止不动,A 、B 两物块的初速度分别为v 0、2v 0,方向如图所示.试求:图8(1)木板能获得的最大速度.(2)A 物块在整个运动过程中的最小速度.(3)全过程AC 间由于摩擦产生的热量跟BC 间由于摩擦产生的热量之比是多少?答案 见解析解析 (1)当A 、B 和木板速度相同时,木板的速度最大,取向右为正方向,对三者组成的系统运用动量守恒定律得m v 0+m ·2v 0=(m +m +2m )v ′,解得v ′=v 034(2)开始时,A 、B 做匀减速直线运动的加速度大小为a ==μg ,A 、B 都滑动时,木板Cμmgm 的加速度大小为a ′==μg .因为A 的初速度小,A 与木板C 先达到共同速度,当μmg +μmg2mA 与木板达到共同速度后,A 与木板一起做匀加速直线运动.可知,A 与木板速度相同时,速度最小,则有v =v 0-at =a ′t ,解得t =,则A 物块在整个运动过程中的最小速度为v 02μg v =v 0-at =v 02(3)A 、C 刚共速时速度为:v =,A 、C 间的相对位移大小为v 02Δx =t -t =t =,A 、C 间由于摩擦产生的热量Q AC =μmg Δx =m v 02v 0+v 2v2v 02v 024μg 14全过程系统由于摩擦产生的热量等于系统动能减少量,为Q =m v 02+m (2v 0)12122-(m +m +2m )v ′212解得Q =m v 02118B 、C 间由于摩擦产生的热量为Q BC =Q -Q AC =m v 0298即=.QACQBC 29。

高考物理大一轮复习 第六章 第2讲 动量守恒定律及“三类模型”问题讲义(含解析)教科版-教科版高三全

高考物理大一轮复习 第六章 第2讲 动量守恒定律及“三类模型”问题讲义(含解析)教科版-教科版高三全

第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.自测1关于系统动量守恒的条件,下列说法正确的是( )A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒答案 C二、碰撞、反冲、爆炸1.碰撞(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.(3)碰撞分类①弹性碰撞:碰撞后系统的总动能没有损失.②非弹性碰撞:碰撞后系统的总动能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.2.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.(3)规律:遵从动量守恒定律.3.爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等.自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是( )图1A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案 D解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.命题点一动量守恒定律的理解和基本应用例1(2018·湖北省仙桃市、天门市、潜江市期末联考)如图2所示,A、B两物体的质量之比为m A∶m B=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车),则有( )图2A.A、B系统动量守恒B.A、B、C及弹簧整个系统机械能守恒C.小车C先向左运动后向右运动D.小车C一直向右运动直到静止答案 D解析A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因m A∶m B=1∶2,由摩擦力公式f=μN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因存在摩擦力做负功,最终整个系统将静止,则系统的机械能减为零,不守恒,故A、B、C错误,D正确.变式1(多选)(2018·安徽省宣城市第二次调研)如图3所示,小车在光滑水平面上向左匀速运动,水平轻质弹簧左端固定在A点,物体与固定在A点的细线相连,弹簧处于压缩状态(物体与弹簧未连接),某时刻细线断了,物体沿车滑动到B端粘在B端的油泥上,取小车、物体和弹簧为一个系统,下列说法正确的是( )图3A.若物体滑动中不受摩擦力,则该系统全过程机械能守恒B.若物体滑动中有摩擦力,则该系统全过程动量守恒C.不论物体滑动中有没有摩擦,小车的最终速度与断线前相同D.不论物体滑动中有没有摩擦,系统损失的机械能相同答案BCD解析物体与油泥粘合的过程,发生非弹簧碰撞,系统机械能有损失,故A错误;整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确;取系统的初速度方向为正方向,根据动量守恒定律可知,物体在沿车滑动到B端粘在B端的油泥上后系统共同的速度与初速度是相同的,故C 正确;由C 的分析可知,当物体与B 端油泥粘在一起时,系统的速度与初速度相等,所以系统的末动能与初动能是相等的,系统损失的机械能等于弹簧的弹性势能,与物体滑动中有没有摩擦无关,故D 正确.例2 (2017·全国卷Ⅰ·14)将质量为1.00kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A .30kg·m/s B .5.7×102kg·m/s C .6.0×102kg·m/s D .6.3×102kg·m/s答案 A解析 设火箭的质量为m 1,燃气的质量为m 2.由题意可知,燃气的动量p 2=m 2v 2=50×10-3×600kg·m/s=30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m 1v 1-m 2v 2,则火箭的动量大小为p 1=m 1v 1=m 2v 2=30kg·m/s,所以A 正确,B 、C 、D 错误. 变式2 (2018·江西省七校第一次联考)一质量为M 的航天器远离太阳和行星,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出质量为m 的气体,气体向后喷出的速度大小为v 1,加速后航天器的速度大小v 2等于(v 0、v 1、v 2均为相对同一参考系的速度)( ) A.M +m v 0-mv 1MB.M +m v 0+mv 1MC.Mv 0+mv 1M -mD.Mv 0-mv 1M -m答案 C解析 以v 0的方向为正方向,由动量守恒定律有Mv 0=-mv 1+(M -m )v 2 解得v 2=Mv 0+mv 1M -m,故选C. 命题点二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大或相等.②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2②解得v 1′=m 1-m 2v 1+2m 2v 2m 1+m 2v 2′=m 2-m 1v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则:v 1′=m 1-m 2v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.例3 (2018·广东省湛江市第二次模拟)如图4所示,水平地面放置A 和B 两个物块,物块A 的质量m 1=2kg ,物块B 的质量m 2=1kg ,物块A 、B 与地面间的动摩擦因数均为μ=0.5.现对物块A 施加一个与水平方向成37°角的外力F ,F =10N ,使物块A 由静止开始运动,经过12s 物块A 刚好运动到物块B 处,A 物块与B 物块碰前瞬间撤掉外力F ,物块A 与物块B 碰撞过程没有能量损失,设碰撞时间很短,A 、B 两物块均可视为质点,g 取10m/s 2,sin37°=0.6,cos37°=0.8.求:图4(1)计算A 与B 两物块碰撞前瞬间物块A 的速度大小;(2)若在物块B 的正前方放置一个弹性挡板,物块B 与挡板碰撞时没有能量损失,要保证A 和B 两物块能发生第二次碰撞,弹性挡板距离物块B 的距离L 不得超过多大?答案 (1)6m/s (2)L 不得超过3.4m 解析 (1)设物块A 与物块B 碰前速度为v 1,由牛顿第二定律得:F cos37°-μ(m 1g -F sin37°)=m 1a 解得:a =0.5m/s 2则速度v 1=at =6m/s(2)设A 、B 两物块相碰后A 的速度为v 1′,B 的速度为v 2 由动量守恒定律得:m 1v 1=m 1v 1′+m 2v 2 由机械能守恒定律得:12m 1v 12=12m 1v 1′2+12m 2v 22联立解得:v 1′=2m/s 、v 2=8 m/s对物块A 用动能定理得:-μm 1gx A =0-12m 1v 1′2解得:x A =0.4m对物块B 用动能定理得:-μm 2gx B =0-12m 2v 22解得:x B =6.4m物块A 和物块B 能发生第二次碰撞的条件是x A +x B >2L , 解得L <3.4m即要保证物块A 和物块B 能发生第二次碰撞,弹性挡板距离物块B 的距离L 不得超过3.4m.拓展点1 “滑块—弹簧”碰撞模型例4 (2018·山东省临沂市一模)如图5所示,静止放置在光滑水平面上的A 、B 、C 三个滑块,滑块A 、B 间通过一水平轻弹簧相连,滑块A 左侧紧靠一固定挡板P ,某时刻给滑块C 施加一个水平冲量使其以初速度v 0水平向左运动,滑块C 撞上滑块B 的瞬间二者粘在一起共同向左运动,弹簧被压缩至最短的瞬间具有的弹性势能为1.35J ,此时撤掉固定挡板P ,之后弹簧弹开释放势能,已知滑块A 、B 、C 的质量分别为m A =m B =0.2kg ,m C =0.1kg ,(取10=3.17)求:图5(1)滑块C 的初速度v 0的大小;(2)当弹簧弹开至恢复到原长的瞬时,滑块B 、C 的速度大小;(3)从滑块B 、C 压缩弹簧至弹簧恢复到原长的过程中,弹簧对滑块B 、C 整体的冲量. 答案 (1)9m/s (2)1.9 m/s (3)1.47N·s,方向水平向右解析 (1)滑块C 撞上滑块B 的过程中,滑块B 、C 组成的系统动量守恒,以水平向左为正,根据动量守恒定律得:m C v 0=(m B +m C )v 1弹簧被压缩至最短时,滑块B 、C 速度为零,根据能量守恒定律得:E p =12(m B +m C )v 12解得:v 1=3m/s ,v 0=9 m/s(2)设弹簧弹开至恢复到原长的瞬间,滑块B 、C 的速度大小为v 2,滑块A 的大小为v 3,根据动量守恒定律得:m A v 3=(m B +m C )v 2,根据能量守恒定律得:E p =12m A v 32+12(m B +m C )v 22解得:v 2≈1.9m/s(3)设弹簧对滑块B 、C 整体的冲量I ,选向右为正方向,由动量定理得:I =Δp =(m B +m C )(v 2+v 1)解得:I =1.47N·s,方向水平向右.拓展点2 “滑块—木板”碰撞模型例5 (2018·湖北省武汉市部分学校起点调研)如图6,在光滑的水平面上静止着足够长、质量为3m 的木板,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,最后所有的木块与木板相对静止.已知重力加速度为g ,求:图6(1)木块3从开始运动到与木板相对静止时位移的大小; (2)木块2在整个运动过程中的最小速度. 答案 (1)4v 02μg (2)56v 0解析 (1)当木块3与木板的速度相等时,3个木块与木板的速度均相等,设为v ,以v 0的方向为正方向.系统动量守恒m (v 0+2v 0+3v 0)=6mv 木块3在木板上匀减速运动:μmg =ma 由运动学公式(3v 0)2-v 2=2ax 3 解得x 3=4v 02μg(2)设木块2的最小速度为v 2,此时木块3的速度为v 3,由动量守恒定律m (v 0+2v 0+3v 0)=(2m +3m )v 2+mv 3在此过程中,木块3与木块2速度改变量相同 3v 0-v 3=2v 0-v 2 解得v 2=56v 0.变式3 (多选)(2018·广西桂林市、百色市和崇左市第三次联考)如图7甲,光滑水平面上放着长木板B ,质量为m =2kg 的木块A 以速度v 0=2m/s 滑上原来静止的长木板B 的上表面,由于A 、B 之间存在摩擦,之后木块A 与长木板B 的速度随时间变化情况如图乙所示,重力加速度g =10 m/s 2.则下列说法正确的是( )图7A .木块A 与长木板B 之间的动摩擦因数为0.1 B .长木板的质量M =2kgC .长木板B 的长度至少为2mD .木块A 与长木板B 组成系统损失机械能为4J 答案 AB解析 由题图可知,木块A 先做匀减速运动,长木板B 先做匀加速运动,最后一起做匀速运动,共同速度v =1m/s ,取向右为正方向,根据动量守恒定律得:mv 0=(m +M )v ,解得:M =m =2kg ,故B 正确;由题图可知,长木板B 匀加速运动的加速度为:a B =Δv Δt =11m/s 2= 1 m/s 2,对长木板B ,根据牛顿第二定律得:μmg =Ma B ,μ=0.1,故A 正确;由题图可知前1s 内长木板B 的位移为:x B =12×1×1m=0.5m ,木块A 的位移为:x A =2+12×1m=1.5m ,所以长木板B 的最小长度为:L =x A -x B =1m ,故C 错误;木块A 与长木板B 组成系统损失的机械能为:ΔE =12mv 02-12(m +M )v 2=2J ,故D 错误.拓展点3 “滑块—斜面”碰撞模型例6 (2018·福建省厦大附中第二次模拟)如图8所示,光滑水平面上质量为m 1=2kg 的物块以v 0=2m/s 的初速度冲向质量为m 2=6kg 静止的光滑圆弧面斜劈体.求:图8(1)物块m 1滑到最高点位置时,二者的速度大小; (2)物块m 1从圆弧面滑下后,二者速度大小.(3)若m 1=m 2,物块m 1从圆弧面滑下后,二者速度大小. 答案 见解析解析 (1)物块m 1与斜劈体作用过程水平方向遵从动量守恒定律,且到最高点时共速,以v 0方向为正,则有:m 1v 0=(m 1+m 2)v ,v =0.5m/s ;(2)物块m 1从圆弧面滑下过程,水平方向动量守恒,动能守恒,则有:m 1v 0=m 1v 1+m 2v 2,12m 1v 02=12m 1v 12+12m 2v 22, 解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0 代入数据得:v 1=-1m/s ,v 2=1 m/s ;(3)若m 1=m 2,根据上述分析,物块m 1从圆弧面滑下后,交换速度,即v 1′=0,v 2′=2m/s. 变式4 (2019·甘肃省天水市调研)如图9所示,在水平面上依次放置小物块A 和C 以及曲面劈B ,其中A 与C 的质量相等均为m ,曲面劈B 的质量M =3m ,曲面劈B 的曲面下端与水平面相切,且曲面劈B 足够高,各接触面均光滑.现让小物块C 以水平速度v 0向右运动,与A 发生碰撞,碰撞后两个小物块粘在一起滑上曲面劈B .求:图9(1)碰撞过程中系统损失的机械能;(2)碰后物块A 与C 在曲面劈B 上能够达到的最大高度. 答案 (1)14mv 02 (2)3v 0240g解析 (1)小物块C 与物块A 发生碰撞粘在一起,以v 0的方向为正方向 由动量守恒定律得:mv 0=2mv 解得v =12v 0;碰撞过程中系统损失的机械能为E 损=12mv 02-12×2mv 2解得E 损=14mv 02.(2)当小物块A 、C 上升到最大高度时,A 、B 、C 系统的速度相等.根据动量守恒定律:mv 0=(m +m +3m )v 1 解得v 1=15v 0根据机械能守恒得2mgh =12×2m ⎝ ⎛⎭⎪⎫12v 02-12×5m ⎝ ⎛⎭⎪⎫15v 02解得h =3v 0240g.命题点三 “人船”模型1.特点⎩⎪⎨⎪⎧1两个物体2动量守恒3总动量为零2.方程m 1v 1-m 2v 2=0(v 1、v 2为速度大小)3.结论m 1x 1=m 2x 2(x 1、x 2为位移大小)例7 (2018·河南省鹤壁市第二次段考)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,则船的质量为( ) A.m L +dd B.m L -dd C.mL dD.m L +dL答案 B解析 设人走动的时候船的速度为v ,人的速度为v ′,人从船头走到船尾用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -dt.以船后退的方向为正方向,根据动量守恒有:Mv -mv ′=0,可得:M d t =mL -d t ,小船的质量为:M =m L -dd,故B 正确.变式5 (2018·河南省中原名校第六次模拟)光滑水平面上放有一上表面光滑、倾角为α的斜面体A ,斜面体质量为M 、底边长为L ,如图10所示.将一质量为m 、可视为质点的滑块B 从斜面的顶端由静止释放,滑块B 经过时间t 刚好滑到斜面底端.此过程中斜面对滑块的支持力大小为N ,则下列说法中正确的是( )图10A .N =mg cos αB .滑块下滑过程中支持力对B 的冲量大小为Nt cos αC .滑块B 下滑的过程中A 、B 组成的系统动量守恒D .此过程中斜面体向左滑动的距离为mM +mL答案 D解析 当滑块B 相对于斜面加速下滑时,斜面体A 水平向左加速运动,所以滑块B 相对于地面的加速度方向不再沿斜面方向,即沿垂直于斜面方向的合外力不再为零,所以斜面对滑块的支持力N 不等于mg cos α,A 错误;滑块B 下滑过程中支持力对B 的冲量大小为Nt ,B 错误;由于滑块B 有竖直方向的分加速度,所以A 、B 组成的系统竖直方向合外力不为零,系统的动量不守恒,C 错误;A 、B 组成的系统水平方向不受外力,水平方向动量守恒,设A 、B 两者水平位移大小分别为x 1、x 2,则Mx 1=mx 2,x 1+x 2=L ,解得x 1=mM +mL ,D 正确.命题点四 “子弹打木块”模型1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒. 2.两者发生的相对位移为子弹射入的深度x 相.3.根据能量守恒定律,系统损失的动能等于系统增加的内能.4.系统产生的内能Q =f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =f ·L (L 为木块的长度).例8 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为f .则: (1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?答案 (1)m M +m v 0 (2)Mmv 0f M +m (3)Mm M +2m v 022f M +m 2Mm 2v 022f M +m2Mmv 022f M +m解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得mv 0=(M +m )v解得v =mM +mv 0 (2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:ft =Mv -0 解得t =Mmv 0f M +m(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得对子弹:-fx 1=12mv 2-12mv 02解得:x 1=Mm M +2m v 022f M +m2对木块:fx 2=12Mv 2解得:x 2=Mm 2v 022f M +m2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mmv 022f M +m变式6 (2019·陕西省商洛市质检)如图11所示,在固定的水平杆上,套有质量为m 的光滑圆环,轻绳一端拴在环上,另一端系着质量为M 的木块,现有质量为m 0的子弹以大小为v 0的水平速度射入木块并立刻留在木块中,重力加速度为g ,下列说法正确的是( )图11A .子弹射入木块后的瞬间,速度大小为m 0v 0m 0+m +MB .子弹射入木块后的瞬间,绳子拉力等于(M +m 0)gC .子弹射入木块后的瞬间,环对轻杆的压力大于(M +m +m 0)gD .子弹射入木块之后,圆环、木块和子弹构成的系统动量守恒 答案 C解析 子弹射入木块后的瞬间,子弹和木块系统的动量守恒,以v 0的方向为正方向,则m 0v 0=(M +m 0)v 1,得v 1=m 0v 0m 0+M ,选项A 错误;子弹射入木块后的瞬间,T -(M +m 0)g =(M +m 0)v 12L,可知绳子拉力大于(M +m 0)g ,选项B 错误;子弹射入木块后的瞬间,对圆环:N =T +mg >(M +m +m 0)g ,由牛顿第三定律知,选项C 正确;子弹射入木块之后,圆环、木块和子弹构成的系统只在水平方向动量守恒,选项D 错误.1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( )A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定答案 A2.(2018·福建省福州市模拟)一质量为M的航天器正以速度v0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v1,加速后航天器的速度大小为v2,则喷出气体的质量m为( )A.v2-v1v1M B.v2v2-v1MC.v2-v0v2+v1M D.v2-v0v2-v1M答案 C3.(2018·广东省东莞市调研)两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次之后,甲和乙最后的速率关系是( )A.若甲最先抛球,则一定是v甲>v乙B.若乙最后接球,则一定是v甲>v乙C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论怎样抛球和接球,都是v甲>v乙答案 B4.(2018·山东省青岛市第二次质量检测)如图1,连接有水平轻弹簧的物块a静止于光滑水平面上,物块b以一定初速度向左运动.下列关于a、b两物块的动量p随时间t的变化关系图像,不合理的是( )图1答案 A解析 物块b 以一定初速度向左运动与连接有水平轻弹簧的静止物块a 相碰,中间弹簧先被压缩后又恢复原长,则弹力在碰撞过程中先变大后变小,两物块动量的变化率先变大后变小.故A 错误.5.(2019·河南省鹤壁市调研)在列车编组站里,一节动车车厢以1m/s 的速度碰上另一节静止的拖车车厢,碰后两节车厢结合在一起继续运动.已知两节车厢的质量均为20t ,则碰撞过程拖车车厢受到的冲量大小为(碰撞过程时间很短,内力很大)( ) A .10N·s B .20N·s C .104N·s D .2×104N·s答案 C解析 动车车厢和拖车车厢碰撞过程动量守恒,根据动量守恒定律有mv 0=2mv ,对拖车根据动量定理有I =mv ,联立解得I =104N·s,选项C 正确.6.(2018·山西省晋城市第一次模拟)所谓对接是指两艘同方向以几乎同样快慢运行的宇宙飞船在太空中互相靠近,最后连接在一起.假设“天舟一号”和“天宫二号”的质量分别为M 、m ,两者对接前的在轨速度分别为(v +Δv )、v ,对接持续时间为Δt ,则在对接过程中“天舟一号”对“天宫二号”的平均作用力大小为( )A.m 2·Δv M +m ΔtB.M 2·Δv M +m ΔtC.Mm ·ΔvM +m ΔtD .0答案 C解析 在“天舟一号”和“天宫二号”对接的过程中水平方向动量守恒,M (v +Δv )+mv =(M +m )v ′,解得对接后两者的共同速度v ′=v +M ·ΔvM +m,以“天宫二号”为研究对象,根据动量定理有F ·Δt =mv ′-mv ,解得F =Mm ·ΔvM +m Δt,选项C 正确.7.(2018·河北省石家庄二中期中)滑块a 、b 沿水平面上同一条直线发生碰撞,碰撞后两者粘在一起运动,两者的位置x 随时间t 变化的图像如图2所示.则滑块a 、b 的质量之比( )图2A .5∶4B.1∶8C.8∶1D.4∶5 答案 B解析 设滑块a 、b 的质量分别为m 1、m 2,a 、b 两滑块碰撞前的速度为v 1、v 2, 由题图得v 1=-2m/sv 2=1m/s两滑块发生完全非弹性碰撞,碰撞后两滑块的共同速度设为v ,由题图得v =23m/s由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v联立解得m 1∶m 2=1∶8.8.(2018·山东省日照市校际联合质检)沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图像如图3所示.则下列说法错误的是( )图3A .碰撞前后物体A 的运动方向相反B .物体A 、B 的质量之比为1∶2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前物体B 的动量较大 答案 C解析 由题图可得,碰撞前v A =20-302m/s =-5 m/s ,碰撞后v A ′=20-102m/s =5 m/s ,则碰撞前后物体A 的运动方向相反,故A 正确;由题图可得,碰撞前v B =20-02m/s =10 m/s ,根据动量守恒得m A v A +m B v B =(m A +m B )v A ′,代入数据得:m A ∶m B =1∶2,故B 正确;碰撞前后物体A 速度大小相等,则碰撞过程中物体A 动能不变,故C 错误;碰前物体A 、B 速度方向相反,碰后物体A 、B 速度方向与物体B 碰前速度方向相同,则碰前物体B 动量较大,故D 正确.9.(多选)(2019·江西省上饶市调研)质量为M 的小车置于光滑的水平面上,左端固定一根水平轻弹簧,质量为m 的光滑物块放在小车上,压缩弹簧并用细线连接物块和小车左端,开始时小车与物块都处于静止状态,此时物块与小车右端相距为L ,如图4所示,当突然烧断细线后,以下说法正确的是( )图4A .物块和小车组成的系统机械能守恒B .物块和小车组成的系统动量守恒C .当物块速度大小为v 时,小车速度大小为mMv D .当物块离开小车时,小车向左运动的位移为m ML 答案 BC解析 弹簧推开物块和小车的过程,若取物块、小车和弹簧组成的系统为研究对象,则无其他力做功,机械能守恒,但选物块和小车组成的系统,弹力做功属于系统外其他力做功,弹性势能转化成系统的机械能,此时系统的机械能不守恒,A 选项错误;取物块和小车的系统,外力的和为零,故系统的动量守恒,B 选项正确;由物块和小车组成的系统动量守恒得:0=mv -Mv ′,解得v ′=m M v ,C 选项正确;弹开的过程满足反冲原理和“人船模型”,有v v ′=Mm,则在相同时间内x x ′=M m ,且x +x ′=L ,联立得x ′=mL M +m,D 选项错误. 10.(多选)(2018·陕西省西安一中一模)如图5所示,在光滑的水平面上有一静止的物体M ,物体M 上有一光滑的半圆弧轨道,最低点为C ,A 、B 为同一水平直径上的两点,现让小滑块m 从A 点由静止下滑,则( )图5A .小滑块m 到达物体M 上的B 点时小滑块m 的速度不为零B .小滑块m 从A 点到C 点的过程中物体M 向左运动,小滑块m 从C 点到B 点的过程中物体M 向右运动C .若小滑块m 由A 点正上方h 高处自由下落,则由B 点飞出时做竖直上抛运动D .物体M 与小滑块m 组成的系统机械能守恒,水平方向动量守恒 答案 CD解析 物体M 和小滑块m 组成的系统机械能守恒,水平方向动量守恒,D 正确;小滑块m 滑到右端两者水平方向具有相同的速度:0=(m +M )v ,v =0,可知小滑块m 到达物体M 上的B 点时,小滑块m 、物体M 的水平速度为零,故当小滑块m 从A 点由静止下滑,则能恰好到达B 点,当小滑块由A 点正上方h 高处自由下落,则由B 点飞出时做竖直上抛运动,A 错误,C 正确;小滑块m 从A 点到C 点的过程中物体M 向左加速运动,小滑块m 从C 点到B 点的过程中物体M 向左减速运动,选项B 错误.11.(2018·山东省日照市二模)2017年4月22日12时23分,“天舟一号”货运飞船与离地面390公里处的“天宫二号”空间实验室顺利完成自动交会对接.下列说法正确的是( )A .根据“天宫二号”离地面的高度,可计算出地球的质量B .“天舟一号”与“天宫二号”的对接过程,满足动量守恒、能量守恒C .“天宫二号”飞越地球的质量密集区上空时,轨道半径和线速度都略微减小D .若测得“天舟一号”环绕地球近地轨道的运行周期,可求出地球的密度 答案 D解析 根据GMmR +h2=m4π2T 2(R +h ),可得M =4π2R +h 3GT 2,则根据“天宫二号”离地面的高度,不可计算出地球的质量,选项A 错误;“天舟一号”与“天宫二号”对接时,“天舟一号”要向后喷气加速才能对接,故对接的过程不满足动量守恒,但是能量守恒,选项B 错误;“天宫二号”飞越地球的质量密集区上空时,万有引力变大,则轨道半径略微减小,引力做正功,故线速度增加,选项C 错误;G Mm R 2=m 4π2T 2R ,而M =43πR 3ρ,可得ρ=3πGT2,即若测得“天舟一号”环绕地球近地轨道的运行周期,可求出地球的密度,选项D 正确. 12.(2018·河南省新乡市第三次模拟)如图6所示,质量M =9kg 的小车A 以大小v 0=8m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架光滑水平台上放置质量m =1 kg 的小球。

新高考,高中物理 复习试卷讲义 第2节 动量守恒定律及“3类模型”问题

新高考,高中物理 复习试卷讲义 第2节 动量守恒定律及“3类模型”问题

第2节动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。

2.表达式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′。

(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。

(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。

(4)Δp=0,系统总动量的增量为零。

3.适用条件(1)理想守恒:不受外力或所受外力的合力为零。

(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。

(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒。

【自测1】(多选)在光滑水平面上,A、B两小车中间有一轻弹簧(弹簧不与小车相连),如图1所示,用手抓住小车并将弹簧压缩后使小车处于静止状态,将小车及弹簧看成一个系统,下列说法中正确的是()图1A.两手同时放开后,系统总动量始终为零B.先放开左手,再放开右手后,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后,系统总动量都保持不变答案ACD二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。

(2)弹性碰撞:碰撞后系统的机械能没有损失。

(3)非弹性碰撞:碰撞后系统的机械能有损失。

(4)完全非弹性碰撞:碰撞后合为一体,机械能损失最大。

2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。

3.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。

(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。

【自测2】A球的质量是m,B球的质量是2m,它们在光滑的水平面上以相同的动量运动。

B在前,A在后,发生正碰后,A球仍朝原方向运动,但其速率是原来的一半,碰后两球的速率比v A′∶v B′为()A.1∶2B.1∶3C.2∶1D.2∶3答案D考点一动量守恒定律的理解和应用动量守恒定律的五个特性矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(一般是相对于地面)同时性动量是一个瞬时量,表达式中的p1、p2、…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′、…必须是系统中各物体在相互作用后同一时刻的动量系统性研究的对象是相互作用的两个或多个物体组成的系统普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统1.(动量守恒的判断)(2021·全国乙卷)如图2,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。

高考物理复习---用动量守恒定律解决“三类模型”问题 考点分析PPT课件

高考物理复习---用动量守恒定律解决“三类模型”问题 考点分析PPT课件
图1
1 2 3 4 5 6 7 8 9 10 11
A.火箭的推力来源于空气对它的反作用力
√B.在燃气喷出后的瞬间,火箭的速度大小为Mm-v0m
C.喷出燃气后,万户及所携带设备能上升的最大高 度为gMm2-v0m2 2
D.在火箭喷气过程中,万户所携设备机械能守恒
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11
3.(2019·湖南娄底市下学期质量检测)质量为M的气球上有一个质量为m的 人,气球和人在静止的空气中共同静止于离地h高处,如果从气球上慢 慢放下一个质量不计的软梯,让人沿软梯降到地面,则软梯长至少应为
m A.m+
√ A.42 m/s B.-42 m/s C.40 m/s D.-40 m/s
1 2 3 4 5 6 7 8 9 10 11
解析 喷出气体过程中重力和空气阻力可忽略不计,可知在火箭发射的 过程中二者组成的系统竖直方向的动量守恒,以喷出气体的速度方向为 正方向,由动量守恒定律得:Δmv0+(M-Δm)v=0,解得:v=-42 m/s, 故B正确,A、C、D错误.
正确的是
√A.木板获得的动能为1 J √B.系统损失的机械能为2 J
C.木板A的最小长度为2 m
√D.A、B间的动摩擦因数为0.1
图2
1 2 3 4 5 6 7 8 9 10 11
解析 由题图可知,最终木板获得的速度为 v=1 m/s,A、B 组成的系统 动量守恒,以 B 的初速度方向为正方向,由动量守恒定律得 mv0=(M+ m)v,解得 M=2 kg,则木板获得的动能为 Ek=12Mv2=12×2×12 J=1 J, 故 A 正确; 系统损失的机械能 ΔE=12mv B2-12(m+M)v2,代入数据解得 ΔE=2 J,故 B 正确;

动量守恒定律的典型模型及其应用+课件

动量守恒定律的典型模型及其应用+课件

动能损失为
E=12m1v12012m2v22012 m1m2v2
m1m1
2m1 m2
v10v20 2
解决碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则
二. 能量不增加的原则
三. 物理情景可行性原则
例如: 追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
2 特例: 质量相等的两物体发生弹性正碰
v1
m1 m2 v10 2m2v20 m1 m2
v2
m2 m1 v20 2m1v10 m1 m2
碰后实现动量和动能的全部转移 (即交换了速度) 第219页2题
完全非弹性碰撞
碰撞后系统以相同的速度运动 v1=v2=v 动量守恒:
m 1 v 1 0 m 2 v 2 0 m 1 m 2 v
ABD
• 图中,轻弹簧的一端固定,另一端与滑块B相连,B静 止在水平直导轨上,弹簧处在原长状态。另一质量与B 相同滑块A,从导轨上的P点以某一初速度向B滑行,当 A滑过距离l1时,与B相碰,碰撞时间极短,碰后A.B紧
贴在一起运动,但互不粘连。已知最后A恰好返回出发
点P并停止,滑块A和B与导轨的滑动摩擦因数都为
高三物理重点专题
动量守恒定律的典型模型 及其应用
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)反冲运动、爆炸模型
(三)子弹打木块类的问题:
(四)人船模型: 平均动量守恒
• (1)在弹性形变增大的过程中,系统中两物 体的总动能减小,弹性势能增大,在系统形变 量最大时,两物体速度相等. 在形变减小(恢 复)的过程中,系统的弹性势能减小,总动能 增大.

课时作业3:6.2 动量守恒定律及“三类模型”问题

课时作业3:6.2 动量守恒定律及“三类模型”问题

第2讲 动量守恒定律及“三类模型”问题1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( )A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定答案 A2.(2018·福建福州模拟)一质量为M 的航天器正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( ) A.v 2-v 1v 1M B.v 2v 2-v 1M C.v 2-v 0v 2+v 1M D.v 2-v 0v 2-v 1M 答案 C3.如图1所示,位于光滑水平桌面上的小滑块P 和Q 都可视为质点,质量相等.Q 与水平轻弹簧相连,设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个过程中,弹簧具有的最大弹性势能等于( )图1A.P 的初动能B.P 的初动能的12C.P 的初动能的13D.P 的初动能的14 答案 B4.(多选)如图2甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m 1和m 2.图乙为它们碰撞前后的x -t 图象.已知m 1=0.1 kg.由此可以判断( )图2A.碰前m 2静止,m 1向右运动B.碰后m 2和m 1都向右运动C.m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能答案 AC解析 由x -t 图象的斜率得到,碰前m 2的位移不随时间而变化,处于静止状态.m 1速度大小为v 1=Δx Δt=4 m/s ,方向只有向右才能与m 2相撞,故A 正确; 由题图乙读出,碰后m 2的速度为正方向,说明向右运动,m 1的速度为负方向,说明向左运动,故B 错误;由题图乙求出碰后m 2和m 1的速度分别为v 2′=2 m /s ,v 1′=-2 m/s ,根据动量守恒定律得,m 1v 1=m 1v 1′+m 2v 2′,代入解得,m 2=0.3 kg ,故C 正确;碰撞过程中系统损失的机械能为ΔE =12m 1v 12-12m 1v 1′2-12m 2v 2′2,代入解得,ΔE =0 J ,故D 错误.5.(多选)在光滑的水平面上有质量相等的A 、B 两球,其动量分别为10 kg·m /s 与2 kg·m/s ,方向均向东,且规定该方向为正方向,A 球在B 球后,当A 球追上B 球时发生正碰,则相碰以后,A 、B 两球的动量可能分别为( )A.6 kg·m /s,6 kg·m/sB.-4 kg·m /s,16 kg·m/sC.6 kg·m /s,12 kg·m/sD.3 kg·m /s,9 kg·m/s答案 AD6.(多选)如图3所示,质量为M 的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m 的小物块从斜面底端沿斜面向上以初速度v 0开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v ,距地面高度为h ,则下列关系式中正确的是( )图3A.m v 0=(m +M )vB.m v 0cos θ=(m +M )vC.mgh =12m (v 0sin θ)2D.mgh +12(m +M )v 2=12m v 02 答案 BD解析 小物块上升到最高点时,速度与楔形物体的速度相同,二者组成的系统在水平方向上动量守恒,全过程机械能也守恒.以向右为正方向,在小物块上升过程中,由水平方向系统动量守恒得m v 0cos θ=(m +M )v ,故A 错误,B 正确;系统机械能守恒,由机械能守恒定律得mgh +12(m +M )v 2=12m v 02,故C 错误,D 正确. 7.(2018·广东东莞调研)两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次之后,甲和乙最后的速率关系是( )A.若甲最先抛球,则一定是v 甲>v 乙B.若乙最后接球,则一定是v 甲>v 乙C.只有甲先抛球,乙最后接球,才有v 甲>v 乙D.无论怎样抛球和接球,都是v 甲>v 乙答案 B8.如图4所示,具有一定质量的小球A 固定在轻杆一端,另一端挂在小车支架的O 点.用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B 处固定的橡皮泥碰击后粘在一起,则在此过程中小车将( )图4A.向右运动B.向左运动C.静止不动D.小球下摆时,车向左运动后又静止答案 D解析 水平方向上,系统不受外力,因此在水平方向上动量守恒.小球下落过程中,水平方向具有向右的分速度,因此为保证动量守恒,小车要向左运动.当撞到橡皮泥,是完全非弹性碰撞,A 球和小车大小相等、方向相反的动量恰好抵消掉,小车会静止.9.(多选)质量为M 和m 0的滑块用轻弹簧连接,以恒定的速度v 沿光滑水平面运动,与位于正对面的质量为m 的静止滑块发生碰撞,如图5所示,碰撞时间极短,在此过程中,下列情况可能发生的是( )图5A.M 、m 0、m 速度均发生变化,分别为v 1、v 2、v 3,而且满足(M +m 0)v =M v 1+m 0v 2+m v 3B.m 0的速度不变,M 和m 的速度变为v 1和v 2,而且满足M v =M v 1+m v 2C.m 0的速度不变,M 和m 的速度都变为v ′,且满足M v =(M +m )v ′D.M 、m 0、m 速度均发生变化,M 、m 0速度都变为v 1,m 的速度变为v 2,且满足(M +m )v 0=(M +m )v 1+m v 2答案 BC解析 碰撞的瞬间M 和m 组成的系统动量守恒,m 0的速度在瞬间不变,以M 的初速度方向为正方向,若碰后M 和m 的速度变为v 1和v 2,由动量守恒定律得:M v =M v 1+m v 2;若碰后M 和m 速度相同,由动量守恒定律得:M v =(M +m )v ′,故B 、C 正确.10.(2018·陕西榆林质检)如图6所示,质量为m 2=2 kg 和m 3=3 kg 的物体静止放在光滑水平面上,两者之间有压缩着的轻弹簧(与m 2、m 3不拴接).质量为m 1=1 kg 的物体以速度v 0=9 m/s 向右冲来,为防止冲撞,释放弹簧将m 3物体发射出去,m 3与m 1碰撞后粘合在一起.试求:图6(1)m 3的速度至少为多大,才能使以后m 3和m 2不发生碰撞?(2)为保证m 3和m 2恰好不发生碰撞,弹簧的弹性势能至少为多大?答案 (1)1 m/s (2)3.75 J解析 (1)设m 3发射出去的速度为v 1,m 2的速度为v 2,以向右的方向为正方向,对m 2、m 3,由动量守恒定律得:m 2v 2-m 3v 1=0.只要m 1和m 3碰后速度不大于v 2,则m 3和m 2就不会再发生碰撞,m 3和m 2恰好不相撞时,两者速度相等.对m 1、m 3,由动量守恒定律得:m 1v 0-m 3v 1=(m 1+m 3)v 2解得:v 1=1 m/s即弹簧将m 3发射出去的速度至少为 1 m/s(2)对m 2、m 3及弹簧,由机械守恒定律得:E p =12m 3v 12+12m 2v 22=3.75 J. 11.如图7所示,光滑水平轨道右边与墙壁连接,木块A 、B 和半径为0.5 m 的14光滑圆轨道C静置于光滑水平轨道上,A、B、C质量分别为1.5 kg、0.5 kg、4 kg.现让A以6 m/s的速度水平向右运动,之后与墙壁碰撞,碰撞时间为0.3 s,碰后速度大小变为4 m/s.当A与B碰撞后会立即粘在一起运动,已知g=10 m/s2,求:图7(1)A与墙壁碰撞过程中,墙壁对木块A平均作用力的大小;(2)AB第一次滑上圆轨道所能达到的最大高度h.答案(1)50 N(2)0.3 m解析(1)A与墙壁碰撞过程,规定水平向左为正方向,对A由动量定理有:Ft=m A v2-m A(-v1)解得F=50 N(2)A与B碰撞过程,对A、B系统,水平方向动量守恒有:m A v2=(m B+m A)v3AB第一次滑上圆轨道到最高点的过程,对A、B、C组成的系统,水平方向动量守恒有:(m B+m A)v3=(m B+m A+m C)v4由能量关系:12(m B+m A)v32=12(m B+m A+m C)v42+(m B+m A)gh解得h=0.3 m.。

22版:第2讲 动量守恒定律及“三类模型”问题(创新设计)

22版:第2讲 动量守恒定律及“三类模型”问题(创新设计)

研透命题点
创新设计
4.系统产生的内能Q=Ffx相,即两物体由于相对运动而摩擦产生的热(机械能转化 为内能),等于摩擦力大小与两物体相对滑动的路程的乘积。
5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相 等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔEk=FfL(L为木块 的长度)。
(3)Δp1=_-__Δ__p_2 ____,相互作用的两个物体动量的变化量等大反向。 (4)Δp=0,系统总动量的增量为零。
过好双基关 研透命题点 课时限时练
过好双基关
创新设计
3.适用条件
(1)理想守恒:不受外力或所受外力的合力为_零___。 (2)近似守恒:系统内各物体间相互作用的内力_远__大__于___它所受到的外力。 (3)某一方向守恒:如果系统在某一方向上所受外力的合力为零 ,则系统在 __这__一__方__向__上动量守恒。
过好双基关 研透命题点 课时限时练
研透命题点
命题点二 “子弹打木块”模型
创新设计
1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合力为零,因此系统 动量守恒。
2.两者发生的相对位移为子弹射入木块的深度x相。 3.根据能量守恒定律,系统损失的动能等于系统增加的内能。
过好双基关 研透命题点 课时限时练
过好双基关 研透命题点 课时限时练
研透命题点
创新设计
图5 解析 设步枪子弹的出膛速度大小为 v0,子弹穿过球后瞬间,橡皮球的速度为 v1,子弹的速度为 v2,有 m2v0=m1v1+m2v2,h=12gt2,x1=v1t,x2=v2t,解得 v0 =1 000 m/s。 答案 1 000 m/s
过好双基关 研透命题点 课时限时练
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动到水平地面O点正上方时速度沿水平方向,离地面高
度为h,炮弹动能为E,此时发生爆炸,炮弹炸为质量相等
的两部分,两部分的动能之和为2E,速度方向仍沿水平方
向,爆炸时间极短,重力加速度为g,不计空气阻力和火药
的质量,求炮弹的两部分落地点之间的距离.
图7
答案 4
Eh mg
解 爆析炸过爆程动炸量之守前恒E=:12mmvv0=02 21mv1+12mv2 12·m2 v12+12·m2 v22=2E
解得:v1=0,v2=2v0
随后一块做自由落体运动,一块做平抛运动, 则由 h=12gt2,x=2v0t 解得 x=4 mEhg.
变式4 (2019·山东临沂市质检)2017年6月15日,我国在酒泉卫星发射中心用长
征四号乙运载火箭成功发射首颗X射线调制望远镜卫星“慧眼”.假设将发射
火箭看成如下模型:静止的实验火箭,总质量为M=2 100 g.当它以对地速度为
变式1 (多选)如图3所示,小车在光滑水平面上向左匀速运动,水平轻质弹簧
左端固定在A点,物体与固定在A点的细线相连,弹簧处于压缩状态(物体与弹
簧未连接),某时刻细线断了,物体沿车滑动到B端粘在B端的油泥上,取小车、
物体和弹簧为一个系统,下列说法正确的是
A.若物体滑动中不受摩擦力,则该系统全过程机械能守恒
板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A、B两
物体被弹开(A、B两物体始终不滑出平板车),则有
A.A、B系统动量守恒
B.A、B、C及弹簧组成的系统机械能守恒
C.小车C先向左运动后向右运动
图2
√D.小车C一直向右运动直到静止
解析 A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动 量守恒.在弹簧释放的过程中,因mA∶mB=1∶2, 由摩擦力公式f=μN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B 两物体组成的系统合外力不为零, A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对 小车向右的滑动摩擦力, 在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动, 因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、 B、C错误,D正确.
变式3 (2019·四川第二次诊断)如图6甲所示,一块长度为L、质量为m的木块
静止在光滑水平面上.一颗质量也为m的子弹以水平速度v0射入木块.当子弹刚射 穿木块时,木块向前移动的距离为s,如图乙所示.设子弹穿过木块的过程中受
到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为
A.v10(s+L)
(2)“木块”固定在水平面上 ①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块” 静止不动. ②处理方法:对“子弹”应用动能定理或牛顿第二定律.
2.“反冲”和“爆炸”模型 (1)反冲 ①定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向 冲量,这种现象叫反冲运动. ②特点:系统内各物体间的相互作用的内力 远大于系统受到的外力.实例:发射 炮弹、发射火箭等. ③规律:遵从动量守恒定律. (2)爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且 远大于系统所 受的外力,所以系统动量守恒 .如爆竹爆炸等.
3.适用条件 (1)理想守恒:不受外力或所受外力的合力为 零 . (2)近似守恒:系统内各物体间相互作用的内力 远大于它所受到的外力. (3) 某 一 方 向 守 恒 : 如 果 系 统 在 某 一 方 向 上 所 受 外 力 的 合 力 为 零 , 则 系 统 在 __这__一__方__向__上动量守恒.
例3 (多选)(2019·河北唐山市第一次模拟)如图5,一子弹以初速度v0击中静止 在光滑的水平面上的木块,最终子弹未能射穿木块,射入的深度为d,木块加
速运动的位移为s.则以下说法正确的是
A.子弹动能的亏损等于系统动能的亏损
√B.子弹动量变化量的大小等于木块动量变化量的大小
C.摩擦力对木块做的功等于摩擦力对子弹做的功
自测1 关于系统动量守恒的条件,下列说法正确的是
A.只要系统内存在摩擦力,系统动量就不可能守恒
B.只要系统中有一个物体具有加速度,系统动量就不守恒
√C.只要系统所受的合外力为零,系统动量就守恒
D.系统中所有物体的加速度为零时,系统的总动量不一定守恒
二 “三类”模型问题
1.“子弹打木块”模型 (1)“木块”放置在光滑的水平面上 ①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块” 在滑动摩擦力作用下做 匀加速 直线运动. ②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于 外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a. 系统水平方向动量守恒;b.系统的机械能 不守恒 ;c.对“木块”和“子弹”分 别应用动能定理.
命题点三 “反冲”和“爆炸”模型
基础考点 自主悟透
1.反冲运动的三点说明
作用原理 反冲运动是系统内物体之间的作用力和反作用力产生的效果
反冲运动中系统不受外力或内力远大于外力,所以反冲运动遵循 动量守恒
动量守恒定律
反冲运动中,由于有其他形式的能转化为机械能,所以系统的炸现象的三个规律
图5
√D.子弹对木块做的功等于木块动能的增量
解析 子弹射入木块的过程,要产生内能,由能量守恒定律知子弹动能的亏损 大于系统动能的亏损,故A错误; 子弹和木块组成的系统动量守恒,系统动量的变化量为零,则子弹与木块动量 变化量大小相等,方向相反,故B正确; 摩擦力对木块做的功为fs,摩擦力对子弹做的功为-f (s+d),可知二者不等, 故C错误; 对木块根据动能定理可知:子弹对木块做的功即为摩擦力对木块的功,等于木 块动能的增量,故选项D正确.
大一轮复习讲义
内容索引
NEIRONGSUOYIN
过好双基关 研透命题点 课时精练
过好双基关
01
一 动量守恒定律
1.内容 如果一个系统不受外力,或者所受外力的 矢量和 为零,这个系统的总动量保持 不变. 2.表达式 (1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′. (2)m1v1+m2v2= m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动 量和等于作用后的动量和. (3)Δp1=-Δp2 ,相互作用的两个物体动量的变化量等大反向. (4)Δp=0,系统总动量的增量为零.
v0=840 m/s喷出质量为Δm=100 g的高温气体后,火箭的对地速度为(喷出气体 过程中重力和空气阻力可忽略不计)
A.42 m/s
√B.-42 m/s
C.40 m/s
D.-40 m/s
解析 喷出气体过程中重力和空气阻力可忽略不计,可知在火箭发射的过程中 二者组成的系统竖直方向的动量守恒,以喷出气体的速度方向为正方向,由动 量守恒定律得:Δmv0+(M-Δm)v=0,解得:v=-42 m/s,故B正确,A、C、 D错误.
3.“人船模型”问题 (1)模型介绍 两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒. 在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的 问题即为“人船模型”问题. (2)模型特点 ①两物体满足动量守恒定律:m1v1-m2v2=0. ②运动特点:人动船动,人静船静,人快船 快 ,人慢船慢 ,人左船右 ;人船 位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们 质量 的反比, ③即应xx12=用vvxx2112==mmvv1221=. mm21时要注意:v1、v2 和 x1、x2 一般都是相对地面而言的.
动量守恒
爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过 程中,系统的总动量守恒
动能增加
在爆炸过程中,有其他形式的能量(如化学能)转化为动能
位置不变
爆炸的时间极短,因而作用过程中物体产生的位移很小,可以 认为爆炸后各部分仍然从爆炸前的位置以新的动量开始运动
例4 (2020·山东济宁市质检)如图7所示,质量为m的炮弹
自测2 如图1所示,长为L、质量为m船的小船停在静水中,质量为m人的人由 静止开始从船的一端走到船的另一端,不计水的阻力.则船和人相对地面的位
移各为多少?
m人
答案
L
m人+m船
m船 L
m人+m船
图1
解析 以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过
程中,系统水平方向不受外力作用,所以整个系统水平方向动量守恒,可得m
B.v10(s+2L)
C.21v0(s+L)
√D.v10(L+2s)
图6
解析 子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守
恒,以v0的方向为正方向,有:mv0=mv1+mv2, 设子弹穿过木块的过程所受阻力为 f,对子弹由动能定理:-f (s+L)=12mv12-12mv02, 由动量定理:-f t=mv1-mv0, 对木块由动能定理:fs=21mv22, 由动量定理:f t=mv2, 联立解得:t=v10(L+2s),故选 D.
变式2 一质量为M的航天器远离太阳和行星,正以速度v0在太空中飞行,某一 时刻航天器接到加速的指令后,发动机瞬间向后喷出质量为m的气体,气体向
后喷出的速度大小为v1,加速后航天器的速度大小v2等于(v0、v1、v2均为相对
同一参考系的速度)
M+mv0-mv1
A.
M
M+mv0+mv1
B.
M
√Mv0+mv1
√B.若物体滑动中有摩擦力,则该系统全过程动量守恒
图3
√C.不论物体滑动中有没有摩擦,小车的最终速度与断线前相同
√D.不论物体滑动中有没有摩擦,系统损失的机械能相同
解析 物体与油泥粘合的过程,发生非弹性碰撞,系统机械能有损失,故A错误; 整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒, 故B正确; 取系统的初速度方向为正方向,根据动量守恒定律可知,物体在沿车滑动到B 端粘在B端的油泥上后系统共同的速度与初速度是相同的,故C正确; 由C的分析可知,当物体与B端油泥粘在一起时,系统的速度与初速度相等,所 以系统的末动能与初动能是相等的,系统损失的机械能等于弹簧的弹性势能, 与物体滑动中有没有摩擦无关,故D正确.
相关文档
最新文档