2016深圳中考数学考点、知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考数学考点、知识点总结

一、初中数学常考知识点

Ⅰ.代数部分:

(一)数与式:

1、实数:(1)实数的有关概念;常考点:倒数、相反数、绝对值(选择第1题)

(2)科学记数法表示一个数(选择题前第5题)

(3)实数的运算法则:混合运算(计算题)

(4)实数非负性应用:代数式求值(选择、填空)

2、代数式:代数式化简求值(解答题)

3、整式:(1)整式的概念和简单运算、化简求值(解答题)

(2)利用提公因式法、公式法进行因式分解(选择填空必考题)

4、分式:化简求值、计算(解答题)、分式取值围(一般为填空题)(易错点:分母不为0)

5、二次根式:求取值围、化简运算(填空、解答题)

(二)方程与不等式:

1、解分式方程(易错点:注意验根)、一元二次方程(常考解答题)

2、解不等式、解集的数轴表示、解不等式组解集(常考解答题)

3、解方程组、列方程(组)解应用题(若为分式方程仍勿忘检验)(必考解答题)

4、一元二次方程根的判别式

(三)函数及其图像

1、平面直角坐标系与函数

(1)函数自变量取值围,并会求函数值;

(2)坐标系点的特征;

(3)能结合图像对简单实际问题中的函数关系进行分析(选择8题)

2、一次函数(解答题)

(1)理解正比例函数、一次函数的意义、会画图像

(2)理解一次函数的性质

(3)会求解析式、与坐标轴交点、求与其他函数交点

(4)解决实际问题

3、反比例函数(解答题)

(1)反比例函数的图像、意义、性质(两支,中心对称性、分类讨论)

(2)求解析式,与其他函数的交点、解决有关问题(如取值围、面积问题)4、二次函数(必考解答题)

(1)图像、性质(开口、对称性、顶点坐标、对称轴、与坐标轴交点等)(2)解析式的求解、与一元二次方程综合(根与交点、判别式)

(3)解决实际问题

(4)与其他函数综合应用、求交点

(5)与特殊几何图形综合、动点问题(解答题)

Ⅱ.空间与图形

(一)图形的认识

1、立体图形、视图和展开图(选择题)

(1)几何体的三视图,几何体原型相互推倒

(2)几何体的展开图,立体模型相互推倒

2、线段、射线、直线(解答题)

(1)垂直平分线、线段中点性质及应用

(2)结合图形判断、证明线段之间的等量、和差、大小关系

(3)线段长度的求解

(4)两点间线段最短(解决路径最短问题)

3、角与角分线(解答题)

(1)角与角之间的数量关系

(2)角分线的性质与判定(辅助线添加)

4、相交线与平行线

(1)余角、补角

(2)垂直平分线性质应用

(3)平分线性质与判定

5、三角形

(1)三角形角和、外角、三边关系(选择题)

(2)三角形角分线、高线、中线、中位线性质应用(辅助线)

(3)三角形全等性质、判定、融入四边形证明(必考解答题)

(4)三角形运动、折叠、旋转、平移(全等变换)、拼接(探究问题)

6、等腰三角形与直角三角形

(1)等腰三角形的性质与判定、直角三角形的性质、勾股定理及逆定理

(2)等腰三角形、直角三角形与四边形或圆的综合

(3)锐角三角函数、特殊角三角函数、解直角三角形(解答题)

(4)等腰、直角、等腰直角三角形与函数综合形成的代几综合题(压轴题必考)

7、多边形:角和公式、外角和定理(选择题)

8、四边形(解答题)

(1)平行四边形的性质、判定、结合相似、全等证明

(2)特殊的平行四边形:性质、判定、以及与轴对称、旋转、平移和函数等结合应用(动点问题、面积问题及相关函数解析式问题)

(3)梯形:一般及等腰、直角梯形的性质、与平行四边形知识结合,计算、加辅助线8、圆(必考解答题)

(1)圆的有关概念、性质

(2)圆周角、圆心角之间的相互联系

(3)掌握并会利用垂径定理、弧长公式、扇形面积公式,圆锥侧面面积、全面积公式(4)圆中的位置关系:要会判断:点与圆、直线与圆、圆与圆

(5)重点:圆的证明计算题(圆的相关性质与几何图形综合)

(二)图形与变换

1、轴对称:会判断轴对称图形、能用轴对称的知识解决简单问题

2、平移:会运用平移的性质、会画出平移后的图形、能用平移的知识解决简单问题

3、旋转:理解旋转的性质(全等变换),会应用旋转的性质解决问题,会判断中心对称图形

4、相似:会用比例的基本性质、三角形相似的性质证明角相等、相似比求线段长度(解答题)Ⅲ.统计与概率

(一)相关概念的理解与应用:平均数、中位数、众数、方差等(选择题)

(二)能利用各种统计图解决实际问题(必考,解答题)

(三)会用列举法(包括图表、树状图法)计算简单事件发生的概率(解答题,填空题)二、初中数学各部分知识框架

第一部分《数与式》

2a a π⎧⎪⎧⎪⎨⎪⎩⎪

⎪⎧⎨⎨⎪

⎩⎪

⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数

分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:有效数字、平方根与算术平方根、立方根、非负式子(,单项式:系数与次数分类多项式整式数与式()01;;(),();();1;m m n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪

⎧+-=-⎪

⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫

== ⎪

⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式

化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪

⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪

⎩⎩⎩⎡≥⎤⎧=⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次

二次根式的运算22222

2()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪

⎪⎪⎪

⎪⎪

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎧⎪

⎪⎪

⎪⎪

⎪⎪⎪⎪⎨⎪⎪

⎪⎪⎪⎪

⎪⎪⎪⎩⎩

相关文档
最新文档