离散数学课件-第5章-1、2
武汉大学《离散数学》课件-第5章
vi是终点), 则称为通路, v0是通路的起点, vl是通路的终点, l为通路的长度. 又若v0=vl,则称为回路.
(2) 若通路(回路)中所有顶点(对于回路, 除v0=vl)各异,则称为 初级通路(初级回路).初级通路又称作路径, 初级回路又称 作圈.
32
通路与回路(续)
定理 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的通路. 推论 在n阶图G中,若从顶点u到v(uv)存在通 路,则从u到v存在长度小于等于n1的初级通路.
定理 在一个n阶图G中,若存在v到自身的回路,则 一定存在v到自身长度小于等于n的回路. 推论 在一个n阶图G中,若存在v到自身的简单回 路,则存在v到自身长度小于等于n的初级回路.
D
D[{e1,e3}]
D[{v1,v2}]
26
补图
定义 设G=<V,E>为n阶无向简单图,以V为顶点集, 所有使G成为完全图Kn的添加边组成的集合为边集 的图,称为G的补图,记作 G . 若G G , 则称G是自补图.
例 对K4的所有非同构子图, 指出互为补图的每一对 子图, 并指出哪些是自补图.
图论
1
图论部分
第5章 图的基本概念 第6章 特殊的图 第7章 树
2
第5章 图的基本概念
5.1 无向图及有向图 5.2 通路, 回路和图的连通性 5.3 图的矩阵表示 5.4 最短路径, 关键路径和着色
3
5.1 无向图及有向图
▪ 无向图与有向图 ▪ 顶点的度数 ▪ 握手定理 ▪ 简单图 ▪ 完全图 ▪ 子图 ▪ 补图
27
5.2 通路、回路、图的连通性
离散数学第5讲PPT课件
第1页/共31页
第二章 命题逻辑等值演算
等值演算法求解主析取范式的方法和步骤:
(1)化为析取范式A;
∨ רP (2)对A中的简单合取项补入没有出现的命题变元 ,即合取上(P
)
式,然后应用分配律展开;
(3) 将析取式A中重复出现的合取项和相同的变元合并;
(4)除去析取范式中所有永假的合取项;
第2页/共31页
解:因为主析取范式是由所有的取值为1的极小项析取构成,而 成真赋值所对应的即为极小项的编码,所以主析取范式为:
m0∨m3∨ m6
同理,主合取范式为:M1 ∧ M2 ∧ M4 ∧ M5 ∧ M7
第12页/共31页
第二章 命题逻辑等值演算
2、判断公式的类型: 设公式A中含有n个命题变项,则:
(1)A为重言式 A的主析取范式含全部2n个极小项。 (2)A为矛盾式 A的主析取范式不含任何极小项 ,记A的主析取范式为 0。 (3)A为可满足式 A的主析取范式至少含一个极小项 。
第二章 命题逻辑等值演算
以上六种情况对应公式分别为:
①(רp∧רq) ∧((רp∧רr)∨(p∧r)) ∧(רp∧r) …①
② (רp∧רq) ∧(p∧רr)∧((p∧r)∨(רp∧ רr)) …②
③
((רp∧q)∨(p∧רq))∧(רp∧r)∧(רp∧r)רp∧q
离散数学PPT课件
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理
离散数学课件第5章 无限集合
(a ) | I + |= S \
S 0
函数f: N→I+, f(x)=x+1是一双射函数。
S (b) | I |= S \ 0
x 2 函数f: N→I , f ( x ) = − x + 1 2
是一双射函数。
当x是偶数时 当x是奇数时
第五章 无 限 集 合 定义5.1-4 定义 如果存在从N的初始段到集合A的双射函数, 则称
3( n + 1), 如果n是偶数. f (n) = 3( n − 1), 如果n是奇数.
第五章 无 限 集 合 定理5.1-3 一个集合A是可数的当且仅当存在A的枚举。 定理 证 必要性。 如果A是可数的, 那么根据定义, 存在一从N的初 始段到A的双射函数, 这证明了存在A的枚举。 充分性。我们考虑两种情况: 情况1 如果A是有限的, 那么根据有限集合的定义和可数集合的 情况 定义, A是可数的。 情况2 情况 假设A不是有限的而f是A的枚举。枚举f必须以N的全集 作为它的前域。如果f是双射函数, 那么根据可数无限集合的定义, A 的基数是 S 而A是可数的。 如果f不是双射函数。利用下述办 | A |= S \ 0 法, 根据枚举f构造一个从N到A的双射函数g, 以证明A是可数的。
第五章 无 限 集 合 定理5.1-6 如果A是有限集合, B是可数集合, 那么BA是可数的。 定理 证 若A是空集, 则|BA|=1, 是可数的; 若A非空, 而B有限(包括是? 空集), 则|BA|=|B||A|有限, 因而是可数的。剩下只需证明|A|=n>0, 且B是可数无限的情况。设B的无重复枚举函数是g: N→B, 对每一 正整数k∈N定义集合Fk如下:
第五章 无 限 Βιβλιοθήκη 合5.1 可数和不可数集合
离散数学及其应用课件第5-6章
n! (n r)!r!
因此左边=右边,得证。 对于一个n元素集合的r-组合数也有另一种常用的记号,即C(n, r)可写为 。
这个数也叫做二项式系数。
推论2
推论2 帕斯卡恒等式。设n,r为正整数,n r 0,则
C(n,r) C(n 1,r 1) C(n 1,r)
证明 利用定理5.2.2得
C(n 1, r 1) C(n 1, r) (n 1)! (n 1)! (r 1)!(n r)! r!(n 1 r)!
IP地址编码方案
0
8
16
24
32
A类
0 网络地址(7位)
主机地址(24位)
B类
10
网络地址(14位)
主机地址(16位)
C类
1 10
网络地址(21位)
主机地址(8位)
D类
1 1 10
组播地址(28位)
E类
1 1 1 10
保留地址
A、B、C 三类在全球范围内统一分配,D 类地址用于在IP网络 中的组播,E 类地址保留作研究之用。
定理
定理5.2.4 具有n个元素的集合允许重复的r-组合数是C (n+r-1,r)。
证明 当允许重复时,n个元素的集合的每个r-组合可以用r 个1和n-1个0的序列来表示。这里的0用来分隔r个1,n-1个0将r 个1分隔成n段,每段对应集合的一个元素, 每段中的1的个数 表示这个元素在r-组合中出现的次数。
P(n,r)=C(n,r)P(r,r)= C(n,r)r!所以
c(n, r) P(n, r) n! r! r!(n r)!
规定,当 时,C(n,r)=0。
推论1
推论1 设n,r为正整数, ,则 。 证明 左边=C(n,r)
离散数学讲解第五章PPT课件
17
又例如 (a2)3 a6 因为 (a2)3(a (2)1)3(a2)1(a2)1(a2)1
(aa)1(aa)1(aa)1
根据结合(a律 a )(a 1a1)(a1a1)(aa)e 所以 (a a)1 a1a1 因此 (a2) 3 (a1a1)(a1a1)(a1a1)
a 1a 1 a1a1a1a1 (a 1)6 a 6
2021/4/8
7
定理5-2:设h是从代数系统V1= <S;*>到V2= <S;>的 满同态,其中运算*和都是二元运算,则 (1)若V1是半群,则V2也是半群; (2)若V1是独异点,则V2也是独异点。
2021/4/8
8
四、有限独异点的幂等元 设<S;*>是生成元为g的有限循环独异点,考虑无限序列: e,g,g2,g3,.... ,gn-1,gn,gn+1,......
证明:对任意的a∈S,令Sa={ a0,a1,a2,...,an,...} 因为S有限,而SaS,所以Sa也有限。 可以验证<S; * >是一具有生成元a的有限循环独异点。 因此,至少有一幂等元akl,这里的k和l如前定义。 记j=kl,即aj是幂等元。 注:这里j≥1,有可能aj=e
2021/4/8
(1)令FA={f|f:AA},则<FA;>是一个群。 (N)
(2)令EA = {f|f:AA是双射}, 则<EA;>是一个群。 (Y )
(3)EA 定义同上,<EA;>是一个交换群。 (N)
(4)EA 定义同上,<EA;>是一个循环群。 (N )
2021/4/8
25
5.3 群的性质
一、关于相约性 定理5-6 设<G;*>是一个群,则对任意的a,b G, (1)存在唯一的元素xG,使a*x=b; (2)存在唯一的元素yG,使y*a=b。
《离散数学教案》课件
《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义离散数学是研究离散结构及其相互关系的数学分支。
离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。
1.2 离散数学的应用离散数学在计算机科学、信息技术、密码学等领域有广泛应用。
学习离散数学能够为编程、算法设计、数据结构等课程打下基础。
第二章:集合与逻辑2.1 集合的基本概念集合是由明确定义的元素组成的整体。
集合的表示方法:列举法、描述法、图示法等。
2.2 集合的基本运算集合的并、交、差运算。
集合的幂集、子集、真子集等概念。
2.3 逻辑基本概念命题:可以判断真假的陈述句。
逻辑联结词:与、或、非等。
逻辑等价式与蕴含式。
第三章:图论基础3.1 图的基本概念图是由点集合及连接这些点的边集合组成的数学结构。
图的表示方法:邻接矩阵、邻接表等。
3.2 图的基本运算图的邻接、关联、度等概念。
图的遍历:深度优先搜索、广度优先搜索。
3.3 图的应用图在社交网络、路径规划、网络结构等领域有广泛应用。
学习图论能够帮助我们理解和解决现实世界中的问题。
第四章:组合数学4.1 排列与组合排列:从n个不同元素中取出m个元素的有序组合。
组合:从n个不同元素中取出m个元素的无序组合。
4.2 计数原理分类计数原理、分步计数原理。
函数:求排列组合问题的有效工具。
4.3 鸽巢原理与包含-排除原理包含-排除原理:解决计数问题时,通过加减来排除某些情况。
第五章:命题逻辑与谓词逻辑5.1 命题逻辑命题逻辑关注命题及其逻辑关系。
命题逻辑的基本运算:联结词、逻辑等价式、蕴含式等。
5.2 谓词逻辑谓词逻辑是命题逻辑的推广,引入量词和谓词。
谓词逻辑的基本结构:个体、谓词、量词、逻辑运算等。
5.3 谓词逻辑的应用谓词逻辑在计算机科学中用于描述和验证程序正确性。
学习谓词逻辑能够提高对问题本质的理解和表达能力。
第六章:组合设计6.1 组合设计的基本概念组合设计是指从给定的有限集合中按照一定规则选取元素,构成满足特定条件的组合。
离散数学课件 第五章 代数结构_1
例:P182 例题9,10,11,12
例:设X={e,a,b,c,d},*是X上的二元运算,*的 运算表如下。 从表中可知,<X,*> * e a b c d 是代数系统,e是关于* e e a b c d 的幺元。X中无零元。 a a a a e e 表中 b*c=c*b=e; b b a a e e b*d=d*b=e,故c和d均 c c e e c c 为b的逆元,即b的逆元 d d e e c c 不唯一。原因在于运算 *不满足结合律。 从本例还可以看到a的逆元也是c, d。 运算*满足可交换性,但不满足等幂性。
子独异点
定义5-3.3 设代数结构<S,>为半群,若BS且 在B上封闭, B含有<S,>关于 运算的幺元,那么 <B, >称为子独异点,或子幺半群。
独异点举例
设Σ是一个非空有限集合,称为字母表,由 Σ中有限个字母组成的有序集合(即字符串)称 为Σ上的一个字,串中的字母个数m称为字长, m=0时,称为空字,即为单位元,记为e。Σ∗表示 Σ上的字的集合,Σ∗上的连接运算· 定义为α, β∈Σ∗,α· β=αβ,则<Σ∗,· >是一个代数系 统,而且是一个独异点, 是在计算机科学中自动 机理论及形式语言中最基本的结构。Σ∗的任一子 集就称为语言。
(2)如果对于任意的x,y,z∈S 有
(xoy)oz=xo(yoz),则称运算o在S上满足结合律。 (3)如果对于任意的x∈S有xox=x,则称o运算在 S上满足幂等律(等幂律)。
二元运算的主要算律(续)
定义 设o和*为S上两个不同的二元运算, (1)如果对于任意的x,y,z∈S有 (x*y)oz=(xoz)*(yoz) 和 zo(x*y)=(zox)*(zoy), 则 称o运算对*运算满足分配律。 (2)如果o和*都可交换,并且对于任意的x,y∈S 有xo(x*y)=x和x*(xoy)=x,则称o和*运算满足吸收 律。
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
《离散数学讲义》课件
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
数学离散数学PPT课件
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
1.1 命题及联结词
运算符“析取” 与汉语的“或”几乎一致但有 区别:哪些老师讲离散数学?有人回答如下:
(16)“讲离散数学的老师是杨老师或吴老师”, 分解为
“讲离散数学的老师是杨老师”或 “讲离散数学的老师是吴老师”, 这两个原子命题有可能都是对的, 这种“或”称为“可同时为真的或”, 或简称为“可兼或”。 这种“或”表示可表 示为“析取”
1.1 命题及联结词
定义1.4条件:当p是1 ,q是0时,pq为0,即10 为0,其他情况为1。
逻辑运算符“如果…那么”, 如老妈说:“如果期终考了年级前10 名,那么奖励1000元”。 p:期终考了年级前10名 q:奖励1000元 则上面的语句表示为pq。 先考虑值为0即假的情况: 当p为1即“期终考了年级前10”, 且q为0即“没有奖励1000元” 这时老妈的话是假话空话,
这个例题有点不正点! “郎才当且仅当女貌”,
可以表示为“郎才女貌”
1.2命题公式
对错明确的陈述语句称为命题,其真值t/f 0/1 C运算:加+、减-、乘x、除/、余数%, 命题逻辑:合、析、否定、条件、双条件(版) C语言中用变量x表示某些数,如x*x+x+10是表达式,
命题逻辑中用变量p,q,r表示任意命题,由命题常元与 此类变量所构成表达式,称为“命题公式”。
无论p/q取何值,这两个公式的值,与前面各例 不同,此表是将运算结果写在联结词的下方!
1.3 等值式
定义1.3.1等值: 对于合法的命题公式A、B, 若无论其中的命题变元取何值,A 、B值总相等, 称为两个公式等值,记为AB (边播边板)
目的:
1.掌握离散数学五大核心内容(集合论、数 理逻辑、代数结构、图论、组合数学)的基本概 念、基本理论、基本方法,训练提高学生的概括 抽象能力、逻辑思维能力、归纳构造能力,培养 学生严谨、完整、规范的科学态度和学习思维习 惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 Introduction to Graphs Types of Graphs 图的种类 Undirected Graphs 无向图 Simple graph 简单图
Multigraph 多重图
Pseudograph 伪图
13
2018/10/27
5.1 Introduction to Graphs
Chapter 5
graph theory
图论——计算机问题求解的描述工具
抽象 求解
实际问题
数学模型
求解算法(算法)
用大量数据验证
测试
编程实现
图论是离散数学的分支: 图(graph): 是一个离散集和某些两元素子集的集合。 数学形象是:纸上画几个顶点,把其中一些点用 曲线段或直线连起来。图显示的是点与点之间的二元 关系。
如何才能在所有桥都恰巧只走一遍的前提下,回到原出发点?
桥所连接的地区 视为点 A A
C
C D B
D
B
每一座桥视为一 条线
求从图中任一点出发,通过每条边一次,最后回到起点。
如果通奇数座桥的地方不止两个,那麽 满足要求的路线便不存在了。 如果只有两个地方通奇数座桥,则可从 其中一地出发可找到经过所有桥的路线。 若没有一个地方通奇数座桥,则从任何 一地出发,所求的路线都能实现。
A multigraph allows multiple edges for two vertices.多重图允许
顶点对之间有多重边
A pseudograph is a multigraph which permits loops.伪图也是多
重图,它可以存在环。
For example,
b c
b c
b c a d
5.1 Introduction to Graphs
Directed Graph: In a directed graph有向图 G = (V, E) the edges are ordered pairs (有序对)of (not necessarily distinct) vertices.有向图(V,E)是由非空顶点集V、边集E所组成的,边V中
其后,图论在现代数学、计算机科学、工程技术、优 化管理等领域有大用而得以大力发展。
莱昂哈德· 欧拉(Leonhard Euler,
1707.4.5~1783.9.18) 历史上最伟大的两位数 学家之一(另一位是高斯)。欧拉出生于瑞士 ,他是一位数学神童。作为数学教授,他先后 任教于圣彼得堡(1727-1741)和柏林,尔后再 返圣彼得堡(1766)。 欧拉的离世也很特别:据说当时正是下午 茶时间,正在逗孙儿玩的时候,被一块蛋糕卡 在喉头窒息而死。 欧拉是第一个使用“函数”一词来描述包 含各种参数的表达式的人,例如:y = F(x) (函 数的定义由莱布尼兹在1694年给出)。欧拉是 有史以来最多产的数学家,他的全集共计75卷 。欧拉实际上支配了18世纪的数学,对于当时 新发明的微积分,他推导出了很多结果。 在他生命的最后7年中,欧拉的双目完全 失明,尽管如此,他还是以惊人的速度产出了 生平一半的著作。小行星欧拉2002是为了纪 念欧拉而命名的。
如何才能在所有桥都恰巧只走一遍的前提下,回到原出发点?
不少数学家都尝试去解析这个事例。而这些解析 ,最后发展成为了数学中的图论。 莱昂哈德· 欧拉(Leonhard Euler)在1736年圆 满地解决了这一问题,证明这种方法并不存在。 他在圣彼得堡科学院发表了图论史上第一篇重要 文献。欧拉把实际的问题抽象简化为平面上的点与 线组合,每一座桥视为一条线,桥所连接的地区视 为点。这样若从某点出发后最后再回到这点,则这 一点的线数必须是偶数。
莱昂哈德· 欧拉
Konisberg七桥问题(Euler问题) 柯尼斯堡七桥问题是图论中的著名问题。
这个问题是基于一个现实生活中的事例:位于当 时东普鲁士柯尼斯堡(今日俄罗斯加里宁格勒)有一条 河,河中心有两个小岛。小岛与河的两岸有七条桥 连接。如何才能在所有桥都恰巧只走一遍的前提下 ,回到原出发点?
a
14 2018/10/27
d
a
d
5.1 Introduction to Graphs
The relations of different undirected graphs 各种无向图之间的关系
Pseudographs 伪图
Multigraphs 多重图
Simple Graphs 简单图
15
2018/10/27
【Definition】 A simple graph G=(V,E) consists of vertices, V, and edges, E, connecting distinct elements of V.简单图G=(V,E)是
由非空顶点集V和边集E所组成的,V的不同元素的无序对称为边。 - no loops 没环 - can‘t have multiple edges joining vertices 两个顶点间最多只 有一条边
为什么要学习图论? 可以采用图论的成果和方法;
最重要的是:可以培养我们思考问题和 解决问题的能力。
图论诞生和孕育于民间游戏。 创生:1736年 瑞士数学家欧拉——图论之父;
进展:1936年,匈牙利数学家寇尼希(Konig)发表名 著《有限图和无限图理论》; 1930年,波兰数学家库拉托父斯基 (Kulatowsky)证明了平面图可以画在平面上;
元素的有序对。允许有环(即相同元素的有序对),但不允许在两个 顶点之间有同向的多重边。
In a directed multigraph 有向多重图G = (V, E) the edges are ordered pairs of (not necessarily distinct) vertices, and in addition there may be multiple edges. 有向多重图
CHAPTER 5
5.1 5.2
Graphs
Introduction to Graphs 图的概述 Graph Terminology 图的术语
5.3 Representing Graphs and Graph Isomorphism图 的表示和图的同构 5.4 5.5 5.6 5.7
4
Connectivity 连通性 Euler and Hamilton Paths 欧拉通路和哈密顿通路 Pg 平面图与着色 Trees 树