2019届高考数学一轮复习第二章函数第五节指数与指数函数夯基提能作业本文

合集下载

2019版高考数学一轮复习第二章函数第五节指数与指数函数课件文【优质ppt版本】

2019版高考数学一轮复习第二章函数第五节指数与指数函数课件文【优质ppt版本】


1 3
1 .3

,c=30.9,则a,b,c的大

小关系是 ( )
A.a<b<c B.b<c<a C.c<a<b D.b<a<c
(2)(2016北京顺义期末)设函数f(x)=|2x-1|,c<b<a,且f(c)>f(a)>f(b),则2a+2c
与2的大小关系是 ( )
A.2a+2c>2 B.2a+2c≥2
A.-9 B.7 C.-10 D.9
答案 B 原式= 6 -1 1=23-1=7.故选B.
22
2.函数f(x)=3x+1的值域为 ( B )
A.(-1,+∞) B.(1,+∞) C.(0,1)
D.[1,+∞)
答案 B ∵3x>0,∴3x+1>1,即函数f(x)=3x+1的值域为(1,+∞).
3.(2016北京东城期中)函数y=ax- 1 (a>0,且a≠1)的图象可能是 (
g
,
(x)
由于f(x)有最大值3,所以g(x)应有最小值-1,
因此必有

a 3
a
0
, 4
a

1,
解得a=1,即当f(x)有最大值3时,a的值为1.
(3)由指数函数的性质知,
要使f(x)的值域为(0,+∞),
应使y=ax2-4x+3的值域为R, 因此只能a=0(因为若a≠0,则y=ax2-4x+3为二次函数,其值域不可能为R). 故a的值为0.
( n a)n=⑨ a (注意a必须使 n 有a 意义).

新高考数学一轮复习教师用书:第2章 5 第5讲 指数与指数函数

新高考数学一轮复习教师用书:第2章 5 第5讲 指数与指数函数

第5讲 指数与指数函数1.根式 (1)根式的概念①若x n =a,则x 叫做a 的n 次方根,其中n>1且n∈N *.n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n∈N *,n>1时,x =±n a ,当n 为偶数且n∈N *时.(2)根式的性质①(n a)n =a(n∈N *,且n>1). ②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a|=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a<0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mn n a m (a>0,m,n ∈N *,且n>1); ②负分数指数幂:a -m n =1a m n =1na m (a>0,m,n∈N *,且n>1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a>0,r,s ∈Q);②(a r )s =a rs(a>0,r,s ∈Q); ③(ab)r=a r b r(a>0,b>0,r ∈Q). 3.指数函数的图象及性质函数 y =a x(a>0,且a≠1)图象0<a<1a>1图象特征在x 轴上方,过定点(0,1)当x 逐渐增大时,图象逐渐下降当x 逐渐增大时,图象逐渐上升性质定义域 R 值域(0,+∞)单调性 减增函数值 变化 规律当x =0时,y =1当x<0时,y>1; 当x>0时,0<y<1当x<0时,0<y<1; 当x>0时,y>14.指数函数的变化特征在同一平面直角坐标系中,分别作出指数函数y =a x,y =b x,y =c x,y =d x(a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线x =1,分别与四个图象自上而下交于点A(1,a),B(1,b),C(1,c),D(1,d),得到底数的大小关系是:a >b >1>c >d >0.根据y 轴右侧的图象,也可以利用口诀:“底大图高”来记忆.[疑误辨析]判断正误(正确的打“√”,错误的打“×”) (1)n a n =(n a)n=a.( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =a -x是R 上的增函数.( )(4)函数y =ax2+1(a>1)的值域是(0,+∞).( ) (5)函数y =2x -1是指数函数.( )(6)若a m<a n(a>0,且a≠1),则m<n.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× [教材衍化]1.(必修1P59A 组T4改编)化简416x 8y 4(x<0,y<0)=________. 解析:因为x<0,y<0,所以416x 8y 4=(16x 8·y 4)14=(16)14·(x 8)14·(y 4)14=2x 2|y|=-2x 2y.答案:-2x 2y2.(必修1P55“思考”改编)函数y =2x与y =2-x的图象关于________对称.解析:作出y =2x与y =2-x=⎝ ⎛⎭⎪⎫12x的图象(图略),观察可知其关于y 轴对称. 答案:y 轴3.(必修1P56例6改编)已知函数f(x)=a x -2+2(a>0且a≠1)的图象恒过定点A,则A 的坐标为________.解析:令x -2=0,则x =2,f(2)=3,即A 的坐标为(2,3). 答案:(2,3) [易错纠偏](1)忽略n 的范围导致式子n a n(a∈R)化简出错; (2)不能正确理解指数函数的概念致错; (3)指数函数问题时刻注意底数的两种情况; (4)复合函数问题容易忽略指数函数的值域致错. 1.计算3(1+2)3+4(1-2)4=________.解析:3(1+2)3+4(1-2)4=(1+2)+(2-1)=2 2. 答案:2 22.若函数f(x)=(a 2-3)·a x为指数函数,则a =________. 解析:由题意知⎩⎪⎨⎪⎧0<a ,a ≠1,a 2-3=1,即a =2.答案:23.若函数f(x)=a x 在[-1,1]上的最大值为2,则a =________. 解析:当a>1时,a =2;当0<a<1时a -1=2, 即a =12.答案:2或124.函数y =21x -1的值域为________. 解析:因为1x -1≠0,所以21x -1>0且21x -1≠1. 答案:(0,1)∪(1,+∞)指数幂的运算化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·⎝⎛⎭⎪⎫-3a -12b -1÷⎝ ⎛⎭⎪⎫4a 23·b -312(a,b>0).【解】 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=-52a -16b -3÷⎝ ⎛⎭⎪⎫4a 23·b -312 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32=-54a -12·b -32=-54·1ab3=-5ab 4ab 2.指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.[提醒] 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12. 解:(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b -32=85.指数函数的图象及应用(1)函数f(x)=21-x的大致图象为( )(2)函数f(x)=|a x+b|(a>0,a ≠1,b ∈R)的图象如图所示,则a +b 的取值范围是________.(3)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f(x)=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)因为根据图象得a>1,f(12)=0,b<0.所以a +b =0,所以a +b =a -a>1-1=0.(3)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2)(0,+∞) (3){0}∪[1,+∞)应用指数函数图象的4个技巧(1)画指数函数y =a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝ ⎛⎭⎪⎫-1,1a .(2)已知函数解析式判断其图象一般是取特殊点,判断所给的图象是否过这些点,若不满足则排除. (3)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(4)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.1.函数y =xax|x|(a>1)的图象大致是( )解析:选B.y =⎩⎪⎨⎪⎧a x,x>0,-a x ,x<0,因为a>1,依据指数函数的图象特征可知选B.2.若函数y =21-x+m 的图象不经过第一象限,则m 的取值范围为________.解析:y =⎝ ⎛⎭⎪⎫12x -1+m,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m≤-2.答案:(-∞,-2]指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.主要命题角度有:(1)比较指数式的大小; (2)解简单的指数方程或不等式; (3)复合函数的单调性; (4)函数的值域(最值). 角度一 比较指数式的大小设a =0.60.6,b =0.61.5,c =1.50.6,则a,b,c 的大小关系是( ) A .a<b<c B .a<c<b C .b<a<cD .b<c<a【解析】 因为函数y =0.6x是减函数,0<0.6<1.5,所以1>0.60.6>0.61.5,即b<a<1.因为函数y =1.5x在(0,+∞)上是增函数,0.6>0,所以1.50.6>1.50=1,即c>1.综上,b<a<c. 【答案】 C角度二 解简单的指数方程或不等式设函数f(x)=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -7,x<0,x ,x ≥0 ,若f(a)<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】 当a<0时,不等式f(a)<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a>-3,此时-3<a<0;当a≥0时,不等式f(a)<1可化为a<1,所以0≤a<1.故a 的取值范围是(-3,1).故选C.【答案】 C角度三 复合函数的单调性(1)函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的单调减区间为________. (2)(2020·金华十校联考)若函数f(x)=2|x -a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m 的最小值等于________.【解析】 (1)设u =-x 2+2x +1,因为y =⎝ ⎛⎭⎪⎫12u在R 上为减函数, 所以函数f(x)=⎝ ⎛⎭⎪⎫12-x 2+2x +1的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], 所以f(x)的减区间为(-∞,1]. (2)因为f(x)=2|x -a|,所以f(x)的图象关于x =a 对称.又由f(1+x)=f(1-x),知f(x)的图象关于直线x =1对称,故a =1,且f(x)的增区间是[1,+∞),由函数f(x)在[m,+∞)上单调递增,知[m,+∞)⊆[1,+∞),所以m ≥1,故m 的最小值为1. 【答案】 (1)(-∞,1] (2)1 角度四 函数的值域(最值)如果函数y =a 2x+2a x-1(a>0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A.13 B .1 C .3D.13或3 【解析】 令a x=t,则y =a 2x+2a x-1=t 2+2t -1=(t +1)2-2.当a>1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤1a ,a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a<1时,因为x∈[-1,1],所以t∈⎣⎢⎡⎦⎥⎤a ,1a , 又函数y =(t +1)2-2在⎣⎢⎡⎦⎥⎤a ,1a 上单调递增,则y max =⎝ ⎛⎭⎪⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.【答案】 D有关指数函数性质的问题类型及解题思路(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.[提醒] 在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.1.已知函数f(x)=a x+b(a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:当a >1时,函数f(x)=a x+b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0无解.当0<a <1时,函数f(x)=a x+b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.答案:-322.已知函数f(x)=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫12x,a ≤x<0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.解析:当0≤x≤4时,f (x)∈[-8,1],当a≤x<0时,f(x)∈⎣⎢⎡⎭⎪⎫-⎝ ⎛⎭⎪⎫12a ,-1,所以⎣⎢⎡⎭⎪⎫-12a ,-1[-8,1],即-8≤-12a <-1,即-3≤a<0,所以实数a 的取值范围是[-3,0). 答案:[-3,0)[基础题组练]1.函数f(x)=1-e |x|的图象大致是( )解析:选A.将函数解析式与图象对比分析,因为函数f(x)=1-e |x|是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎫-23a -13b 23的结果为( )A .-2a3bB .-8a bC .-6a bD .-6ab解析:选C.原式=⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-23a 23-⎝ ⎛⎭⎪⎫-13b -13-23=-6ab -1=-6a b ,故选C.3.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1解析:选B.A 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73.B 中,因为y =0.6x在R 上是减函数,-1<2,所以0.6-1>0.62.C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小.因为y =1.25x在R 上是增函数,0.1<0.2,所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.4.(2020·宁波效实中学高三质检)若函数f(x)=a |2x -4|(a>0,a ≠1)满足f(1)=19,则f(x)的单调递减区间是 ( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]解析:选B.由f(1)=19得a 2=19.又a>0,所以a =13,因此f(x)=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g(x)=|2x -4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).5.已知函数y =f(x)与y =F(x)的图象关于y 轴对称,当函数y =f(x)和y =F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫作函数y =f(x)的“不动区间”,若区间[1,2]为函数y =|2x-t|的“不动区间”,则实数t 的取值范围是( )A .(0,2]B.⎣⎢⎡⎭⎪⎫12,+∞C.⎣⎢⎡⎦⎥⎤12,2 D.⎣⎢⎡⎦⎥⎤12,2∪[)4,+∞ 解析:选C.因为函数y =f(x)与y =F(x)的图象关于y 轴对称,所以F(x)=f(-x)=|2-x-t|,因为区间[1,2]为函数f(x)=|2x-t|的“不动区间”,所以函数f(x)=|2x-t|和函数F(x)=|2-x-t|在[1,2]上单调性相同, 因为y =2x-t 和函数y =2-x-t 的单调性相反, 所以(2x-t)(2-x-t)≤0在[1,2]上恒成立, 即1-t(2x+2-x)+t 2≤0在[1,2]上恒成立, 即2-x≤t ≤2x 在[1,2]上恒成立, 即12≤t ≤2,故答案为C. 6.指数函数y =f(x)的图象经过点(m,3),则f(0)+f(-m)=________. 解析:设f(x)=a x(a >0且a≠1),所以f(0)=a 0=1. 且f(m)=a m=3.所以f(0)+f(-m)=1+a -m=1+1a m =43.答案:437.(2020·杭州中学高三月考)已知e x+x 3+x +1=0,1e3y -27y 3-3y +1=0,则ex +3y的值为________. 解析:因为e x+x 3+x +1=0,1e3y -27y 3-3y +1=0等价于e-3y +(-3y)3+(-3y)+1=0,所以x =-3y,即x +3y =0,所以ex +3y =e 0=1.答案:18.若函数f(x)=⎩⎪⎨⎪⎧a x,x>1,(2-3a )x +1,x ≤1是R 上的减函数,则实数a 的取值范围是________.解析:依题意,a 应满足⎩⎪⎨⎪⎧ 0<a<1,2-3a<0,(2-3a )×1+1≥a 1,解得23<a ≤34.答案:⎝ ⎛⎦⎥⎤23,349.当x∈(-∞,-1]时,不等式(m 2-m)·4x-2x<0恒成立,则实数m 的取值范围是________.解析:原不等式变形为m 2-m<⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2,当x∈(-∞,-1]时,m 2-m<⎝ ⎛⎭⎪⎫12x 恒成立等价于m 2-m<2,解得-1<m<2. 答案:(-1,2)10.已知函数f(x)=⎝ ⎛⎭⎪⎫13ax 2-4x +3. (1)若a =-1,求f(x)的单调区间;(2)若f(x)有最大值3,求a 的值.解:(1)当a =-1时,f(x)=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g(x)=-x 2-4x +3, 由于g(x)在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减, 所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g(x)=ax 2-4x +3,f(x)=⎝ ⎛⎭⎪⎫13g (x ),由于f(x)有最大值3,所以g(x)应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1, 即当f(x)有最大值3时,a 的值为1.11.已知函数f(x)=a |x +b|(a>0,a ≠1,b ∈R).(1)若f(x)为偶函数,求b 的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a,b 应满足的条件.解:(1)因为f(x)为偶函数,所以对任意的x∈R ,都有f(-x)=f(x),即a |x +b|=a |-x +b|,|x +b|=|-x +b|,解得b =0.(2)记h(x)=|x +b|=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x<-b. ①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,所以-b≤2,b ≥-2.②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数,但h(x)在区间[-b,+∞)上是增函数,故不存在a,b 的值,使f(x)在区间[2,+∞)上是增函数.所以f(x)在区间[2,+∞)上是增函数时,a,b 应满足的条件为a>1且b≥-2.[综合题组练]1.已知函数f(x)=|2x-1|,a<b<c 且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A .a<0,b<0,c<0B .a<0,b ≥0,c>0C .2-a <2cD .2a +2c <2解析:选D.作出函数f(x)=|2x -1|的图象,如图,因为a<b<c 且f(a)>f(c)>f(b),结合图象知,0<f(a)<1,a<0,c>0,所以0<2a <1.所以f(a)=|2a -1|=1-2a <1,所以f(c)<1,所以0<c<1.所以1<2c <2,所以f(c)=|2c -1|=2c -1,又因为f(a)>f(c),所以1-2a >2c -1,所以2a +2c <2,故选D.2.(2020·衢州市高考模拟)已知函数f(x)=⎩⎪⎨⎪⎧(12)x ,x >0-x 2-4x ,x ≤0,则此函数图象上关于原点对称的点有( )A .0对B .1对C .2对D .3对 解析:选B.作出函数y =f(x)图象如图所示:再作出-y =f(-x),即y =x 2-4x,恰好与函数图象位于y 轴左侧部分(对数函数的图象)关于原点对称,记为曲线C,发现y =⎝ ⎛⎭⎪⎫12x与曲线C 有且仅有一个交点, 因此满足条件的对称点只有一对,图中的A 、B 就是符合题意的点.故选B.3.(2020·杭州模拟)已知函数y =a x +b(a>0,且a≠1,b>0)的图象经过点P(1,3),如图所示,则4a -1+1b的最小值为________,此时a,b 的值分别为________. 解析:由函数y =a x +b(a>0且a≠1,b>0)的图象经过点P(1,3),得a +b =3,所以a -12+b 2=1,又a>1,则4a -1+1b =⎝ ⎛⎭⎪⎫4a -1+1b ⎝ ⎛⎭⎪⎫a -12+b 2=2+12+2b a -1+a -12b ≥52+2 2b a -1·a -12b =92,当且仅当2b a -1=a -12b ,即a =73,b =23时取等号,所以4a -1+1b 的最小值为92. 答案:92 73,23 4.(2020·绍兴一中高三期中)已知函数f(x)=e |x|,将函数f(x)的图象向右平移3个单位后,再向上平移2个单位,得到函数g(x)的图象,函数h(x)=⎩⎪⎨⎪⎧e (x -1)+2,x ≤5,4e 6-x +2,x>5,若对于任意的x∈[3,λ](λ>3),都有h(x)≥g(x),则实数λ的最大值为________.解析:依题意,g(x)=f(x -3)+2=e |x -3|+2,在同一坐标系中分别作出g(x),h(x)的图象如图所示,观察可得,要使得h(x)≥g(x),则有4e 6-x +2≥e (x -3)+2,故4≥e 2x -9,解得2x -9≤ln 4,故x≤ln 2+92,实数λ的最大值为ln 2+92. 答案:ln 2+925.已知函数f(x)=2a·4x -2x-1.(1)当a =1时,求函数f(x)在x ∈[-3,0]上的值域;(2)若关于x 的方程f(x)=0有解,求a 的取值范围.解:(1)当a =1时,f(x)=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t∈⎣⎢⎡⎦⎥⎤18,1. 故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1, 故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a(2x )2-2x-1=0有解,设2x =m>0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g(m)=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a<0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a>0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正,综上得a>0.6.(2020·宁波效实中学模拟)已知函数f(x)=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],函数g(x)=[f(x)]2-2af(x)+3的最小值为h(a).(1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①m>n>3;②当h(a)的定义域为[n,m]时,值域为[n 2,m 2]?若存在,求出m,n 的值;若不存在,说明理由. 解:(1)因为x∈[-1,1], 所以f(x)=⎝ ⎛⎭⎪⎫13x ∈⎝ ⎛⎭⎪⎫13,3, 设t =⎝ ⎛⎭⎪⎫13x∈⎝ ⎛⎭⎪⎫13,3. 则y =φ(t)=t 2-2at +3=(t -a)2+3-a 2.当a<13时,y min =h(a)=φ⎝ ⎛⎭⎪⎫13=289-2a 3; 当13≤a ≤3时,y min =h(a)=φ(a)=3-a 2; 当a>3时,y min =h(a)=φ(3)=12-6a. 所以h(a)=⎩⎪⎨⎪⎧289-2a 3,a<13,3-a 2,13≤a ≤3,12-6a ,a>3. (2)假设存在m,n 满足题意.因为m>n>3,h(a)=12-6a 在(3,+∞)上是减函数,又因为h(a)的定义域为[n,m],值域为[n 2,m 2],所以⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2,两式相减得6(m -n)=(m -n)(m +n),即m +n =6,与m>n>3矛盾, 所以满足题意的m,n 不存在.。

2019届高考数学一轮复习第二章函数第五节指数与指数函数课件文

2019届高考数学一轮复习第二章函数第五节指数与指数函数课件文
第五节 指数与指数函数
教材研读
总纲目录
1.指数幂的概念 2.有理数指数幂
3.指数函数的图象与性质
考点突破
考点一 指数幂的化简与求值
考点二 指数函数的图象及应用 考点三 指数函数的性质及应用
教材研读
1.指数幂的概念
(1)根式的概念
根式的概念 如果① xn=a ,那么x叫做a的n次方根 当n为奇数时,正数的n次方根是一个② 正数 ,
3.已知函数f(x)=ax-2+2的图象恒过定点A,则A的坐标为 ( B )
A.(0,1) B.(2,3) C.(3,2) D.(2,2)
答案 B 令x-2=0,则x=2, f(x)=3,即A点坐标为(2,3).
4.函数f(x)=3x+1的值域为 ( B )
A.(-1,+∞) B.(1,+∞) C.(0,1)
a>1
0<a<1
定义域 值域 性质
R (0,+∞) 过定点 (0,1) 当x>0时, y>1 ; 当x<0时, 0<y<1 在(-∞,+∞)上是 单调增函数
当x>0时, 0<y<1 ; 当x<0时, y>1
在(-∞,+∞)上是 单调减函数
1
1.计算[(-2)6 ]2-(-1)0的结果为 ( B )
1-1 化简下列各式:
2
(1)(0.027 )3 +

27 125


1 3
-

2
7 9Βιβλιοθήκη 0.5 ;(2)

1 4


1 2
· ( 4ab1

【备战高考】2019年高考数学一轮复习第2章第5节《指数与指数函数》

【备战高考】2019年高考数学一轮复习第2章第5节《指数与指数函数》

备战高考2019年高考数学一轮复习第2章函数的概念与基本初等函数Ⅰ第5节指数与指数函数考试要求:1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象.4.体会指数函数是一类重要的函数模型.知识梳理,自主学习一、基础知识梳理1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(n a )n =a (a 使n a 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n =a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .3.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质[常用结论与微点提醒]二、双基自测训练1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)n a n =(n a )n =a (n ∈N *).( × )(2)分数指数幂mna 可以理解为mn 个a 相乘.( × )(3)函数y =3·2x 与y =2x+1都不是指数函数.( √ )(4)若a m <a n (a >0,且a ≠1),则m <n .( × ) (5)函数y =2-x 在R 上为单调减函数.( √ )2.若函数f (x )=a x (a >0,且a ≠1)的图象经过⎝ ⎛⎭⎪⎫2,13,则f (-1)=( ) A.1B.2C. 3D.3解析 依题意可知a 2=13,解得a =33,所以f (x )=⎝ ⎛⎭⎪⎫33x ,所以f (-1)=⎝ ⎛⎭⎪⎫33-1= 3.答案 C3.(2017·北京卷)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x,则f (x )( )A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数 解析 ∵函数f (x )的定义域为R , f (-x )=3-x-⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x=-f (x ),∴函数f (x )是奇函数.∵函数y =⎝ ⎛⎭⎪⎫13x在R 上是减函数,∴函数y =-⎝ ⎛⎭⎪⎫13x在R 上是增函数.又∵y =3x 在R 上是增函数, ∴函数f (x )=3x-⎝ ⎛⎭⎪⎫13x在R 上是增函数.答案 B4.设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A.a <b <c B.a <c <b C.b <a <cD.b <c <a解析 根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,而c =1.50.6>1,∴b <a <c . 答案 C5.(2018·青岛调研)已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为( )A.(0,1)B.(2,3)C.(3,2)D.(2,2)解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图象必过定点(2,3). 答案 B考点突破,深度剖析考点一 指数幂的运算 【例1】化简下列各式:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)56a 13·b -2·(-3a -12b -1)÷⎝ ⎛⎭⎪⎫4a 23·b -312. 解 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615. (2)原式=-52a -16b -3÷(4a 23·b -3)12=-54a -16b -3÷(a 13b -32)=-54a -12·b -32=-54·1ab 3=-5ab4ab 2.【训练1】化简下列各式:(1)[(0.06415)-2.5]23-3338-π0;(2)(a 23·b -1)-12·a -12·b 136a ·b 5.解 (1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫641 00015-5223-⎝ ⎛⎭⎪⎫27813-1 =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫410315×⎝ ⎛⎭⎪⎫-52×23-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32313-1=52-32-1=0. (2)原式=a -13b 12·a -12b 13a 16b 56=a-13-12-16·b 12+13-56=1a .考点二 指数函数的图象及应用【例2】 (1)函数f (x )=1-e |x |的图象大致是( )(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 解析 (1)f (x )=1-e |x |是偶函数,图象关于y 轴对称,又e |x |≥1,∴f (x )的值域为(-∞,0], 因此排除B ,C ,D ,只有A 满足.(2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案 (1)A (2)[-1,1]【训练2】 (1)(2018·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A.y =1-x B.y =|x -2| C.y =2x -1D.y =log 2(2x )(2)(2018·长沙一中质检)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.解析 (1)由题意,得点A (1,1),将点A (1,1)代入四个选项,y =1-x 的图象不过点A (1,1).(2)将函数f (x )=|2x -2|-b 的零点个数问题转化为函数y =|2x -2|的图象与直线y =b 的交点个数问题,数形结合求解. 在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.∴当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. ∴b 的取值范围是(0,2). 答案 (1)A (2)(0,2)考点三 指数函数的性质及应用(易错警示)【例3】 (1)(2018·承德模拟)若函数f (x )=⎝ ⎛⎭⎪⎫13ax 2+2x +3的值域是⎝ ⎛⎦⎥⎤0,19,则f (x )的单调递增区间是________. (2)下列各式比较大小正确的是( ) A.1.72.5>1.73 B.0.6-1>0.62 C.0.8-0.1>1.250.2D.1.70.3<0.93.1解析 (1)令g (x )=ax 2+2x +3,由于f (x )的值域是⎝ ⎛⎦⎥⎤0,19,所以g (x )的值域是[2,+∞). 因此有⎩⎪⎨⎪⎧a >0,12a -44a=2,解得a =1,这时g (x )=x 2+2x +3,f (x )=⎝ ⎛⎭⎪⎫13x 2+2x +3.由于g (x )的单调递减区间是(-∞,-1], 所以f (x )的单调递增区间是(-∞,-1].(2)A 中,∵函数y =1.7x 在R 上是增函数,2.5<3, ∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2, ∴0.6-1>0.62,正确;C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; D 中,∵1.70.3>1, 0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B. 答案 (1)(-∞,-1] (2)B【训练3】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a=f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.c <a <b C.a <c <bD.c <b <a(2)(2018·滁州质检)当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________.解析 (1)由函数f (x )=2|x -m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0), 故b >a >c .(2)原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x ,又y =⎝ ⎛⎭⎪⎫12x 在(-∞,-1]上是减函数,知⎝ ⎛⎭⎪⎫12x ≥⎝ ⎛⎭⎪⎫12-1=2.故原不等式恒成立等价于m 2-m <2,解得-1<m <2. 答案 (1)B (2)(-1,2)误区警示指数函数底数的讨论典例已知函数y =22x xb a++(a ,b 为常数,且a >0,a ≠1)在区间⎣⎡⎦⎤-32,0上有最大值3,最小值52,试求a ,b 的值.错解展示:现场纠错解 令t =x 2+2x =(x +1)2-1, ∵x ∈⎣⎡⎦⎤-32,0,∴t ∈[-1,0]. ①若a >1,函数f (t )=a t 在[-1,0]上为增函数,∴a t ∈⎣⎡⎦⎤1a ,1,b +22x x a +∈⎣⎡⎦⎤b +1a ,b +1, 依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.②若0<a <1,函数f (t )=a t 在[-1,0]上为减函数,∴a t ∈⎣⎡⎦⎤1,1a ,b +22x x a +∈⎣⎡⎦⎤b +1,b +1a , 依题意得⎩⎨⎧b +1a=3,b +1=52,解得⎩⎨⎧a =23,b =32.综上知,a =2,b =2或a =23,b =32.纠错心得 在研究指数型函数的单调性或值域问题时,当底数含参数时,要对底数分类讨论.自我检测,夯实智能一、选择题1.函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 答案 D 解析 由f (x )=a x -b的图象可以观察出,函数f (x )=a x-b在定义域上单调递减,所以0<a <1.函数f (x )=a x-b的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.设2x =8y +1,9y =3x -9,则x +y 的值为( )A .18B .21C .24D .27 答案 D解析 ∵2x =8y +1=23(y+1),∴x =3y +3,∵9y =3x -9=32y ,∴x -9=2y , 解得x =21,y =6,∴x +y =27.3.(2017·河南南阳、信阳等六市一模)已知a ,b ∈(0,1)∪(1,+∞),当x >0时,1<b x <a x ,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <a D .1<a <b答案 C解析 ∵当x >0时,1<b x ,∴b >1. ∵当x >0时,b x <a x ,∴当x >0时,⎝⎛⎭⎫a b x >1. ∴ab>1,∴a >b .∴1<b <a ,故选C. 4.(2017·兰州模拟)若a =⎝ ⎛⎭⎪⎫23x,b =x 2,c =log 23x ,则当x >1时,a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <a C.a <b <cD.a <c <b解析 当x >1时,0<a =⎝ ⎛⎭⎪⎫23x <23,b =x 2>1,c =log 23x <0,所以c <a <b .答案 A5.(2018·河北八所重点中学一模)设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A.a 12 B.a 56C.a 76 D.a 32解析 原式=a 2a ⎝ ⎛⎭⎪⎫1+23×12=a2a 56=a 76. 答案 C6.(2018·南阳、信阳等六市一模)设x >0,且1<b x <a x ,则( ) A.0<b <a <1 B.0<a <b <1 C.1<b <aD.1<a <b解析 ∵x >0时,1<b x ,∴b >1.∵x >0时,b x <a x,∴x >0时,⎝ ⎛⎭⎪⎫a b x >1. ∴a b >1,∴a >b ,∴1<b <a .答案 C7.函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0解析 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. 答案 D8.(2018·宝鸡调研)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2] 解析 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.答案 B9.(2018·郑州质检)设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎨⎧f (x ),f (x )≤K ,K ,f (x )>K ,给出函数f (x )=2x +1-4x ,若对于任意的x ∈(-∞,1],恒有f K (x )=f (x ),则( )A.K 的最大值为0B.K 的最小值为0C.K 的最大值为1D.K 的最小值为1解析 对于任意的x ∈(-∞,1],恒有f K (x )=f (x ),则f (x )≤K 在(-∞,1]上恒成立,即f (x )的最大值小于或等于K 即可.令2x =t ,则t ∈(0,2],y =-t 2+2t =-(t -1)2+1,可得y 的最大值为1,故K ≥1.答案 D二、填空题10.不等式2x 2-x <4的解集为________.解析 ∵2x 2-x <4,∴2x 2-x <22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2.答案 {x |-1<x <2}11.(2017·濮阳质检)若“m >a ”是“函数f (x )=⎝⎛⎭⎫13x +m -13的图象不过第三象限”的必要不充分条件,则实数a 能取的最大整数为________.答案 -1解析 f (0)=m +23,∴函数f (x )的图象不过第三象限等价于m +23≥0,即m ≥-23,∵“m >a ”是“m ≥-23”的必要不充分条件,∴a <-23,则实数a 能取的最大整数为-1. 12.不等式222x x -+>⎝⎛⎭⎫12x +4的解集为________.答案 (-1,4)解析 原不等式等价为222x x -+>2-x -4,又函数y =2x 为增函数,∴-x 2+2x >-x -4,即x 2-3x -4<0,∴-1<x <4.13.(2018·鸡西模拟)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析 若a >1,则f (x )=a x +b 在[-1,0]上是增函数,∴⎩⎨⎧a -1+b =-1,1+b =0,则a -1=0,无解. 当0<a <1时,则f (x )=a x +b 在[-1,0]上是减函数,所以⎩⎨⎧1+b =-1,a -1+b =0,解得⎩⎪⎨⎪⎧a =12,b =-2,因此a +b =-32.答案 -3214.(2018·绵阳诊断)已知max{a ,b }表示a ,b 两数中的最大值.若f (x )=max{e |x |, e |x -2|},则f (x )的最小值为________.解析 f (x )=⎩⎨⎧e x ,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x ≥e(x =1时,取等号),当x <1时,f (x )=e |x -2|=e 2-x >e ,因此x =1时,f (x )有最小值f (1)=e.答案 e15.(2018·安徽江南十校联考)函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系是________.解析 由f (x +1)=f (1-x )知y =f (x )的图象关于x =1对称,∴b =2.又f (0)=3,得c =3.则f (b x )=f (2x ),f (c x )=f (3x ).当x ≥0时,3x ≥2x ≥1,且f (x )在[1,+∞)上是增函数,∴f (3x )≥f (2x ).当x <0时,0<3x <2x <1,且f (x )在(-∞,1]上是减函数,∴f (3x )>f (2x ),从而有f (c x )≥f (b x ).答案 f (c x )≥f (b x )三、解答题16.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1). (1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立.解 (1)由于a x -1≠0,则a x ≠1,得x ≠0,所以函数f (x )的定义域为{x |x ≠0}.对于定义域内任意x ,有f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3 =⎝ ⎛⎭⎪⎫a x 1-a x +12(-x )3 =⎝⎛⎭⎪⎫-1-1a x -1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况,当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0, 即1a x -1+12>0,即a x +12(a x -1)>0,则a x >1. 又∵x >0,∴a >1.因此当a 的取值范围为(1,+∞)时,f (x )>0.17.已知定义在R 上的函数f (x )=2x -12|x |,(1)若f (x )=32,求x 的值; (2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.解 (1)当x <0时,f (x )=0,故f (x )=32无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,将上式看成关于2x 的一元二次方程,解得2x =2或2x =-12,因为2x >0,所以2x =2,所以x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0, 即m (22t -1)≥-(24t -1),因为22t -1>0,所以m ≥-(22t +1),因为t ∈[1,2],所以-(22t +1)∈[-17,-5],故实数m 的取值范围是[-5,+∞).18.(2018·深圳三校联考)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax ,a 为常数,且函数的图象过点(-1,2).(1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.解 (1)由已知得⎝ ⎛⎭⎪⎫12-a=2,解得a =1. (2)由(1)知f (x )=⎝ ⎛⎭⎪⎫12x , 又g (x )=f (x ),则4-x-2=⎝ ⎛⎭⎪⎫12x , ∴⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0, 令⎝ ⎛⎭⎪⎫12x =t ,则t >0,t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1, 故满足条件的x 的值为-1.。

2019年人教版A版高三数学(理)高考一轮复习2.5 指数与指数函数教学设计及答案

2019年人教版A版高三数学(理)高考一轮复习2.5 指数与指数函数教学设计及答案

第五节 指与指函指与指函(1)了解指函模型的实际背景.(2)解有指幂的含义,了解实指幂的意义,掌握幂的运算.(3)解指函的概念,解指函的单调性,掌握指函图象通过的特殊点.(4)知道指函是一类重要的函模型.知识点一 根式与幂的运算 1.根式的性质 (1)(na )n =a .(2)当n 为奇时,n a n =a . (3)当n 为偶时,na n=|a |=⎩⎪⎨⎪⎧aa -aa <0.(4)负的偶次方根无意义. (5)零的任何次方根都等于零. 2.有指幂 (1)分指幂:①正分指幂:a m n=n a m(a >0,m ,n ∈N *,且n >1).②负分指幂:a -m n=1am n=1na m(a >0,m ,n ∈N *,且n >1).③0的正分指幂等于0,0的负分指幂没有意义. (2)有指幂的运算性质①a r ·a s =a r +s (a >0,r 、s ∈Q ). ②(a r )s =a rs (a >0,r 、s ∈Q ). ③(ab )r =a r b r (a >0,b >0,r ∈Q ).易误提醒 在进行指幂的运算时,一般用分指幂的形式表示,并且结果不能同时含有根号和分指幂,也不能既有分母又含有负指.易忽视字母的符号.[自测练习]1.简a 23·b -1-12·a -12·b136a ·b 5(a >0,b >0)的结果是( )A .aB .abC .a 2bD.1a解析:原式=a -13b 12·a -12b 13a 16b 56=a -13-12-16·b 12+13-56=1a .答案:D知识点二 指函的图象与性质易误提醒 指函y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.必备方法1.指函图象的三个关键点画指函图象时应抓住图象上的三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .2.底a 与1的大小关系决定了指函图象的“升降”:当a >1时,指函的图象“上升”;当0<a <1时,指函的图象“下降”.3.底的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底越大,函图象越高.4.指函的图象向左(或向右)平移不会与x 轴有交点,向上(或向下)平移a 个单位后,图象都在直线y =a (或y =-a )的上方.[自测练习]2.函y =a x -a (a >0,且a ≠1)的图象可能是( )解:当x =1时,y =a 1-a =0,所以函y =a x -a 的图象过定点(1,0),结合选项可知选C.答案:C3.设a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .c >a >bD .b >c >a解析:构造指函y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函在定义域内单调递减可得b <c ;又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x(x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x ,故⎝ ⎛⎭⎪⎫3525>⎝ ⎛⎭⎪⎫2525,即a >c ,故a >c >b . 答案:A4.指函y =(2-a )x 在定义域内是减函,则a 的取值范围是________.解析:由题意知0<2-a <1,解得1<a <2. 答案:(1,2)考点一 指幂的简与求值|求值与简:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫21412--(0.01)0.5; (2)56a 13·b -2·(-3a 12-b -1)÷(4a 23·b -3)12; (3)a 3b 23ab 2a 14b124a 13-b13(a >0,b >0).解:(1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615. (2)原式=-52a 16-b -3÷(4a 23·b -3) 12=-54a 16-b -3÷(a 13b 32-)=-54a 12-·b 32-=-54·1ab 3=-5ab 4ab 2. (3)原式=a 3b 2a 13b2312ab 2a 13-b13=a3111263+-+b111233+--=ab -1.指幂运算的四个原则1.有括号的先算括号里的,无括号的先做指运算. 2.先乘除后加减,负指幂成正指幂的倒.3.底是负,先确定符号,底是小,先成分,底是带分的,先成假分.4.若是根式,应为分指幂,尽可能用幂的形式表示,运用指幂的运算性质解答.考点二 指函图象及应用|(1)函f (x )=2|x -1|的图象是( )[解析]f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x-1,x <1,故选B.[答案] B(2)(2015·衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.[解析] 曲线|y |=2x +1与直线y =b 的图象如图所示,由图可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].[答案] [-1,1]与指函图象有关的应用问题的两种求解策略1.与指函有关的函的图象的研究,往往利用相应指函的图象,通过平移、对称变换得到其图象.2.一些指方程、不等式问题的求解,往往利用相应的指型函图象形结合求解.偶函f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x在x ∈[0,4]上解的个是( )A .1B .2C .3D .4解析:由f (x -1)=f (x +1)可知T =2.∵x ∈[0,1]时,f (x )=x ,又∵f (x )是偶函,∴可得图象如图.∴f (x )=⎝ ⎛⎭⎪⎫110x在x ∈[0,4]上解的个是4个.故选D.答案:D考点三 指函的性质及应用|高考常以选择题或填空题的形式考查指函的性质及应用,难度偏小,属于低档题.归纳起常见的命题探究角度有: 1.比较指式的大小.2.与指函有关的奇偶性及应用. 3.探究指型函的性质. 探究一 比较指式的大小1.(2015·高考山东卷)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a解析:由指函y =0.6x 在(0,+∞)上单调递减,可知0.61.5<0.60.6,由幂函y =x 0.6在(0,+∞)上单调递增,可知0.60.6<1.50.6,所以b <a <c ,故选C.答案:C探究二 与指函有关的奇偶性及应用2.(2015·高考山东卷)若函f (x )=2x +12x -a 是奇函,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析:f (-x )=2-x +12-x -a =2x +11-a ·2x ,由f (-x )=-f (x )得2x +11-a ·2x=-2x +12x -a ,即1-a ·2x =-2x +a ,简得a ·(1+2x )=1+2x ,所以a=1,f (x )=2x +12x -1.由f (x )>3得0<x <1.故选C.答案:C探究三 指型函的性质应用3.已知函f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.解:(1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1. (3)由指函的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函,其值域不可能为R ).故a 的值为0.指函的性质及应用问题三种解题策略(1)比较大小问题.常利用指函的单调性及中间值(0或1)法. (2)简单的指方程或不等式的求解问题.解决此类问题应利用指函的单调性,要特别注意底a 的取值范围,并在必要时进行分类讨论.(3)解决指函的综合问题时,要把指函的概念和性质同函的其他性质(如奇偶性、周期性)相结合,同时要特别注意底不确定时,对底的分类讨论.4.换元法解决与指函有关的值域问题【典例】 函y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.[思路点拨] 设t =⎝ ⎛⎭⎪⎫12x ,则⎝ ⎛⎭⎪⎫14x=t 2,这样原函就可转为二次函.[解析] 因为x ∈[-3,2],所以若令t =⎝ ⎛⎭⎪⎫12x,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.故所求函值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57[方法点评] 与指函有关的值域或最值问题,通常利用换元法,将其转为基本初等函的单调性或值域问题,注意换元过程中“元”的取值范围的变.[跟踪练习] 已知0≤x ≤2,则y =4x -12-3·2x +5的最大值为________.解析:令t =2x ,∵0≤x ≤2,∴1≤t ≤4, 又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12,∵1≤t ≤4,∴t =1时,y max =52.答案:52A 组 考点能力演练1.已知函f (x )=a x -b 的图象如图所示,其中a 、b 为常,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b <0D .0<a <1,b >0解析:由图象呈下降趋势知,0<a <1,又a -b <1=a 0,故-b >0,即b <0.答案:C2.函y =2x -2-x 是( )A .奇函,在区间(0,+∞)上单调递增B .奇函,在区间(0,+∞)上单调递减C .偶函,在区间(-∞,0)上单调递增D .偶函,在区间(-∞,0)上单调递减解析:根据奇偶性的定义判断函奇偶性,借助指函的图象及相关结论判断单调性.令f (x )=2x -2-x ,则f (-x )=2-x -2x =-f (x ),所以函是奇函,排除C ,D.又函y =2x ,y =-2-x 都是R 上的增函,由增函加增函还是增函的结论可知f (x )=2x -2-x 是R 上的增函,故选A.答案:A3.(2015·日照模拟)设函f (x )定义在实集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则有( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13解析:∵函f (x )的图象关于直线x =1对称,∴f (x )=f (2-x ),∴f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫2-13=f ⎝ ⎛⎭⎪⎫53,f ⎝ ⎛⎭⎪⎫23=f ⎝⎛⎭⎪⎫2-23=f ⎝ ⎛⎭⎪⎫43,又∵x ≥1时,f (x )=3x-1为单调递增函,且43<32<53,∴f ⎝ ⎛⎭⎪⎫43<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53, 即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13,故选B.答案:B4.已知实a ,b 满足等式2a =3b ,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0.其中有可能成立的关系式有( )A.1个B.2个C.3个D.4个解析:依题意,在同一坐标系下画出函y=2x,y=3x的图象与直线y=t,平移直线y=t,通过观察可知,直线y=t分别与函y=2x,y=3x的图象的交点的横坐标a,b的大小关系可能是a<b<0;a=b=0;0<b<a,因此其中有可能成立的关系式共有3个,故选C.答案:C5.(2015·济宁三模)已知函f(x)=|2x-1|,a<b<c且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )A.a<0,b<0,c<0 B.a<0,b≥0,c>0C.2-a<2c D.2a+2c<2解析:作出函f(x)=|2x-1|的图象,如图,∵a<b<c,且f(a)>f(c)>f(b),结合图象知,0<f(a)<1,a<0,c>0,∴0<2a<1.∴f(a)=|2a-1|=1-2a<1,∴f(c)<1,∴0<c<1.∴1<2c<2,∴f(c)=|2c-1|=2c-1,又∵f(a)>f(c),∴1-2a>2c-1,∴2a+2c<2,故选D.答案:D6.计算:⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________. 解析:原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.答案:27.已知函f (x )=a x -1+1(a ≠0)的图象恒过定点A ,则点A 的坐标是________.解析:由题意,因为a 为变量,所以只有当a x -1为定值时,函的图象才过定点,所以x =1,y =2,定点A (1,2).答案:(1,2)8.函f (x )=a x (a >0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,则a 的值为________.解析:当a >1时,f (x )=a x 为增函,在x ∈[1,2]上,f (x )最大=f (2)=a 2,f (x )最小=f (1)=a .∴a 2-a =a2.即a (2a -3)=0.∴a =0(舍)或a =32>1.∴a =32.当0<a <1时,f (x )=a x 为减函,在x ∈[1,2]上,f (x )最大=f (1)=a ,f (x )最小=f (2)=a 2. ∴a -a 2=a2.∴a (2a -1)=0,∴a =0(舍)或a =12.∴a =12.综上可知,a =12或a =32.答案:12或329.已知2x 2-x ≤⎝ ⎛⎭⎪⎫14x -1,求函y =2x -2-x 的值域.解:由2x 2-x ≤⎝ ⎛⎭⎪⎫14x -1=2-2x +2,得x 2-x ≤-2x +2,即x 2+x -2≤0解得-2≤x ≤1.令t =2x,t ∈⎣⎢⎡⎦⎥⎤14,2,则y =t -1t ,易知y =t -1t 在区间⎣⎢⎡⎦⎥⎤14,2上是增函, 所以,函y =t -1t 的值域为⎣⎢⎡⎦⎥⎤-154,32,即函y =2x -2-x 的值域为⎣⎢⎡⎦⎥⎤-154,32. 10.(2016·天津期末)已知函f (x )=e x -e -x (x ∈R ,且e 为自然对的底).(1)判断函f (x )的单调性与奇偶性;(2)是否存在实t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明由.解:(1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函.∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函.(2)存在.由(1)知f (x )在R 上是增函和奇函,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立 ⇔x 2-t 2≥t -x 对一切x ∈R 都成立⇔t 2+t ≤x 2+x =⎝⎛⎭⎪⎫x +122-14对一切x ∈R 都成立⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0,又⎝ ⎛⎭⎪⎫t +12≥0,∴⎝⎛⎭⎪⎫t +122=0,∴t =-12,∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R都成立.B 组 高考题型专练1.(2014·高考陕西卷)下列函中,满足“f (x +y )=f (x )f (y )”的单调递增函是( )A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x解析:对于选项A ,f (x +y )=(x +y )3≠f (x )f (y )=x 3y 3,排除A ;对于选项B ,f (x +y )=3x +y =3x ·3y =f (x )f (y ),且f (x )=3x 在其定义域内是单调增函,B 正确;对于选项C ,f (x +y )=x +y ≠f (x )f (y )=x 12y 12=xy ,排除C ;对于选项D ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ⎝ ⎛⎭⎪⎫12y =f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x在其定义域内是减函,排除D.故选B.答案:B2.(2015·高考山东卷)已知函f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.解析:①当a >1时,f (x )在[-1,0]上单调递增,则⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,f (x )在[-1,0]上单调递减,则⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,∴a +b =-32.答案:-323.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 解析:不等式2x 2-x <4可转为2x 2-x <22,利用指函y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}.答案:(-1,2)4.(2015·高考福建卷)若函f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实m 的最小值等于________.解析:因为f (1+x )=f (1-x ),所以函f (x )关于直线x =1对称,所以a =1,所以函f (x )=2|x -1|的图象如图所示,因为函f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实m 的最小值为1.答案:1。

高考数学一轮复习 第二章 函数、导数及其应用 第五节 指数与指数函数学案 文(含解析)新人教A版-新

高考数学一轮复习 第二章 函数、导数及其应用 第五节 指数与指数函数学案 文(含解析)新人教A版-新

第五节指数与指数函数2019考纲考题考情1.根式(1)根式的概念①na n=⎩⎨⎧a(n为奇数),|a|=⎩⎪⎨⎪⎧a(a≥0),-a(a<0)(n为偶数)。

②(na)n=a(注意a必须使na有意义)。

2.有理数的指数幂(1)幂的有关概念③0的正分数指数幂等于0,0的负分数指数幂无意义,0的零次幂无意义。

(2)有理数指数幂的运算性质①a r a s=a r+s(a>0,r,s∈Q)。

②(a r)s=a rs(a>0,r,s∈Q)。

③(ab)r=a r b r(a>0,b>0,r∈Q)。

3.指数函数的图象与性质1.指数函数图象的画法画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a 。

2.指数函数的图象与底数大小的比较如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0。

由此我们可得到以下规律:在第一象限内,指数函数y =a x(a >0,a ≠1)的图象越高,底数越大。

3.指数函数y =a x(a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究。

一、走进教材1.(必修1P 59A 组T 4改编)化简416x 8y 4(x <0,y <0)=________。

解析 因为x <0,y <0,所以416x 8y 4=|2x 2y |=-2x 2y 。

答案 -2x 2y2.(必修1P 56例6改编)若函数f (x )=a x(a >0,且a ≠1)的图象经过点P ⎝ ⎛⎭⎪⎫2,12,则f (-1)=________。

解析 由题意知12=a 2,所以a =22,所以f (x )=⎝ ⎛⎭⎪⎫22x ,所以f (-1)=⎝ ⎛⎭⎪⎫22-1=2。

【创新方案】2019高考数学(理)一轮复习配套文档:第2章 第5节 指数与指数函数

【创新方案】2019高考数学(理)一轮复习配套文档:第2章 第5节 指数与指数函数

第五节 指数与指数函数【考纲下载】1.了解指数函数模型的实际背景.2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型.1.根式 (1)根式的概念①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a 当n 为奇数且n ∈N *时,x =±n a 当n 为偶数且n ∈N *时(2)根式的性质 ①(n a)n =a(n ∈N *). ②na n=⎩⎨⎧a ,n 为奇数,|a|=⎩⎪⎨⎪⎧a ,a≥0,-a ,a <0,n 为偶数.2.有理数指数幂 (1)幂的有关概念:①正分数指数幂:a m n =n a m (a >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n =1a m n =1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质: ①a r a s=ar +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q); ③(ab)r=a r b r(a >0,b >0,r ∈Q). 3.指数函数的图象与性质1.n a n=a 成立的条件是什么?提示:当n 为奇数时,a ∈R ;当n 为偶数时,a≥0.2.如图是指数函数(1)y =a x,(2)y =b x,(3)y =c x,(4)y =d x的图象,底数a ,b ,c ,d 与1之间的大小关系如何?你能得到什么规律?提示:图中直线x =1与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,所以,c>d>1>a>b ,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.3.当a>0,且a≠1时,函数y =a x ,y =a |x|,y =|a x|,y =⎝ ⎛⎭⎪⎫1a x 之间有何关系?提示:y =a x与y =|a x|是同一个函数的不同表现形式;函数y =a |x|与y =a x不同,前者是一个偶函数,其图象关于y 轴对称,当x≥0时两函数图象相同;y =a x与y =⎝ ⎛⎭⎪⎫1a x 的图象关于y 轴对称.1.化简[(-2)6]12-(-1)0的结果为( )A.-9 B.-10 C.9 D.7解析:选D [ (-2)6]12-(-1)0=(26)12-1=8-1=7.2.化简416x8y4(x<0,y<0)得( )A.2x2y B.2xy C.4x2y D.-2x2y解析:选D 416x8y4=2x2|y|=-2x2y.3.函数f(x)=3x+1的值域为( )A.(-1,+∞) B.(1,+∞)C.(0,1) D.[1,+∞)解析:选B ∵3x>0,∴3x+1>1,即函数f(x)=3x+1的值域为(1,+∞).4.当a>0且a≠1时,函数f(x)=a x-2-3的图象必过定点________.解析:令x-2=0,则x=2,y=1-3=-2,故函数f(x)=a x-2-3的图象必过定点(2,-2).答案:(2,-2)5.若指数函数f(x)=(a-2)x为减函数,则实数a的取值范围为________.解析:∵f(x)=(a-2)x为减函数,∴ 0<a-2<1,即2<a<3.答案:(2,3)前沿热点(三)指数函数与不等式的交汇问题1.高考对指数函数的考查多以指数与指数函数为载体,考查指数的运算和函数图象的应用,且常与函数性质、二次函数、方程、不等式等内容交汇2.解决此类问题的关键是根据已知(或构造)指数函数或指数型函数的图象或性质建立相关关系式求解.[典例] (2018·浙江高考)设a>0,b>0,( )A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a<bC.若2a-2a=2b-3b,则a>bD.若2a-2a=2b-3b,则a<b[解题指导] 分析题目选项的特点,可构造函数f(x)=2x+2x,然后利用其单调性解决.[解析] ∵a>0,b>0,∴2a+2a=2b+3b>2b+2b.令f(x)=2x+2x(x>0),则函数f(x)为单调增函数.∴a>b.[答案] A[名师点评] 解决本题的关键有以下两点:(1)通过放缩,将等式问题转化为不等式问题;(2)构造函数,并利用其单调性解决问题.设函数f(x)=32x-2×3x+a2-a-5,当0≤x≤1时,f(x)>0恒成立,则实数a的取值范围是________.解析:f(x)=32x-2×3x+a2-a-5=(3x-1)2+a2-a-6,∵0≤x≤1,∴1≤3x≤3,∴函数f(x)=32x-2×3x +a2-a-5在0≤x≤1上是增函数,f(x)>0恒成立⇔f(0)>0,f(0)=1-2+a2-a-5=a2-a-6=(a-3)(a +2)>0,∴a>3或a<-2.答案:(-∞,-2)∪(3,+∞)。

近年高考数学一轮复习第二章函数第五节指数与指数函数作业本理(2021年整理)

近年高考数学一轮复习第二章函数第五节指数与指数函数作业本理(2021年整理)

(北京专用)2019版高考数学一轮复习第二章函数第五节指数与指数函数作业本理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第二章函数第五节指数与指数函数作业本理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第二章函数第五节指数与指数函数作业本理的全部内容。

第五节指数与指数函数A组基础题组1。

函数y=a x+2—1(a>0且a≠1)的图象恒过的点是( )A.(0,0) B。

(0,-1)C。

(-2,0) D.(-2,-1)2.已知a=20。

2,b=0。

40。

2,c=0。

40.6,则( )A。

a>b>c B.a〉c>bC.c>a>bD.b〉c〉a3.函数y=a x—(a〉0,且a≠1)的图象可能是()4.函数y=|2x—1|在区间(k-1,k+1)上不单调,则k的取值范围是()A.(—1,+∞)B.(—∞,1)C。

(-1,1) D.(0,2)5.已知函数f(x)=则函数f(x)是( )A。

偶函数,在[0,+∞)上单调递增B.偶函数,在[0,+∞)上单调递减C。

奇函数,且单调递增D。

奇函数,且单调递减6。

化简a·+()5+= 。

7.若函数y=(a2—1)x在R上为增函数,则实数a的取值范围是.8.已知函数f(x)=a-x(a〉0,且a≠1),且f(-2)〉f(-3),则a的取值范围是。

9.化简下列各式:(1)+0.1-2+-3π0+;(2)÷.B组提升题组10。

若函数f(x)=是R上的减函数,则实数a的取值范围是()A. B.C. D.11。

2019高考数学第一轮复习 指数与指数函数精品文档9页

2019高考数学第一轮复习 指数与指数函数精品文档9页

第4讲 指数与指数函数【2019年高考会这样考】1.考查指数函数的图象与性质及其应用.2.以指数与指数函数为知识载体,考查指数的运算和函数图象的应用. 3.以指数或指数型函数为命题背景,重点考查参数的计算或比较大小. 【复习指导】1.熟练掌握指数的运算是学好该部分知识的基础,较高的运算能力是高考得分的保障,所以熟练掌握这一基本技能是重中之重.2.本讲复习,还应结合具体实例了解指数函数的模型,利用图象掌握指数函数的性质.重点解决:(1)指数幂的运算;(2)指数函数的图象与性质.基础梳理1.根式 (1)根式的概念如果一个数的n 次方等于a (n >1且,n ∈N *),那么这个数叫做a 的n 次方根.也就是,若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)根式的性质①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号na 表示.②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数的正的n 次方根用符号n a 表示,负的n 次方根用符号-na 表示.正负两个n 次方根可以合写为±na (a >0). ③⎝⎛⎭⎫n a n =a . ④当n 为奇数时,na n =a ;当n 为偶数时,na n= |a |=⎩⎨⎧a (a ≥0)-a (a <0).⑤负数没有偶次方根.2.有理数指数幂(1)幂的有关概念①正整数指数幂:a n=a·a·…·an个(n∈N*);②零指数幂:a0=1(a≠0);③负整数指数幂:a-p=1a p(a≠0,p∈N*);④正分数指数幂:a mn=na m(a>0,m、n∈N*,且n>1);⑤负分数指数幂:a-mn=1amn=1na m(a>0,m、n∈N*且n>1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r、s∈Q)②(a r)s=a rs(a>0,r、s∈Q)③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质R分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算. 两个防范(1)指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论. (2)换元时注意换元后“新元”的范围. 三个关键点画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝ ⎛⎭⎪⎫-1,1a . 双基自测1.(2019·山东)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ). A .0 B.33 C .1 D. 3解析 由题意有3a =9,则a =2,∴tan a π6=tan π3= 3. 答案 D2.(2019·郴州五校联考)函数f (x )=2|x -1|的图象是( ).解析f (x )=⎩⎨⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,故选B.答案 B 3.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ). A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值解析 设y =f (x ),t =2x +1,则y =1t ,t =2x +1,x ∈(-∞,+∞)t =2x +1在(-∞,+∞)上递增,值域为(1,+∞). 因此y =1t 在(1,+∞)上递减,值域为(0,1). 答案 A4.(2019·天津)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ).A .a >b >cB .b >a >cC .a >c >bD .c >a >b解析 c =⎝ ⎛⎭⎪⎫15log 30.3=5-log 30.3=5log 3103,log 23.4>log 22=1,log 43.6<log 44=1,log 3103>log 33=1,又log 23.4>log 2103>log 3 103,∴log 2 3.4>log 3 103>log 4 3.6 又∵y =5x 是增函数,∴a >c >b . 答案 C5.(2019·天津一中月考)已知a 12+a -12=3,则a +a -1=______;a 2+a -2=________.解析 由已知条件(a 12+a -12)2=9.整理得:a +a -1=7 又(a +a -1)2=49,因此a 2+a -2=47. 答案 7 47考向一 指数幂的化简与求值【例1】►化简下列各式(其中各字母均为正数). (1)(a 23·b -1)-12·a -12·b 136a ·b 5;(2)56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12.[审题视点] 熟记有理数指数幂的运算性质是化简的关键. 解 (1)原式=a -13b 12·a -12b13a 16b 56=a -13-12-16·b 12+13-56=1a . (2)原式=-52a -16b -3÷(4a 23·b -3)12 =-54a -16b -3÷⎝ ⎛⎭⎪⎫a 13b -32 =-54a -12·b -32 =-54·1ab3=-5ab 4ab 2.化简结果要求(1)若题目以根式形式给出,则结果用根式表示;(2)若题目以分数指数幂的形式给出,则结果用分数指数幂表示;(3)结果不能同时含有根号和分数指数幂,也不能既有分母又有负指数幂. 【训练1】 计算:(1)0.027-13-⎝ ⎛⎭⎪⎫-17-2+⎝ ⎛⎭⎪⎫27912-()2-10;(2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)30.1-2(a 3b -3)12.解 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-(-1)-2⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45.(2)原式=412·432100·a 32·a -32·b 32·b -32=425a 0·b 0=425.考向二 指数函数的性质【例2】►已知函数f (x )=⎝ ⎛⎭⎪⎫1a x -1+12·x 3(a >0且a ≠1).(1)求函数f (x )的定义域; (2)讨论函数f (x )的奇偶性;(3)求a 的取值范围,使f (x )>0在定义域上恒成立.[审题视点] 对解析式较复杂的函数判断其奇偶性要适当变形;恒成立问题可通过求最值解决.解 (1)由于a x -1≠0,且a x ≠1,所以x ≠0. ∴函数f (x )的定义域为{x |x ∈R ,且x ≠0}. (2)对于定义域内任意x ,有 f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫a x1-a x +12(-x )3=⎝ ⎛⎭⎪⎫-1-1a x -1+12(-x )3=⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ), ∴f (x )是偶函数.(3)当a >1时,对x >0,由指数函数的性质知a x >1, ∴a x -1>0,1a x -1+12>0. 又x >0时,x 3>0,∴x 3⎝ ⎛⎭⎪⎫1a x -1+12>0, 即当x >0时,f (x )>0.又由(2)知f (x )为偶函数,即f (-x )=f (x ), 则当x <0时,-x >0,有f (-x )=f (x )>0成立. 综上可知,当a >1时,f (x )>0在定义域上恒成立. 当0<a <1时,f (x )=(a x +1)x 32(a x -1).当x >0时,1>a x >0,a x +1>0,a x -1<0,x 3>0,此时f (x )<0,不满足题意; 当x <0时,-x >0,f (-x )=f (x )<0,也不满足题意.综上可知,所求a 的取值范围是a >1.(1)判断此类函数的奇偶性,常需要对所给式子变形,以达到所需要的形式,另外,还可利用f (-x )±f (x ),f (x )f (-x )来判断. (2)将不等式恒成立问题转化为求函数值域问题,是解决恒成立问题的常用方法. 【训练2】 设f (x )=e -x a +ae -x 是定义在R 上的函数.(1)f (x )可能是奇函数吗?(2)若f (x )是偶函数,试研究其在(0,+∞)的单调性. 解 (1)假设f (x )是奇函数,由于定义域为R , ∴f (-x )=-f (x ),即e x a +ae x =-⎝⎛⎭⎪⎫e -x a +a e -x ,整理得⎝ ⎛⎭⎪⎫a +1a (e x +e -x )=0,即a +1a =0,即a 2+1=0显然无解. ∴f (x )不可能是奇函数.(2)因为f (x )是偶函数,所以f (-x )=f (x ), 即e x a +a e x =e -x a +a e-x ,整理得⎝ ⎛⎭⎪⎫a -1a (e x -e -x )=0,又∵对任意x ∈R 都成立,∴有a -1a =0,得a =±1. 当a =1时,f (x )=e -x +e x ,以下讨论其单调性, 任取x 1,x 2∈(0,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=e x 1+e -x 1- e x 2-e -x 2 =(e x 1-e x 2)(e x 1+x 2-1)e x 1+x 2,∵x 1,x 2∈(0,+∞)且x 1<x 2,∴e x 1+x 2>1,e x 1-e x 2<0,∴e x 1+x 2-1>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )=e -x a +ae-x ,当a =1时在(0,+∞)为增函数,同理,当a =-1时,f (x )在(0,+∞)为减函数.考向三 指数函数图象的应用【例3】►(2009·山东)函数y =e x +e -xe x -e-x 的图象大致为( ).[审题视点] 函数图象的判断要充分利用函数的性质,如奇偶性、单调性. 解析 y =e 2x +1e 2x -1=1+2e 2x -1,当x >0时,e 2x -1>0且随着x 的增大而增大,故y =1+2e 2x-1>1且随着x 的增大而减小,即函数y 在(0,+∞)上恒大于1且单调递减,又函数y 是奇函数,故选A. 答案 A利用指数函数的图象和性质可研究复合函数的图象和性质,比如:函数y =a x -1a x +1,y =e x -e -x2,y =lg(10x -1)等.【训练3】 已知方程10x =10-x ,lg x +x =10的实数解分别为α和β,则α+β的值是________.解析 作函数y =f (x )=10x ,y =g (x )=lg x ,y =h (x )=10-x 的图象如图所示,由于y =f (x )与y =g (x )互为反函数,∴它们的图象是关于直线y =x 对称的.又直线y =h (x )与y =x 垂直,∴y =f (x )与y =h (x )的交点A 和y =g (x )与y =h (x )的交点B 是关于直线y =x 对称的.而y =x 与y =h (x )的交点为(5,5).又方程10x =10-x 的解α为A 点横坐标,同理,β为B 点横坐标.∴α+β2=5,即α+β=10. 答案 10难点突破3——如何求解新情景下指数函数的问题高考中对指数函数的考查,往往突出新概念、新定义、新情景中的问题,题目除最基本问题外,注重考查一些小、巧、活的问题,突出考查思维能力和化归等数学思想.一、新情景下求指数型函数的最值问题的解法【示例】► (2019·福建五市模拟)设函数y =f (x )在(-∞,+∞)内有定义.对于给定的正数K ,定义函数f K (x )=⎩⎨⎧f (x ),f (x )≥K ,K ,f (x )<K ,取函数f (x )=2+x +e -x ,若对任意的x ∈(-∞,+∞),恒有f K (x )=f (x ),则K 的最大值为________. 二、新情景下求与指数型函数有关的恒成立问题的解法 【示例】► 若f 1(x )=3|x -1|,f 2(x )=2·3|x -a |,x ∈R ,且f (x )=⎩⎨⎧f 1(x ),f 1(x )≤f 2(x ),f 2(x ),f 1(x )>f 2(x ),则f (x )=f 1(x )对所有实数x 成立,则实数a 的取值范围是________.。

【配套K12】[学习]2019届高考数学一轮复习 第二章 函数、导数及其应用 第五节 指数与指数函数

【配套K12】[学习]2019届高考数学一轮复习 第二章 函数、导数及其应用 第五节 指数与指数函数

第五节 指数与指数函数课时作业 A 组——基础对点练1.函数f (x )=2|x -1|的大致图象是( )解析:f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,所以f (x )的图象在[1,+∞)上为增函数,在(-∞,1)上为减函数. 答案:B2.(2018·广州市模拟)设a =0.70.4,b =0.40.7,c =0.40.4,则a ,b ,c 的大小关系为( ) A .b <a <c B .a <c <b C .b <c <aD .c <b <a解析:∵函数y =0.4x在R 上单调递减,∴0.40.7<0.40.4,即b <c ,∵y =x 0.4在(0,+∞)上单调递增,∴0.40.4<0.70.4,即c <a ,∴b <c <a . 答案:C 3.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )解析:故选C.答案:C4.设x >0,且1<b x <a x,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b解析:∵1<b x,∴b 0<b x,∵x >0,∴b >1,∵b x<a x,∴⎝ ⎛⎭⎪⎫a b x >1,∵x >0,∴a b>1⇒a >b ,∴1<b <a .故选C.答案:C5.已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( ) A .1 B .a C .2D .a 2解析:∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上, ∴x 1+x 2=0. 又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A. 答案:A6.已知则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:∵y =⎝ ⎛⎭⎪⎫25x为减函数,35>25,∴b <c .又∵y =在(0,+∞)上为增函数,35>25,∴a >c ,∴b <c <a ,故选D. 答案:D7.已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x+b 的图象是( )解析:由函数f (x )的图象可知,-1<b <0,a >1,则g (x )=a x+b 为增函数,当x =0时,g (0)=1+b >0,故选C. 答案:C8.已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x)>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}解析:因为一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >12,所以可设f (x )=a (x+1)·⎝ ⎛⎭⎪⎫x -12(a <0),由f (10x )>0可得(10x +1)·⎝ ⎛⎭⎪⎫10x -12<0,即10x<12,x <-lg 2,故选D. 答案:D9.函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析:∵2x -x 2=-(x -1)2+1≤1,又y =⎝ ⎛⎭⎪⎫12t在R 上为减函数,∴y =⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12,即值域为⎣⎢⎡⎭⎪⎫12,+∞. 答案:A10.(2018·哈尔滨模拟)函数f (x )=e 2x+1e x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称解析:f (x )=e 2x+1e x =e x +1e x ,∵f (-x )=e -x +1e -x =e x+1e x =f (x ),∴f (x )是偶函数,∴函数f (x )的图象关于y 轴对称. 答案:D11.(2018·北京丰台模拟)已知奇函数y ={ f x ,x >0,g x ,x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=( )A.⎝ ⎛⎭⎪⎫12-x B .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:由题图知f (1)=12,∴a =12,f (x )=⎝ ⎛⎭⎪⎫12x,由题意得g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故选D.答案:D12.关于x 的方程⎝ ⎛⎭⎪⎫32x =2+3a 5-a 有负数根,则实数a 的取值范围为________.解析:由题意,得x <0,所以0<⎝ ⎛⎭⎪⎫32x<1,从而0<2+3a 5-a <1,解得-23<a <34.答案:⎝ ⎛⎭⎪⎫-23,34 13.不等式2x 2-x <4的解集为________.解析:不等式2x 2-x <4可转化为2x 2-x <22,利用指数函数y =2x 的性质可得,x 2-x <2,解得-1<x <2,故所求解集为{x |-1<x <2}. 答案:{x |-1<x <2}14.已知y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为________.解析:设t =12x ,当x ≥0时,2x≥1,∴0<t ≤1,f (t )=-t 2+t =-⎝ ⎛⎭⎪⎫t -122+14,∴0≤f (t )≤14,故当x ≥0时,f (x )∈⎣⎢⎡⎦⎥⎤0,14.∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈⎣⎢⎡⎦⎥⎤-14,0.故函数的值域为⎣⎢⎡⎦⎥⎤-14,14. 答案:⎣⎢⎡⎦⎥⎤-14,14 B 组——能力提升练1.设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x-1,则有( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13 解析:∵函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x ),∴f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫2-13=f ⎝ ⎛⎭⎪⎫53,f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫2-23=f ⎝ ⎛⎭⎪⎫43,又∵x ≥1时,f (x )=3x-1为单调递增函数,且43<32<53,∴f ⎝ ⎛⎭⎪⎫43<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53, 即f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13.选B. 答案:B2.已知实数a ,b 满足等式2 017a=2 018b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个D .4个解析:设2 017a=2 018b=t ,如图所示,由函数图象,可得若t >1,则有a >b >0;若t =1,则有a =b =0;若0<t <1,则有a <b <0.故①②⑤可能成立,而③④不可能成立. 答案:B3.(2018·莱西一中模拟)函数y =a x-a -1(a >0,且a ≠1)的图象可能是( )解析:函数y =a x -1a 是由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误,故选D. 答案:D4.(2018·日照模拟)若x ∈(2,4),a =2x 2,b =(2x )2,c =22x,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b C .c >a >bD .b >a >c解析:∵b =(2x )2=22x,∴要比较a ,b ,c 的大小,只要比较当x ∈(2,4)时x 2,2x,2x的大小即可.用特殊值法,取x =3,容易知x 2>2x>2x ,则a >c >b . 答案:B5.已知a >0,且a ≠1,f (x )=x 2-a x.当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) B .⎣⎢⎡⎭⎪⎫12,1∪(1,2] C.⎝ ⎛⎦⎥⎤0,14∪[4,+∞) D .⎣⎢⎡⎭⎪⎫14,1∪(1,4] 解析:当x ∈(-1,1)时,均有f (x )<12,即a x >x 2-12在(-1,1)上恒成立,令g (x )=a x ,m (x )=x 2-12,当0<a <1时,g (1)≥m (1),即a ≥1-12=12,此时12≤a <1;当a >1时,g (-1)≥m (1),即a -1≥1-12=12,此时1<a ≤2.综上,12≤a <1或1<a ≤2.故选B.答案:B6.(2018·菏泽模拟)若函数f (x )=1+2x +12x +1+sin x 在区间[-k ,k ](k >0)上的值域为[m ,n ],则m +n 的值是( )A .0B .1C .2D .4解析:∵f (x )=1+2·2x2x +1+sin x=1+2·2x+1-12+1+sin x=2+1-22x +1+sin x=2+2x-12x +1+sin x .记g (x )=2x-12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,则g (x )在[-k ,k ]上的最大值与最小值互为相反数, ∴m +n =4. 答案:D7.若x log 52≥-1,则函数f (x )=4x-2x +1-3的最小值为( ) A .-4 B .-3 C .-1D .0解析:∵x log 52≥-1,∴2x ≥15,则f (x )=4x -2x +1-3=(2x )2-2×2x -3=(2x -1)2-4.当2x=1时,f (x )取得最小值-4. 答案:A8.若x >1,y >0,x y +x -y =22,则x y -x -y的值为( ) A. 6 B .-2 C .2D .2或-2解析:∵x >1,y >0,∴x y>1,0<x -y<1,则x y-x -y>0. ∵x y+x -y=22,∴x 2y+2x y ·x -y +x-2y=8,即x 2y +x-2y=6,∴(x y -x -y )2=4,从而x y -x-y=2,故选C.答案:C9.已知实数a ,b 满足12>⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b >14,则( )A .b <2b -aB .b >2b -aC .a <b -aD .a >b -a解析:由12>⎝ ⎛⎭⎪⎫12a,得a >1;由⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b,得⎝ ⎛⎭⎪⎫222a >⎝ ⎛⎭⎪⎫22b ,进而2a <b ; 由⎝⎛⎭⎪⎫22b >14,得⎝ ⎛⎭⎪⎫22b >⎝ ⎛⎭⎪⎫224,进而b <4. ∴1<a <2,2<b <4. 取a =32,b =72,得b -a =72-32=2,有a >b -a ,排除C ;b >2b -a ,排除A ;取a =1110,b =3910,得b -a =3910-1110=145,有a <b -a ,排除D.故选B. 答案:B10.已知函数f (x )=⎝⎛⎭⎪⎫2x -12·,m ,n 为实数,则下列结论中正确的是( )A .若-3≤m <n ,则f (m )<f (n )B .若m <n ≤0,则f (m )<f (n )C .若f (m )<f (n ),则m 2<n 2D .若f (m )<f (n ),则m 3<n 3解析:∵f (x )的定义域为R ,其定义域关于原点对称,f (-x )===f (x ),∴函数f (x )是一个偶函数,又x >0时,2x-12x 与是增函数,且函数值为正,∴函数f (x )=⎝⎛⎭⎪⎫2x -12x ·在(0,+∞)上是一个增函数,由偶函数的性质知,函数f (x )在(-∞,0)上是一个减函数,此类函数的规律是:自变量离原点越近,函数值越小,即自变量的绝对值越小,函数值就越小,反之也成立.对于选项A ,无法判断m ,n 离原点的远近,故A 错误;对于选项B ,|m |>|n |,∴f (m )>f (n ),故B 错误;对于选项C ,由f (m )<f (n ),一定可得出m 2<n 2,故C 是正确的;对于选项D ,由f (m )<f (n ),可得出|m |<|n |,但不能得出m 3<n 3,故D 错误.综上可知,选C. 答案:C11.(2017·高考全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( ) A .-12B .13 C.12D .1解析:由f (x )=x 2-2x +a (ex -1+e-x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e -(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (ex -1+e-x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e1-1+e-1+1)=0,解得a =12.故选C.答案:C12.若函数f (x )=2|x -a |(a ∈R)满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________.解析:因为f (1+x )=f (1-x ),所以函数f (x )关于直线x =1对称,所以a =1,所以函数f (x )=2|x -1|的图象如图所示,因为函数f (x )在[m ,+∞)上单调递增,所以m ≥1,所以实数m 的最小值为1.答案:113.(2018·眉山模拟)已知定义在R 上的函数g (x )=2x +2-x+|x |,则满足g (2x -1)<g (3)的x 的取值范围是________.解析:∵g (x )=2x +2-x +|x |,∴g (-x )=2x +2-x +|-x |,2x +2-x+|x |=g (x ),则函数g (x )为偶函数,当x ≥0时,g (x )=2x+2-x+x ,则g ′(x )=(2x -2-x)·ln 2+1>0,则函数g (x )在[0,+∞)上为增函数,而不等式g (2x -1)<g (3)等价于g (|2x -1|)<g (3),∴|2x -1|<3,即-3<2x -1<3,解得-1<x <2,即x 的取值范围是(-1,2). 答案:(-1,2)14.(2018·信阳质检)若不等式(m 2-m )2x-⎝ ⎛⎭⎪⎫12x <1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是________.解析:(m 2-m )2x -⎝ ⎛⎭⎪⎫12x <1可变形为m 2-m <⎝ ⎛⎭⎪⎫12x +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2,设t =⎝ ⎛⎭⎪⎫12x ,则原条件等价于不等式m 2-m <t +t 2在t ≥2时恒成立,显然t +t 2在t ≥2时的最小值为6,所以m 2-m <6,解得-2<m <3. 答案:(-2,3)。

2019届江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用讲义文

2019届江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第五节指数与指数函数实用讲义文

指数幂
(ar)s= ars (a>0,r,s∈Q)
的性质
(ab)r= arbr (a>0,b>0,r∈Q)
考点贯通 抓高考命题的“形”与“神”
指数幂的运算 指数幂的运算规律 (1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数, 底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示, 运用指数幂的运算性质来解答.
解析:原式=(a
9 2
a
3 2
)
1 3
÷(a
7 3
a
13 3
)
1 2
=(a3)
1 3
÷(a2)
1 2
=a÷a=1.
答案:1
4
1
3. 4b
a 3 -8a 3 b
2 3
+23
ab+a
2 3
÷a
2 3
-2
3
a
b×5
3

a2
=________.
a·3 a
11
1
1
1
21






a
1 3
a 3 [a 2+a
与指数函数有关的复合函数问题 1.与指数函数有关的复合函数的定义域、值域 (1)y=af(x)的定义域与 f(x)的定义域相同. (2)先确定 f(x)的值域,再根据指数函数的值域、单调性确 定函数 y=af(x)的值域.
2.与指数函数有关的复合函数的单调性 利用复合函数的单调性判断形如 y=af(x)的函数的单调 性,它的单调区间与 f(x)的单调区间有关: (1)若 a>1,函数 f(x)的单调增(减)区间即函数 y=af(x)的 单调增(减)区间. (2)若 0<a<1,函数 f(x)的单调增(减)区间即函数 y=af(x) 的单调减(增)区间. 3.指数函数与二次函数的复合问题 一般通过换元法转化为二次函数的问题解决,换元过程 中要注意“元”的取值范围的变化.

北京专用2019版高考文数一轮复习夯基提能作业:第二章

北京专用2019版高考文数一轮复习夯基提能作业:第二章

第五节指数与指数函数A组基础题组1.若a=(2+)-1,b=(2-)-1,则(a+1)-2+(b+1)-2的值是( )A.1B.C.D.2.(2015北京丰台一模)已知奇函数y=如果f(x)=a x(a>0,且a≠1)的图象如图所示,那么g(x)=( )A. B.- C.2-x D.-2x3.(2016课标全国Ⅲ,6,5分)已知a=,b=,c=2,则( )A.b<a<cB.a<b<cC.b<c<aD.c<a<b4.若函数f(x)=a|2x-4|(a>0,且a≠1)满足f(1)=,则f(x)的单调递减区间是( )A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]5.函数f(x)=a|x+1|(a>0,且a≠1)的值域为[1,+∞),则f(-4)与f(1)的大小关系是( )A.f(-4)>f(1)B.f(-4)=f(1)C.f(-4)<f(1)D.不能确定6.(2015北京朝阳期中)已知函数f(x)=2x+a·2-x,且对于任意的实数x都有f(-x)+f(x)=0成立,则实数a 的值为.7.(2017北京海淀二模)在log23,2-3,cos π这三个数中,最大的数是.8.(2015北京朝阳一模)记x2-x1为区间[x1,x2]的长度,已知函数y=2|x|,x∈[-2,a](a≥0),其值域为[m,n],则区间[m,n]的长度的最小值是.9.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式+-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.10.已知函数f(x)=2a·4x-2x-1.(1)当a=1时,求函数f(x)在x∈[-3,0]上的值域;(2)若关于x的方程f(x)=0有解,求a的取值范围.B组提升题组11.(2014北京顺义统练)已知a>0且a≠1,函数f(x)=满足对任意实数x1,x2,且x1≠x2,都有>0成立,则a的取值范围是( )A.(0,1)B.(1,+∞)C.D.12.(2014北京丰台一模)已知函数f(x)=2x,点P(a,b)在函数y=(x>0)的图象上,那么f(a)·f(b)的最小值是.13.设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.14.已知函数f(x)=e x-e-x(x∈R,且e为自然对数的底数).(1)判断函数f(x)的单调性与奇偶性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t的值;若不存在,请说明理由.答案精解精析A组基础题组1.D2.D3.A 因为a==,c=2=,函数y=在(0,+∞)上单调递增,所以<,即a<c,又因为函数y=4x在R上单调递增,所以<,即b<a,所以b<a<c,故选A.4.B 由f(1)=得a2=,又a>0,所以a=,因此f(x)=.根据复合函数的单调性可知f(x)的单调递减区间是[2,+∞).5.A 由题意知a>1,所以f(-4)=a3, f(1)=a2,由y=a x(a>1)的单调性知a3>a2,所以f(-4)>f(1).6.答案-1解析∵对任意的实数x都有f(-x)+f(x)=0成立,即2-x+a·2x+2x+a·2-x=0恒成立,∴(a+1)=0恒成立,故有a+1=0,则a=-1.7.答案log 23-3=∈(0,1),cos π=-1,解析log23>log22=1,2∴这三个数中log23最大.8.答案 3解析令y=f(x)=2|x|,x∈[-2,a],则f(x)=(1)当a=0时, f(x)=2-x在[-2,0]上为减函数,值域为[1,4].(2)当a>0时, f(x)在[-2,0)上递减,在[0,a]上递增,①当0<a≤2时, f(x)max=f(-2)=4,函数的值域为[1,4];②当a>2时, f(x)max=f(a)=2a>4,函数的值域为[1,2a].综合(1)(2),可知[m,n]的长度的最小值为3.9.解析(1)因为f(x)的图象过点A(1,6),B(3,24),所以解得a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,+-m≥0恒成立,即m≤+在x∈(-∞,1]时恒成立.因为y=与y=均为减函数,所以y=+也是减函数,所以当x=1时,y=+在(-∞,1]上取得最小值,且最小值为,所以m≤,即m的取值范围是.10.解析(1)当a=1时, f(x)=2·4x-2x-1=2(2x)2-2x-1,令t=2x,则t∈.故y=2t2-t-1=2-,t∈,故y∈.即f(x)在x∈[-3,0]上的值域为.(2)令m=2x,则m∈(0,+∞).关于x的方程2a(2x)2-2x-1=0有解等价于方程2am2-m-1=0在(0,+∞)上有解.记g(m)=2am2-m-1,当a=0时,m=-1<0,不符合题意.当a<0时,g(m)图象的开口向下,对称轴为m=<0,图象过点(0,-1),不符合题意.当a>0时,g(m)图象的开口向上,对称轴m=>0,图象过点(0,-1),必有一个根为正,所以a>0.综上所述,a的取值范围是(0,+∞).B组提升题组11.C 由已知得函数y=f(x)在R上单调递增,故解得1<a≤,即a的取值范围是.12.答案 4解析由已知得a>0,b>0,且ab=1,∴f(a)·f(b)=2a·2b=2a+b≥=22=4,当且仅当a=b=1时, f(a)·f(b)取得最小值4.13.解析令t=a x(a>0且a≠1),则原函数可化为y=f(t)=(t+1)2-2(t>0).①当0<a<1时,由x∈[-1,1],得t=a x∈,此时f(t)在上为增函数.所以f(t)max=f=-2=14.所以=16,即a=-(舍去)或a=.②当a>1时,由x∈[-1,1],得t=a x∈,此时f(t)在上是增函数.所以f(t)max=f(a)=(a+1)2-2=14,所以(a+1)2=16,即a=-5(舍去)或a=3.综上,a=或a=3.14.解析(1)∵f(x)=e x-,∴f '(x)=e x+,∴f '(x)>0对任意x∈R都成立,∴f(x)在R上是增函数.∵f(x)的定义域为R,且f(-x)=e-x-e x=-f(x),∴f(x)是奇函数.(2)存在.理由如下:由(1)知f(x)在R上是增函数和奇函数,则f(x-t)+f(x2-t2)≥0对一切x∈R都成立⇔f(x2-t2)≥f(t-x)对一切x∈R都成立⇔x2-t2≥t-x对一切x∈R都成立⇔t2+t≤x2+x=-对一切x∈R都成立⇔t2+t≤(x2+x)min=-⇔t2+t+=≤0,又≥0,∴=0,∴t=-,∴存在t=-,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节指数与指数函数
A组基础题组
1.化简4·÷的结果为( )
A.-
B.-
C.-
D.-6ab
2.函数f(x)=1-e|x|的图象大致是( )
3.已知a=,b=,c=2,则( )
A.b<a<c
B.a<b<c
C.b<c<a
D.c<a<b
4.若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( )
A.(-∞,-1)
B.(-1,0)
C.(0,1)
D.(1,+∞)
5.已知实数a,b满足等式=,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.
其中不可能成立的关系式有( )
A.1个
B.2个
C.3个
D.4个
6.已知函数f(x)=,若f(a)=-,则f(-a)= .
7.已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b= .
8.(2017安徽江淮十校第一次联考)已知max{a,b}表示a,b两数中的较大值.若f(x)=max{e|x|,e|x-2|},则f(x)的最小值为.
9.(2018河南洛阳质检)已知函数f(x)=.
(1)若a=-1,求f(x)的单调区间;
(2)若f(x)有最大值3,求a的值.
10.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x)的表达式;
(2)若不等式+-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.
B组提升题组
1.已知函数f(x)=|2x-1|,a<b<c且f(a)>f(c)>f(b),则下列结论中,一定成立的是( )
A.a<0,b<0,c<0
B.a<0,b≥0,c>0
C.2-a<2c
D.2a+2c<2
2.若函数f(x)=是R上的减函数,则实数a的取值范围是.
3.已知函数f(x)=2a·4x-2x-1.
(1)当a=1时,求函数f(x)在x∈[-3,0]上的值域;
(2)若关于x的方程f(x)=0有解,求a的取值范围.
4.已知定义在R上的函数f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
答案精解精析
A组基础题组
1.C
2.A 将函数解析式与图象对比分析,因为函数f(x)=1-e|x|是偶函数,且值域是(-∞,0],只有A满足上述两个性质.
3.A 因为a==1,b==1,c=2,且幂函数y=在R上单调递增,指数函数y=16x在R上单调递增,所以b<a<c.故选A.
4.C 因为f(x)=是奇函数,所以对定义域内的任意x,f(-x)=-f(x)恒成立,即=-,即
=,所以1-a·2x=a-2x,即(a-1)(2x+1)=0对任意x恒成立,所以a=1.所以f(x)==1+,其定义域为(-∞,0)∪(0,+∞),在(0,+∞)上为减函数,在(-∞,0)上也为减函数,因为f(1)=3, f(x)>3,所以f(x)>f(1),所以0<x<1,故选C.
5.B 函数y1=与y2=的图象如图所示.
由=得,a<b<0或0<b<a或a=b=0.
故①②⑤可能成立,③④不可能成立.
6.答案
解析因为f(x)=, f(a)=-,
所以=-,
所以f(-a)==-=-=.
7.答案-
解析①当a>1时, f(x)在[-1,0]上单调递增,则无解;
②当0<a<1时, f(x)在[-1,0]上单调递减,则解得∴a+b=-.
8.答案 e
解析由于f(x)=max{e|x|,e|x-2|}=
当x≥1时, f(x)≥e,且当x=1时,取得最小值e;
当x<1时, f(x)>e.
故f(x)的最小值为f(1)=e.
9.解析(1)当a=-1时, f(x)=,令g(x)=-x2-4x+3,由于g(x)在(-∞,-2)上单调递增,在
(-2,+∞)上单调递减,而y=在R上单调递减,所以f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f(x)的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).
(2)令h(x)=ax2-4x+3,
则f(x)=,
由于f(x)有最大值3,所以h(x)应有最小值-1,
因此必有
解得a=1,即当f(x)有最大值3时,a的值为1.
10.解析(1)因为f(x)的图象过点A(1,6),B(3,24),
所以解得a2=4,
又a>0,所以a=2,则b=3.
所以f(x)=3·2x.
(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,+-m≥0恒成立,即m≤+在x∈(-∞,1]时恒成立.
因为y=与y=均为减函数,所以y=+也是减函数,
所以当x=1时,y=+在(-∞,1]上取得最小值,且最小值为.所以m≤,即m的取值范围是.
B组提升题组
1.D 作出函数f(x)=|2x-1|的图象如图中实线所示,由a<b<c,且f(a)>f(c)>f(b),结合图象知
f(a)<1,a<0,c>0,
∴0<2a<1,∴f(a)=|2a-1|=1-2a,
∴f(c)<1,∴0<c<1,
∴1<2c<2,∴f(c)=|2c-1|=2c-1.
又f(a)>f(c),即1-2a>2c-1,
∴2a+2c<2,故选D.
2.答案
解析依题意知,a应满足解得<a≤.
3.解析(1)当a=1时, f(x)=2·4x-2x-1=2(2x)2-2x-1,
令t=2x,则t∈.
故y=2t2-t-1=2-,t∈,故y∈.
即f(x)在x∈[-3,0]上的值域为.
(2)令m=2x,则m∈(0,+∞).
关于x的方程2a(2x)2-2x-1=0有解等价于方程2am2-m-1=0在(0,+∞)上有解.
记g(m)=2am2-m-1,
当a=0时,m=-1<0,不符合题意.
当a<0时,g(m)图象的开口向下,对称轴m=<0,过点(0,-1),不符合题意.
当a>0时,g(m)图象的开口向上,对称轴m=>0,过点(0,-1),必有一个根为正,所以a>0. 综上所述,a的取值范围是(0,+∞).
4.解析(1)当x<0时, f(x)=0,无解;
当x≥0时, f(x)=2x-,
由2x-=,得2·22x-3·2x-2=0,
将上式看成关于2x的一元二次方程,
解得2x=2或2x=-,
因为2x>0,所以x=1.
(2)当t∈[1,2]时,2t+m≥0,
即m(22t-1)≥-(24t-1),因为22t-1>0,
所以m≥-(22t+1),
因为t∈[1,2],所以-(22t+1)∈[-17,-5],
故实数m的取值范围是[-5,+∞).。

相关文档
最新文档